| 
 SIGMA 10 (2014), 046, 25 pages       arXiv:1311.2391     
https://doi.org/10.3842/SIGMA.2014.046 
Contribution to the Special Issue on Progress in Twistor Theory 
Scalar Flat Kähler Metrics on Affine Bundles over $\mathbb{CP}^1$
Nobuhiro Honda
 Mathematical Institute, Tohoku University, Sendai, Miyagi, Japan
 
 
Received November 12, 2013, in final form April 15, 2014; Published online April 19, 2014 
Abstract
 
We show that the total space of any affine $\mathbb{C}$-bundle over $\mathbb{CP}^1$ with negative degree
admits an ALE scalar-flat Kähler metric.
Here the degree of an affine bundle means the negative of the self-intersection number of the section at infinity
in a natural compactification of the bundle, and so for line bundles it agrees with the usual notion of the degree.
  
 Key words:
scalar-flat Kähler metric; affine bundle; twistor space. 
pdf (471 kb)  
tex (35 kb)
 
 
References
 
- Atiyah M.F., Complex fibre bundles and ruled surfaces, Proc. London
  Math. Soc. 5 (1955), 407-434.
 
- Calderbank D.M.J., Singer M.A., Einstein metrics and complex singularities,
  Invent. Math. 156 (2004), 405-443,
  math.DG/0206229.
 
- Honda N., Deformation of LeBrun's ALE metrics with negative mass,
  Comm. Math. Phys. 322 (2013), 127-148, arXiv:1204.4857.
 
- Kishimoto T., Prokhorov Y., Zaidenberg M., Group actions on affine cones, in
  Affine Algebraic Geometry, CRM Proc. Lecture Notes, Vol. 54, Amer.
  Math. Soc., Providence, RI, 2011, 123-163, arXiv:0905.4647.
 
- Kodaira K., Complex manifolds and deformation of complex structures, Classics
  in Mathematics, Springer-Verlag, Berlin, 2005.
 
- Kronheimer P.B., The construction of ALE spaces as hyper-Kähler
  quotients, J. Differential Geom. 29 (1989), 665-683.
 
- Kronheimer P.B., A Torelli-type theorem for gravitational instantons,
  J. Differential Geom. 29 (1989), 685-697.
 
- LeBrun C., Counter-examples to the generalized positive action conjecture,
  Comm. Math. Phys. 118 (1988), 591-596.
 
- LeBrun C., Twistors, Kähler manifolds, and bimeromorphic geometry. I,
  J. Amer. Math. Soc. 5 (1992), 289-316.
 
- Morrow J., Kodaira K., Complex manifolds, AMS Chelsea Publishing, Providence,
  RI, 2006.
 
- Pontecorvo M., On twistor spaces of anti-self-dual Hermitian surfaces,
  Trans. Amer. Math. Soc. 331 (1992), 653-661.
 
- Sernesi E., Deformations of algebraic schemes, Grundlehren der
  Mathematischen Wissenschaften, Vol. 334, Springer-Verlag, Berlin, 2006.
 
- Suwa T., Stratification of local moduli spaces of Hirzebruch manifolds,
  Rice Univ. Studies 59 (1973), 129-146.
 
- Viaclovsky J.A., An index theorem on anti-self-dual orbifolds, Int.
  Math. Res. Not. 2013 (2013), 3911-3930, arXiv:1202.0578.
 
 
 | 
 |