| 
 SIGMA 10 (2014), 038, 18 pages      arXiv:1309.7235     
https://doi.org/10.3842/SIGMA.2014.038 
A ''Continuous'' Limit of the Complementary Bannai-Ito Polynomials: Chihara Polynomials
Vincent X. Genest a, Luc Vinet a and Alexei Zhedanov b
 a) Centre de Recherches Mathématiques, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, QC, Canada, H3C 3J7
 b) Donetsk Institute for Physics and Technology, Donetsk 83114, Ukraine
 
 
Received December 23, 2013, in final form March 24, 2014; Published online March 30, 2014 
Abstract
 
A novel family of $-1$ orthogonal polynomials called the Chihara polynomials is characterized.
The polynomials are obtained from a ''continuous'' limit of the complementary Bannai-Ito polynomials, which are the
kernel partners of the Bannai-Ito polynomials. The three-term recurrence relation and the explicit expression in terms of Gauss hypergeometric functions are obtained
through a limit process. A one-parameter family of second-order differential Dunkl operators having these polynomials as eigenfunctions is also
exhibited. The quadratic algebra with involution encoding this bispectrality is obtained.
The orthogonality measure is derived in two different ways: by using Chihara's method for kernel polynomials and, by
obtaining the symmetry factor for the one-parameter family of Dunkl operators.
It is shown that the polynomials are related to the big $-1$ Jacobi polynomials by a Christoffel transformation and that
they can be obtained from the big $q$-Jacobi by a $q\rightarrow -1$ limit.
The generalized Gegenbauer/Hermite polynomials are respectively seen to be special/limiting cases of the Chihara
polynomials. A one-parameter extension of the generalized Hermite polynomials is proposed.
  
 Key words:
Bannai-Ito polynomials; Dunkl operators; orthogonal polynomials; quadratic algebras. 
pdf (416 kb)  
tex (22 kb)
 
 
References
 
- Askey R., Wilson J., Some basic hypergeometric orthogonal polynomials that
  generalize Jacobi polynomials, Mem. Amer. Math. Soc. 54
  (1985), no. 319, iv+55 pages.
 
- Bannai E., Ito T., Algebraic combinatorics. I. Association schemes, The
  Benjamin/Cummings Publishing Co., Inc., Menlo Park, CA, 1984.
 
- Belmehdi S., Generalized Gegenbauer orthogonal polynomials,
  J. Comput. Appl. Math. 133 (2001), 195-205.
 
- Ben Cheikh Y., Gaied M., Characterization of the Dunkl-classical symmetric
  orthogonal polynomials, Appl. Math. Comput. 187 (2007),
  105-114.
 
- Chihara T.S., On kernel polynomials and related systems, Boll. Un. Mat.
  Ital. 19 (1964), 451-459.
 
- Chihara T.S., An introduction to orthogonal polynomials, Dover Books on
  Mathematics, Dover Publications, New York, 2011.
 
- Dunkl C.F., Xu Y., Orthogonal polynomials of several variables,
  Encyclopedia of Mathematics and its Applications, Vol. 81, Cambridge
  University Press, Cambridge, 2001.
 
- Gasper G., Rahman M., Basic hypergeometric series, Encyclopedia of
  Mathematics and its Applications, Vol. 96, 2nd ed., Cambridge University
  Press, Cambridge, 2004.
 
- Genest V.X., Ismail M.E.H., Vinet L., Zhedanov A., The Dunkl oscillator in
  the plane: I. Superintegrability, separated wavefunctions and overlap
  coefficients, J. Phys. A: Math. Theor. 46 (2013), 145201,
  21 pages, arXiv:1212.4459.
 
- Genest V.X., Ismail M.E.H., Vinet L., Zhedanov A., The Dunkl oscillator in the
  plane: II. Representations of the symmetry algebra, Comm. Math.
  Phys., to appear, arXiv:1302.6142.
 
- Genest V.X., Vinet L., Zhedanov A., Bispectrality of the complementary
  Bannai-Ito polynomials, SIGMA 9 (2013), 018, 20 pages,
  arXiv:1211.2461.
 
- Genest V.X., Vinet L., Zhedanov A., The singular and the $2:1$ anisotropic
  Dunkl oscillators in the plane, J. Phys. A: Math. Theor.
  46 (2013), 325201, 17 pages, arXiv:1305.2126.
 
- Genest V.X., Vinet L., Zhedanov A., The Bannai-Ito polynomials as Racah
  coefficients of the $sl_{-1}(2)$ algebra, Proc. Amer. Math. Soc.
  142 (2014), 1545-1560, arXiv:1205.4215.
 
- Geronimus J., The orthogonality of some systems of polynomials, Duke
  Math. J. 14 (1947), 503-510.
 
- Granovskii Y.I., Lutzenko I.M., Zhedanov A.S., Mutual integrability, quadratic
  algebras, and dynamical symmetry, Ann. Physics 217 (1992),
  1-20.
 
- Koekoek R., Lesky P.A., Swarttouw R.F., Hypergeometric orthogonal polynomials
  and their $q$-analogues, Springer Monographs in Mathematics,
  Springer-Verlag, Berlin, 2010.
 
- Koornwinder T.H., On the limit from $q$-Racah polynomials to big
  $q$-Jacobi polynomials, SIGMA 7 (2011), 040, 8 pages,
  arXiv:1011.5585.
 
- Leonard D.A., Orthogonal polynomials, duality and association schemes,
  SIAM J. Math. Anal. 13 (1982), 656-663.
 
- Marcellán F., Petronilho J., Eigenproblems for tridiagonal 2-Toeplitz
  matrices and quadratic polynomial mappings, Linear Algebra Appl.
  260 (1997), 169-208.
 
- Rosenblum M., Generalized Hermite polynomials and the Bose-like oscillator
  calculus, in Nonselfadjoint Operators and Related Topics (Beer Sheva,
  1992), Oper. Theory Adv. Appl., Vol. 73, Birkhäuser, Basel, 1994,
  369-396.
 
- Tsujimoto S., Vinet L., Zhedanov A., Dunkl shift operators and Bannai-Ito
  polynomials, Adv. Math. 229 (2012), 2123-2158,
  arXiv:1106.3512.
 
- Tsujimoto S., Vinet L., Zhedanov A., Dual $-1$ Hahn polynomials:
  "classical" polynomials beyond the Leonard duality, Proc. Amer.
  Math. Soc. 141 (2013), 959-970, arXiv:1108.0132.
 
- Vinet L., Zhedanov A., A Bochner theorem for Dunkl polynomials,
  SIGMA 7 (2011), 020, 9 pages, arXiv:1011.1457.
 
- Vinet L., Zhedanov A., A 'missing' family of classical orthogonal polynomials,
  J. Phys. A: Math. Theor. 44 (2011), 085201, 16 pages,
  arXiv:1011.1669.
 
- Vinet L., Zhedanov A., A limit $q=-1$ for the big $q$-Jacobi polynomials,
  Trans. Amer. Math. Soc. 364 (2012), 5491-5507,
  arXiv:1011.1429.
 
 
 | 
 |