Processing math: 100%

Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 12 (2016), 014, 18 pages      arXiv:1507.04061      https://doi.org/10.3842/SIGMA.2016.014

Hom-Big Brackets: Theory and Applications

Liqiang Cai and Yunhe Sheng
Department of Mathematics, Jilin University, Changchun 130012, Jilin, China

Received July 16, 2015, in final form February 02, 2016; Published online February 05, 2016

Abstract
In this paper, we introduce the notion of hom-big brackets, which is a generalization of Kosmann-Schwarzbach's big brackets. We show that it gives rise to a graded hom-Lie algebra. Thus, it is a useful tool to study hom-structures. In particular, we use it to describe hom-Lie bialgebras and hom-Nijenhuis operators.

Key words: hom-Lie algebras; hom-Nijenhuis-Richardson brackets; hom-big brackets; hom-Lie bialgebras; hom-Nijenhuis operators; hom-O-operators.

pdf (398 kb)   tex (22 kb)

References

  1. Ammar F., Ejbehi Z., Makhlouf A., Cohomology and deformations of Hom-algebras, J. Lie Theory 21 (2011), 813-836, arXiv:1005.0456.
  2. Antunes P., Laurent-Gengoux C., Nunes da Costa J.M., Hierarchies and compatibility on Courant algebroids, Pacific J. Math. 261 (2013), 1-32, arXiv:1111.0800.
  3. Azimi M.J., Laurent-Gengoux C., Nunes da Costa J.M., Nijenhuis forms on L-algebras and Poisson geometry, Differential Geom. Appl. 38 (2015), 69-113, arXiv:1308.6119.
  4. Cariñena J.F., Grabowski J., Marmo G., Contractions: Nijenhuis and Saletan tensors for general algebraic structures, J. Phys. A: Math. Gen. 34 (2001), 3769-3789, math.DG/0103103.
  5. Cariñena J.F., Grabowski J., Marmo G., Courant algebroid and Lie bialgebroid contractions, J. Phys. A: Math. Gen. 37 (2004), 5189-5202, math.DG/0402020.
  6. Chen Y., Zhang L., Hom-O-operators and Hom-Yang-Baxter equations, Adv. Math. Phys. 2015 (2015), Art. ID 823756, 11 pages.
  7. Dorfman I., Dirac structures and integrability of nonlinear evolution equations, Nonlinear Science: Theory and Applications, John Wiley & Sons, Ltd., Chichester, 1993.
  8. Drinfel'd V.G., Hamiltonian structures on Lie groups, Lie bialgebras and the geometric meaning of classical Yang-Baxter equations, Soviet Math. Doklady 27 (1983), 68-71.
  9. Grabowski J., Courant-Nijenhuis tensors and generalized geometries, in Groups, Geometry and Physics, Monogr. Real Acad. Ci. Exact. Fí s.-Quí m. Nat. Zaragoza, Vol. 29, Acad. Cienc. Exact. Fí s. Quí m. Nat. Zaragoza, Zaragoza, 2006, 101-112, math.DG/0601761.
  10. Hartwig J.T., Larsson D., Silvestrov S.D., Deformations of Lie algebras using σ-derivations, J. Algebra 295 (2006), 314-361, math.QA/0408064.
  11. Kosmann-Schwarzbach Y., Jacobian quasi-bialgebras and quasi-Poisson Lie groups, in Mathematical Aspects of Classical Field Theory (Seattle, WA, 1991), Contemp. Math., Vol. 132, Amer. Math. Soc., Providence, RI, 1992, 459-489.
  12. Kosmann-Schwarzbach Y., Quasi, twisted, and all that in Poisson geometry and Lie algebroid theory, in The Breadth of Symplectic and Poisson Geometry, Progr. Math., Vol. 232, Birkhäuser Boston, Boston, MA, 2005, 363-389, math.SG/0310359.
  13. Kosmann-Schwarzbach Y., Nijenhuis structures on Courant algebroids, Bull. Braz. Math. Soc. (N.S.) 42 (2011), 625-649, arXiv:1102.1410.
  14. Kosmann-Schwarzbach Y., Poisson and symplectic functions in Lie algebroid theory, in Higher Structures in Geometry and Physics, Progr. Math., Vol. 287, Birkhäuser/Springer, New York, 2011, 243-268, arXiv:0711.2043.
  15. Kosmann-Schwarzbach Y., Magri F., Poisson-Nijenhuis structures, Ann. Inst. H. Poincaré Phys. Théor. 53 (1990), 35-81.
  16. Kosmann-Schwarzbach Y., Rubtsov V., Compatible structures on Lie algebroids and Monge-Ampère operators, Acta Appl. Math. 109 (2010), 101-135, arXiv:0812.4838.
  17. Kostant B., Sternberg S., Symplectic reduction, BRS cohomology, and infinite-dimensional Clifford algebras, Ann. Physics 176 (1987), 49-113.
  18. Kravchenko O., Strongly homotopy Lie bialgebras and Lie quasi-bialgebras, Lett. Math. Phys. 81 (2007), 19-40, math.QA/0601301.
  19. Kupershmidt B.A., What a classical r-matrix really is, J. Nonlinear Math. Phys. 6 (1999), 448-488, math.QA/9910188.
  20. Larsson D., Silvestrov S.D., Quasi-hom-Lie algebras, central extensions and 2-cocycle-like identities, J. Algebra 288 (2005), 321-344, math.RA/0408061.
  21. Larsson D., Silvestrov S.D., Quasi-Lie algebras, in Noncommutative Geometry and Representation Theory in Mathematical Physics, Contemp. Math., Vol. 391, Amer. Math. Soc., Providence, RI, 2005, 241-248.
  22. Laurent-Gengoux C., Teles J., Hom-Lie algebroids, J. Geom. Phys. 68 (2013), 69-75, arXiv:1211.2263.
  23. Lecomte P.B.A., Roger C., Modules et cohomologies des bigèbres de Lie, C. R. Acad. Sci. Paris Sér. I Math. 310 (1990), 405-410.
  24. Makhlouf A., Silvestrov S.D., Hom-algebra structures, J. Gen. Lie Theory Appl. 2 (2008), 51-64, math.RA/0609501.
  25. Makhlouf A., Silvestrov S.D., Notes on 1-parameter formal deformations of Hom-associative and Hom-Lie algebras, Forum Math. 22 (2010), 715-739, arXiv:0712.3130.
  26. Nijenhuis A., Richardson Jr. R.W., Cohomology and deformations in graded Lie algebras, Bull. Amer. Math. Soc. 72 (1966), 1-29.
  27. Roytenberg D., Quasi-Lie bialgebroids and twisted Poisson manifolds, Lett. Math. Phys. 61 (2002), 123-137, math.QA/0112152.
  28. Sheng Y., Representations of hom-Lie algebras, Algebr. Represent. Theory 15 (2012), 1081-1098, arXiv:1005.0140.
  29. Sheng Y., Bai C., A new approach to hom-Lie bialgebras, J. Algebra 399 (2014), 232-250, arXiv:1304.1954.
  30. Sheng Y., Xiong Z., On Hom-Lie algebras, Linear Multilinear Algebra 63 (2015), 2379-2395, arXiv:1411.6839.
  31. Yau D., The Hom-Yang-Baxter equation, Hom-Lie algebras, and quasi-triangular bialgebras, J. Phys. A: Math. Theor. 42 (2009), 165202, 12 pages, arXiv:0903.0585.
  32. Yau D., Hom-quantum groups: I. Quasi-triangular Hom-bialgebras, J. Phys. A: Math. Theor. 45 (2012), 065203, 23 pages, arXiv:0906.4128.
  33. Yau D., The classical Hom-Yang-Baxter equation and Hom-Lie bialgebras, Int. Electron. J. Algebra 17 (2015), 11-45, arXiv:0905.1890.

Previous article  Next article   Contents of Volume 12 (2016)