| 
 SIGMA 10 (2014), 048, 11 pages      arXiv:1310.1688     
https://doi.org/10.3842/SIGMA.2014.048 
Multi-Hamiltonian Structures on Spaces of Closed Equicentroaffine Plane Curves Associated to Higher KdV Flows
Atsushi Fujioka a and Takashi Kurose b
 a) Department of Mathematics, Kansai University, Suita, 564-8680, Japan
 b) Department of Mathematical Sciences, Kwansei Gakuin University, Sanda, 669-1337, Japan
 
 
Received October 11, 2013, in final form April 16, 2014; Published online April 22, 2014 
Abstract
 
Higher KdV flows on spaces of closed equicentroaffine plane curves are studied and it is shown that the flows
are described as certain multi-Hamiltonian systems on the spaces.
Multi-Hamiltonian systems describing higher mKdV flows are also given on spaces of closed Euclidean plane curves via the
geometric Miura transformation.
  
 Key words:
motions of curves; equicentroaffine curves; KdV hierarchy; multi-Hamiltonian systems. 
pdf (327 kb)  
tex (17 kb)
 
 
References
 
- Anco S.C., Bi-Hamiltonian operators, integrable flows of curves using moving
  frames and geometric map equations, J. Phys. A: Math. Gen.
  39 (2006), 2043-2072, nlin.SI/0512051.
 
- Anco S.C., Hamiltonian flows of curves in $G/{\rm SO}(N)$ and vector soliton
  equations of mKdV and sine-Gordon type, SIGMA 2
  (2006), 044, 18 pages, nlin.SI/0512046.
 
- Anco S.C., Group-invariant soliton equations and bi-Hamiltonian geometric
  curve flows in Riemannian symmetric spaces, J. Geom. Phys.
  58 (2008), 1-37, nlin.SI/0703041.
 
- Anco S.C., Hamiltonian curve flows in Lie groups $G\subset {\rm U}(N)$ and
  vector NLS, mKdV, sine-Gordon soliton equations, in Symmetries and
  Overdetermined Systems of Partial Differential Equations, IMA Vol.
  Math. Appl., Vol. 144, Springer, New York, 2008, 223-250,
  nlin.SI/0610075.
 
- Anco S.C., Asadi E., Quaternionic soliton equations from Hamiltonian curve
  flows in ${\mathbb{HP}}^n$, J. Phys. A: Math. Theor. 42
  (2009), 485201, 25 pages, arXiv:0905.4215.
 
- Anco S.C., Asadi E., Symplectically invariant soliton equations from
  non-stretching geometric curve flows, J. Phys. A: Math. Theor.
  45 (2012), 475207, 37 pages, arXiv:1206.4040.
 
- Anco S.C., Myrzakulov R., Integrable generalizations of Schrödinger maps
  and Heisenberg spin models from Hamiltonian flows of curves and surfaces,
  J. Geom. Phys. 60 (2010), 1576-1603, arXiv:0806.1360.
 
- Anco S.C., Vacaru S.I., Curve flows in Lagrange-Finsler geometry,
  bi-Hamiltonian structures and solitons, J. Geom. Phys. 59
  (2009), 79-103, math-ph/0609070.
 
- Calini A., Ivey T., Marí-Beffa G., Remarks on KdV-type flows on
  star-shaped curves, Phys. D 238 (2009), 788-797,
  arXiv:0808.3593.
 
- Chou K.-S., Qu C., The KdV equation and motion of plane curves,
  J. Phys. Soc. Japan 70 (2001), 1912-1916.
 
- Chou K.-S., Qu C., Integrable equations arising from motions of plane curves,
  Phys. D 162 (2002), 9-33.
 
- Chou K.-S., Qu C., Integrable motions of space curves in affine geometry,
  Chaos Solitons Fractals 14 (2002), 29-44.
 
- Fujioka A., Kurose T., Motions of curves in the complex hyperbola and the
  Burgers hierarchy, Osaka J. Math. 45 (2008), 1057-1065.
 
- Fujioka A., Kurose T., Geometry of the space of closed curves in the complex
  hyperbola, Kyushu J. Math. 63 (2009), 161-165.
 
- Fujioka A., Kurose T., Hamiltonian formalism for the higher KdV flows on
  the space of closed complex equicentroaffine curves, Int. J. Geom.
  Methods Mod. Phys. 7 (2010), 165-175.
 
- Hasimoto H., A soliton on a vortex filament, J. Fluid Mech.
  51 (1972), 477-485.
 
- Kruskal M.D., Miura R.M., Gardner C.S., Zabusky N.J., Korteweg-de Vries
  equation and generalizations. V. Uniqueness and nonexistence of
  polynomial conservation laws, J. Math. Phys. 11 (1970),
  952-960.
 
- Kulish P.P., Reiman A.G., Hierarchy of symplectic forms for the Schrödinger
  equation and for the Dirac equation on a line, J. Sov. Math.
  22 (1983), 1627-1637.
 
- Lamb Jr. G.L., Solitons and the motion of helical curves, Phys. Rev.
  Lett. 37 (1976), 235-237.
 
- Lax P.D., Integrals of nonlinear equations of evolution and solitary waves,
  Comm. Pure Appl. Math. 21 (1968), 467-490.
 
- Liu Y., Qu C., Zhang Y., Stability of periodic peakons for the modified
  $\mu$-Camassa-Holm equation, Phys. D 250 (2013),
  66-74.
 
- Magri F., A simple model of the integrable Hamiltonian equation,
  J. Math. Phys. 19 (1978), 1156-1162.
 
- Marí Beffa G., Geometric realizations of bi-Hamiltonian completely
  integrable systems, SIGMA 4 (2008), 034, 23 pages,
  arXiv:0803.3866.
 
- Marí Beffa G., Sanders J.A., Wang J.P., Integrable systems in
  three-dimensional Riemannian geometry, J. Nonlinear Sci.
  12 (2002), 143-167.
 
- Miura R.M., Gardner C.S., Kruskal M.D., Korteweg-de Vries equation and
  generalizations. II. Existence of conservation laws and constants of
  motion, J. Math. Phys. 9 (1968), 1204-1209.
 
- Newell A.C., Solitons in mathematics and physics, CBMS-NSF Regional
  Conference Series in Applied Mathematics, Vol. 48, Society for Industrial
  and Applied Mathematics (SIAM), Philadelphia, PA, 1985.
 
- Olver P.J., Applications of Lie groups to differential equations,
  Graduate Texts in Mathematics, Vol. 107, Springer-Verlag, New York,
  1986.
 
- Pinkall U., Hamiltonian flows on the space of star-shaped curves,
  Results Math. 27 (1995), 328-332.
 
- Rogers C., Schief W.K., Bäcklund and Darboux transformations. Geometry and
  modern applications in soliton theory, Cambridge Texts in Applied
  Mathematics, Cambridge University Press, Cambridge, 2002.
 
- Sanders J.A., Wang J.P., Integrable systems in $n$-dimensional Riemannian
  geometry, Mosc. Math. J. 3 (2003), 1369-1393,
  math.AP/0301212.
 
- Squires S.A., Marí Beffa G., Integrable systems associated to curves in flat
  Galilean and Minkowski spaces, Appl. Anal. 89 (2010),
  571-592.
 
- Terng C.-L., Thorbergsson G., Completely integrable curve flows on adjoint
  orbits, Results Math. 40 (2001), 286-309,
  math.DG/0108154.
 
 
 | 
 |