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1 Introduction

Given an algebraic surface Σ of degree d in CP3, one can ask how it is configured relative to
the twistor fibration π : CP3 −→ S4. In particular, what can be said about the topology of the
restricted map π�Σ?

The motivation for studying this map is two fold.

1. By the twistor construction, complex hypersurfaces in CP3 transverse to the fibres of π
correspond to orthogonal complex structures on S4 = R4 ∪ {∞}. Thus, by studying the
interaction of Σ and π, we hope to better understand orthogonal complex structures on R4.

2. The orientation-preserving conformal symmetries of S4 induce fibre preserving biholo-
morphisms of CP3. Thus one can attempt to classify algebraic surfaces in CP3 up to
equivalence under the conformal group of S4 rather than the full group of biholomor-
phisms of CP3. Topological invariants of π�Σ will automatically give invariants of Σ up to
conformal transformation.

The first observation that one makes about π�Σ is that it gives a d-fold branched cover of S4.
To see this note that each twistor fibre above a point x is a projective line in CP3. When the
defining equation for Σ is restricted to such a line and written out in homogenous coordinates
it either vanishes or is a homogenous polynomial p̃x in two variables of degree d. Equivalently
we can write it in inhomogeneous coordinates to get a polynomial px of degree 6 d. Away from
points where p̃x vanishes, we have a d-branched cover by the fundamental theorem of algebra.
This motivates the following definitions:

Definition 1.1. A twistor line of Σ is a fibre of π which lies entirely within the surface Σ.

Definition 1.2. The discriminant locus of Σ is the branch locus of the map π�Σ. It is given
by the points x ∈ S4 where either the discriminant of px vanishes or the degree of px is less
than d− 1.

?This paper is a contribution to the Special Issue on Progress in Twistor Theory. The full collection is available
at http://www.emis.de/journals/SIGMA/twistors.html
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Thus, given a surface Σ one can ask how many twistor lines it has, and what is the topology
of its discriminant locus. These questions were considered in [6] in the case of smooth degree 2
surfaces. It was shown that:

• The number of twistor lines on a smooth degree 2 surface is either 0, 1, 2 or ∞.

• The topology of the discriminant locus for a degree 2 surface is determined by the number
of twistor lines. It is either a torus (0 twistor lines), a torus pinched at one point (1 twistor
line), a torus pinched at two points (2 twistor lines) or a circle (∞ twistor lines).

Furthermore, this rough classification of degree 2 surfaces by number of twistor lines was elabo-
rated into a complete classification of degree 2 surfaces up to conformal equivalence extending
work of Pontecorvo [4].

In this paper we shall consider the case of cubic surfaces and shall focus in particular upon
the Fermat cubic

z3
1 + z3

2 + z3
3 + z3

4 = 0.

Our aim is to compute the topology of the discriminant locus in this particular case.
Note that, as it stands, this problem is not well defined. The discriminant locus does not

depend solely upon the intrinsic geometry of the cubic surface, but also upon the embedding of
the surface in CP3. Equivalently, it depends upon the choice of twistor fibration. Fixing the
twistor fibration, we will choose an embedding for which the twistor geometry is, in some sense,
as simple as possible. We choose to measure the “simplicity” of an embedding of a surface Σ first
by the number of twistor lines on Σ and then by the size of the group of symmetries preserving Σ
and the twistor fibration. In other words, we wish to find the embedding of the Fermat cubic
with the most twistor lines and the largest symmetry group, and then compute the topology of
the discriminant locus in this case.

The remainder of this paper is structured as follows. In Section 2 we review the twistor
fibration and the calculation of the discriminant locus. In Section 3 we will identify the “sim-
plest” embedding of the Fermat cubic relative to the twistor fibration. We call the resulting
embedded cubic surface the “transformed Fermat cubic”. Section 4 contains the main result of
the paper: a computation of the topology of the discriminant locus of the transformed Fermat
cubic. This gives the first known computation of the discriminant locus in degree d > 2.

This paper is to some extent a sequel to [1] and answers a question raised in [5]. For back-
ground on the twistor fibration we refer readers to [2].

2 Computing the discriminant locus

Let us describe in more detail how one can compute the discriminant locus. We begin by
reviewing an explicit formulation for the twistor projection π : CP4 → S4.

Define two equivalence relations on (H×H) \ {0}, denoted ∼C and ∼H, by

(q1, q2) ∼H (λq1, λq2), λ ∈ H \ {0},
(q1, q2) ∼C (λq1, λq2), λ ∈ C \ {0}.

We have

((H×H) \ {0})/∼C ∼= CP3

and

((H×H) \ {0})/∼H ∼= HP 1 ∼= R4 ∪ {∞} ∼= S4.
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An explicit map from CP3 to ((H×H) \ {0})/ ∼C is given by

[z1, z2, z3, z4]→ [z1 + z2j, z3 + z4j]∼C .

The map π : [q1, q2]∼C −→ [q1, q2]∼H is the twistor fibration.
Left multiplication by the quaternion j induces an antiholomorphic map τ : CP3 −→ CP3.

Writing this explicitly we have τ [q1, q2]∼C = [jq1, jq2]∼C . The map τ acts on each fibre of π
as the antipodal map. τ is a real structure, in other words it is antiholomorphic and satisfies
τ2 = −1. Since there is a unique line through any two points of CP3 one can recover the fibration
from τ alone: it consists of all projective lines joining a point x to the point τx.

Let us now work out how to compute an explicit expression for the discriminant locus.
Let Σ be a complex surface in CP3 defined by a homogeneous polynomial fΣ(z1, z2, z3, z4) of

degree d. Define p1 : R4 → H×H by p1(x1, x2, x3, x4) = [x1+x2i+x3j+x4k, 1]. Define p2 = τ◦p1.
Given a point x ∈ R4, define θx : C −→ H×H ∼= C×C×C×C by θx(λ) = λp1(x) + p2(x). So
λ −→ [θx(λ)]∼C gives inhomogenous coordinates for the fibre above x. We see that fΣ(θx(λ)) is
a polynomial fx in λ with coefficients given by polynomials in the xi. The discriminant locus
is given by the set of points where the degree of fx is less than d − 1 or the discriminant of fx
is equal to 0.

Computing this discriminant explicitly, one obtains a complex-valued polynomial in the coor-
dinates (x1, x2, x3, x4). Since the algebraic expression for the discriminant of a degree d polyno-
mial always vanishes when evaluated on a polynomial of degree 6d−2, the discriminant locus is
given by the zero set of this polynomial. Taking real and imaginary parts, we obtain an explicit
expression for the discriminant locus as the zero set of two real valued polynomials.

If one runs through this procedure for a generic cubic surface, the polynomials defining
the discriminant locus will be degree 12 polynomials in 4 variables. Since the general degree 12
polynomial in 4 variables has 495 coefficients one begins to appreciate the difficulty in analysing
the discriminant locus of a general cubic surface. In the next section we will identify the
“simplest” possible non-singular cubic surface in CP3 relative to the twistor fibration.

3 Twistor lines on cubic surfaces

A beautiful result of classical algebraic geometry due to Salmon states that any smooth cubic
surface contains exactly 27 projective lines [3]. When studying the twistor geometry of cubic
surfaces it is natural to ask: how many of these lines might be twistor lines?

The answer to this question can be found by studying the intersection properties of the lines.
The starting point is the classical result, due to Schläfli [7] which states that the intersection
properties of the 27 lines on a cubic are always the same. He showed that one can always label
six of the lines ai (with 1 6 i 6 6), another six bi (with 1 6 i 6 6) and the remainder cij (with
1 6 i < j 6 6) in such a way that:

• the 6 ai lines are all disjoint,

• the 6 bi lines are all disjoint,

• ai intersects bj if and only if i 6= j,

• ai intersects cjk if and only if i ∈ {j, k},
• bi intersects cjk if and only if i ∈ {j, k},
• cij intersects ckl if and only if {i, j} ∪ {j, k} = ∅.

This labelling of the 27 lines on a given cubic is far from unique.
It follows immediately that the maximum number of disjoint lines on a cubic surface is 6.

Since twistor lines are necessarily disjoint fibres of π one sees immediately that there can be
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no more than 6 twistor lines on a cubic surface. A more careful analysis allows one to improve
upon this.

Theorem 3.1 ([1]). A smooth cubic surface contains at most 5 twistor lines. If a smooth cubic
surface contains 5 twistor lines, then the image of these lines under π must all lie on either
a round 2-sphere or a plane in S4. Note that it follows from Theorem 3.2 below that such cubic
surfaces do indeed exist.

Proof. Suppose that Σ is a cubic surface containing 4 twistor lines. Since the lines are skew,
it is not difficult to show that one can choose a labelling of the 27 lines such that these lines
are a1, a2, a3, a4.

The line b5 intersects a1, a2, a3, and a4. Since the twistor lines are invariant under the
antiholomorphic involution τ , the line τ(b5) also intersects a1, a2, a3 and a4. Thus τ(b5) is
a projective line that intersects Σ in 4 points. Thus τ(b5) is one of the 27 lines.

Suppose for a contradiction that b5 intersects τ(b5) at a point p. Then b5 also intersects τ(b5)
at τ(p) 6= p. There is a unique line through each point so b5 = τ(b5). Hence b5 is a fibre of π
and so disjoint from a1. This is the desired contradiction.

We deduce that τ(b5) intersects a1, a2, a4 and a4 and is disjoint from b5. By the intersection
properties of the cubic, τ(b5) = b6.

Suppose that we have a fifth twistor line L on Σ. We see that L ∈ {a5, a6, c56}. So L intersects
either b5 or b6. So L = τ(L) also intersects τ(b5) = b6 or τ(b6) = b5. Thus L intersects b5 and b6.
Thus L = c56.

Since there is only one possibility for the fifth twistor line, it is impossible to find a cubic
with six twistor lines.

The lines b5 and b6 = τ(b5) pass through all five twistor lines. So π maps the twistor lines
onto the image π(b5) = π(b6). The image of a projective line under π is always either a 2-sphere,
two plane or point in S4. �

Schläfli used his result on the intersection properties of the 27 lines as the basis of a clas-
sification of cubic surfaces up to projective transformation. In particular he was able to show
that given two skew lines b5 and b6, a generic list of five points {pi} on b5 and a generic list of
five points {qi} on b6, one can find a non-singular cubic surface containing b5 and b6 and the
five lines connecting pi to qi. Moreover this cubic is unique up to projective transformation.

So given two lines with b5 = τ(b6) and 5 points pi on b5, one expects to find a unique
cubic surface up to projective transformation containing the lines b5, b6 and the lines joining pi
to τ(pi). The only issue is that it is not clear that the points pi and τ(pi) will be sufficiently
generic. Resolving this question requires a more detailed study of Schläfli’s results, as was done
in [1]. We summarize the main result.

Theorem 3.2. Let b5 be a line in CP3 which is not a twistor fibre. Let {p1, p2, p3, p4, p5} be five
points on b5. We can choose coordinates on b5 to identify it with the Riemann sphere.

There exists a smooth cubic surface containing b5, τ(b6) and the lines joining pi and τ(pi) if
and only if no four of the points pi lie on a circle under this identification.

The data (b5, p1, p2, p3, p4, p5) in the above theorem uniquely determines the cubic surface up
to projective transformation but not up to conformal transformation. It is shown in [1] that
there is a one parameter family of conformally inequivalent cubic surfaces containing the given
lines. This gives a classification of cubic surfaces with five twistor lines.

So we can now return to the question of determining the “simplest” non-singular cubic surface
from the point of view of twistor geometry. According to the criteria for simplicity given in the
introduction, we require the surface to have five twistor lines and to have as many conformal
symmetries as possible.
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Thus we will want to choose five points on the line b5 ∼= C ∪ {∞} to have as many con-
formal symmetries as possible while insisting that no 4 points lie on a circle in the Riemann
sphere. Choosing inhomogeneous coordinates for b5, one sees that the most symmetrical such
arrangement is given by the points 0, 1, ω, ω2, ∞ where ω is a complex cube root of unity. All
equally symmetrical arrangements of five points on the sphere are conformally equivalent. The
conformal symmetries of these 5 points are given by the symmetric group S3: each element of S3

permutes the cube roots of unity; odd permutations swap the points 0 and ∞.

Up to conformal transformation all choices for the line b5 are equivalent. Thus we have
narrowed down the search for the non-singular cubic surface with the simplest geometry to
a search among a 1-parameter family of conformally inequivalent surfaces all of which have
a symmetry group of order at least 6. One further symmetry which preserves the twistor
fibration is possible: one may have a symmetry which swaps b5 to τ(b6) but which leaves the
twistor lines fixed. This allows one to identify the most symmetrical smooth cubic surface with
five twistor lines. It is unique up to conformal transformation. An explicit formula for this cubic
was found in [1]. It is

z1z
2
4 + z4z

2
1 + z2z

2
3 + z3z

2
2 = 0. (1)

The simplicity of this formula may lead one to suspect that this is projectively equivalent
to a more familiar cubic surface. In fact it is projectively equivalent to the Fermat cubic. The
equivalence is given by the following change of coordinates:

z′1 = ax2 + bx3, z′2 = cx2 − bx3, z′3 = ax1 + bx4, z′4 = cx2 − bx3,

where the constants a, b and c are given by a = 1
2 +

√
3

6 i, b = a and c = i√
3
.

We call the embedded cubic surface defined by equation (1) the transformed Fermat cubic
since it is equivalent to the Fermat cubic via a projective transformation. Note that this pro-
jective transformation is not a conformal equivalence. Since the transformed Fermat cubic has
5 twistor lines and the Fermat cubic only has 3 these two cubic surfaces are not conformally
equivalent.

4 The discriminant locus of the transformed Fermat cubic

Now that we have identified an appropriately simple cubic surface, we will now compute the
topology of its discriminant locus.

The discriminant locus describes a singular surface in S4 ∼= R4 ∪ {∞}. Our strategy to
determine its topology is to view it as a curve in R3 that changes over time. We can plot an
animation of this curve in Mathematica. By studying this animation, we hope to deduce the
homeomorphism class. Carefully choosing coordinates for the time axis and for viewing R3 is
essential if one wants to generate an animation that is easily understood.

Let G be the group of conformal symmetries of the transformed Fermat cubic. Viewed in
terms of its action on S4

∼= R4∪{∞}, G is the group of order 12 generated by the transformations:

1) the rotation θ given by

(x1, x2, x3, x4) 7→
(

cos
(

2π
3

)
x1 + sin

(
2π
3

)
x2,− sin

(
2π
3

)
x1 + cos

(
2π
3

)
x2, x3, x4

)
,

2) the map σ given by (x1, x2, x3, x4) 7→ (x1, x2,−x3,−x4),

3) the inversion ι given by (x1, x2, x3, x4) 7→ (x1,−x2,−x3,−x4)
x21+x22+x23+x24

.
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These facts suggest that we use the coordinate x4 as our time coordinate so that the sym-
metry σ becomes a time and parity reversal symmetry. They also suggest a perspective from
which to view the animation: we should look down the x3 axis onto the (x1, x2) plane.

Fig. 1 shows frames of an animation of the discriminant locus from precisely this viewpoint.
It shows the evolution from time x4 = 0 over positive times. We have omitted the behaviour
over negative times since it can be deduced from the symmetry σ.

Fig. 1 gives a rather stylised view of the discriminant locus. One needs to look at the
animation from a number of angles to understand the situation completely. However, the main
points are already reasonably clear. At time 0, the discriminant locus has a relatively simple
shape consisting of a number of vertices and curved edges. At subsequent times, the discriminant
locus consists of a collection of disjoint loops and open curves that leave the edge of our picture.
The loops do not appear to be disjoint in Fig. 1 but that is simply because they overlap when
viewed from this angle.

The loops all shrink to a point and then disappear (as shown in the fifth and sixth frames).
It is less clear from the picture what will happen to the open curves. However, we know that
the discriminant locus is invariant under the inversion symmetry. After applying this symmetry,
the open curves correspond to disjoint loops.

A loop that shrinks to a point describes a surface isomorphic to R2 in spacetime. Using the
inversion symmetry, we see that the open curves also have worldsheets isomorphic to R2. Thus
from a topological perspective, we can think of our animation as providing a triangulation of
the discriminant locus. The vertices and edges of our triangulation are given by the picture at
time 0. The faces are given by the worldsheets of the open curves and loops.

As we have already remarked, our picture is something of an oversimplification. Several
curves are overlapping at time 0. We will need to view the discriminant locus from another
angle to fully understand what it looks like at time 0. In Figs. 2 and 3 we have given two
perspectives of the discriminant locus at time x4 = 0: a view from “above” showing the (x1, x2)
plane rotated so that the x1 axis is vertical; a view from “the side” looking at the (x2, x3) plane
along the x1 axis. The pair of eyes in Fig. 2 indicates the perspective taken in Fig. 3.

One can identify how the vertices in edges in the view from above correspond to the vertices
and edges in the view from the side. In Figs. 2 and 3 we have labelled all the vertices and edges
to show the correspondence. There is an obvious action of the group S3 on the view from above
which we have incorporated into our labelling. First we have labelled each 60 degree sector in
the view from above with a number from 0 to 5, we have then labelled each element of the view
from above with a letter that indicates its orbit under the S3 followed by a numeric subscript
indicating which sector it lies in. Edges are labelled in lower case, vertices in upper case. An
element such as the edge g2 in the view from above corresponds to a number of elements in the
view from the side at different heights. Corresponding to an element in the view from above, we
label the elements in the view from the side with a number in brackets to indicate the height.
To reduce clutter, in Fig. 3 we have only labelled edges in the upper half of the figure and
vertices in the lower half of the figure: the labels in the other half can be deduces by reflecting
the picture and changing the signs in brackets. For example, the edge g2 in the view from above
corresponds to six edges g2(3), g2(2), g2(1), g2(−1), g2(−2) and g2(−3) in the view from the
side. We have also omitted the number in brackets for elements such as e2(1) where only the
two numbers (1) and (−1) would be needed.

One vertex is missing from our picture, a vertex at infinity. We label this Z(∞). On a few
occasions below we use the notation Em(n) for a generic edge; in such a formula m and n are
integers and E is a symbol like a or b.

We have now identified the vertices and edges of our triangulation and we have identified
the boundary of each edge. We now need to identify the faces and the boundary of each face.
To do this we examine the view from the side at time x4 = 0.02. This is shown in Fig. 4. The
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Figure 2. The discriminant locus seen from “above”.

value 0.02 has been chosen because at this time the curves which correspond to the faces in our
triangulation are very near to the edges of our triangulation. This makes it easy to read off the
boundary corresponding to each face.

Each curve in Fig. 4 corresponds to a face in our triangulation. We have labelled three of
them as follows:

R. The red curve. The corresponding face in our triangulation has boundary {g2(−1), b1(−1),
d1(1)}.

G. The green curve. The corresponding face in our triangulation has boundary {e2(1), a1(1),
c1(−1)}.

B. The blue curve. The corresponding face in our triangulation has boundary {f4(1), g4(3),
g0(2), b5(1),−a4(1))}.

We can use the symmetries θ, σ and ι to write any face in our triangulation as θiσjιkF where
F ∈ {R,G,B}. We know that θi sends an edge or vertex Em(n) to E(m+2i mod 6)(n) and that σ
sends Em(n) to Em(−n). Our notation does not give such a simple expression for the action of ι
on edges and vertices. However, one can check that:

• ιR has boundary {e4(1), a4(1), c5(−1)},
• ιG has boundary {g4(−1), b4(−1), d5(1)},
• ιB has boundary {f2(−1), g2(−3), g0(−2), b0(−1), a1(−1)}.
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R

G
B

Figure 4. The view from the side at time x4 = 0.02.

Figure 5. Schematic view of the triangulation of the discriminant locus.

So one can compute the boundary of the general face θiσjιk from these formulae. Thus we
have written down all the combinatorial information contained in our triangulation: the list of
edges, vertices and faces and the boundary map ∂. We have found 25 vertices, 66 edges and
36 faces.

The reader may well find this combinatorial data rather indigestible, but it is summarized
schematically in Fig. 5. This shows the view from above perturbed slightly so that all vertices
separate. One should think of this perturbation as corresponding to a movement along the
x3 axis out of the page. The shaded faces correspond to the R, G and B faces shown in the
view from the side.

The identification of this triangulation depends upon a visual examination of the discriminant
locus rather than a formal algebraic proof. If one is willing to accept the results of this visual
examination we can now compute the topology of the discriminant locus.
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Figure 6. A triangulation of two tori with 5 pairs of points identified.

Theorem 4.1. The discriminant locus of the transformed Fermat cubic z1z
2
4 + z4z

2
1 + z3z

2
2 +

z2z
2
3 = 0 is homeomorphic to the space (T1tT2)/∼ where T1 and T2 are 2-dimensional tori and ∼

is an equivalence relation identifying 5 distinct points on T1 with another 5 distinct points on T2.

Proof. Let v be an involution defined on the edges of our triangulation by:

v(Em(n)) =

{
E(5−mmod 6)(n), E ∈ {a, b},
E(−mmod 6)(n), otherwise.

In terms of Fig. 5 the map v corresponds to a reflection of the edges in the vertical, x1, axis.
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Let ∂ denote the map sending an oriented surface to its boundary. Notice that ∂(ιR) = v∂G,
∂(ιG) = v∂R and ∂(ιB) = σv∂B. Thus the set of all boundaries of faces in our triangulation
is generated by the action of θ, σ and v on the boundaries of R, G and B. This means that
the triangulation of the discriminant locus is equivalent to another triangulation with edges also
given by the schematic diagram 5 but with faces generated by the faces in 5 under the maps θ, σ
and v. The point is that we have eliminated the rather awkward inversion symmetry ι and
replaced it with the simple reflection v.

Using these symmetries, it is easy to check that our triangulation is isomorphic to that shown
in Fig. 6 once opposite edges of the parallelograms have been identified to obtain tori and the
vertices

Z(0), Z(∞), V1, V3, V5 (2)

have been identified. The mappings of edges and faces under the isomorphism can be easily
deduced.

Thus the discriminant locus is homeomorphic to two tori with five pairs of points identified.
The five points (2) are the images of the five twistor lines in the cubic Σ. �

The Mathematica code used to generate the figures in this article is available from https://
kclpure.kcl.ac.uk/portal/en/publications/twistor-topology-of-the-fermat-cubic--mathematica-
code(0f8cebf5-a9f1-41cb-8511-e79f54a1c819).html.
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