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Abstract. For two families of beta distributions, we show that the generalized Stieltjes
transforms of their elements may be written as elementary functions (powers and fractions)
of the Stieltjes transform of the Wigner distribution. In particular, we retrieve the examples
given by the author in a previous paper and relating generalized Stieltjes transforms of special
beta distributions to powers of (ordinary) Stieltjes ones. We also provide further examples
of similar relations which are motivated by the representation theory of symmetric groups.
Remarkably, the power of the Stieltjes transform of the symmetric Bernoulli distribution
is a generalized Stietljes transform of a probability distribution if and only if the power is
greater than one. As to the free Poisson distribution, it corresponds to the product of two
independent Beta distributions in [0, 1] while another example of Beta distributions in [−1, 1]
is found and is related with the Shrinkage process. We close the exposition by considering
the generalized Stieltjes transform of a linear functional related with Humbert polynomials
and generalizing the symmetric Beta distribution.

Key words: generalized Stieltjes transform; Beta distributions; Gauss hypergeometric func-
tion; Humbert polynomials
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1 Reminder

Let λ be a positive real number and µ be a probability measure supported in the real line
(possibly depending on λ). Its generalized Stieltjes transform is defined by

Gλ,µ(z) :=

∫
1

(z − x)λ
µ(dx)

for complex numbers z lying outside the support of µ and such that (z − x)λ is the principal
branch of the power function. In particular, G1,µ is the (ordinary) Stieltjes transform of µ
which we simply denote hereafter by Gµ. The latter has deep connections with the theory of
continued fractions, combinatorics, Padé approximations and free probability theory (see [13, 20]
and references therein). As to Gλ,µ, much less is known. For instance, this transform was
introduced in [28] for measures µ supported in the positive half-line and an inversion formula was
derived. For the same type of measures, the notion of exact order is defined in [14] and [15] and
determined for hypergeometric series. When λ is a positive integer, the random weighted average
of independent random variables gives rise to generalized Stieltjes transforms of continuous
probability measures which may be written as products of Stieltjes transforms [23, 24, 27]). In
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the recent paper [18], generalized Stieltjes transforms appear as transmutation operators between
the solutions of the hypergeometric differential equation. Motivated by a generalization of free
probability theory and relying on the characterization of ultraspherical-type generating series
for orthogonal polynomials [1, 7], we provided in [6] four examples of compactly-supported
probability measures µ = µλ for which there exist probability measures ν = νλ satisfying

Gλ,µ(z) = [G1,ν(z)]λ = [Gν(z)]λ. (1.1)

Actually, the Wigner distribution plays a central role in (Voiculescu) free probability theory and
is an instance of the symmetric beta distribution. Since any symmetric probability distribution
with finite moments of all orders arises as the weak limit of sums of self-adjoint variables in
a suitable algebra [4], it is then natural to seek a λ-deformation of free probability theory where
the symmetric beta distribution appears in the central limit theorem. At the analytic side, when
relations like (1.1) hold, they bridge between the free additive convolution and its λ-deformation
provided that the measure ν is independent of λ. As shown in [6], this last property is satisfied
by the couple of symmetric beta and Wigner distributions and this is the only example derived
there with this property. This elementary observation raises the following questions:

• Given λ > 0 and µ = µλ, what are the necessary and/or sufficient conditions ensuring (1.1)
to hold with ν being independent of λ?

• Conversely, given λ > 0 and ν independent of λ, when does the power [Gν ]λ is a generalized
Stieltjes transform of a probability distribution µ = µλ?

• Is the symmetric beta distribution the only element in the family of beta distributions
satisfying (1.1) with ν being independent of λ?

• In the same vein, find other or all examples of beta distributions satisfying (1.1) with this
property?

Most likely, it is much easier to look for partial or definitive answers to the two last questions
rather than the remaining ones. In general, if we want to derive an expression of Gλ,µ for given λ
and µ, it suffices to expand

(z, x) 7→ 1

(z − x)λ
,

in a absolutely convergent series of orthogonal polynomials with respect to µ since then Gλ,µ
is nothing else but the first term of this series. Recently, this task was achieved in [5] for the
family of Jacobi polynomials whence the generalized Stieltjes transform of any beta distribution
in [−1, 1] follows after a simple integration. Using linear and quadratic transformations of the
Gauss hypergeometric function, we retrieve the few examples of (1.1) given in [6] and prove
for two larger classes of beta distributions that their generalized Stieltjes transforms are ele-
mentary functions (powers and fractions) of the Stieltjes transform of the Wigner distribution.
We also provide a new example of beta distributions satisfying (1.1), where ν does not depend
on λ as well thereby giving a negative answer to the third question. Actually, the probability
distribution ν describes the large time behavior of the Shrinkage process and is the transition
measure of triangular diagrams [16]. Two other examples of probability measures ν occurring
in representation theory of symmetric groups are considered. In the former, ν is the symmetric
Bernoulli distribution which is the transition measure of a square Young diagram [2] and (1.1)
holds if and only if λ ≥ 1. The latter shows that the λ-power of the Stieltjes transform of
the free Poisson distribution (which arises in the decomposition of the tensor product repre-
sentation of the symmetric group [3]) is the generalized Stieltjes transform of a product of two
independent beta distributions supported in [0, 1]. Indeed, the multiplicative convolution with
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a beta distribution of special parameters provides a transformation preserving probability dis-
tributions satisfying (1.1) for any λ > 0. In the last part of the paper, we investigate a possible
generalization of the relation (1.1) holding between the symmetric beta and the Wigner distri-
butions. More precisely, we consider the generating series of Humbert polynomials which are
d-orthogonal with respect to d ≥ 1 linear functionals and integrate it with respect to the first
functional. Doing so leads to the problem of finding a suitable root of a trinomial equation of
degree d+ 1 which is known to be expressed by means of the Gauss hypergeometric function.

2 Special functions

In this paragraph, we recall the definitions and some properties of special functions occurring
in the remainder of the paper. We refer the reader to [10, 13, 21, 25]. Let Γ denote the gamma
function and recall the Legendre duplication formula:

√
πΓ(2z) = 22z−1Γ(z)Γ

(
z +

1

2

)
.

For a complex number z and a positive integer k ≥ 1, the Pochhammer symbol is defined by

(z)k = z(z + 1) · · · (z + k − 1)

with the convention (z)0 = 1. When z is not a negative integer, we can write

(z)k =
Γ(z + k)

Γ(z)
, while (−n)k =

(−1)kn!

(n− k)!

for any positive integer n ≥ k and vanishes otherwise. Next, the hypergeometric series pFq is
defined by

pFq(a1, . . . , ap, b1, . . . , bq; z) =
∑
n≥0

(a1)n · · · (ap)n
(b1)n · · · (bq)n

zn

n!

when the series converges. In particular, the Gauss hypergeometric series 2F1 converges in the
open unit disc {|z| < 1} and has an analytic extension to the complex plane cut along the half
line [1,∞). This function will play a major role in our computations and we use further the
following linear and quadratic transformations valid for | arg(1− u)| < π:

2F1(a, c+ d, c;u) =
1

(1− u)a
2F1

(
a,−d, c; u

u− 1

)
, (2.1)

2F1(a, b, 2a;u) =
1

(1− (u/2))b
2F1

(
b

2
,
b+ 1

2
, a+

1

2
;

u2

(2− u)2

)
, (2.2)

2F1

(
a, a+

1

2
, b;u

)
=

22a

(1 +
√

1− u)2a
2F1

(
2a, 2a− b+ 1, b;

u

(1 +
√

1− u)2

)
. (2.3)

In particular, (2.3) yields the closed formulas

2F1

(
a− 1

2
, a, 2a;u

)
=

22a−1

(1 +
√

1− u)2a−1
, (2.4)

and

2F1

(
a, a+

1

2
, 2a;u

)
=

1√
1− u

22a−1

(1 +
√

1− u)2a−1
. (2.5)
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We shall also make use of the Euler integral representation of the 2F1: for <(c) > <(b) > 0 and
|z| < 1,

2F1(a, b, c; z) =
Γ(c)

Γ(c− b)Γ(b)

∫ 1

0
(1− uz)−aub−1(1− u)c−b−1du. (2.6)

As to hypergeometric polynomials, we denote by P
(γ,β)
n , C

(α)
n the n-th Jacobi and ultraspherical

respectively:

P (γ,β)
n (x) =

(γ + 1)n
n!

2F1

(
−n, n+ γ + β + 1, γ + 1;

1− x
2

)
, γ, β > −1,

C(α)
n (x) =

(2α)n
(α+ 1/2)n

P (α−1/2,α−1/2)
n (x), α > −1/2, α 6= 0.

3 Generalized Stieltjes transform of beta distributions

The starting point of our investigations is the following expansion proved in [5, Theorem 1]: for
any z ∈ C\(−∞, 1] on any given ellipse with foci at ±1 and any x in the interior of this ellipse,

1

(z − x)λ
=

∞∑
n=0

Γ(γ + β + n+ 1)(λ)n
Γ(2n+ γ + β + 1)

2n

(z − 1)n+λ

× 2F1

(
n+ λ, n+ γ + 1, 2n+ 2 + γ + β,

2

1− z

)
P (γ,β)
n (x).

For fixed z, this series converges uniformly in x ∈ [−1, 1] (see, e.g., [26, Chapter IX, Theo-
rem 9.1.1]) and as shown in [5], it is valid for a set of parameters λ, γ, β containing R∗+×(−1,∞)2.
However, we shall restrict ourselves to the latter which is sufficient for our purposes and subse-
quent computations. As a matter of fact, the orthogonality of Jacobi polynomials with respect
to the beta distribution

µγ,β(dx) :=
Γ(γ + β + 2)

2γ+β+1Γ(γ + 1)Γ(β + 1)
(1− x)γ(1 + x)β1[−1,1](x)dx

readily gives1

Gλ,µγ,β (z) =
1

(z − 1)λ
2F1

(
λ, γ + 1, γ + β + 2,

2

1− z

)
. (3.1)

Note that the r.h.s. of (3.1) is not symmetric in (γ, β) unless γ = β. Nonetheless, we can use (2.1)
to transform (3.1) into

Gλ,µγ,β (z) =
1

(z + 1)λ
2F1

(
λ, β + 1, γ + β + 2,

2

1 + z

)
. (3.2)

Here, one performs the transformation for z lying in a suitable region in the complex plane (in
order to use the principal determinations of (z+1)λ, (z−1)λ, [(z+1)/(z−1)]λ) and then extends
the obtained equality analytically to C\(−∞, 1]. With (3.1) and (3.2) in hands, we start our
investigations of generalized Stieltjes transforms of two families of beta distributions.

1We could also use the Euler integral representation of the 2F1 hypergeometric function.
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3.1 Symmetric beta distributions

Take γ = β = λ− (1/2), λ > 0 in (3.1). Then (2.4) entails

1

(z − 1)λ
2F1

(
λ, λ+

1

2
, 2λ+ 1,

2

1− z

)
=

[
2

z +
√
z2 − 1

]λ
.

In the right-hand side of the last expression, we recognize the Stieltjes transform of the Wigner
distribution

GW(z) =

∫ 1

−1

1

z − x
2
√

1− x2
π

dx =
2

z +
√
z2 − 1

, z > 1.

As a result,

Γ(λ+ 1)√
πΓ(λ+ 1/2)

∫ 1

−1

(1− x2)λ−1/2

(z − x)λ
dx = [GW(z)]λ, (3.3)

which is the first example given in [6]. In order to retrieve the second example given in [6],
specialize (3.1) to γ = β = λ− (3/2), λ > 1 and use (2.5) to derive

1

(z − 1)λ
2F1

(
λ− 1

2
, λ, 2λ− 1,

2

1− z

)
=

1√
z2 − 1

[GW(z)]λ−1.

But the Stieltjes transform of the arcsine distribution reads

GAS(z) =

∫ 1

−1

1

z − x
dx

π
√

1− x2
=

1√
z2 − 1

.

Consequently, for any λ > 1,

Γ(λ)√
πΓ(λ− 1/2)

∫ 1

−1

(1− x2)λ−3/2

(z − x)λ
dx = GAS(z)[GW(z)]λ−1. (3.4)

These two examples are indeed instances of the following more general formula:

Proposition 3.1. If λ = γ + 1/2 + k ≥ 0 for some integer k ≥ 0, then the generalized Stieltjes
transform of

µγ,γ(dx) =
Γ(γ + 3/2)√
πΓ(γ + 1)

(
1− x2

)γ
1[−1,1](x)dx

may be written by means of powers and fractions of the variable GW:

Gλ,µγ,γ (z) =
4k[GW(z)]λ

[4− [GW(z)]2]k
2F1

(
k, 1− k, γ +

3

2
;

[GW(z)]2

[GW(z)]2 − 4

)
.

Proof. Specialize (3.1) to γ = β and use (2.2) to get

1

(z − 1)λ
2F1

(
λ, γ + 1, 2γ + 2,

2

1− z

)
=

1

zλ
2F1

(
λ

2
,
λ+ 1

2
, γ +

3

2
,

1

z2

)
.

Assuming γ + (1/2) ≤ λ and using (2.3) transforms the r.h.s. of the last equality to

1

zλ
2F1

(
λ

2
,
λ+ 1

2
, γ +

3

2
,

1

z2

)
= [GW(z)]λ 2F1

(
λ, λ− γ − 1

2
, γ +

3

2
;
[GW(z)]2

4

)
.
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Assuming further that λ = γ + 1/2 + k for some integer k ≥ 0 and noting that

1− [GW(z)]2

4
= 2

√
z2 − 1

z +
√
z2 − 1

∈ [0, 1), z > 1,

then we can appeal to the linear transformation (2.1) and end up with

2F1

(
k, λ, γ +

3

2
;
[GW(z)]2

4

)
=

4k

[4− [GW(z)]2]k
2F1

(
k, 1− k, γ +

3

2
;

[GW(z)]2

[GW(z)]2 − 4

)
. �

Remark 3.2. Note that

1− [GW(z)]2

4
=
√
z2 − 1GW(z) =

GW(z)

GAS(z)

so that

Gλ,µλ−(1/2)−k,λ−(1/2)−k(z) = [GW(z)]λ−1[GAS(z)]k 2F1

(
k, 1− k, γ +

3

2
;
GAS(z)GW(z)

4

)
.

In the next paragraph, we derive a similar formula for a family of nonsymmetric beta distri-
butions.

3.2 Nonsymmetric beta distributions

In [6], two other examples of probability distributions satisfying (1.1) were derived. They cor-
respond to nonsymmetric beta distributions with parameters

(γ, β) =

(
λ− 1

2
, λ− 3

2

)
, (γ, β) =

(
λ− 3

2
, λ− 1

2

)
(3.5)

and readily follow from (3.1) together with the identities (2.4) and (2.5). As with the previous
family of symmetric beta distributions, we can derive a more general formula for generalized
Stieltjes transforms of nonsymmetric ones with parameters γ = λ− 1/2 and β = λ− k − 1/2 =
γ − k, k ≥ 1:

Proposition 3.3. For any z > 1,

Gλ,µλ−(1/2),λ−(1/2)−k(z) =
[GW(z)]λ−(k/2)

(1 + z)k/2
2F1

(
1− k, k, 2λ− k + 1;

GW(z)

GW(z) + 2

)
.

The equality extends analytically to the complex plane cut along (−∞, 1].

Proof. Using (2.3) and (2.1), we get

Gλ,µλ−(1/2),λ−(1/2)−k(z) =
1

(z − 1)λ
2F1

(
λ, λ+

1

2
, λ+ β +

3

2
,

2

1− z

)
= [GW(z)]λ 2F1

(
2λ, λ− β − 1

2
, λ+ β +

3

2
;−GW(z)

2

)
=

2k[GW(z)]λ

[2 +GW(z)]k
2F1

(
1− k, k, 2λ− k + 1;

GW(z)

GW(z) + 2

)
.

From the relation

1 +
[GW(z)]2

4
= zGW(z),

it follows that(
1 +

GW(z)

2

)2

= (z + 1)GW(z)

and the proposition follows. �
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Remark 3.4. Interchanging the roles of γ and β with the help of (3.2), similar computations
yield

Gλ,µλ−(1/2)−k,λ−(1/2)
(z) =

2k[GW(z)]λ

[2−GW(z)]k
2F1

(
1− k, k, 2λ− k + 1;

GW(z)

GW(z)− 2

)
=

[GW(z)]λ−(k/2)

(z − 1)k/2
2F1

(
1− k, k, 2λ− k + 1;

GW(z)

GW(z)− 2

)
.

4 Generalized Stieltjes transforms as powers
of Stieltjes transforms: further examples

So far, we dispose of four couples (µ, ν) of probability distributions satisfying (1.1): those
displayed in (3.3) and (3.4) and those corresponding to the two couples of parameters specified
in (3.5). However, only (3.3) has the property that ν (the Wigner distribution in this case)
does not depend on λ. In this section, we derive three more examples enjoying this property
which, like the Wigner distribution, appeared as transition distributions of Young or continuous
diagrams (see [16] for more details).

4.1 The square diagram

The symmetric Bernoulli distribution

ν =
1

2
[δ−L + δL], L ∈ N\{0},

is the basic example of transition distribution of a Young diagram. Indeed, it corresponds to
the square diagram of width L [2]. To simplify, take L = 1 so that

Gν(z) =
z

z2 − 1
.

Then we shall prove

Proposition 4.1. If ν is the symmetric Bernoulli distribution, then

Gλ,µ(z) = [Gν(z)]λ

for every λ ≥ 1, where

µ(dx) = µλ(dx) =
1

2λ

[
[δ1 + δ−1](dx) +

1√
|x|
h(
√
|x|)dx

]
and

h(x) = hλ(x) :=
λ(λ− 1)

4
xλ−1 2F1

(
λ

2
+ 1,

λ+ 1

2
; 2; 1− x

)
1[0,1](x).

Proof. Let λ > 0 and assume (1.1) holds for some probability measure µ = µλ, namely,∫
1

(1− wx)λ
µ(dx) =

1

(1− w2)λ
=
∑
k≥0

(λ)k
k!

w2k, w = 1/z ∈ (0, 1).

Hence, µ is symmetric and its even moments are given by∫
x2kµ(dx) =

(2k)!(λ)k
k!(λ)2k

.
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Using Legendre duplication formula, these moments may be written as

Γ(k + λ)Γ(k + 1/2)

2λ−1Γ(k + (λ/2))Γ(k + (λ+ 1)/2)
=

(λ)k(1/2)k
(λ/2)k((λ+ 1)/2)k

.

According to [9, Theorem 6.2], there exists a probability distribution χ = χλ supported in (0, 1)
such that∫ 1

0
xkχ(dx) =

(λ)k(1/2)k
(λ/2)k((λ+ 1)/2)k

if and only if λ ≥ 1. This is an instance of the so-called G-distributions [8, 9] and its Lebesgue
decomposition is given by

χ(dx) =
Γ((λ+ 1)/2)Γ(λ/2)

Γ(1/2)Γ(λ)

×
[
δ1(dx) +

λ(λ− 1)

4
xλ−1 2F1

(
λ

2
+ 1,

λ+ 1

2
; 2; 1− x

)
1[0,1](x)dx

]
=

1

2λ−1

[
δ1(dx) +

λ(λ− 1)

4
xλ−1 2F1

(
λ

2
+ 1,

λ+ 1

2
; 2; 1− x

)
1[0,1](x)dx

]
.

Noting ξ is the push forward of µ under the square map x 7→ x2, we are done. �

Remark 4.2. Some parts of Theorems 1 and 2 in [8] as well as Theorem 6.2 in [9] appear also
in [14].

4.2 The Shrinkage process

While the Wigner distribution is the limiting transition distribution of Young diagrams drawn
from the Plancherel measure, the arcsine distribution describes in this case the limiting shape
of these diagrams (it is referred to as the Rayleigh measure [17]). In turn, the latter is the
transition distribution whose Rayleigh measure is the symmetric Bernoulli distribution and
belongs to a more general family of distributions related with triangular diagrams and with the
Shrinkage process [16]. The analogue of example (3.4) is derived as follows. Consider (3.1) with
λ = γ + β + 2:

1

(z − 1)λ
2F1

(
λ, γ + 1, λ,

2

1− z

)
=

1

(z − 1)λ

(
1− z
−z − 1

)γ+1

=
1

(z − 1)λ−γ−1
1

(z + 1)γ+1

for z > 1. Write γ + 1 = λp for some 0 < p < 1, then

∫
1

(z − x)λ
µpλ−1,(1−p)λ−1(dx) =

[
1

(z − 1)1−p(z + 1)p

]λ
=

[∫
1

z − x
µp−1,−p(dx)

]λ
.

In particular, if p = 1/2 then

Γ(λ)

2λ−1[Γ(λ/2)]2

∫ 1

−1

1

(z − x)λ
(
1− x2

)(λ/2)−1
dx =

[∫ 1

−1

1

z − x
dx

π
√

1− x2

]λ
.
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4.3 The free Poisson distribution

Let µ be a (non necessarily symmetric) probability distribution supported in [−1, 1] and de-
note κλ the probability distribution with beta density

Γ(λ)

[Γ(λ/2)]2
[x(1− x)](λ/2)−11[0,1](x).

Denote κλ ? µ the multiplicative convolution of κλ and µ, that is, the probability distribution of
the product of two independent random variables with probability distributions κλ and µ. By
definition,∫

f(x) (κλ ? µ) (dx) =

∫∫
f(uv)κλ(du)µ(dv)

for any bounded measurable function f . Then, for |z| > 1, the integral representation (2.6)
yields∫

1

(z − x)λ
κλ ? µ(dx) =

Γ(λ)

[Γ(λ/2)]2zλ

∫ (∫ 1

0

1

(1− (v/z)u)λ
[u(1− u)](λ/2)−1du

)
µ(dv)

=
1

zλ

∫
2F1

(
λ,
λ

2
, λ;

v

z

)
µ(dv) =

1

zλ/2

∫
1

(z − v)λ/2
µ(dv).

In particular, if µ = µλ satisfies (1.1) with the exponent λ/2∫
1

(z − x)λ/2
µλ/2(dx) = [Gν(z)]λ/2

for some probability measure ν independent of λ, then∫
1

(z − x)λ
κλ ? µ(dx) =

[
[Gν(z)]1/2

z1/2

]λ
at least for z > 1. Since =

(
[Gν(z)]1/2/z1/2

)
< 0 for =(z) > 0, then the last equality extends

analytically to the upper half-plane. Moreover,

lim
y→∞

(iy)
[Gν(iy)]1/2

(iy)1/2
= 1

so that z 7→ [Gν(z)]1/2/z1/2 is a Nevannlina–Pick function and may be represented as the
Stieltjes transform of a probability measure (see for instance [22, Lemma 2.2]). This elementary
observation allows to derive further examples of probability distributions (µ, ν) satisfying (1.1).
For instance,

Proposition 4.3. For any λ > 0 and z in the upper half-plane,∫
1

(z − x)λ
κλ ? κλ+1(dx) =

2λ

[z +
√
z(z − 1)]λ

.

Proof. Let µ = κλ+1, then for z in a suitable region in the upper half-plane,∫
1

(z − x)λ
κλ ? κλ+1(dx) =

Γ(λ+ 1)

[Γ(λ+ 1/2)]2
1

zλ/2

∫
1

(z − x)λ/2
[x(1− x)](λ+1)/2−1dx

=
1

zλ
2F1

(
λ

2
,
λ+ 1

2
, λ+ 1;

1

z

)
=

2λ

[
√
z(
√
z +
√
z − 1)]λ

=
2λ

[z +
√
z(z − 1)]λ

,
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where the third equality follows from (2.4). But, the map

z 7→ 2

z +
√
z(z − 1)

= 2
z −

√
(z − (1/2))2 − (1/4)

z

is the Stieltjes transform of the free Poisson distribution with parameters (1, 1/4) (see for instance
[20, p. 204]) whose density reads

2

π

√
1− x
x

1[0,1](x).

Therefore, the proposition follows by analytic continuation. �

Remark 4.4. The free Poisson distribution appears the limiting transition measure of random
diagrams arising from the decomposition of tensor product representations of the symmetric
group [3]. On the other hand, the density of κλ ? κλ+1 is given by [8]

Γ(λ)Γ(λ+ 1)

Γ(λ/2)Γ((λ+ 1)/2)Γ(λ+ (1/2))
x(λ/2)−1(1− x)λ−1/2

× 2F1

(
λ− 1

2
,
λ+ 1

2
, λ+

1

2
, 1− x

)
1[0,1](x).

5 Further developments

The Humbert polynomials
(
H

(α,d)
n

)
n≥0 of parameters α > −1/2, α 6= 0, d ∈ N\{0} and degrees

n ∈ N, are defined by their generating series:∑
n≥0

H(α,d)
n zn =

1

(1− (d+ 1)xz + zd+1)α
,

and reduce to ultraspherical polynomials
(
C

(α)
n

)
n

when d = 1. They cease to be orthogonal as
soon as d ≥ 2 and are rather d-orthogonal in the following sense (see, e.g., [19]): there exist d

linear functionals Γ
(α,d)
0 , . . . ,Γ

(α,d)
d−1 on the space of polynomials such that

Γk
(
H(α,d)
n H(α,d)

r

)
= 0, r > dn+ k, Γk

(
H(α,d)
n H

(α,d)
nd+k

)
6= 0,

for all n ∈ N, 0 ≤ k ≤ d− 1. In particular, Γ
(α,d)
0

(
H

(α,d)
0 H

(α,d)
r

)
= 0 for any r > 0 so that∫

1

(1− (d+ 1)xz + zd+1)α
Γ0(dx) = 1.

Hence, we can find a suitable region outside the compact support of Γ
(α,d)
0 for which∫

1

(fα(z)− x)α
Γ0(dx) = [(d+ 1)z]α, where fα(z) :=

1 + zd+1

(d+ 1)z
.

Now, the trinomial equation fα(z) = y has (d + 1) roots which may be expressed through the
Gauss hypergeometric function [11, 12] and we seek the one which tends to zero when y tends
to infinity in the upper half-plane. For instance, when d = 2 then the polynomial equation

z3 − 3yz + 1 = 0, =(y) > 0,
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may be transformed by setting z =
√
−yw into

w3 + 3w +
1

(−y)3/2
= 0.

From [12, p. 265] the sought root is given by

z = − (−y)1/2

3(−y)3/2
2F1

(
1

3
,
2

3
,
3

2
;− 1

4((−y)3/2)2

)
=

1

3y
2F1

(
1

3
,
2

3
,
3

2
;

1

4y3

)
,

where the last equality is valid for y lying in some sector in the upper half-plane. Using the
Euler integral representation

2F1

(
1

3
,
2

3
,
3

2
;

1

4y3

)
=

41/3Γ(3/2)

Γ(2/3)Γ(5/6)

∫ 1

0

y

(y3 − x)1/3
x−1/3(1− x)−1/6dx,

we get the following equality∫
1

(y − x)α
Γ
(α,2)
0 (dx) =

{
41/3Γ(3/2)

Γ(2/3)Γ(5/6)

∫ 1

0

1

(y3 − x)1/3
x−1/3(1− x)−1/6dx

}α
.

More generally, the solution to the equation

zd+1 + (d+ 1)z +
1

(−y)(d+1)/d
= 0, =(y) > 0,

tending to zero as y →∞ may be derived along the same lines written in [12, p. 266], and may
be expressed through the hypergeometric series

dFd−1

(
i

d+ 1
, 1 ≤ i ≤ d, i+ 1

d
, 1 ≤ i ≤ d, i 6= d− 1;

(−1)d

ddyd+1

)
.

Thus, the reasoning above applies and leads to the generalized Stieltjes transform of Γ
(α,d)
0 as

a α-power of this hypergeometric series.

Remark 5.1. An anonymous referee pointed out to the author that the functional Γ
(α,d)
0 co-

incides up to the variable change x 7→ ddxd+1 with the representative measure of the hyper-

geom̄etric function d+1Fd as a generalized Stieltjes transform [15, Theorem 2]. Actually, Γ
(α,d)
0

is expressed in terms of the Meijer G-function [19, Theorem 2.4]

1

x
Gd+1,0
d+1,d+1

(
ddxd+1

∣∣∣(α+ 1)/d, . . . , (α+ d)/d, 1
1/(d+ 1), . . . , d/(d+ 1), 1

)
which reduces to

1

x
Gd,0d,d

(
ddxd+1

∣∣∣(α+ 1)/d, . . . , (α+ d)/d
1/(d+ 1), . . . , d/(d+ 1)

)
,

while Theorem 2 in [15] entails

d+1Fd

(
α, a1, . . . , ad, b1, . . . , bd,

1

y

)
=

d∏
i=1

Γ(bi)

Γ(ai)

∫ 1

0

yα

(y − x)α
Gd,0d,d

(
x
∣∣∣b1, . . . , bd
a1, . . . , ad

)
dx

x
.

for y ∈ C\(−∞, 1].
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tives, C. R. Acad. Sci. Paris Sér. I Math. 325 (1997), 1117–1120.

[5] Cohl H.S., Fourier, Gegenbauer and Jacobi expansions for a power-law fundamental solution of the poly-
harmonic equation and polyspherical addition theorems, SIGMA 9 (2013), 042, 26 pages, arXiv:1209.6047.

[6] Demni N., Generalized Cauchy–Stieltjes transforms of some beta distributions, Commun. Stoch. Anal. 3
(2009), 197–210, arXiv:0902.0054.

[7] Demni N., Ultraspherical type generating functions for orthogonal polynomials, Probab. Math. Statist. 29
(2009), 281–296, arXiv:0812.3666.

[8] Dufresne D., The beta product distribution with complex parameters, Comm. Statist. Theory Methods 39
(2010), 837–854.

[9] Dufresne D., G distributions and the beta-gamma algebra, Electron. J. Probab. 15 (2010), no. 71, 2163–2199.
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