| 
 SIGMA 10 (2014), 041, 16 pages      arXiv:1311.2408     
https://doi.org/10.3842/SIGMA.2014.041 
A Notable Relation between $N$-Qubit and $2^{N - 1}$-Qubit Pauli Groups via Binary ${\rm LGr}(N,2N)$
Frédéric Holweck a, Metod Saniga b and Péter Lévay c
 a) Laboratoire IRTES/M3M, Université de Technologie de Belfort-Montbéliard, F-90010 Belfort, France
 b) Astronomical Institute, Slovak Academy of Sciences, SK-05960 Tatranská Lomnica, Slovak Republic
 c) Department of Theoretical Physics, Institute of Physics, Budapest University of Technology and Economics, Budafoki út. 8, H-1521, Budapest, Hungary
 
 
Received November 14, 2013, in final form April 02, 2014; Published online April 08, 2014 
Abstract
 
Employing the fact that the geometry of the $N$-qubit ($N \geq 2$) Pauli group is embodied in the structure of the symplectic polar space $\mathcal{W}(2N-1,2)$ and using properties of the Lagrangian Grassmannian ${\rm LGr}(N,2N)$ defined  over the smallest Galois field, it is demonstrated that there exists a bijection between the set of maximum sets of mutually commuting elements
of the $N$-qubit Pauli group and a certain subset of  elements of the $2^{N-1}$-qubit Pauli group. In order to reveal finer traits of this correspondence, the cases $N=3$ (also addressed recently by Lévay, Planat and Saniga [J. High Energy Phys. 2013 (2013), no. 9, 037, 35 pages]) and $N=4$ are discussed in detail.  As an apt application  of our findings, we use the stratification of the ambient projective space ${\rm PG}(2^N-1,2)$ of the $2^{N-1}$-qubit Pauli group in terms of $G$-orbits, where $G \equiv {\rm SL}(2,2)\times {\rm SL}(2,2)\times\cdots\times {\rm SL}(2,2)\rtimes S_N$, to decompose $\underline{\pi}({\rm LGr}(N,2N))$ into non-equivalent orbits. This leads to a partition of ${\rm LGr}(N,2N)$ into distinguished classes that can be labeled by elements of the above-mentioned Pauli groups.
  
 Key words:
multi-qubit Pauli groups; symplectic polar spaces $\mathcal{W}(2N-1,2)$; Lagrangian Grassmannians ${\rm LGr}(N,2N)$ over the smallest Galois field. 
pdf (459 kb)  
tex (27 kb) 
Maple codes (40 kb)
 
 
References
 
- Alexeev B., Forbes M.A., Tsimerman J., Tensor rank: some lower and upper
  bounds, in 26th Annual IEEE Conference on Computational Complexity,
  IEEE Computer Soc., Los Alamitos, CA, 2011, 283-291, arXiv:1102.0072.
 
- Bremner M.R., Stavrou S.G., Canonical forms of $2\times 2\times 2$ and
  $2\times 2\times 2\times 2$ arrays over $\mathbb{F}_2$ and
  $\mathbb{F}_3$, Linear Multilinear Algebra 61 (2013),
  986-997, arXiv:1112.0298.
 
- Cameron P.J., Projective and polar spaces, QMW Mathematics Notes,
  Vol. 13, Queen Mary and Westfield College, London, 1991, available at
  http://www.maths.qmul.ac.uk/~pjc/pps/.
 
- Carrillo-Pacheco J., Zaldivar F., On Lagrangian-Grassmannian codes,
  Des. Codes Cryptogr. 60 (2011), 291-298.
 
- Cox D., Little J., O'Shea D., Ideals, varieties, and algorithms. An
  introduction to computational algebraic geometry and commutative algebra, 3rd ed., Undergraduate Texts in Mathematics, Springer, New York, 2007.
 
- Gel'fand I.M., Kapranov M.M., Zelevinsky A.V., Discriminants, resultants, and
  multidimensional determinants, Mathematics: Theory & Applications,
  Birkhäuser Boston, Inc., Boston, MA, 1994.
 
- Havlicek H., Odehnal B., Saniga M., Factor-group-generated polar spaces and
  (multi-)qudits, SIGMA 5 (2009), 096, 15 pages,
  arXiv:0903.5418.
 
- Havlicek H., Odehnal B., Saniga M., On invariant notions of Segre varieties
  in binary projective spaces, Des. Codes Cryptogr. 62
  (2012), 343-356, arXiv:1006.4492.
 
- Holtz O., Schneider H., Open problems on GKK $\tau$-matrices,
  Linear Algebra Appl. 345 (2002), 263-267,
  math.RA/0109030.
 
- Holtz O., Sturmfels B., Hyperdeterminantal relations among symmetric principal
  minors, J. Algebra 316 (2007), 634-648,
  math.RA/0604374.
 
- Krutelevich S., Jordan algebras, exceptional groups, and Bhargava
  composition, J. Algebra 314 (2007), 924-977,
  math.NT/0411104.
 
- Landsberg J.M., Tensors: geometry and applications, Graduate Studies in
  Mathematics, Vol. 128, Amer. Math. Soc., Providence, RI, 2012.
 
- Lavrauw M., Sheekey J., Orbits of the stabiliser group of the Segre variety
  product of three projective lines, Finite Fields Appl. 26
  (2014), 1-6, arXiv:1207.3972.
 
- Lévay P., Planat M., Saniga M., Grassmannian connection between three-and
  four-qubit observables, Mermin's contextuality and black holes,
  J. High Energy Phys. 2013 (2013), no. 9, 037, 35 pages,
  arXiv:1305.5689.
 
- Lin S., Sturmfels B., Polynomial relations among principal minors of a
  $4\times 4$-matrix, J. Algebra 322 (2009), 4121-4131,
  arXiv:0812.0601.
 
- Mermin N.D., Hidden variables and the two theorems of John Bell,
  Rev. Modern Phys. 65 (1993), 803-815.
 
- Oeding L., G-varieties and the principal minors of symmetric matrices, Ph.D.   Thesis, Texas A&M University, 2009.
 
- Oeding L., Set-theoretic defining equations of the tangential variety of the
  Segre variety, J. Pure Appl. Algebra 215 (2011),
  1516-1527, arXiv:0911.5276.
 
- Oeding L., Set-theoretic defining equations of the variety of principal minors
  of symmetric matrices, Algebra Number Theory 5 (2011),
  75-109, arXiv:0809.4236.
 
- Planat M., Pauli graphs when the Hilbert space dimension contains a square:
  why the Dedekind psi function?, J. Phys. A: Math. Theor.
  44 (2011), 045301, 16 pages, arXiv:1009.3858.
 
- Planat M., Saniga M., On the Pauli graphs on $N$-qudits, Quantum
  Inf. Comput. 8 (2008), 127-146, quant-ph/0701211.
 
- Saniga M., Lévay P., Pracna P., Charting the real four-qubit Pauli group
  via ovoids of a hyperbolic quadric of ${\rm PG}(7,2)$, J. Phys. A:
  Math. Theor. 45 (2012), 295304, 16 pages, arXiv:1202.2973.
 
- Saniga M., Planat M., Multiple qubits as symplectic polar spaces of order two,
  Adv. Stud. Theor. Phys. 1 (2007), 1-4,
  quant-ph/0612179.
 
- Saniga M., Planat M., Prachna P., Projective curves over a ring that includes
  two-qubits, Theoret. and Math. Phys. 155 (2008), 905-913,
  quant-ph/0611063.
 
- Thas J.A., Ovoids and spreads of finite classical polar spaces, Geom.
  Dedicata 10 (1981), 135-143.
 
- Thas K., The geometry of generalized Pauli operators of N-qudit Hilbert
  space, and an application to MUBs, Europhys. Lett. 86
  (2009), 60005, 3 pages.
 
- Waegell M., Primitive nonclassical structures of the $N$-qubit Pauli group,
  arXiv:1310.3419.
 
 
 | 
 |