| 
 SIGMA 11 (2015), 061, 26 pages       arXiv:1503.07747     
https://doi.org/10.3842/SIGMA.2015.061 
Contribution to the Special Issue on Exact Solvability and Symmetry Avatars in honour of Luc Vinet 
Confluent Chains of DBT: Enlarged Shape Invariance and New Orthogonal Polynomials
Yves Grandati a and Christiane Quesne b
 a) Equipe BioPhysStat, LCP A2MC, Université de Lorraine-Site de Metz,  1 bvd D.F. Arago, F-57070, Metz, France
 b) Physique Nucléaire Théorique et Physique Mathématique, Université Libre de Bruxelles,  Campus de la Plaine CP229, Boulevard du Triomphe, B-1050 Brussels, Belgium
 
 
Received March 26, 2015, in final form July 15, 2015; Published online July 28, 2015 
Abstract
 
We construct rational extensions of the Darboux-Pöschl-Teller and isotonic potentials via two-step confluent Darboux transformations. The former are strictly isospectral to the initial potential, whereas the latter are only quasi-isospectral. Both are associated to new families of orthogonal polynomials, which, in the first case, depend on a continuous parameter. We also prove that these extended potentials possess an enlarged shape invariance property.
  
 Key words:
quantum mechanics; supersymmetry; orthogonal polynomials. 
pdf (437 kb)  
tex (31 kb)
 
 
References
 
- 
Abraham P.B., Moses H.E., Changes in potentials due to changes in the point spectrum: anharmonic oscillators with exact solutions, Phys. Rev. A 22 (1980), 1333-1340.
 
- 
Adler M., Moser J., On a class of polynomials connected with the Korteweg-de Vries equation, Comm. Math. Phys. 61 (1978), 1-30.
 
- 
Adler V.È., On a modification of Crum's method, Theoret. and Math. Phys. 101 (1994), 1381-1386.
 
- 
Bagchi B., Grandati Y., Quesne C., Rational extensions of the trigonometric Darboux-Pöschl-Teller potential based on para-Jacobi polynomials, J. Math. Phys. 56 (2015), 062103, 11 pages, arXiv:1411.7857.
 
- 
Baye D., Phase-equivalent potentials for arbitrary modifications of the bound spectrum, Phys. Rev. A 48 (1993), 2040-2047.
 
- 
Berezin F.A., Shubin M.A., The Schrödinger equation, Kluwer, Dordrecht, 1991.
 
- 
Bermudez D., Fernández C. D.J., Fernández-García N., Wronskian differential formula for confluent supersymmetric quantum mechanics, Phys. Lett. A 376 (2012), 692-696, arXiv:1109.0079.
 
- 
Burchnall J.L., Chaundy T.W., A set of differential equations which can be solved by polynomials, Proc. London Math. Soc. S2-30 (1930), 401-414.
 
- 
Calogero F., Yi G., Can the  general solution of the second-order ODE characterizing Jacobi polynomials be  polynomial?, J. Phys. A: Math. Theor. 45 (2012), 095206, 4 pages.
 
- 
Cariñena J.F., Ramos A., Integrability of the Riccati equation from a group-theoretical viewpoint, Internat. J. Modern Phys. A 14 (1999), 1935-1951, math-ph/9810005.
 
- 
Cariñena J.F., Ramos A., Fernández C. D.J., Group theoretical approach to the intertwined Hamiltonians, Ann. Physics 292 (2001), 42-66, math-ph/0311029.
 
- 
Contreras-Astorga A., Fernández C. D.J., Supersymmetric partners of the trigonometric Pöschl-Teller potentials, J. Phys. A: Math. Theor. 41 (2008), 475303, 18 pages, arXiv:0809.2760.
 
- 
Cooper F., Khare A., Sukhatme U., Supersymmetry in quantum mechanics, World Scientific Publishing Co., Inc., River Edge, NJ, 2001.
 
- 
Crum M.M., Associated Sturm-Liouville systems, Quart. J. Math. Oxford Ser. (2) 6 (1955), 121-127, physics/9908019.
 
- 
Darboux G., Sur une proposition relative aux équations linéaires, C. R. Acad. Sci. Paris 94 (1882), 1456-1459.
 
- 
Darboux G., Leçons sur la théorie générale des surfaces et les applications géométriques du calcul infinitésimal. II, 2nd ed., Gauthier-Villars, Paris, 1915.
 
- 
Durán A.J., Pérez M., Admissibility condition for exceptional Laguerre polynomials, J. Math. Anal. Appl. 424 (2015), 1042-1053, arXiv:1409.4901.
 
- 
Erdélyi A., Magnus W., Oberhettinger F., Tricomi F.G., Higher transcendental functions, McGraw-Hill, New York, 1953.
 
- 
Fernández C. D.J., Salinas-Hernández E., The confluent algorithm in second-order supersymmetric quantum mechanics, J. Phys. A: Math. Gen. 36 (2003), 2537-2543, quant-ph/0303123.
 
- 
Fernández C. D.J., Salinas-Hernández E., Wronskian formula for confluent second-order supersymmetric quantum mechanics, Phys. Lett. A 338 (2005), 13-18, quant-ph/0502147.
 
- 
Fernández C. D.J., Salinas-Hernández E., Hyperconfluent third-order supersymmetric quantum mechanics, J. Phys. A: Math. Theor. 44 (2011), 365302, 11 pages, arXiv:1105.2333.
 
- 
Gómez-Ullate D., Grandati Y., Milson R., Extended Krein-Adler theorem for the translationally shape invariant potentials, J. Math. Phys. 55 (2014), 043510, 30 pages, arXiv:1309.3756.
 
- 
Gómez-Ullate D., Kamran N., Milson R., An extended class of orthogonal polynomials defined by a Sturm-Liouville problem, J. Math. Anal. Appl. 359 (2009), 352-367, arXiv:0807.3939.
 
- 
Grandati Y., Solvable rational extensions of the isotonic oscillator, Ann. Physics 326 (2011), 2074-2090, arXiv:1101.0055.
 
- 
Grandati Y., Multistep DBT and regular rational extensions of the isotonic oscillator, Ann. Physics 327 (2012), 2411-2431, arXiv:1108.4503.
 
- 
Grandati Y., New rational extensions of solvable potentials with finite bound state spectrum, Phys. Lett. A 376 (2012), 2866-2872, arXiv:1203.4149.
 
- 
Grandati Y., A short proof of the Gaillard-Matveev theorem based on shape invariance arguments, Phys. Lett. A 378 (2014), 1755-1759, arXiv:1211.2392.
 
- 
Grandati Y., Bérard A., Rational solutions for the Riccati-Schrödinger equations associated to translationally shape invariant potentials, Ann. Physics 325 (2010), 1235-1259, arXiv:0910.4810.
 
- 
Grandati Y., Bérard A., Comments on the generalized SUSY QM partnership for Darboux-Pöschl-Teller potential and exceptional Jacobi polynomials, J. Engrg. Math. 82 (2013), 161-171.
 
- 
Hartman P., Ordinary differential equations, John Wiley & Sons, Inc., New York - London - Sydney, 1964.
 
- 
Keung W.-Y., Sukhatme U.P., Wang Q.M., Imbo T.D., Families of strictly isospectral potentials, J. Phys. A: Math. Gen. 22 (1989), L987-L992.
 
- 
Krein M.G., On a continual analogue of a Christoffel formula from the theory of orthogonal polynomials, Dokl. Akad. Nauk SSSR 113 (1957), 970-973.
 
- 
Luban M., Pursey D.L., New Schrödinger equations for old: inequivalence of the Darboux and Abraham-Moses constructions, Phys. Rev. D 33 (1986), 431-436.
 
- 
Matveev V.B., Generalized Wronskian formula for solutions of the KdV equations: first applications, Phys. Lett. A 166 (1992), 205-208.
 
- 
Matveev V.B., Positons: slowly decreasing analogues of solitons, Theoret. and Math. Phys. 131 (2002), 483-497.
 
- 
Messiah A., Mécanique quantique, Vol. 1, Dunod, Paris, 1959.
 
- 
Mielnik B., Nieto L.M., Rosas-Ortiz O., The finite difference algorithm for higher order supersymmetry, Phys. Lett. A 269 (2000), 70-78, quant-ph/0004024.
 
- 
Nieto M.M., Relationship between supersymmetry and the inverse method in quantum mechanics, Phys. Lett. B 145 (1984), 208-210.
 
- 
Odake S., Sasaki R., Infinitely many shape invariant potentials and new orthogonal polynomials, Phys. Lett. B 679 (2009), 414-417, arXiv:0906.0142.
 
- 
Pursey D.L., New families of isospectral Hamiltonians, Phys. Rev. D 33 (1986), 1048-1055.
 
- 
Quesne C., Exceptional orthogonal polynomials, exactly solvable potentials and supersymmetry, J. Phys. A: Math. Theor. 41 (2008), 392001, 6 pages, arXiv:0807.4087.
 
- 
Quesne C., Solvable rational potentials and exceptional orthogonal polynomials in supersymmetric quantum mechanics, SIGMA 5 (2009), 084, 24 pages, arXiv:0906.2331.
 
- 
Quesne C., Higher-order SUSY, exactly solvable potentials, and exceptional orthogonal polynomials, Modern Phys. Lett. A 26 (2011), 1843-1852, arXiv:1106.1990.
 
- 
Quesne C., Novel enlarged shape invariance property and exactly solvable rational extensions of the Rosen-Morse II and Eckart potentials, SIGMA 8 (2012), 080, 19 pages, arXiv:1208.6165.
 
- 
Quesne C., Revisiting (quasi-)exactly solvable rational extensions of the Morse potential, Internat. J. Modern Phys. A 27 (2012), 1250073, 18 pages, arXiv:1203.1811.
 
- 
Samsonov B.F., On the equivalence of the integral and the differential exact solution generation methods for the one-dimensional Schrödinger equation, J. Phys. A: Math. Gen. 28 (1995), 6989-6998.
 
- 
Samsonov B.F., New possibilities for supersymmetry breakdown in quantum mechanics and second-order irreducible Darboux transformations, Phys. Lett. A 263 (1999), 274-280, quant-ph/9904009.
 
- 
Schulze-Halberg A., Wronskian representation for confluent supersymmetric transformation chains of arbitrary order, Eur. Phys. J. Plus 128 (2013), 69, 17 pages.
 
- 
Sparenberg J.-M., Baye D., Supersymmetric transformations of real potentials on the line, J. Phys. A: Math. Gen. 28 (1995), 5079-5095.
 
- 
Szegő G., Orthogonal polynomials, American Mathematical Society Colloquium Publications, Vol. 23, 4th ed., Amer. Math. Soc., Providence, R.I., 1975.
 
- 
Vein R., Dale P., Determinants and their applications in mathematical physics, Applied Mathematical Sciences, Vol. 134, Springer-Verlag, New York, 1999.
 
 
 | 
 |