| 
 SIGMA 10 (2014), 030, 23 pages       arXiv:1307.3307     
https://doi.org/10.3842/SIGMA.2014.030 
Contribution to the Special Issue on New Directions in Lie Theory 
Tilting Modules in Truncated Categories
Matthew Bennett a and Angelo Bianchi b
 a) Department of Mathematics, State University of Campinas, Brazil
 b) Institute of Science and Technology, Federal University of São Paulo, Brazil
 
 
Received September 05, 2013, in final form March 17, 2014; Published online March 26, 2014;
Rearrangement of Sections 2, 3 and 7, reference [5] updated, misprints corrected May 02, 2014 
Abstract
 
We begin the study of a tilting theory in certain truncated categories of modules $\mathcal G(\Gamma)$ for the
current Lie algebra associated to a finite-dimensional complex simple Lie algebra, where $\Gamma = P^+ \times J$, $J$ is
an interval in $\mathbb Z$, and $P^+$ is the set of dominant integral weights of the simple Lie algebra.
We use this to put a tilting theory on the category $\mathcal G(\Gamma')$ where $\Gamma' = P' \times J$, where
$P'\subseteq P^+$ is saturated.
Under certain natural conditions on $\Gamma'$, we note that $\mathcal G(\Gamma')$ admits full tilting modules.
  
 Key words:
current algebra; tilting module; Serre subcategory. 
pdf (483 kb)  
tex (31 kb)
      [previous version: 
pdf (483 kb)  
tex (31 kb)]
 
 
References
 
- Ardonne E., Kedem R., Fusion products of Kirillov-Reshetikhin modules and
  fermionic multiplicity formulas, J. Algebra 308 (2007),
  270-294, math.RT/0602177.
 
- Bennett M., Berenstein A., Chari V., Khoroshkin A., Loktev S., Macdonald
  polynomials and BGG reciprocity for current algebras, Selecta
  Math. (N.S.) 20 (2014), 585-607, arXiv:1207.2446.
 
- Bennett M., Chari V., Tilting modules for the current algebra of a simple Lie
  algebra, in Recent Developments in Lie Algebras, Groups and Representation
  Theory, Proc. Sympos. Pure Math., Vol. 86, Amer. Math. Soc.,
  Providence, RI, 2012, 75-97, arXiv:1202.6050.
 
- Bennett M., Chari V., Manning N., BGG reciprocity for current algebras,
  Adv. Math. 231 (2012), 276-305, arXiv:1106.0347.
 
- Bianchi A., Chari V., Fourier G., Moura A., On multigraded generalizations of
  Kirillov-Reshetikhin modules, Algebr. Represent. Theory,
17 (2014), 519-538, arXiv:1208.3236.
 
- Chari V., Fourier G., Khandai T., A categorical approach to Weyl modules,
  Transform. Groups 15 (2010), 517-549, arXiv:0906.2014.
 
- Chari V., Greenstein J., Current algebras, highest weight categories and
  quivers, Adv. Math. 216 (2007), 811-840,
  math.RT/0612206.
 
- Chari V., Greenstein J., A family of Koszul algebras arising from
  finite-dimensional representations of simple Lie algebras, Adv.
  Math. 220 (2009), 1193-1221, arXiv:0808.1463.
 
- Chari V., Greenstein J., Minimal affinizations as projective objects,
  J. Geom. Phys. 61 (2011), 594-609, arXiv:1009.4494.
 
- Chari V., Ion B., BGG reciprocity for current algebras, arXiv:1307.1440.
 
- Chari V., Khare A., Ridenour T., Faces of polytopes and Koszul algebras,
  J. Pure Appl. Algebra 216 (2012), 1611-1625,
  arXiv:1105.2840.
 
- Chari V., Loktev S., Weyl, Demazure and fusion modules for the current
  algebra of ${\mathfrak{sl}}_{r+1}$, Adv. Math. 207
  (2006), 928-960, math.QA/0502165.
 
- Chari V., Moura A., The restricted Kirillov-Reshetikhin modules for the
  current and twisted current algebras, Comm. Math. Phys. 266
  (2006), 431-454, math.RT/0507584.
 
- Chari V., Moura A., Kirillov-Reshetikhin modules associated to $G_2$, in
  Lie Algebras, Vertex Operator Algebras and their Applications,
  Contemp. Math., Vol. 442, Amer. Math. Soc., Providence, RI, 2007,
  41-59, math.RT/0604281.
 
- Chari V., Pressley A., Weyl modules for classical and quantum affine algebras,
  Represent. Theory 5 (2001), 191-223,
  math.QA/0004174.
 
- Cline E., Parshall B., Scott L., Finite-dimensional algebras and highest weight
  categories, J. Reine Angew. Math. 391 (1988), 85-99.
 
- Di Francesco P., Kedem R., Proof of the combinatorial Kirillov-Reshetikhin
  conjecture, Int. Math. Res. Not. 2008 (2008), no. 7, Art. ID rnn006, 57 pages, arXiv:0710.4415.
 
- Donkin S., Tilting modules for algebraic groups and finite dimensional
  algebras, in Handbook of Tilting Theory, London Math. Soc. Lecture
  Note Ser., Vol. 332, Cambridge University Press, Cambridge, 2007, 215-257.
 
- Fourier G., Kus D., Demazure modules and Weyl modules: the twisted current
  case, Trans. Amer. Math. Soc. 365 (2013), 6037-6064,
  arXiv:1108.5960.
 
- Fourier G., Littelmann P., Weyl modules, Demazure modules, KR-modules,
  crystals, fusion products and limit constructions, Adv. Math.
  211 (2007), 566-593, math.RT/0509276.
 
- Khare A., Ridenour T., Faces of weight polytopes and a generalization of a
  theorem of Vinberg, Algebr. Represent. Theory 15 (2012),
  593-611, arXiv:1005.1114.
 
- Kodera R., Naoi K., Loewy series of Weyl modules and the Poincaré
  polynomials of quiver varieties, Publ. Res. Inst. Math. Sci.
  48 (2012), 477-500, arXiv:1103.4207.
 
- Mathieu O., Tilting modules and their applications, in Analysis on homogeneous
  spaces and Representation Theory of Lie Groups, Okayama-Kyoto (1997),
  Adv. Stud. Pure Math., Vol. 26, Math. Soc. Japan, Tokyo, 2000,
  145-212.
 
- Naoi K., Weyl modules, Demazure modules and finite crystals for non-simply
  laced type, Adv. Math. 229 (2012), 875-934,
  arXiv:1012.5480.
 
- Naoi K., Fusion products of Kirillov-Reshetikhin modules and the $X=M$
  conjecture, Adv. Math. 231 (2012), 1546-1571,
  arXiv:1109.2450.
 
 
 | 
 |