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Abstract. We consider scalar two-dimensional quantum field theories with a factorizing
S-matrix which has poles in the physical strip. In our previous work, we introduced the
bound state operators and constructed candidate operators for observables in wedges. Under
some additional assumptions on the S-matrix, we show that, in order to obtain their strong
commutativity, it is enough to prove the essential self-adjointness of the sum of the left and
right bound state operators. This essential self-adjointness is shown up to the two-particle
component.
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1 Introduction

The goal of this series of papers [6, 7, 9, 35] is to construct more interacting two-dimensional
integrable quantum field theories in the Haag—Kastler framework. The novelty of the recent
progresses is that one first constructs observables localized in infinitely-extended wedge regions,
then obtains compactly localized observables in an indirect way. In the preceding paper [6], we
constructed candidates for wedge-local observables, however, they have subtle domain properties
and their strong commutativity remained open. In this paper, we provide a possible way to settle
this question, which is a crucial step towards construction of Haag—Kastler nets.

The main strategy was explained in [6] and we only briefly summarize it. See also [21] for an
overview of the program. The operator-algebraic framework for quantum field theory (QFT),
or a Haag—Kastler net [16], concerns the collection of algebras of local observables. As in any
mathematical framework for relativistic QF'T, it is a very difficult problem to construct inter-
acting examples of Haag—Kastler net. For certain integrable models with prescribed S-matrix,
Schroer proposed [31] to construct certain wedge-local observables, then obtain compactly lo-
calized observables as the intersection of two wedge-algebras. Some constructions of wedge-local
algebras have been obtained for a class of S-matrices [18, 22, 34], as well as operator-algebraic
constructions or deformations [1, 2, 5, 12, 20, 33, 34]. The final step to show the existence of
local observables has been completed in certain cases, by showing modular nuclearity [4, 19], or
by split property [34].

In [18], Lechner constructed wedge-local fields for scalar factorizing S-matrices without poles
in the physical strip. We attempted to extend this construction to the cases with poles in [6],
however, certain spectral properties remained unsolved. More precisely, our candidates for
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wedge-local fields were a slight modification of the fields of [18], but contained a very singular
term, the bound state operator, which has been introduced exactly in order to treat the poles.
The strong commutativity of these candidates remained unclear. We studied the one-particle
component of these operators in detail in [35] and found convenient self-adjoint extensions. In the
present work, we propose a strategy to prove the strong commutativity between the candidate
operators.

Self-adjointness of unbounded operators is in general a hard problem. There are several
criteria (e.g., see [26]), but we saw in [6, 35] that most of them do not apply to our situation:
the reason is that the domain of self-adjointness depends very much on the observables and
one cannot find either a single domain or a single dominating operator. We try to solve this
problem by a front attack, namely, we should find an appropriate common domain for any pair
of wedge-observables and show their strong commutativity. Thanks to the Driessler—Frohlich
theorem, the problem of strong commutativity is reduced to the (essential) self-adjointness of
the sum of the left and right bound state operators. We show this self-adjointness up to the
two-particle component. It is worth mentioning that, because of all these technicalities, the
candidate observable ¢ is no longer an operator-valued distribution.

This paper is organized as follows. In Section 2 we recall our approach to integrable QFT
with bound states. Especially, we extend the domain of the bound state operators introduced
in [6] using the convenient extension found in [35]. Then in Section 3 it is shown that the strong
commutativity of wedge-observable candidates follows from the essential self-adjointness of the
sum bound state operator. We do this by combining the Driessler—Frohlich theorem. With this
choice of domain, the covariance of the candidate operators also follows, which allows one to
proceed to Borchers triples. In Section 4, we show the essential self-adjointness of the one and
two particle components of the sum bound state operator. We also present some observations
on n-particle components which demonstrates how the poles and zeros in the S-matrix affect
the analytic properties of the observables.

2 Preliminaries

2.1 Wedge-local nets and Borchers triples

Let us summarize the construction of [6]. Our goal is to construct interacting Haag—Kastler nets
in two dimensions. As an intermediate step, we need to construct nets of observables localized
in wedges, or wedge-local nets (of von Neumann algebras) for short. This notion is equivalent
to that of Borchers triples, which we will use in this work. We refer to [6, Section 2.1] for an
overview of the construction program through Borchers triples.

A (two-dimensional) Borchers triple (M, U, ) consists of a von Neumann algebra M, a uni-
tary representation of the proper orthochronous Poincaré group 731 and a vector €2 which satisfy
the following conditions (see [6, Section 2.1]):

e (2 is cyclic and separating for M;

e the restriction of U to the translation subgroup R? has the joint spectrum included in
Vi ={(ao,a1): ap = |a1[};

e M is covariant with respect to U, namely, AdU(g)M C M for g € 771 which preserves
the standard right-wedge Wg.

In [6], we constructed for test functions f, g supported in Wy, Wg respectively, unbounded
operators ¢(f), ¢'(g) which commute weakly on a dense domain. We also showed that, if ¢(f)
and ¢/ (g) commute strongly, then 2 is cyclic and separating for M := {ei¢’(g) : supp g}” (strong
commutativity is important for the separating property). Furthermore, if we can show the
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covariance of 5 with respect to U, then the covariance of the Borchers triple follows and the
construction is complete. We will investigate strict locality, namely whether this Borchers triple
defines a Haag—Kastler net, in a separate paper [8] (actually, for this purpose the definition of 5
must be slightly extended as we will do in Section 2.4). Therefore, our most urgent problem is
the strong commutativity.

We have ¢(f) = ¢(f) + x(f), where ¢(f) is very well under control, while x(f) is a new
sort of operator and we investigated its one-particle component x1(f) in detail. We review the
construction of these operators below.

2.2 Factorizing S-matrix with poles

As an input, we fix a two-particle scattering function S, which is at first a meromorphic function
on R+ 4(0,7), the region we call the physical strip, and later extended to C which satisfies the
following properties:

Unitarity. S(0)~ = S(0) for 0§ € R.
Hermitian analyticity. S(—0) = S(0)~! for € R.

(s1)
(S2)
(S3) Crossing symmetry. S has a meromorphic extension in C and satisfies S(¢) = S(mi — ().
(S4) Bootstrap equation. S(¢) = S(g + %i)s(( _ %)

(S5)

S5) Positive residue. S has a simple pole at % and R := Res S(¢) € iRy. Except this and

(=12
the pole at %i, there is no pole in the physical strip R + (0, 7) and S(¢) is bounded in the
complement of the union of neighborhoods of these poles in the physical strip.

Value at zero. S(0) = —1.
A bound on the real part. 0 < Re 5(0 + %) (: Re 5(9 + %))
A bound on the modulus. ‘5(6’ + %)‘ <1.

Regularity. S has only finitely many zeros in the physical strip and there is k > 0 such
that ||9]|x :=sup{|S(Q)|: ( € R+ i(—kr,k)} < 0.

We showed in [6] that (S6) follows from (S1)-(S5). It turns out crucial in the consideration
of domains of our operators. We also classified all functions which satisfy these conditions [6,
Appendix A]. We show that (S8) follows from (S1)—(S5) in Appendix A.2.

(S7) and (S9) are new requirements. The property (S7) had not appeared either in the
literature on form factor program or in our previous works [6, 7]. Yet, it is necessary in order
to apply our methods, for some properties of the sum bound state operators. The last assump-
tion (S9) will be necessary also in the proof of modular nuclearity (cf. [19]), and we use it here
already for wedge-observables, in Lemma E.5. With the finiteness of zeros in the physical strip,
the finiteness of ||.S||, is equivalent to the absence of the singular part in S (cf. [23, Appendix Al).
From the condition (S6), there must be at least one zero on the interval i(0, §), hence x < %,
as we saw in [6].

We check in Appendix A that there are concrete examples of .S which satisfy all these re-
quirements. In the following, we mark explicitly the points where (S7) is needed.

2.3 The wedge-local observables

Some materials here are parallel to those of [18]. Assume that our model has only a single
species of particle with mass m > 0. We fix a two-particle scattering function S, which satisfies
the properties explained in Section 2.2.



4 Y. Tanimoto

Our Hilbert space is as follows. The one-particle space H; is simply L?(R) with the Lebesgue
measure. We consider n-particle space ”H?". An element of 7—[?" can be considered as a function
in L?(R™). On each of these spaces, there is the representation of the symmetric group &,:

(D (1) ¥0) (61, ..., 0n) == SOp+1 — Or)Vn (01, ..., 0k+1,0k,...,6r),

where 7 is the transposition of £ and k 4+ 1. This indeed extends to a unitary representation
of &,,. We say that ¥, € 7—[?" is S-symmetric if Dy, (o0)¥,, = ¥,, for 0 € &,,. This notion is
equivalent to that for each k

Uo(01, ..., 00) = S(Opsr — 06) U0 (01, ..., Opit, Ons - .., On).

We denote the orthogonal projection onto the S-symmetric functions by P, and the space of
S-symmetric functions by H,, = P,{H?". The physical Fock space is the direct sum

H =P Hn,

where Hy = C. Let us also introduce an auxiliary Hilbert space, the unsymmetrized Fock space,
which is H* = @,, HY™. By putting Ps = @,, P, we have H = PsH>.

For ¢ € Hi, the unsymmetrized creation and annihilation operators are defined on the
algebraic direct sum of H{" by

(a' ()W) (01,...,00) = Vrp(01) Wy (..., 0n),  a(y) = (a(v))"

By our convention af(¢) is linear in v, while a(¢) is antilinear. The S-symmetrized creation
and annihilation operators are zf(¢)) = Psa(y)Ps, 2(¢)) = Psa (1) Ps.

The one-particle CPT operator Jj is given by (J1¢)(0) = ¥(0), and the n-particle compo-
nent J, is

(T U) (01, ..., 00) = Up (O, ... 01).

It is easy to see that J, commutes with P,, hence its preserves the subspace H,. The full CPT
operator is J = @,, Jp, where Jj is the complex conjugation on Ho = C.
For a test function f in R?, we define

££0) = [ do f@e =, pio) =m<§?§ﬁz>-

As f is compactly supported, its Fourier transform decays fast, and so do f*, therefore, they
belong to Hi. On the level of test functions, we define the CPT transformation by f;(x) =
(—a).

If S had no pole, then Lechner took the field ¢(f) = 2f(f*) 4+ 2(J1f~) and the reflected
field ¢/(g) = 2'T(g*) + 2/ (J1g™), where 2/T(¢) = J21(J19)J and /(1) = Jz(J1%)J and proved
that they were wedge-local [18]: namely, if supp f C Wy, and supp g C Wg, then ¢(f) and ¢/(g)
strongly commute.

Extension to Hardy space vectors

Actually, it is possible and also natural to consider ¢, z' and z as a function of f*, and in this
sense we can extend them to any &€ € H?(So) N H®(Spx). For a < 0 < b, recall the definition
of the Hardy space:

H2(Sa,b) = {5 € Hi: £(0) has an L2-bounded analytic continuation to Sa,b} .
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In other words, a function £ € H 2(Sa,b) is an analytic function on S,; whose L?-norms on
horizontal lines £( - 4i)) are bounded uniformly for A € (a,b). It is well-known that for A — a, b
the limits £(- 4+ i)\) exist in the L2?-sense [32, Corollary 111.2.10]. As 0 € [a, b], we can idenfity
Hy = L*(R) as a subspace of H%(S,;) by considering the value £(0), & € R. We denote the
L2-norm by ||€||, while the Hardy space norm is ||£[[2 ;== sup [|€(- +iN)].

A€E(a,d)
Similarly, H>(S, ) is the space of bounded analytic functions on S, ; and we define the norm
[€lloo == sup [£(¢)].
CESa,b

The operators zf(€) and z(€) are defined for vectors & € H1, hence with the understanding
that Hy = L%(R) D H?(So) by taking the boundary value at Im ¢ = 0, z' and z are also defined
on H2(Sor). The reality condition f(a) = f(a) on a test function f translates to an element
€€ H*(Sox) as £(C +im) = £(C). Tt is straightforward to see that the proof of wedge-locality
for S without pole [18] works for such &’s: the Cauchy theorem works for H?-functions (see,
e.g., [6, Lemma B.2]).

As we are interested in cases where S has poles, we introduce the bound state operator x (&)

(cf. in [6] we considered it as associated with f*, instead of £). We associate an operator x(€)
to £ € H%(So.x) N H*(So») which satisfies £(6) = £(6 + i) by

(@6 = VarTme (6+ 5 v (0-T).

3
Xn(§) =nPy (x1(§) ®1® - @ 1) Py, x(§) ::@Xn(f)v

where xo(§) =0 and R = R(Qas_S(C). Of course, x1(£) cannot be defined on arbitrary vectors,

=3
as it involves an analytic continuation of W. In Section 2.4, we will specify a domain of self-
adjointness of x1(§) and define x,,(§) accordingly. It follows that yx(§) is symmetric as in [6,

Proposition 3.1]. For n € H%(S_0) N H®(S_x0), n(0) = n(8 — i) we introduce also

(i )e) = vETRD (0 5 ) (047 ).

Xa(n) ==nP, (1@ @1@X1(m) P, X' () = P x5 (n).

It holds that x’(n) = Jix1(Jin)J1, xp(n) = Jaxn(J1n)Jn and X'(n) = Jx(J1n)J.

Our candidate operators for wedge-observables are ¢(€) := ¢(£) + x(€) and ¢'(n) := ¢/ (n) +
X'(n). We will show that they weakly commute on the intersection of their domains and propose
a way to prove their strong commutativity.

2.4 The bound state operator

We studied the one-particle component x1(§) in detail in [35]: actually, we studied the domain
H?(S_y ) rather than H? (S—g,o)v but the adaptation is straightforward. The important lessons
obtained there are that x1(¢), when defined on H? (S_gp), does not always have a nice self-
adjoint extension and even if it does, its domain varies as £ varies. This is due to the fact
that the deficiency subspaces of x1(§) is closely related with the zeros and the decay rate of &,
and x1(§) does not have any self-adjoint extension if £ has an odd number of zeros and does
not decay sufficiently fast as Re( — 4+o0o. And even if £ has an even number of zeros, it is
not obvious which extension is the suited one for our purpose of finding quantum observables.
Therefore, we restrict ourselves to the certain subclass of functions.
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Recall that one can define the analytic continuation operator!
5 2 5 e
Dom (Af) = H(5_zo),  (Afw)(0) =W (e _ 3) ,

namely, any vector ¥ € H? (S_%o) has an L2-boundary value ¥(6) and ¥(§ — Z!) and it

is considered as an element of L2(R) by taking W(6), while Alé\ll is defined to be the other
boundary value W(6 — %) This is self-adjoint, indeed unitarily equivalent to the multiplication
by the exponential function through Fourier transform [35, Appendix A].

A property which we will use repeatedly is the “Cauchy theorem in the following form:
since Azr is self-adjoint on H?%(S_ty), we have (®, Az U) = <A2w<1> W) for &, ¥ € H?(S_¢0).
By noting that ® € H?(Sp+), where ®(z) := ®(z), we can write this as

<<1>,Azirx1/>:/deq>(9)\p(e—u):/decp(a)xp(e—it):/decp(eﬂ't)\p(e)
_ /d9<I>(0 “HU(0) = (A% D, W),

namely, we can shift the argument in the integral. An analogous formula is valid even if the
functions have more variables, by considering the operator Az ® 1 with the identity operator 1
on the complementary Hilbert space. To apply thls it is important to check that the involved
vectors belong to the domain of the operator A% ® 1.

We learned in [35, Section 5.1] that, if £ is the square of another analytic function § = €2,
£ € H*(So,x) N H*(So,x) and if  satisfies the reality condition £(¢ + im) = @ (which implies
that £(¢ + g’) =£{(C+ 2’”)), then y1(€) has a canonical self-adjoint extension, which we denote
by the same symbol for simplicity. More precisely, for £ as above, we can find a function
& € HOO(Sg ;) such that [£(0 + 2;)”)| =1 (almost everywhere) and

& <9+7;> & <9+2m> V2r|R|¢ <9+m> (2.1)

Now, the multiplication operator M&)(. 2y, which is unitary, corresponds to the unitary ope-
3

rator of [35, Theorem 5.1] (with the notation replacing £ with f and the scaling between the
domains H*> (S,%O) and H>(S_rp)). This unitary operator M, (-4 21 implements the unitary

1
equivalence between A} and our bound state operator
L * 2
Dom(x1(€)) = Mg, (. 2z H*(S—z.0),

(@6 = VarTme 6+ v (0- 7).

. *
or in other words, x1(§) = M£ (-4 2m)

property (2.1). The point is that & (0 + %)\II(H) € H? (S—g,o) and the analytic continuation
0— 0+ %’ does not see any pole or non-L? behavior on this domain.

The n-particle component x,,(§) is defined by x,,(§) := P,(x1(§)®1®---®1)P,. This means
that Dom(xn(€)) = {¥,, € Hn: ¥, € Dom(x1(§) ® 1 ® --- ® 1)}. As the expression of x1(n)
is same as [6] (although the domain is larger), we have also the following alternative expression

A M £o(-+2m1)> which follows straightforwardly from the
3

'We use the symbol A, because if we could prove the strong commutativity we will be discussing in this paper,
then Ay will turn out to be the one-particle component of the modular operator of the wedge-algebra with respect
to the vacuum [8].
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(we can do this because the continuation 0 — 6+ % is always accompanied by the multiplication
by & (0 + %), hence one does not encounter non-L? problem by definition):

(Xn(f)\pn)(ela o ,Hn) (2.2)

™ v ™
:\/QW’R‘ Z H S(Gk—9j+3>§<9k+3>\Iln(91,...,6k—3,...,0n).

1<k<n 1<j<k-1

We can rephrase all this as follows: the domain of x; (€) consists of functions ¥y such that
&o(0+251) Wy (0) is the boundary value of an element in H? (S_%,O). The domain of x,,(§) consists
of functions ¥y, such that P, ¥, belongs to the domain of x1(§) ® 1 ® -+ ® 1. In particular,
o(01 4 23) (P Wy, (61, . .., 0y) can be viewed as an L?(R™1)-valued analytic function in 6;. By
S-symmetry, (0 + %)(Pn\lfn)(el, ...,0,) is also analytic in other variables 6, but as the
S-factor has poles, hence it belong to 1 ® - ® 1 ® A ® 1 ® --- ® 1, where the boundedness

k-th
of S is assured in R + i(—k, k) as (9).

Similarly, for each n = n? where n € H*(S_r ) N H>(S_r,0) such that (6 —ir) = n(6), there

is no € H*®(S_2x _x) such that [no(6 — 23*)| = 1 and
37 3

i 211 T
g — 0 — ") =./2 0—— .
770< 3>770< 3> 7T|R\77< 3>
We define

Dom(xi(n) = M _szs H (S0.5),

(i) = vETRD (0 5 ) (647 ).

1
where Mno(._@) is unitary, and this is equivalent to x}(n) = M*0 NVASILYY
T _2mi

operator x’(n) has an alternative expression as x(f) does:

(M Cn) (O, 0n) = /2m[R| Z H S <9j — Op—t1 + 7;) n (0n_k+1 - 7;)

1<k<nn—k+2<5j<n

e
x ¥, <91,...,9n_k+1+3,...,0n> .

3 Towards strong commutativity

In this Section we show that, in order to construct the Borchers triple associated with S with
poles, it is enough to prove that x (&) 4+ x’(n) is essentially self-adjoint.

3.1 A general criterion

This Section is technically independent from QFT.

For unbounded operators, strong commutativity is a hard problem. It may fail even for
a two self-adjoint operators which commute on a common invariant core [25, Section 10], [26,
Section VIIL.5, Example 1]. We also exhibit more examples of weakly-commuting but not
strongly-commuting operators in Appendix B. A sufficient condition which is used very widely
in the context of QFT (e.g., [2, 10, 15]) is the Driessler—Frohlich theorem [11]. The theorem
says roughly that, if there is a positive self-adjoint operator 7' (“Hamiltonian”) which can nicely
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bound the weakly commuting symmetric operators A, B, and their commutators with 7', then A
and B are actually self-adjoint and commute strongly (see Appendix C for the precise state-
ments).

The trouble in our situation is that the physical Hamiltonian is not strong enough to estimate
our candidates which contain the bound state operator x(£): the Hamiltonian is the multipli-
cation operator, while x(£) contains an analytic continuation. We have no idea for any other
operator which dominates x(§) “nicely”, and anyway there cannot be a single operator which
bounds all x(§)’s with different £’s, as x1(£)’s have already different domains of self-adjointness.
In such a case, the question of strong commutativity is considerably difficult (cf. [10]).

Yet, the Driessler—Frohlich theorem can be used to reduce the problem of strong commuta-
tivity to self-adjointness of a certain positive operator.

Proposition 3.1. Let A, B and Ty be symmetric operators. Assume that T := A+ B+Ty > 1
and is essentially self-adjoint on its natural domain Dom(T') := Dom(A) N Dom(B) N Dom(7y),
and there are 9 C Dom(T) which is a core of T and c1,co,c3 > 0 such that

1) [|[AY[| < e | T and |BY|| < e1||T| for all ¢ € 2,
(2) for all p,v € 9,
o [(Tow, Ap) — (A, Top)| < eo|T79|| - | T2,
o [(Tow, Bp) — (B, Top)| < eo|T20|| - || T2 ¢,
(3) for all p,v € D,

o [(Tov, Ap) — (A, Tow)| < esl|¥]] - [Tl
o [(Tow, Be) — (B, Tow)| < csl[v]| - [Tl

(4) (AY, By) = (B, Ayp) for allyp,p € .
Then A and B are essentially self-adjoint on any core of T and they strongly commute.

Proof. As we have (A, By) = (B, Ap) by assumption and T'= A + B + T by definition, it
follows that for all ¢, €

o (T, Ap) — (A, Ty)| < | T2 || - | T3 ]|,
o (T, By) — (BY,Ty)| < e[ T39|| - | T2 )],
o (T, Ap) — (A, Tp)| < esllvll - 1Tl
o [T, Bo) — (BY,Te)| < csl|¢]| - | Tll.

Hence we can apply Theorem C.1, by taking T as the positive self-adjoint operator. |

The point of this proposition is that, instead of using a single “Hamiltonian” for all cases, we
take the operator T' = A+ B+Ty which depends on A and B. Of course, as weak commutativity
does not imply strong commutativity, the essential self-adjointness hypothesis of 17" and the
estimate of A, B by T are crucial. B B

We have the following case in mind: A = ¢(&), B = ¢'(n), To = c¢(N + 1), where N is
the number operator on the S-symmetric Fock space and ¢ € Ry. Furthermore, we will see in
Section 3.3 that T'= A + B + Tj is a Kato—Rellich perturbation of the operator x(&) + x'(n) +
¢(N + 1). This last operator preserves each n-particle subspace, and the question of (essential)
self-adjointness is reduced to each n.

This self-adjointness is far from obvious. By a slight modification, the self-adjointness of
a similar operator easily fails (see Appendix D).
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3.2 Proof of weak commutativity on the intersection domain

We show that ¢(£) and ¢/(17) commute weakly on Dom(¢(£)) N Dom(¢/(g)). Thanks to our
choice of the extension (Section 2.4), this will be a straightforward modification of the proof
of [6], with the help of some techniques in complex analysis of several variables in Appendix E.

Proposition 3.2. Let { € H*(Sox), {(0 + i) = §(9) and n € H*(S_7p), n(0 — mi) = ﬂ( )
for 0 € R and assume that £ = §* € H*(Soz), n = n* € H?(S_r0). Then, for each ¥, & €
Dom(¢(¢)) N Dom(¢/ (1)), it holds that

(89,0 (MT) = (¢ ()P, $($)T).

Proof. We may assume that ®, ¥ have finitely many non-zero components and since we are con-
sidering the algebraic direct sum @@ Dom(xx(§)) C Dom(¢(§)), @, Dom(xn(n)) C Dom(¢'(n)),
therefore, we can compute the action of the operators as the sum:

3(€) = B(&) + x(&) = 21(€) + x(&) + 2(9),
&) =& (n) +x' () = 2T(n) + X' () + 2 ().

We may also assume that ® and W are already S-symmetric, although we use the unsymmetrized
Fock space H> in the intermediate steps. We are going to follow the steps of our previous result
and compute the commutator term by term. Since the most of the computations are same as
the previous ones, we will be brief and indicate only the points where care is needed, and refer
the reader to the proof of [6, Theorem 3.4].

The commutator [x(€), 2’ (n)]. We can compute this commutator as operators as before [6].
Although we have an extended domain for (&), the expression (2.2) is valid as we explained
before. By computing the operators term by term, we get

(X(©), 2" (] ¥p) (01, .- ., 1)
— —\/27T|R]n/dc977(9) II s (9 —0; + 7:;) ¢ <9+ 7;) 0, (91, e On1, 0 — 7;)

1<j<n—1
Iy
2 - =0, O
\/W/den mi) [ S©O-9)) (9+ ) <9 301 ,0n1>,
1<j<n—1

where in the last equation we used also the symmetry property n(6) = n(0 — iw) and the S-
symmetry of W,,.

Let us look at the integrand without the S-factor and shift the first variable 6 by % n(0 —
(0 + 224 Uy, (0,064, .., 0p1). Recall that:

b f € HOO(SO,N)7 n € HOO(S—W 0)7
o & (0+ )& (0+ %) = /27|RIE (0 + ), & € H®(Sx 2x),
® 7o (9—%)7]0 («9—%) :\/27r|R|17( 2%) 7o EHOO( 7%77§)

)T, (0,01,...,0, 1) € Dom (Af ®1l®---®1),

oj\:u
wly

0770(9_% (0,01, . 79n—1)€DOm(A;%®]®...®H)'

We consider the function

n—1 .
21 211 271
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which belongs to
Dom(Alé®]l®"‘®ll)mDom(A1_ﬁ®]l®"'®]l)

f]Dmn@@-“®l®Zg%®l®“-®D
; j+1-th

by S-symmetry of ¥. Furthermore, again from the S-symmetry of ¥, and from the proper-
ty (S6), it has zeros at any point where two of the variables coincide: 6 = 6;. By applying
Lemma E.7, we obtain that

I1 5(9—9j+7;> (0—237”)§<0+237”)
1<j<n—1

& 2
x [T % (9 +;)”> U, (0,61, 0n_1)

still belongs to the same domain. Now we can remove extra {p’s with variables 6;, which does

1
not affect the domain of A} ® 1 ®---® 1 and get that

) 2T 2T
H S<9—9j+3> <9—3>§(0+3>\Iln(9,91,...,9n_1)

1<j<n—1

1
belongs to Dom (Af RL®-- o®]l). Therefore, we can apply the Cauchy theorem (on Hilbert-space
valued functions) and

(IX(©), 2 (]) B, - W/den(e_%z) 11 S<9_9j+7;’>

1<j<n—1

2
X£<9+§Z> \Iln(‘gaglw'wenfl)'

The commutator [z(£), x'(n)]. This can be computed in a similar way as the previous one:
, 2m T
(O N D) G100 1) = Vorl Bl [ dog (0+50) T] s(0-0;+%
1<j<n—1

(9 - 23“) U, (0,01,....0,_1),

which coincides with the result of the commutator [x(f),z'(J1g7)] up to a sign, therefore they
cancel each other.

The commutators [21(€), X' ()] and [x(€),2'T(n)]. One can show that these two commutators
cancel each other by taking the adjoints and repeat the computations as in the commutators
before.

The commutator [¢(€),¢'(n)]. This term has been essentially computed in [18]. The only
difference is that £ does not come from the Fourier transform of a test function f supported
in TW7,, but the properties needed in the computations are that & € H? (So,x) (which allows one to
apply the Cauchy theorem) and the symmetry property £(0) = £(f +im) (which assures that the
terms appearing in the commutator is the boundary values of the same analytic function), and



Bound State Operators and Wedge-Locality in Integrable Quantum Field Theories 11

the corresponding properties of 7. Here is no effect of the domain and the result is essentially
taken from [18, before Proposition 2]:

([6(€), &' ()] ) (01, - ., On)

:_2m<ZRn<0k—)§<9k+2m> Hs(ek—e + 32>

j#k

—ZR”< k_2m>5<9k+ )HS(Qk—Q + 3>>x1fn(91,...,9n).

Jj#k

The commutator [x(§),x'(n)]. We have the expressions (2.2) and those for x/,(n). This
allows one to expand the commutator into the sum of n? terms as in [6] by a straightforward
computation. Of them, there are 2n(n — 1) terms which come from the actions of x(§), x'(n) on
different variables in the sense of (2.2), and cancel each other. For that, we only need that ., (&)
is the projection onto P, H®" of the operator x1(£) ® 1 ®--- ® 1 acting on the first component
(and the corresponding property of x/,(n) and the S-symmetry of the vectors). The extended
domains do not affect this.

The remaining terms are those where x1(£) and x}(n) act on the same variable in the sense

of (2.2):

(Dn(prpr) (L@@ L@ X1(1)2, Dn(pr)1(§) @ 1@ @ 1)T)

_zﬂ\Ry/del by, Hs(ak—elJr 3>§<0k+?)m,L(el,...,ek—g,...,an)

=1

L Iy e iy
X H S<9l_0k+3>77<9k_3> P, <91,...,9k—|—3,...,0n>

I=k+1
2w 27 27
—27T\R’/d91 ~dfn, H5<9k—91+—m>§<9k+3—m> <9k—3+m>
I#£k
\I/n(el,...,gk—ili,...,Qn)@n(el,...,ek+il€,...,9n),

where py, pl . 41 are the cyclic permutations

pr: (L,2,....n)— (k,1,2,...,k—1k+1,...,n),
Poonrr: (L,2,...,n) = (1,2,...,k—1k+1,...,n,k),

and in the second equality we used that S has no pole except %i, 2™ and applied the (Hilbert

) 3
space-valued) Cauchy theorem: the pole at % makes no problem by the fact that W, €
Dom(xn(§)), ®n € Dom(x7,(n))-

Now, the question is the pole of S at % Let us forget at the moment the S-factors and look
at the further shifted integrand:

o 2
§<9k+;”> U, (01,...,00)n (%—?) O, (61,...,00)

1 2mi T 271
- O+ 7 mo (00 = ) W, (04, 00) 10 (00 — 222 ) @, (64, 0,),
e (0 5 m (0= 5 ) w0 (0= 2 ) 00 00

where we used that mno (9k — %) = \/27|R|n (gk _ m)
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Let us observe that

o no(0r — %) (91,...,0n)eDom(ﬂ®-~®]l®Ak1_f’®]1®---®]1),
-t

o £(0k+ ) no (0 — )T (61,...,0,) EDom (1@ @1® (A + A7) @1®- - ® 1),
k-th

since &€ € H>(So,x) and no(6y — ) = /27[Rn(0x — 5 )mo (0 — %), 1 € H(S—r0)

We use the same trick as before: consider the function
21 211
£<9k+3) (Qk - ) I <91+> Wy (b1,...,0n0),
1k

which belongs to

Dom(1®--- @01 (A +A; 7)1 --®1)

k-th

ﬂDom(]l®'~®Il®Af%®]l®~-®Il)
£k [-th

by S-symmetry of ¥. Furthermore, again by S-symmetry, for k¥ < [ we have
U(b,....00) = [] S0:—0;)S(0; — 0k) - S0, — 0x)U(01,....00,...,0k,...,00).
k<j<l

From this expression, it is clear that W has a zero at 6, — 0, = 0, k < [. A parallel argument
holds for | < k.
By applying Lemma E.7, we obtain that

2 2 2
IIs (9k — 0+ 7”) ¢ <9k + ;)”) <9k - ) e (9, + 7”) W, (01, .. ,60,)
I#k Ik
still belongs to the same domain. We remove extra £y’s with variables 8; and get that

ITs (0-0+ %) e (o 5 Y (-5 ) 0o Orren )

1£k

belongstoDom(]l®~'®]l®Af%®Il®~-®]l).
k-th
Therefore, we can apply the Cauchy theorem and

(Dn(phppr1) (L@@ L@ X1 ()2, Dlpr)(x1(§) @ L@+ @ 1))

—271-]R\/d91 b, HS(@k—91+3>g<ek 2;”) U, (61, ...,6)

£k
21
X77<9k—3>(bn(917,9n)
—277]R\/d6 a0, T[S (60— 0 UL P AL Y L
1- k 1 3 k 3 n\ Yk 3

l#k
X (I)n(el,...,en)\l’n (917---7971)-

By recalling (S6) which implies R = i|R|, this cancels the first contribution from the commutator

(@, [0(f), ¢'(9)]¥).
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The remaining terms in (x(£)®, x'(n)¥) are, by an analogous argument as above,

(Dr(pe)(x1(§) @1 ® -+~ @ 1)@, D (py— 1) (1@ - @ T @ X1 (1) ¥)
21 T
=—-2mR [ dOy---dO, | | S| O — O + O —— | €0
Jao-waonTLs (o -+ 5 ) (0= e 0+ 5)
X(I)n<917---;Hn)\:[ln(ely---yen)

which is equal to the second contribution from the commutator (®,[¢(f),¢'(g)]¥) up to the

sign, therefore, they cancel each other.

3.3 Estimates

Let us assume that x,(£) + x},(n) is already essentially self-adjoint on its natural domain
Dn(€,m) = Dom(xn(£)) N Dom(x;,(n)). We denote the algebraic direct sum by Z(&,7n) :=
@n@n(f,n). We are going to show that Proposition 3.1 can be applied to show that ¢(&)

and ¢/ (n) strongly commute.

Proposition 3.3. There is c(§,n) > 0 such that, for V€ 2,(£,n), it holds that

Re(x(§)W, X' (m)¥) > —nc(€,n){(x(€) + X' (n) +2)¥, ),

and therefore,

X< 1(x(©) + X' (n) + (€, m)(N + 1)@,
X' < [10(€) + X' () + (&, m)(N + 1) ¥

for ¥ € D(&,n).

Proof. We may assume that ¥ € Z,(¢,n). We use the following expressions:

Xn(©) = > Dulp)(x1(§) @1 @@ 1)P,,

1<k<n

XM = D Du(pf)(1 & @ 1@ x)(1))Pa-
1<k<n

By proceeding as in Section 3.2, we see that (x(§)¥, x'(n)¥) consists of n(n — 1) times

(@ ®1e-@DT, (10 0L xi(n)P)
and the following n terms (1 < k < n):

(Dnlpe)(x1(6) @ 1@+ @ 1), Dy gy 1) (L@ - @ L@ X1 (1)) D).
We write Dy, (pr) = Mg, F),, where

= H S (0 — 05)
i<k

and Fj is the corresponding cyclic permutation of the variables. We have

Du(pr)(x1(§) ©®1®@--- @ 1)¥

1 1
= Mg Fr(x1(§)?®1® - 0 1) (1§ @1 @ 1)U

1 1
=(1® - 1ox1(®1®- - ® Jl)MSk(H%i)Fk(xl(&)? ®l® - ®1)v,
k-th
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where
T i
Sk <9+6> = HS(@k—9j+6),
i<k
which is bounded by 1 by (S8). Similarly,

Di(py 1)1 @@ 1@ x1(n) ¥

1\ e 1

=My , Fo (1@ @1@xim)?) By (1@ @ 1eX)(n)2) ¥
1 1

= (1@"'H®X/1(77)2 ®]1"'®H)Msikkﬂ(ng%i)Fn—k—kl(ﬂ®"'®]1®X/1(77)2)\Ij>

k-th

where S’

e (0 + %) = ][ SO —0; + %), which is again bounded by 1 and F,_, , is the

J>k
corresponding cyclic permutation. We define ¢(£,n) = HXl(f)% X1 (77)%” + 1, which is finite.
Now we have

BU<cEn|a@©iele-a D |(1e- © 1oy M)
<cleN(|(x©: 910 @)U +[|1e - @1exim):)Y|)
<clen(|a@rele o)V + 1o ©lex;n) Y|’ +2)
= (&) ((n(O)Y, ¥) + (x,, ()T, ) +2),

from which the first statement follows directly.
The second statement is easy because

1(x(€) + X' () + (n + 1)e(&,n) V|
= IX(©)¥|* + 2Re(x (&)L, X' (n)¥) + [|X (n)¥|?
+2(n+ De(€n)(x(€) + X' (¥, ¥) + (n+ 1)%c(&,n)?|| P,

which extends to ¥ = (V¥,,) € Z(£,n) by replacing n by the number operator N, because the
operators appearing here preserve H,. Therefore, by dropping the positive terms at each n in
the right-hand side, we conclude:

Ix ()W < [[(x(€) + X' (n) + e(&,n)(N + 1)¥|?,
X' (> < 1 (&) + X' () + (& n) (N + 1) ¥, u

It is important that the estimate does not grow too fast with n, thanks to (S8).

Corollary 3.4. Assume that xn(§) + x,,(n) is essentially self-adjoint. Then 5(5) and (E’(n)
commute strongly.

Proof. From the assumption, it is immediate that x(§) + x'(n) + ¢(N + 1) is essentially self-
adjoint, where N is the number operator and ¢ = [[£]| + ||| + ¢(&, 1), where ¢(£,n) comes from
Proposition 3.3. For simplicity we do not indicate the dependence of ¢ on £ and 7. As x(&)
and x/(n) are defined at each n-particle space, they strongly commute with N.

Next, let us observe that ¢(&)+¢' () +c(N +1) is essentially self-adjoint. Indeed, this is equal
to the sum of x(§)+x'(n)+c(N+1) and ¢(§)+¢'(n). As x(§)+x'(n) and N+1 are both positive
and strongly commute, we have for any ¥ € 2(¢,n) that ||[c(N 4+ 1)¥| < [[(x(€) + X (n) + (N +
1))¥||. On the other hand, as ¢(§) + ¢'(n) are the sum of creation and annihilation operators, it
holds by the above choice of ¢ that [|(¢(&) + ¢ ()T < |(IE]]+ 7] (N + 1)) < |le(N +1)T|.
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Now by Kato-Rellich perturbation theorem [26, Theorem X.12]2, () + ¢'(n) + ¢(N + 1) is
essentially self-adjoint on Z(&,n).

In order to show the hypothesis (1) of Proposition 3.1 with A = ¢(¢), B = ¢'(n), To =
¢(N + 1), note that, by Proposition 3.3 and the definition of ¢, we have

S]] = 1(&(€) + X)) < le(N + 1)W|| + [|(x(€) + X' (m)) + e(&, M (N + 1)¥]|
< 2/[(x(§) + X'(n) + e(N + 1)) ¥||

and a parallel estimate shows that ngNS’(n)\I/H <2[[(x(§) + X' (n) + c(N + 1))¥|.

As for (2) and (3), recall that N commutes with x(§) and x'(n), therefore, the (weak) com-
mutator between (N + 1) and ¢(€) is reduced to [N, ¢(¢)], which is the sum of [N, zf(&)] = 2f(¢)
and [N, z(§)] = —z(§). Namely, we have

[(NT,6(€)p) — (B(E)T, NP)| = (T, (1(€) - 2(¢)®)|

and it is easy to see that this can be bounded by both H (N +1)) 2\IJH H (N +1)) 2CI>H and
9] - fle(N + 1)@]. N

As we saw that ¢(¢) and ¢'(n) weakly commute on Z2(£,n) in Section 3.2, we can apply
Proposition 3.1 and they strongly commute. |

3.4 Construction of Borchers triple

We now proceed to von Neumann algebras, always assuming that x,(£) 4+ x/,() is essentially
self-adjoint on Z,,(£,n). Among the properties of Borchers triples, important are the separating
property of the vacuum €2 and the endomorphic action of the Poincaré group. The former is an
immediate consequence of Corollary 3.4 and the latter follows from the canonical correspondence
from & to x(§).

For the next lemma, we need to recall the Beurling factorization [27, Theorems 17.15
and 17.17]. Any bounded analytic function f(¢) on the unit circle can be decomposed in to
the product f(¢) = cfB1(C) fout () fin(¢), where the Blaschke product fp) is a possibly infinite

product of functions % 106:@(@

of |f(¢)| on S! and f;, is the Poisson integral of a certain singular measure. A corresponding
decomposition holds for any region in C which is conformally equivalent to the unit disk, in
particular, the strip S_%w’_%. In [35], we exploited this decomposition in order to construct the

where |a| < 1, fout is the Poisson integral of the boundary value

analytic function 7y (see Section 2.4).
From here on, we switch to the objects with ’, because they are by convention those which
generate the von Neumann algebra.

Lemma 3.5. x'(n) and gg’(n) are covariant in the following sense: if a € Wg, then we have
X (U1 (a, \)) = Ad U(a, ) (n)) and & (Ur(a, ) = AdU(a, A)(@(n)) as operators (including

the domains).

Proof. First note that, if n € H*(S_x0) N H®(S_y0), then it follows from (Uj(a, \)n)(6) =
eOap(@ — \) that Ui(a,\)n € H*(S_r0) N H®(S_,p), as a € W implies that? |eP(O)¢| <
1 for ¢ € S_rpo. Furthermore, if n = n?, then (Uy(a,\)n)(0) = (eip(e)'a/QQ(O—)\))Q, hence
X'(U1(a, A)n) can be defined.

1
Next, let us remember how x/(n) = M"* A, S M’ is constructed: Mno(-fm) =

mo( =271 (- —25t) 3

My, My, M, (again up to the scaling), Where M, is the Blaschke product corresponding to

7B1 7B1

2Here the larger operator is only essentially self-adjoint, but the estimate extends to the whole domain, hence
the theorem applies. Accordingly, the conclusion of the theorem is essential self-adjointness.
30ur convention of the Minkowski metric is a - b = agbo — a1b1.
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the zeros of n in S_2x _x, M, is the inner singular part of 5 again in H*°(S_2x _z) and n_ is
- 3773 — 3173

v’ 21

(
an outer function on S_ 2« such that 77_( — ﬁ)n_( — T) = Tout (9 — %), or equivalently,

s
37 3

- (9 - 2;”) n- <0 - 7;) = Nout <9 - 23m> , (3.2)

where 7oyt is the outer part of 7.

First we consider a pure boost Uy (0, A). As the decomposition M. 2wy = My My, My, is
canonical where ng; is a Blaschke product, 7, is inner and 7n_ is outer with the above equality,
we also have the corresponding decomposition for Ui(0,\)n and we obtain x;(U1(0,\)n) =
U1(0, )X/ (mU1(0, A)*.

Next (and more importantly), take a pure translation Ui (a,0). We have (Ui(a,0)n)(0) =
e@P®n(9), hence (Ui (a, 0)n) (6 — 2%) = elap(0=35* n(0 — 23*). The function e@r) is purely
outer on S_ar _ . It holds that —p(#) +p( — %) :p( — %), hence

37 3

—ia- —ia- ) ia- _2mi
e=iap(0) | g—iap(O+5) _ giap(0-3)

which, by comparison with (3.2), implies that (U (a,0)n)_ is the product n_ and e~**?®) ie.,

(Ui(a,0)n)- <e - 7;’) — i) (9 _ ﬂ;)

and (U(a,0)n)s1 = 01, (U(a,0)n)in = Nin. In other words,
Moo~z = U=, 0M, (=) = Ur(a, 0] M, (_zs).

-3
Now we have the decomposition

M, @oymo. —2my = Mg, My, My_Ui(a,0)",
therefore,

X1(Ut(a, 0)n) = U(a,0)x(n)U1(a, 0)".

The covariance of the full operators x'(n) = @, P.(1 ® --- ® 1 ® x}(n))P, and d(n) =
@' (n) + x'(n) follows from the covariance of x/ (). |

Theorem 3.6. Assume that V is a subset of H*(So) N H>®(So,x), whose elements & have the
form & = §2, satisfy §(0 +im) = @, and V is invariant under Uy(a, N), (a,\) € 731 such that
a € Wi, and is total in Hy. Assume further that x(&)+x'(n) is essentially self-adjoint on P(&,n)
for any pair of £ €V, ne J1V.

We define

M = {ei&("): neE Jﬂ/}”.
Then, (M, U, Q) is a Borchers triple.

Proof. Q is cyclic for M by the argument of [6, Section 3, Reeh—Schlieder property| and the

density of the linear span of V in Hi. It is separating because ) is cyclic for {eid’(@: £ € V}H,
which commutes with M by Corollary 3.4. Finally, for a« € Wgr, AdU(a, \)M C M follows
immediately from Lemma 3.5 and the assumption that V is invariant under Uy (a, \) for a € Wy,
hence J1V is invariant under U (a, A), a € Wg. [

Note that, if the assumption of strong commutativity is dropped, the totality of V is easy, as
(cf. [6]). We only have to find sufficiently many &’s and n’s which satisfy strong commutativity.

dgiap(0) ig singular as a function on S_ o, but is outer when restricted to §72T7r’7 , as it gets scaled.

sy
3
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4 Self-adjointness of bound state operators

Here we consider x (&) + x'(n). Although our fields is B(€) = $(€) + x(€) and not x(&) or X' (1),
the question of the domain of ¢(£) can be solved by Corollary 3.4, once that of x(&) 4+ x/(n) is
settled. We show that x,,(¢) + X/, () is essentially self-adjoint for n = 1,2 if £ = ¢2 and n = n?
as in Section 2.4, and give some observations for n > 3. B a

Observations on closure

Lemma 4.1. Let X, Y be closed operators and assume that there is ¢ € R such that c||¥||? <
Re(XW, YW) for ¥ € Dom(X)NDom(Y). Then X +Y is closed.

Proof. Let ¥, € Dom(X) N Dom(Y) such that ¥,, — ¥ and (X +Y)¥,, — ®. Then

(X +Y) (W — W) ||
= ||X(\I'm - ‘I’n)HQ + HY(\Pm - \I'n)Hz + 2Re<X(\I’m - \Pn)’y(\l'm - ‘I’n)>
> ([ X (W = W) [ 4 1Y (T = W) [|” + 2¢]| Wi — W%,

from which it follows that {XV¥,,} and {YV¥,,} are both convergent, and therefore, ¥ &
Dom(X) N Dom(Y'), namely, X + Y is closed. [

Lemma 4.2. Let X, Y be closable operators and assume that there is c € R such that QH‘IJHQ <
Re(X WU, Y W) for ¥ € Dom(X)NDom(Y). Then X +Y is closable and X +Y C X +Y.

Proof. For ¥ € Dom(X)NDom(Y), we have ||(X +Y)¥||? = | X¥||?+ ||V ¥[2+2Re(X ¥, Y ¥)
where the last term is bounded below by ¢||¥||? by assumption. If ¥,, — 0 and (X +Y)¥,, — ®,
then [[(X +Y)(¥,, — ¥,,)| — 0 and

lim inf (2Re(X (¥, — Upp), Y (T, — ¥p))) > 0.

From this it follows that || X (¥,, — ¥,,,)|| — 0 and ||Y(¥,, — ¥,,,)|| — 0, namely XV, and YV,
are separately convergent. As X and Y are closable, we obtain XW¥,, — 0 and Y¥,, — 0 and
® = 0, namely X + Y is closable.

To show X +Y C X + Y, we only have to repeat the argument with ¥,, — ¥ to obtain
¥ € Dom(X) NDom(Y) = Dom(X +7Y). [ |

Lemma 4.3. Let X, Y be closed operators and assume that there is ¢ > 0 such that 0 <
AV )|2 4 2¢((¥, XU) + (¥, YT)) + 2Re(X ¥, YU) for ¥ € Dom(X)NDom(Y). Then X +Y is
closed.

Proof. Let ¥,, € Dom(X) N Dom(Y') such that ¥,, — ¥ and (X +Y + ¢)¥,, — ®. Hence we
have

(X +Y + ) (U — )|
= | X (W = ) |2+ [[Y (Ui — U [I* + 2Re(X (¥, — W,), Y (U, — W)
+2e(((Trm — Vi), X (Ui — Vn)) + (Ui — Wn), Y (¥, — Vn))) + C2||(\I’m - \I’n)||2
> (| X (W — W) ||+ [V (T — W) 1%,

from which it follows that {X¥,,} and {YV¥,,} are both convergent, and therefore, ¥ &
Dom(X)NDom(Y), namely, X +Y + ¢ is closed. This is equivalent to that X +Y is closed. W
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4.1 One-particle components

Now we show that x1(&) + x}(n) is self-adjoint on the intersection Dom(x1(€)) N Dom(x}(n)).
1

A key observation is that x1(£) can be written in the form X*X where X = AITQM&)(.W_@).
3

It is clear that X is densely defined, as §y € H®(Sx 2« ), and closed as Mfo(-+m) is bounded.
373 3
1
Furthermore, it holds that X* = M* .., A{? without closure, since M* . is unitary.
So(-+75) So(-+75)

_ 1 _ 1
Similarly, one can write x}(g) = Y*Y, where Y = A, 2 Mno(—m) and Y* = M;‘O AV

3
Some ideas in the following lemma are due to Henning Bostelmann.

(=249

Lemma 4.4. Let X, Y be closed, densely defined operators such that

e X Dom(X) C Dom(Y*) and Y Dom(Y) C Dom(X*),
e Y*X and X*Y are bounded,

o X +Y and X*+ Y™ are densely defined,

e there is a decomposition of H = Hx & Hy such that

— any ¥ € Dom(X) is the sum ¥ = ¥x & Uy, Ux € Hx N Dom(X) and ¥y €
Hy N Dom(X),

— any ® € Dom(Y) is the sum & = &x @& Py, Px € Hxy N Dom(Y) and Py €
Hy NDom(Y),

— X is bounded on Hx andY is bounded on Hy .

Then the sum X*X +Y*Y is self-adjoint on Dom(X*X) N Dom(Y*Y).

Proof. By definition, Dom(X +Y) = Dom(X) N Dom(Y’). Under the assumption, X + Y is
closed. Indeed, we have (XU, YW¥) = (¥, X*Y¥) which is bounded by || X*Y| - [|¥]|? and we
can apply Lemma 4.1.

Next, note that Dom(X +Y") = Dom(X)NDom(Y') is a core of X. Indeed, any ¥ € Dom(X)
can be decomposed as ¥y @ Wy by assumption. On the other hand, Dom(Y") is dense and
admits the decomposition Dom(Y) = (Dom(Y) N Hx) ® (Dom(Y) N Hy). As Dom(X +Y)
is dense by assumption, Dom(X + Y) N Hx is dense in Hx. But X is bounded on Hyx, thus
Dom(X) includes Hx. Namely, Dom(X) = Hx @ (Dom(X)NHy ). Similarly, we have Dom(Y') =
(Dom(Y)NHx)® Hy. Therefore, Dom(X +Y) = (Dom(Y)NHx) D (Dom(X)NHy). We saw
that Dom(X +Y) N Hyxy = Dom(Y) N Hx is dense in Hx and X is bounded here, hence, the
closure of X restricted on Dom(X +Y) is Hx & Dom(X) N ‘Hy = Dom(X). Similarly, it holds
that Dom(X +Y) is a core of Y.

Next we see that Dom((X+Y)*) = Dom(X*)NDom(Y ™). For each vector ¥ € Dom(X+Y) =
Dom(X)NDom(Y"), we take the decomposition ¥ = Wx & ¥y which is given by the assumption.
By the definition of the adjoint operator, a vector ® is in Dom((X + Y)*) if and only if the
map ¥ — (®,(X + Y)V¥) is continuous for ¥ € Dom(X + Y) (namely, there is ¢ such that
(D, (X +Y)¥)| < ¢|¥]). Then we have the following chain of equivalences:

® € Dom((X +Y)")
— U~ (D, (X +Y)V¥) is continuous for ¥ € Dom(X +Y)
= Uy (D, (X +Y)Uy) and Ty > (D, (X + Y)Ty)
are continuous for Ux € Dom(X +Y)NHx, Py € Dom(X +Y)NHy.
= Uy (0,YTy) and Uy > (B, XTy)
are continuous for ¥y € Dom(X +Y)NHx, ¥y € Dom(X +Y)NHy.
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— Ux Uy —» (D, Y(Ux ® Vy)) and Vx ® ¥y — (&, X (Ux & Uy))
are continuous for ¥ = ¥y @& ¥y € Dom(X +Y).

We saw that Dom(X +Y') is a core both for X and Y, thus, the continuity of ® — (&, X ) for
U € Dom(X +Y) extends to ¥ € Dom(X), which implies that ® € Dom(X™*). Analogously, we
obtain ® € Dom(Y ™). This implies that (X +Y)* = X* 4 Y™,

It is well-known [26, Theorem X.25] that, because X + Y is closed, on the domain Dom((X +
Y)*(X+Y)) ={V € Dom(X+Y) : (X+Y)V € Dom((X+Y)*))} the operator (X+Y)*(X+Y)
is self-adjoint. From the above observations, this domain is actually

Dom((X +Y)"(X+Y)) ={V €Dom(X +Y): (X +Y)¥ € Dom((X +Y)"))}
={¥ eDom(X +Y): (X+Y)¥ € Dom(X*) NDom(Y™)}
={¥ e Dom(X +Y): XU € Dom(X"),YV¥ € Dom(Y™)},

where in the last line we used the assumptions that X Dom(X) C Dom(Y*) and Y Dom(Y) C
Dom(X™).

Now we have (X +Y)"(X +Y) = X*X + X*Y + Y*X + Y*Y and this is different from
X*X +Y*Y only by a bounded operator. |

/

Proposition 4.5. The sum of one-particle components x1(§) + x1(n) is self-adjoint on the
domain Dom(x1(§)) N Dom(x}(n)).

Proof. This is a straightforward consequence of this Lemma 4.4.

Indeed, we only check the existence of the decomposition H1 = Hx & Hy. We consider log A
and its spectral decomposition: we take Hx as the spectral subspace of log A corresponding to
(—00, 0], while Hy corresponds to (0,00). Now the required properties are shown as follows.

Let us denote the spectral projections onto these subspaces by Px and Py. Let us take an
element ¥ € Dom(X) = Dom (AT12M£O(_+M)). This means, by definition, & (6 + 254)W(0) is

3
in #?(—%,0). In addition, ¥(#) alone is L?. While it holds that ¥ = Px¥ & Py ¥, Px U is
obviously in the domain of A%z, hence also in the domain of X = Aflego (-42mi)- This means
that Py ¥ = ¥ — PxV is also in the domlain of X. The restriction of X on Hx is3 bounded, since
there it holds that XWx = M, +%)Aﬁ, where (60 + %) is bounded.

Similarly, the decomposition Hx @ Hy is compatible with Dom(Y) and Y is bounded
on Hy. |

4.2 Two-particle components

In this Section, under (S7), we show that x2(§) + x4(n) = P2(x1(§) ® 1 + 1 ® xj(n))P» is
essentially self-adjoint. It should be stressed that this expression does not involve Friedrichs
extension. Simply the restriction to PQH?2 is already essentially self-adjoint. This is important,
because we have to be able to compute the weak commutator. In the course we also show
that x2(§) is essentially self-adjoint. It is also closed under (S7).

We provide different proofs. The first one is longer and tricky, but one may hope that with
some more ideas the cases n > 3 could be treated. The other two works only for y2(&), but are
relatively simple, and give the hints of why the general case requires a better understanding of

1 1
the poles and zeros of S. It should be noted that operators of the form A} ® 1+ M, (IL ®Af)M]’§
may in general fail to be self-adjoint (see Appendix D). We have to properly use the properties
of S.
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4.2.1 Fubini’s theorem

We first show that y2(&) is self-adjoint. For this purpose, let us note that the unitary operator
M¢, ® Mg, obviously commutes with Mg, hence also with Do(71) and P». As we have

1
x2(€) = Po(Mg, @ M) (A} @ 1) (Mg, @ Me,) Py
1

= <M§*0 ® ]wf*o)PQ(Alg ® ]L)PQ(Mﬁo ® M&))a

1
the question is now reduced to the self-adjointness of P (Af ® ]l)Pg.
We start with some observations on L?-functions.

Lemma 4.6. If U(01,05) and ®(0y,602) belong to L*(R?), and /1 W (01, 0:) + 20 (01, 0) is L2,
then on any region bounded with respect to Oy, ePW(0y,0y) is L. Similarly, on any region
bounded with respect to 01, 692<I>(91, 02) is L?. On the region 61 + 62 < N, both 691\11(91, 02) and
2®(0y1,0,) are L?.

Proof. Consider the region #; < N. Here, 692<I>(6?1,92) is obviously L?, and 691\11(91,02) +
e2®(0y,6,) is by assumption L2, therefore, the difference

e (01,05) = ("W (01, 05) + D (01,602)) — e”2®(61,05)

is again L?. The other case is similar.

The region 61 + 0, < N is a subset of the union of 6; < % and 6y < % The function

10 (61, 05) is obviously L? on the former and also on the latter by the first paragraph. The
other case is similar. |

Coming back to our operators, let us summarize the situation.

e Mg: multiplication operator on H! @ H' = L?(R?) by S(6s — 61). Similarly, we denote by
M. 445 the multiplication operator by S(f2 — 01 +i)).

1 A
o (AJW)(0) =¥ (0 — %) on the domain H*(—%,0).
1 1
e A1 ® Ay and Mg strongly commute. It holds that Mg(Af ® Il) C (Af’ ® H)MS(.+H),
. 6
since S(¢) is bounded on R +4(0, ).
Let us denote the flip operator by F': Y Q@ ® +— & ® ¥ where ¥, ® € H;. Then we can write the
S-symmetrization as follows: Py = 3(1 + MgF).
1

Proposition 4.7. P, (A{" ® II)PQ is essentially self-adjoint. Under (ST), it is even self-adjoint.
Proof. It is well known that A*A is self—adpmt for a closed operator A [26, Theorem X.25].
The operator (A” ® 1) P, is closed (because A{ 12 ® 1 is closed (self—adpmt) and P, is bounded)
and densely defined, hence P, (AIH ® ]l) is closable and P» (Alu ® ]l) = ((Alu ® :H.)PZ) [28,

N L
Theorem 13.2]. Therefore, the product Py (Allz ® ]l) . (Alm ® IL)PQ is self-adjoint. The proof
1
will be complete once we show that its domain coincides with that of P, (Af ® ]].)PQ. The

domain of Py (All% ® ]1) . (Al%2 ® ]l)Pg consists of vectors ¥ € Dom ((All% ® ]l)Pg) such that
(A © 1) P € Dom (Pz(AfQ @1)). We put ¥ = (A ® I)Pyl. Now, what we have to

1
prove is that ¥ € Dom (Alm ® I).
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N
If ¥ belongs to the domain of P (All2 ® Il), then there is a convergent sequence W, €
Bl L
Dom (Allz ® ]l) such that P (Alu ® Il)\lln is again convergent. By the remark before this
L 1
Proposition, the latter sequence is equal to %((AI12 ® ]l)\Iln + (]l ® A112)MS(.+H)F\Iln).
6
Let us consider the joint spectral decomposition with respect to log Ay ® 1 and 1 ® log A;.

Any vector in H; ® H; can be considered as a two-variable L?-function on the spectral space
of log A1. Now, note that MS(‘_,'_H)F is a bounded operator. If we put &, = 5(.+ﬂ‘)F‘I’n,
6 6

then ¥,, and ®,, are convergent to ¥ and ® in the L2-sense, respectively.
1
Now, by considering A{* ® 1 as a multiplication operator on the function ¥ in the spectral
1
space considered above, (Al12 ® ]1)‘1/ is a priori not a vector in H! ® H': this would mean

1
that ¥ € Dom (Alu ® ]l), which we have to prove. Yet, as ¥ is a function and A; ® 1 is a
multiplication operator on the above-mentioned spectral space, it is well-defined as a function

1
(almost everywhere), a priori not L2. Similarly, we can treat (Il ® All2)<I> as a function. In this

1 1
interpretation, the defining property of W says that (Alu ® ]l) v, + (]l®A112 )<I>n is L2-convergent,
in particular, by taking a subsequence, we may assume that the sequence is almost everywhere

1 1
convergent and the pointwise limit is again L?. Namely, (Alm ® ]l)\IJ + (]l ® Allz)(I) is L2.
Let Qn the spectral projection of A; ® Ay corresponding to (e/¥~1,eV]. Note that on the
joint spectral space of logA; ® 1 and 1 ® log Ay, this corresponds to the region N — 1 <

t1 + to < N. It commutes strongly with P (All% ® Il) . (All% ® Il)Pg. We first prove that, if
¥ € Dom (PQ(A;% ®1)- (Af?gnl)&) and U = P,Q, ¥, then ¥ € Dom (Py(A§ ©1)Py). Under
this situation, (All% ® ]1)\11 + (]l ® A?)@ is L?, hence Lemma 4.6 tells that ¥ € Dom (Al%2 ® Il)
or equivalently, ¥ € Dom (Alé ® ]l).

In other words, any vector ¥ = Q¥ in the domain of P, (All% ® ]l) . (Al%z ® ]l)Pg belongs
to the domain of Alé ® 1, which means that we do not need the closure on the operator above
for such ¥. As Qn commutes with Py (All% ® ]l) . (All% ® H)Pg, any vector in its domain is the
direct sum of such Qx¥’s, hence we obtain Py (All% ® ]l) . (Al%z ® ]l)Pg =D (Alé ® ]l)Pg and
P, (AI% ® ]l)PQ is essentially self-adjoint.

We now prove that P (Alé ®1) P, is closed under (S7). Indeed, For ¥ € Dom (PQ(Alé ®1)P,),

1 1
we may assume that Po¥ = W. We claim that <(Af ® IL)Q, MSF(Af ® ]l)g} > 0. Note that
we are not claiming that MgF is a positive operator (it is not), but the positivity holds for

1
(Af ® ]l)g, where ¥ = P,W. We have
1 1 1
MsF(Af @ 1)¥ = Mg(1® AF)FU = Mg(1® Af)MY,
since W is S-symmetric: ¥ = MgFW¥. Now, the inner product in question is

(Af ©1)¥, Ms(1® AP)(1® AJ?) M)

(M3(Af @ 1)¥, (10 AT) (1 e A7) Mz0)

1 1 1 1
(AP ® ]1)M;(,+%) (AP @)Y, (10A2) (1@ APZ)MY). (4.1)

L

By Lemma E.G, Mg, (Af? ®1)¥ € Dom (1 ® A{?) and (1® A;%)Mgg € Dom (Af2 ®1).
6
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Then by [6, Lemma B.1], we obtain

1 L

41)={((1e A%)Mg("f'

1 1 1 1
= (M3, p(0F e Af% M (AF ® AF)@
— (AP © AP)Y, Ms(-+g)M§(A1%2 ® AP W),

where in the second step we used Lemma E.6. Now, we assume (S7) that the real part of
S (0 + %)S (-0) =S (0 + 27”) is positive. Therefore, this scalar product has the positive real

1 1
part. Now the closedness of P (Af ®]1)P2 = %(]H—MSF) (Af ®IL)P2 follows from Lemma 4.1. W

Proposition 4.8. x,4(n) = P2(1 ®@ x| (n)) P is essentially self-adjoint, and under (S7) it is
self-adjoint.

Proof. Parallel to the case of x2(£). Omne can also prove it by considering the operator
Jng(Xl(ﬁ) &® ﬂ)PQJQ. [ |

Proposition 4.9. Under (S7), x2(§) + x4(n) = P2(x1(§) ® 1 + 1 ® x}(n)) P is essentially
self-adjoint.

Proof. For s1mph(:1ty of notation we write A = Xl(ﬁ)%, B = X’l(n)% Recall that A =

Mg ( +27”)A M ( 27r7,) and B M* ( QWl)A 2]\4,,7 (

o € H®(S_2mi 2mi_ m) It is stralghtforward to observe that AB and BA are bounded. Our goal
3
is the essential self—ad301ntness of (A2® 1+ 1® B)Ps.
First we claim that (AR 1+ 1® B) C P2,(A® 1) + P(1 ® B). In order to apply Lem-
ma 4.2, it is enough to check that c||¥||? < Re(Py(A ® 1)V, P»(1 ® B)¥). This holds indeed:

_2miy, where we have & € HOO(SM 27”')

1

(Po(A® 1)¥, Po(1® B)¥) = Z((IL + Da(11))(A® 1)U, (1 + Do(71))(1 ® B)W)
1
= S((A© B, W) + (4@ 1)U, Ms(B ®© 1)MZW)),
and by noting that A ® B is positive, while (A® 1)Mg(B® 1) = MS(.JF%Z‘)(AB ® 1) is bounded.
We show that, if (A® 1+ 1® B)¥ € Dom(Py(A® 1)), then it is in Dom(A ® 1). This
follows the idea of Proposition 4.7 (see the third and fourth paragraphs). Namely, we consider

the following formal expression with ¥ = (A® 1+ 1 ® B)V,

(A®1+ (1 ®A)Mg 2)F)¥, (A 1+ (1® A)Mg ) F) V).

6

This is formal, yet the whole expression has the meaning as an L' integral over the spectral
space with respect to log A ® 1 and 1 ® log A: it is L' because

(A®1+(1® AM S(+21) F)(A®1+1® B)V

has the meaning as an L?-function. As ¥ = (A®1+1® B)¥, this inner product can be formally
decomposed as

[(A@ D)F|* + [|(1© A)Mg( =) FE|* +2Re (A® DT, (1 ® A) Mg, =) FV),

where each of these terms can be understood as an integral over the above-mentioned spectral
space. If the first term is finite, it means that ¥ is in the domain of A ® 1 and we are done.
If not, namely the first term is not finite, it must be positive infinite in the sense of Lebesgue
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integral. Yet the whole expression is L! by the defining property of ¥ (that (A® 1+ 1® B)¥ €
Dom(P(A ® 1))) and the second term is positive (actually in this case it must be positive infinite
as well), thus the last term must be negative infinite again in the sense of Lebesgue integral:
a mixed infinity is impossible, because then the whole integral would have a measurable set on
which it is positive infinite, which contradicts the assumed L'-property.

On the spectral space of log A, we can write A as the multiplication operator by e’. The
crossing term in question ((A® 1)¥, (1 ® A)MS(_+%¢)F@> is the following form:

/dtl dtg €t1+t2‘i)(t1, tg)qf(tl, tQ),

where ® = S(_+%i)Fil.

When the real part of an integral is negative infinite, one can apply the Fubini theorem. We
insert the spectral projection Qn of (A ® A) corresponding to (eN 1 eN ], which amounts to
consider a strip N —1 < t; +t9 < N. This is equivalent to the change of variable and integrating
first with respect to to — t1, which is legitimate by Fubini’s theorem. On this strip, the integral
is L', because ¥ and @ are L2.

Now recall that ¥ = (A ® 1 4+ 1 ® B)W¥, therefore, the above integral consists of four contri-
butions. Even though the expression above is formal, note that Q) commutes with A ® 1 and
1® A, while AB, BA are bounded. Therefore, if we take two of the contributions

(Qn(A® A)(1® B)¥, My =) F(A® 1+ 1 B)¥)
= (Qv(1® AB)(A® 1)V, Mg, =) F(A® 1+ 1® B)¥),
where (A® 1)¥ and (A® 1+ 1® B)V are vectors in H; ® H1 and the operators appearing there

are all bounded, hence it is finite in the sense of Lebesgue integral. The same argument applies
to the term

(QN(A® A)(A® 1)V, Mg o xz) F(1® B)V)
=((A®1)7, Mg 4 =)FQN(1® AB)(A® 1)),

which implies that the only remaining term
(Qn(A® A)(A® )T, My, =) F(A® 1)T)

must have the real part which is negative infinite in the sense of Lebesgue integral. However,
we have computed this and it is positive under (S7). Hence the whole integral is bounded
below, even after removing Q. This contradicts the assumption that the whole integral was
negative infinite, hence we obtain that each term of the formal expression is finite, namely,
(A®1+4+1® B)¥V € Dom(A® 1).

Furthermore, we note that A® 1 and (A® 1+ 1 ® B) commute strongly. By considering the
joint spectral decomposition, it is immediate to see that

VeDom(A®1l+1®B)and (A®1+1® B)¥V € Dom(A® 1)
<= VeDom(A®1) and (A® 1)V € Dom(A® 1+ 1® B).

To summarize, we proved

PBARN)(A®1+1@B)PR=R(AR1)(A®1+1® B)P,
=P(A®1+1Q B)(A® 1)Ps.
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Similarly, we obtain P (1® B)(A® 1+ 1®B)Py=P(1®B)(A®1+1®B)Py=P(A®1+
1® B)(1® B)P;.
By the above consideration, we obtain the equality

P(A®1+1®B)(A®1+1®B)P, C (P(A® 1)+ P(1®B))(A®1+1® B)P,
=(PR(A®1)+P(1®B)(A1+1® B)P,
=P (A°®1+2(A® B)+1® B*) P,
which is self-adjoint, because of the first expression.
We show that Py(A?® 1+ 1 ® B?)P, is essentially self-adjoint, using the commutator Theo-

rem C.1, by taking P (A2 ®1+2A®B)+1® B%+ c]l) P, as the reference operator with
some ¢ > 0. Let us check the required estimates

[P (A2® 1 +2(A® B) +1® B2+ cl) ¥’
> |P(A2 @1+ 1@ B) 0| + 4| P2(A® B)W|?
+4Re(P(A’® 1+ 1® B*) ¥, P,(A® B)V)
+2c((A?®1+2(A®B)+1® B*)¥, ).
In order to show [|P(A?2® 14+ 1® B*)¥|? < ¢1||P2(A? ® 1+ 2(A® B) + 1 @ B? + 1) ¥, it
is enough to have a lower bound on the following term:
4P (A’®1+1® B*)¥, P(A® B)Y)
=2((A’®1+ 10 B*)¥, (A® B)¥)
+2((A*®1+1® B*)¥, Mg(B® 1)M§Ds(r1)(A® 1)¥),
where the first term is positive, while we have ((A? ® 1)¥, Mg(B ® 1)M&Dy(m1)(A® 1)¥) =
(x(A®1)¥, (A®1)¥), where z is a bounded operator. This is bounded by ||z| - [|[(A® 1)¥||? =
lz| - (A% ® 1)U, ¥), therefore, we take ¢ > 2||z| and ¢; = 1. We can estimate analogously the

term containing 1 ® B2.
A bound of the weak commutator

[P(A?® 1+ 2(A® B) +1® B?) P, P(A*® 1 + 1 ® B*) Py
reduces to the weak commutator [P(A ® B)Ps, P2(A? ® 1+ 1 ® B?)P,], and its bound by
1(P2(A2® 1 +2(A® B) + 1@ B2 + c1)Py) 2 0|2
=((A’®1+2(A®B)+1® B*+cl)¥,¥)

follows from the estimate above of the term (P>(A4? ® 1+ 1 ® B?)¥, P,(A® B)¥), up to the
constant ¢ above, by noting that A ® B commutes with A? ® 1 and 1 ® B>. |

In Proposition 4.14 we show that x2(&) + x5(n) + 4/c(&, n) is closed, hence self-adjoint.

4.2.2 A shorter proof for x2(&)

We here present a proof of the essential self-adjointness of x2(§). Although it is not of our direct
interest as we need the self-adjointness of x2(§) + x5(n), we believe it clarifies the reason why
our method does not work for n > 3.

We observe that it is enough to show that x1(§) @14+ Mg(1®x1(£))ME is self-adjoint, because
this operator and P, = £(1 + Dy(71)) (strongly) commute. We denote again x1(§) = A%
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Proposition 4.10. A°® 1 + Mg(ll ® A2)M§ is essentially self-adjoint.

Proof. We consider the operator A ® A~ + MS(A*1 ® A)Mg Let X = A2 ® A_%, Y =
A2 ® A%Mb"i Then Y* = MS(A_% ® A%) and Dom(Y*) = Dom (A_% ® A%) One can easily
check the assumptions of Lemma 4.4: as for the decomposition of the Hilbert space, we change

the variables t4 := 6o + 01, t_ := 02 — 1. Then the problem reduces to one variable ¢{_ and one
can take the same decomposition as Proposition 4.5, by noting that S is bounded in R—i—i((), %)

Finally, both A ® A~! and Mg (A_1 ® A) M¢ commute with A ® A strongly. Therefore, the
bounded operator Qn(A® A) commute with both of them, where @y is the spectral projection
of A® A onto (eN_l, eN} and the product is

QN(A®A)(A® AT + Mg(A™ @ A)MZ) = Qn(A? ® 1 + Ms(1 ® A?) M),

which is still self-adjoint. Our operator A® A~! + Mg (A_1 ®A) Mg is an extension of the direct
sum of these components, therefore, it is essentially self-adjoint. |

It appears difficult to apply the same idea to P (A2 RILI+1® B2)P2, as A and B do not
commute.

Ifn >3, A9 A® A cannot reduce the problem to one variable. We know no other convenient
operator.

4.2.3 Konrady’s trick

We give a less simpler proof which however gives an insight of why the problem is complicated,
cf. Section 4.3. For it, we need an additional assumption on S.

Re S (9 + 72) S(=6) > 0. (4.2)

We indicate some supporting evidence in Appendix A.3 that there should exist examples of S
which satisfy this condition. We do not pursue this condition further, as our main result (Propo-
sition 4.9) has been proved without it.

The general idea used here is called Konrady’s trick [17], [26, Section X.2].

Lemma 4.11. Let X and Y be symmetric operators on Dom(X) and Dom(Y), respectively.
Assume that X +Y is self-adjoint on Dom(X +Y) = Dom(X) N Dom(Y) and it holds that
Re(XU,YWU) > 0 for ¥ € Dom(X +Y). Then X and Y are essentially self-adjoint on
Dom(X +Y).

Proof. Compute:

I(X +Y)U2 = [ X P + YOI + 2Re(X ¥, YT) > max {[| X[, Y|},
now one can use Wiist’s theorem [26, Theorem X.14] to see that X = (X +Y) — Y and
Y = (X +Y)— X are essentially self-adjoint on Dom(X + Y'). [
Proposition 4.12. For S satisfying (4.2), Alé ®1 —|—MS(]l ®A1%)M§ is essentially self-adjoint.

1 1
Proof. First, A ® 1+ C(IL ® Alu) is self-adjoint by the spectral theorem for a constant ¢ > 0.
We choose ¢ > |S(0 + )|, 0 € R.
1 1 1
Then, we claim that A{* ® 1 + c(Il ® Alm) + MS(]l ® AF)M; is self-adjoint. Indeed, for
1 1 1
¥ € Dom (L®AJ?), we have [[Ms(L® A ) MW = |[Mg(. i) (1®AJ*) || which is bounded

1
by cH (Il ® Allz)\IlH Therefore, one can apply Kato—Rellich theorem [26, Theorem X.12].
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Next, we show that ATIQ ® 1+ MS(]l ® A%)M & is essentially self-adjoint on the domain
Dom (A“ ® ]l+c(IL®A12) +MS(IL ®A12)MS) In order to apply Lemma 4.11, we only have to
check that <(A12 ®1)¥ (]1®A12) ) > 0 (trivial) and <(H®AT12)\I/ M5(11®A1%2)M§\11> > 0. As
¥ € Dom (IL@A?), it holds that Ms(mA?)quf MMy +m)(11®Af2)\p. The inequality
above follows from (4.2) and hermitian analyticity (S2). Actually, by1 the same assumption (4.2),

il gl
it follows from Lemma 4.1 and the argument of Proposition 4.7, A{* ® 1 + MS(]l ® A{? )Mg is
closed on its natural domain, hence it is self-adjoint there.

1 1
Note that A2 ® 14+ Mg(1®A{?) M commutes strongly with A; @ A;. Consider its spectral
projection Qo n] corresponding to the interval [0, N].

1
As S(02 — 61 + i)) is uniformly bounded for A € [0, ], we have MS(]I ® A112) C (Il ®
1
AllQ)MS(.JF%) and
1
(AP ®1) - Mg(1®Af )MSQ[O N C (AP ®AR) 'MS(-+%)M§Q[O,N}

is bounded. Similarly,

m"“

Ms (1 ® A2) M3 (A ©1)Qun C Ms(AP® @ AP )My, =) Qpo.n)-

1
Now (A12 ®1+ MS(II ® A )MS) Qo,n) is self-adjoint. From the boundedness above, we can
expand the square:
1 1
(A12 ® 1+ Ms(ﬂ & AU)ME)2Q[0 N]
(AG ©1+ (AP ©AR) M, | yoi) M

L

1
+ Ms(AP ® A] )Mg(+M)+MS(H®A16)M§>Q[O,N].

Here, the left-hand side is self-adjoint, and the right-hand side is symmetric, hence it must be
an equality and the right-hand side is self-adjoint. The second and the third terms are bounded,

1 1
therefore, they have no effect on domains and (Af QL+ MS(IL ® A} )Mg)Q[O,N] is self-adjoint.
As N is arbitrary, we obtain the claim. |

4.3 Many-particle components

Proposition 4.13. Under (S7), xn(§) is closed.

1
Proof. We show the closedness of > Dn(pk)(Af IR ® Il)Dn(,ok)* on P, H,.
To prove it by induction, we may assume that x,_1(§), hence x,,—1(§) ® 1 is closed. To apply
Lemma 4.1, we only have to check that the following is positive:

Re(Dn(pk)(Alé Q1@ @ 1)Dy(p) U, Dn(pn)(Alé Q1@ @ 1)Dy(pn) ¥y)
= Re(Dn(pk)(Alé RL® - ® Il)\Ifn,Dn(pn)(Alé ®1®-- ®@1)0,)
—Re((AS ©1® - @ 1) W, Do(rn)(AS © 1@ -+ @ 1))

— Re<(Af% LR ® ﬂ)\l’n,Dn(TLg)(Al% 1@ - @ 1)¥,),
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where 73, is the transposition between k and [, we used the fact that p;, and p,, may be replaced
by 71k, Tin, respectively (see [6, proof of Theorem 3.4]) and we can further rewrite 7o =
1

1 1
23" Tn—1mTinTn—1m 72,3, and Dp(Tepp1) (A @ 1@ - @ 1)¥, = (Af ®1®---@ 1),
for £ > 2. From here, we can use Lemma E.6 and the same computation as at the end of
Proposition 4.7 under (S7) to see that the real part of the above inner product is positive. W

Proposition 4.14. Under (S7), xn(§) + XL (n) is closed.
Proof. This can be done by the estimate of Proposition 3.3

Re(xXn(§) T, X (W) = —ne(§, n){(x(€) +X'(n) + 2)¥, ¥)
and by Lemma 4.3 applied to X = x,,(£), Y = x},(n) (here X and Y are positive, hence we can
take the constant ¢ in Lemma 4.3 larger if necessary). |
Proposition 4.15. We assume (S9). For a fized n, there is € such that P,(A{®1®---®1)P,
is self-adjoint.
Proof. We follow the idea of Proposition 4.12. We set S;(0) := [[ S(0, —6;) as before. There

j<k

is € > 0 such that

Re Sk (01 + 2mei, ..., 0 + 2mwei)Sk(61, ..., 0k) >0,

because Sy, is uniformly continuous in a small neighborhood of R™ as we assume (S9) and
Sk(0)S(0) = 1.

First consider A{® - @1+ 4+¢cl® - QA]®-- @1+ +cl®---®1®AY], which is
self-adjoint, where ¢ > 0.

Next,

Af@--@L+-+el@ - @LlRA{+Y Mg (1o @1 Al ®1---®1)Mj,
k

k—th

is self-adjoint if ¢ is sufficiently large by Kato—Rellich perturbation, as in Proposition 4.12.

Now in order to prove that } ) Mg, (1®---®@1® Af ®1---®@1)Mg is essentially self-adjoint
k—th
and to apply Lemma 4.11, it is enough to check that the real part of the following is positive:

<(11®---® AS @@ 1), Mg, (1® @ AS ®---®J1)M§kx1/>.
j—th k—th
If j > k, the operators in the product commute and it is positive. If j = k, it reduces to
k—th k—th
and by the choice of €, this is positive. If j < k, we get

<(11 ®-- ®ﬁ§h® CODME W My sormn(le o A ©o ]l)MS*ka_\I/>

B < . € .
= <A12,k,jM5k7j\P7 Msk,j(.+27rei)sk,j(.)Af,k,jMSk,j\I’>v
where A1 ; =1®---® Ay ®---® Ay ---®1, which is positive again by the choice of €, where
j—th k—th
we introduced S ;(8) = S(0 — 0;) and S ;(8) = Sk(0)S(Or — 0;)".
The closedness for sufficiently small € follows by arguing as in Proposition 4.13. |
The method of this proof is invalid for € = é, or any fixed e. Indeed, as k increases,

Re Si(0 + §)Sk(—0) may take negative values and the Konrady’s trick fails.

1
In order to have the right domain of self-adjointness of P, (Af ®1l---® ]l)Pn, we may have
to correctly incorporate the zeros and poles of S to the domain (cf. [35]).
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5 Outlook

In order to complete the construction of Borchers triples, we have to prove that x, (&) + x/,(n)
is (essentially) self-adjoint. We also hope to clarify the role played by the assumption (S7), and
to drop it if possible. With the same assumption, one should be able to prove the Bisognano—
Wichmann property and modular nuclearity [4, 19] for an inclusion with a minimal distance [1],
hence it should be possible to construct Haag—Kastler nets with minimal size, which will be
published elsewhere [8].

On the other hand, if the strong commutativity of our candidates fails, then the construction
of the Haag—Kastler nets for a given S-matrix with poles will be really a hard problem: if
the net exists at all, the polarization-free generators are canonically constructed [3], while we
checked that our ¢(f)’s are formally compatible with the form factor program [6, Section 4.1].
If our candidates are not the right polarization-free generators, the formal computations must
fail, which means that the right polarization-free generators should have even subtler domains.
A related problem is whether the S-matrix is a complete invariant for asymptotically complete
nets. This is in general open even for the simplest case where S = 1, if the temperateness of the
polarization-free generators is not assumed [24].

A Properties of the S-matrix

Here we show the existence of two-particle S-matrix which satisfies some additional properties.
Recall that the most general S-matrix satisfying (S1)-(S6) and (S9) takes the form®

tanh%(@—i—%) tanh (9———z€)tanh1(6———ze)

_ 2
) = fanh L ()= 2) tanhl (9 % + ic) tanh 1 (6 + = 1 4c)

. SBlaschke (0) )

where —% < & < § and SBlaschke(f) is a finite Blaschke product which satisfies the conditions
of [6, Appendix AJS.
A.1 Examples with property (S7)

Let us consider the simplest case where Spiaschke(f) = 1. We show that for —F < e < § the
property (S7) holds.

We set
S(6) = 5(6) - 5.(6). (A1)
(6) = tanh% (0 + %) _ sinh% (0 + %Z) smh% (0 + %)
o —tanh%(e—%)— sinh%(ﬁ—%)smh%( —%)’
5.(6) = N3 (0= 5 —ie) tamh § (6 % —ie)
© _tanhl( —ﬂ+ze)tanh%(0+%+i5)
B sinh 2 (9 - — zs) sinh % (9 ng + za) sinh % (9 — % — Z'E) sinh% ( 57” + zg)
~ sinh1(6+ % +ic) sinh 3 (0 4 32 — i) sinh 3 (6 + 3% + i¢) sinh £ (6 + 22 57rz i)
°In [6, Appendix A], we used a parameter B = 3 + %, 0 < B < 1, and had the equivalent expression

S o tanh%(@-&-%) tanh%(OJFW) tanh%(e— Bgrz) g 9
( )_ tanh%(@—%) ' tanh%(ﬁ—i(B?f)"i) tanh%(eﬁ-%) ’ BlaSChke( )

5 A Blaschke product i 15 a bounded analytic function on R + ¢(0, ) which can be written as a possibly infinite

product of functions ca & Sta , where |co| = 1 [27, Theorem 15.21], [23, Appendix A]. In particular, such a Blaschke
product has modulus 1 on R and R + 7.
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We use freely sinh a - sinh 3 = <sh@+s );COSh(O‘*B ) in particular,

h (0 1 (atBliy (e=B)
sinh — (G—i—za) sinh — (9—1—7,6) cosh (0 + 75 2) cos (57)

For S, we have

S(0+m> B sinh%(ﬁ—i—%) . sinh § (6 + i)

3 sinh %9 sinh% ( — %)
_SiHh% (9 + %) icosh%@ sinh% (9 + %1)

sinh% ( — %) ' sinh%ﬁ ' sinh% (0+ %)
_cosh («9 + %Z) — COS% i cosh %9

cosh 6 — cos § sinh %«9

sinh @ + 7 cos % cosh %9

coshf —cos %  sinh %9 ’

and then S.:

iy
€ 6 o

sinh £ (G—i———ze)sinh%( —%i—l—ie)sinh (9———ze)sinh%( —%i—i-ie)

_sinh%(0—|—ﬂ—|—zs)smh%(0+%—i5)sinh%(9+@+zs)sinhl(9+%—ie)
sinh 1 (9+——zs)sinh%( —%i—l—ie)sinh%( —@ ze)smh (—%i—i—ie)
sinh1(0+ﬂ+ze)smh%( —%—ie)sinhl(9+%+zs)smh (9—@—25)

_ cosh&—cos(g—z-:) ‘ cosh( —%i)—cos(g—s)

cosh@—cos(%”—l—s) cosh( —%")—cos(%’r—ks).

The first factor in the last expression is positive. Let us look at the second factor

cosh( — %l) — cos (g —5)
cosh( — %) — CoS (‘%r +€)

 (eosh (0 - %) — cos (5 -

e)) (cosh (6 + %) —cos (22 +¢))
(cosh (9 — %) — cos (%” + 6)) (Cosh (9 + %) — cos (%’r + 5))
~ (cosh (0 — %) —cos (5 —¢)) (cosh (0 + %) — cos (57r +¢))
cos£129 _|_% COS

(57r —l—e) cosh 0 + cos (57T +£)

and the denominator is positive, as it is the square of the modulus of a complex number. Using

cosh(a + i8) = coshacos B + isinhasin B and cos (3T + &) = —cos (%
numerator:

<cosh (9 - 7;) — cos (% - 5)) <cosh (e + ﬂ;) — cos (56 +5>>

h 26 4 cos 3¢ 2
cos . cos T cos (% B 8) _i2cos (% — g) -sinh 8 - sing
cosh 26

T 1 T 2
B : 6 . i h 4 <7 N ) )
5 1V 3 cos ( 6 5) sinh 0 1 cos 6 €

- 5), we rewrite the
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The full expression is now:

S(0+ m’> sinh 6 + i cos & COSh%H cosh  — cos (%—5)
AL ] y
3 coshf) —cos 5 sinh %0 cosh 6 — cos (%ﬂ + 5)

cosh 20 2
2

-1 3005(%—5)'sinhe—i—cos(%—s)

I

b2 14— cos (% +2) cosh 0+ cos (% +2)°

To check that Re S(0) > 0, we see that it is proportional (i.e., up to a positive number) to

1h O 4+ i cos T ,
Re |2 .+110086 (cosh29_i 3cos<ﬂ—€)-sinh&—l—cos<ﬂ_g>)
sinh 56 2 6 4 6

B sinh @ [ cosh?260 _ 1 ~ cos (E _E>2+ §cos (E _5)
~sinhlg 2 4 6 2 6 ’

which is positive for —% <& < g.

The minimal S-matrix corresponds to the Bullough-Dodd model [6]. We expect that it
holds also with some Blaschke product. Yet, it is clear that some Blaschke products violate the
condition. Indeed, if a Blaschke product takes a value with nontrivial imaginary part at 6 + %,
then the product of its n-th power and the minimal S may have the negative real part, then the
product S-matrix violates the condition.

A.2 Property (S8)

We show that any S-matrix of the form (A.1) satisfies (S8). It suffices to show it for this
minimal case, as the general case follows because ‘SBlaSChke (0 + %)‘ < 1.
Look at

o0+5))
Sinh% (9 + %) Sinh% (0 + %)
sinh%( —%i)sinh%( —%)
y sinh 3 (0 — ie) sinh § (0 — 5 + ie) sinh 5 (0 — % — ie) sinh 5 (0 — %" + ie)
sinh § (6 + % + ic) sinh & (6 + 25* — ie) sinh § (6 + 25 + ic) sinh § (0 4 7i — ic)
sinh £ (6 + 22%) sinh § (0 — ig)sinh § (6 — & + ic)
sinh§ (0 — %) |~ |sinh§ (6 4+ 25 + ie) sinh § (6 + mi — ie)
sinh § (0 + 22%) sinh § (0 — ic)
sinh 5 (6 + i —ie)| |sinh} (6 — %)

sinh 1 ( —%i—i-ie)
sinh% (Q—F%—FZ’E)

i

where in the last expression each factor is less than 1, as —§ < e < g, therefore, |S (9+ %)‘ <1.

A.3 A further inequality

In Section 4.2.3 we used the inequality Re 5(9 + %)S(—Q) > 0. We expect that this holds for
some values of ¢ in (A.1). Indeed, we checked numerically that this holds for ¢ = .

Although this value is outside the region of our consideration (as the poles get cancelled by
the zeros of the other factors), Re S (0+ %) S(—6) depends uniformly on €, hence for € sufficiently

close to § we expect that the inequality should hold.
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B Weakly but not strongly commuting operators

Let A, B be self-adjoint operators with domains Dom(A), Dom(B) with the dense intersection
Dom(A) N Dom(B). It is well-known that, even if A and B weakly commute, namely it holds
that (AV;, BUs) = (B, AVs) for ), € Dom(A)NDom(B), it does not imply that the spectral
projections of A and B commute.

A classical (counter)example is due to Nelson [25, Section 10]: one takes a Riemann surface
with a nontrivial topology and considers it as a real manifold and the L2-space on it. If one
chooses two different translations, their generators on the L?-space commute weakly (actually
as operators on a common core), as the derivations in these directions commute. However, the
two translations do not commute, as the Riemann surface has a nontrivial topology.

The example above shows clearly why two operators weakly commute but not strongly: weak
commutation is a local property, while strong commutation is global. The question of strong
commutativity is not just technical and, if it fails, there is often a good reason for it. See [29],
[30, Example 5.5, Exercise 6.16 ] for some other examples. We present here two more families
of counterexamples.

B.1 From canonical commutation relation

This example is essentially due to Faddeev and Volkov [14]. Consider a CCR pair X = M,

where id(t) = t is the identity function and P = —i% on L%(R). Note that (e**X¢)(t) =
eS1tE(t), (e%2F€)(t) = £(t — isz) on suitable domains. If we take sy = 3—7;, then (es1Xes2P¢)(t) =
(e2Pes1Xe)(t) = erte(t — i—;) It is not difficult to find a common dense domain of 1%

and e*2” and they weakly commute. Yet they do not strongly commute. Indeed we know that
{e1X, e52PY" = B(L?(R)), while strong commutativity would imply {e**X, %2} to be abelian,
which is not true.

B.2 From bound state operators

Take two Blaschke products fi, fo on R+i(—m,0) with the symmetry condition f;(6—mi) = f;(6).
They extend meromorphically to C and satisfy f;(6 — 2wi) = f;(6). Form Ay := Mz AMy,,
Ay := Mz AMy,, where (A£)(0) = £(0 — 2mi). They are manifestly self-adjoint and, by a similar
consideration as [35, Section 5.2], one can conclude that their domains are determined by the
zeros and poles of f;. Especially one can see that the domains Dom(A;As) and Dom(AA;)
are dense: indeed, there are analytic functions with specified zeros at the poles of fi, fo in
R +i(—4m,0). On such a function ¢ it is clear that A; A2 = A2 A€, because on this domain it
holds that My A = AMy.§, as f; are 2mi-periodic. Yet, Ay and Ay do not strongly commute.
Indeed, the intersection of their domains is not a core for any of them if f; and fy have different
zeros or poles, which also follows from the ideas of [35, Section 3].

C The Driessler—Frohlich theorem

First let us recall the commutator theorem of Glimm—Jaffe-Nelson. The theorem roughly says
the following: if T' is a positive self-adjoint operator, A is a symmetric operator and if A and
[T, A] can be estimated by T, then A is essentially self-adjoint. Yet, depending on how to make
such estimates, there are certain variations in the hypothesis of the theorem.

In one of such variations, one estimates A and [T, A] as bilinear forms, defined on Dom (T%)

and Dom (T %) (or on their cores), respectively [26, Theorem X.36’]. When T is a complicated

operator, it is difficult to have control over T3 and T'2. Another variation requires to estimate A
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as an operator, namely ||Ay|| < ¢[|T%] for ¢ € Dom(T), or for a core of T'. For our situation,
this latter version has a better chance to apply (see [26, Theorem X.37]):

Theorem C.1 (the commutator theorem). Let T' be a self-adjoint operator with T > 1. Suppose
that A is a symmetric operator defined on a core 9 of T so that

(1) A%| < e | T for all ¢ € 2,
(2) (T, Ap) — (A, TY)| < co| T2 for all ¢y € D.

Then, A is essentially self-adjoint on any core of T'.

The Driessler—Frohlich theorem provides a sufficient condition for two symmetric opera-
tors A, B to strongly commute. As the hypothesis, one should have a positive self-adjoint
operator T which can estimate A, B, [T, A], [T, B]. Again, there can be two variations: estimates
either as bilinear forms or operators. The original proof [11, Theorem 3.1] is written for bilinear
forms. In our application, the operator 1" is complicated and we need a variation.

Furthermore, let us note the following subtle point. The original paper assumes certain
estimates of A, B, [T, A], [T, B|, [T, [T, A]], [T, [T, B]] “on some form core of T”, which does not
seem to suffice: a form core of 7" might not be a form core of T2 (see also [26, remark after
Theorem X.37]).

Although the essential idea is the same as the original [11], we here present the adapted
proof for the sake of clarity. Note that the domain of the weak commutativity is also modified:
the original proof requires only the weak commutativity on a core of T2, while here we need
it on a core of T. By the same reason as explained in [26, remark after Theorem X.37], the
results might fail by a tiny change in assumptions, therefore, one should not underestimate the
importance of these careful examinations.

Theorem C.2 (Driessler—Frohlich). Let T' > 1 be a positive self-adjoint operator, A and B
symmetric operator on a core 9 of T'. Assume that there are positive numbers c1, ca, c3 such
that

(1) [AY[| < ar[TY|| and [|BY|| < ei[T| for all ¢ € Z,

(2) for all p, v € 9,

o [(Ty, Ap) — (A, Tp)| < oo T29| - || T2 ¢,
o [(T¢, Bp) — (B, To)| < eo||T20| - || T2,
(3) for all p,v € 2,

o (T, Ap) — (AY, Tp)| < csl|¥]| - [Tl
o (T, Bo) = (BY,To)| < cs|[¢| - [T,

(4) (A, By) = (By, Ap) for ally,p € D.
Then A, B are essentially self-adjoint on any core of T' and they strongly commute.

Proof. Note that all the assumptions hold on Dom(7'). Indeed, for any pair ¥, ¢ € Dom(T),
there are {¢ }, {¢n} C Z such that 1, — ¢, T4, — T, therefore, Téwn — T%’(/) and @, — @,
T, — Ty, therefore, T%gon — T%go. From this, A and B can be naturally extended to Dom(T")
and all the statements and the weak commutativity hold there.

Now, the claim that A and B are essentially self-adjoint of any core of T" follows from the
assumptions (1), (2) and Theorem C.1.
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Next, we observe that, from assumption (3), the commutators [T, A], [T, B] are well-defined
on Dom(T): for a fixed ¢ € Dom(T), (T, Be) — (B, Ty) is an antilinear form in v and
bounded by cs|[¢|| - |T¢||. By Riesz’ representation theorem, there is a unique vector 7 such
that (T, Bp) — (B, T) = (¢,n) and ||n|| < e3]|T¢||. We denote the correspondence ¢ +— n
by [T, B]. It follows by this definition that ||[T, B]T~!|| < c3.

Let us show next that (B + 2)T 12 (which is well-defined since B is extended to Dom(T'))
is in the domain of T and T(B + 2)T 12 is dense in H, where z is a complex number such that
|Im 2| > c3. For ¢ € Dom(T) and ¢ € T~12, the following is meaningful:

(T, (B+2)p) = (B+2)¢,Te) + (T, Bp) — (B, T)).

Asp e T19, Ty € 9 C Dom(T) C Dom(B) and we have

(B+2)y,Te) = (Y, (B +2)Ty),

which implies that |((B+ 2)y, T)| < ||[¢|| - [[(B+2)T¢||. On the other hand, by assumption (3)
we have [(T'), By) — (BY, To)| < c3||¢|| - [|T¢]|. Altogether, we have the following estimate

(T, (B+2)@)| < 91l - (I(B + 2)Tell + sl Tell)

for any ¢ € Dom(7'), and therefore, (B + z)¢ € Dom(7T™) = Dom(7'), and
(0. T(B + 2)¢) = (b, (B + 2)T) + (T, By) — (B, Ty),

or equivalently by using [T, B] defined as in the previous paragraph,
T(B+2)¢p=((B+2)T+[T,B)p=((B+2z)+[T,BT ") Tep.

Now, let us assume that (1, T(B+2)¢) = 0 for arbitrary ¢ € T~12. By the above expression
of T(B + z)¢p, this is equivalent to

0= (,((B+2)T+[T,B))g) = (¢, (B+z) + [T, BIT™") %),

where ¢ € & is arbitrary. As & is a core of T, it is a core of B as well. Since B is essentially
self-adjoint on 2 and [T, B]T~! is bounded, it follows that (B + z + ([T, B]T~Y)*)y = 0. If
|Im z| > ¢3, this implies that ¢ = 0, namely, T'(B + z)¢ form a dense subspace.

From this and the assumption that 7" > 1, it follows that (B + 2)Z is a core of T' [26, Theo-
rem X.26], and therefore, a core of A. It follows from this that (A + 21)(B + 22)Z is dense in ‘H
for z1 € (C\R, ]Imzﬂ > c3.

Our goal is to show that the resolvents R4(z1) = (A+ z1)~! and Rp(z2) commute (for 21, 2
in an open set, which implies the strong commutativity. Let us take ¥, p € 2. We compute

(A+21)(B + 22)¥, Ra(21) Rp(22)(A + 21)(B + 22) )
(A+21), (B + 22)9)
(B + 22)1, (A + z1)p)
(A+21)(B + 22)¢, Rp(22)Ra(21)(A+ 21)(B + 22)¢),

{
{
{

where the second equality follows from the weak commutativity. We saw that the sets (A +
Z1)(B + 22)2 and (A + 21)(B + 22)Z are both dense in H, which completes the proof. [ |
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D Nontrivial extensions of sum operators

We show here that an operator which looks close to x2(§) fails to be self-adjoint.

Proposition D.1. Let f be a bounded analytic function in R +i(—%,0), [f(0)] =1 and a € R.

Then aAy + MjAP My has nontrivial self-adjoint extensions if the function a + f(¢ — %) f(C)
has zeros in the strip or has a nontrivial singular inner factor.

Proof. We have

M —

1 1 1 1 1
T = AT = e} + MMy ) Af = aA} + MFATM;,

1
because the domain of the right-hand side is that of A{. And we know what extensions the

left-hand side has [35]. Namely, if the function a + f(¢ — %) f(¢) has a Blaschke factor which

1
has zeros in R+i(—%,0), or if it has a singular inner factor, then the operator Ma+mf(- Jﬂ-)Af
3

has nontrivial extensions.

1 1
As a corollary, one can show that A} ® 1 + Mf(Il ® Af)M]‘E is not always self-adjoint, if

f2(01,02) := f(61 + 62) = ziiziiffg, where a < —%. Indeed, each term commutes strongly with

1 1 1 1
Al* ® A, '*. By considering the sum on the spectral subspace with respect to A{*> ® A, '2,
where it can be regarded as a constant ag, the sum can be reduced to an operator of the form

1 1 1 1 1 1
%Alm ® A +agMy (Alm ® Alm)M;E, which is further reduced to aA{ + M}‘Af My. We saw
that this is not always self-adjoint, depending on f and a.

E Observations on S-symmetric functions

For a Hilbert space K, let L?(R, K) denote the space of K-valued L?-functions, and for an open
subset U of RY, H?(R? + itd,K) be the Hardy space of K-valued functions ¥ which have an
analytic continuation in RY 4 i/ such that W(- + iX), X € U, belongs to L?(R?) and their
L?-norms are uniformly bounded with respect to \.

Lemma E.1. Let ¥(0) € L*(R,K) and ¢ € L*(R). Then the integral [ d0(0)¥(0) defines
a vector in K.

Proof. ¥(f) € L*R,K) means that ||[¥(0)| is an L2-function, hence [ (0)¥(9)| is
in L'(R). n

Lemma E.2. Let {U,} be a sequence in L*>(R, K) and assume that there is an ¢ € L?(R) which
satisfies |y, (0)] < ¥(0) (almost everywhere). If U,, is almost everywhere pointwise convergent
to W, then U is again L? and ¥,, — U in the L?-sense.

Proof. We have the estimate || ¥, (6)| < ¢ (0), therefore, the pointwise limit is again bounded:
W (0)|] < 14(0), especially, ¥ is L2. In addition, we have the estimate ||¥,,(8) —V,,(0)]|? < 4v(0),
thus by Lebesgue’s dominated convergence,

/d&H\Ifn(H) — T, (0)2

converges to 0. Namely, {¥,,} is convergent in L?(R, K). [ |

Lemma E.3. Let K be a Hilbert space. Consider the operator A1 ® 1 on L?*(R) ® K. By
identifying L*(R)®K = L*(R, K), we have Dom(A1®1) = H2(S_,0,K) (= H*(R+i(—,0),K)).
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Proof. This can be reduced to the case where I = C (see, e.g., [35, Proposition A.1]) and the
standard facts about Banach-space valued holomorphic functions (e.g., [28, Chapter 3, holomor-
phic functions]). [ |
Lemma E.4. Let K be a Hilbert space and ¥ € H? (S_ivi’,c)’ namely, ¥(0) € L*(R,K) is
a K-valued function in Dom(A¢® 1) N Dom(A™¢ ® 1), for some € > 0 (see Lemma E.3). We
assume further that ¥(0) = 0. Let f(¢) be a C-valued meromorphic function on R +i(—5=, 5=)

27w 21
with the only simple pole at ¢ = 0 and bounded outside a neighborhood U of 0. Then ¥(¢)f(() €
H2(S_ < «,K).

27 21

Proof. We may assume that ¢ = 1, as the argument is parallel. Under the identification
L3 (R, IC) L*(R) ® K, we Fourier-transform the first factor and get W(k), with our convention
D(k) = \ﬁ [ dt e_”kd)( t). The assumption says that ¥ and W(k)(e* + e~*) are L?. Consider

the following integral for ¢ with —1 <Im{ <1land 0 < a <1 —|Im(|:

N ) - ) 1
/ dk U (k)eks = / dk W (k)e™ (e** 4 k) .

eak + e—ak '

In the latter expression, the first factor W(k)e™*<(e®* 4 e=*%) is L? by assumption, and the
second factor is an L?-function in k. Therefore, the integral gives a vector in K for any ¢ in
the above interval by Lemma E.1. This shows that the former expression is L' and it does not
depend on a. Let us denote it by W({). This notation coincides with ¥ when ( is real.

We claim that the map ¢ — ¥(¢) € L?(R) is analytic in norm. First, it is continuous in
norm. Indeed, if |¢ — /| < 3, where « is a positive number as above, then the integrand of

1
-3k

/dk U (k) (e*C — ™) (3% + e—%k) o
e 3

can be bounded by [e~ Tm ¢k (1+ (e%kjte*%k)) %K) (e sh+e” gk)] ﬁ, whose first factor
e

is in L2(R,K). As ¢’ — ¢, the above integrand converges pointwise, therefore, by Lemma E.2, it

is L?-convergent, and the integral is convergent as well. As for analyticity in norm, we can use the

Morera theorem. For a closed path I around ¢ contained in the region —1+§ <Im{’ < 1- ¢,

and a vector ¢ € K, we consider

/ Y k¢ (& 2 1
¢ [t et (¢ o8

+e 3k

The integrand is L'(R? x T), therefore, we can perform the d¢’-integration first and obtain 0.
By the Morera theorem, this /C-valued function W(() is weakly analytic. Then analyticity in
norm (strong analyticity) follows by [28, Theorem 3.31].

Now, again for a fixed v, (¢, ¥(()) is an analytic function in one variable ¢. By assumption,
this function has a zero at { = 0.

As f(¢) has only a simple pole at ( = 0, the product U (¢)f(¢) remains analytic in norm.
Indeed, by definition of analyticity in norm, hm e 0(\II(C )—0) = %l_I}I(l] %\II(C ) exists. Therefore,

so does the limit é\II(C ) - Cf(Q), since Cf(Q) is analytlc by assumption. Especially, the K-valued
function ¥(¢)f(¢) is bounded around ¢ = 0.

Away from 0, f(¢) is bounded by assumption, therefore, as ¥(0 +i)\) € L*(R\ U,K) for
K € (—e, €), the product is again L2. Altogether, ¥ (0 + i\)f(6) is uniformly L. [

Lemma E.5. Let ¥(01,02) be a K-valued function, S-symmetric in 6y, 02 and assume that
1
¥ € Dom (A ®@1®1), where L*(R?, K) = L*(R)® L*(R)®K. Then, under the assumption (S9),
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U (01,09) has actually an analytic continuation in H*(R? +iC,K), where

C:{()\l,)\QH —§<A1<o, Ao < 0, g<)\1+>\2, —/<c<)\2—)\1}

1

FEspecially, V(0 — %i, 02) € Dom (]1 QAP ® ]1) (see Fig. 1).

Im G

wlx

0 Im Cl

wly

Figure 1. The imaginary parts of the domain of analyticity C (the shaded area). The arrow corresponds
to the action of operator.

Proof. By assumption, ¥ has an analytic continuation 6; — 6; — %’ Furthermore, ¥ is S-

symmetric, which means that
U (01,02) = S0 — 61)¥(02,01).

By assumption (S9), S has only finitely many zeros in the physical strip whose distance for the

real line is larger than 0 < x (< §). Let {a;} be the poles of S, —% < Ima; < —& (which

correspond to the zeros in the physical strip by (S1) and (S2)).

. 1 s
We take the function ¢(0) := []; %, where Im 8; > 2F. We can take {3;} so that 1
sin. 5= 5

is bounded below in —x < Im# < %. Indeed, it only has to be a finite Blaschke product in the
strip R +i(—3, %’r) (as S has only finitely many zeros in the physical strip).
1
Now let us consider (62 — 61)¥(61,62). This function belong to Dom (Af ® 1 ® 1), since
both factors are analytic in 61, —% < Im6; < 0. Furthermore,

Y(02 — 1)V (01,02) = (02 — 01)S(02 — 01)¥(62,61)
and the poles of S(¢2 — (1) in —F < Im((2 — (1) < 0 are cancelled by zeros of 9(¢2 — ¢1). Then,
1

by looking at the right-hand side, this function belongs to Dom (]1 QAF ® ]l).

1 1
Summarizing, (6 — 61)¥(6;,62) € Dom (A ® 1 ® 1) N Dom (1 ® A¥ ® 1) which implies
(by [35, Proposition A.1]) that (6 — 61)¥(6;,65) € H*(R? +iC, K), where

5:{()\1,>\2)| —g<)\1<0, —g<)\2<0, —g<)\1+>\2},

This region is represented by the large triangle in Fig. 1. This can be considered as an L2-version
of the Malgrange—Zerner theorem (cf. [13]).
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As (02 —01) is analytic and bounded below in —x < Im(62—61) < 5, the function ¥ (61, 02) =
Y(Ba — 01)¥(01,62) /(02 — 1) is analytic and uniformly L2-bounded in the claimed region. In
other words, ¥ € H?(R? +iC, K). [ |

Lemma E.6. With the same assumption as in Lemma E.5, 5(91 — 09 + %)@(01,62) 18 in
H?(R? +iC,,K) for any € > 0, where

Cez{()\l,)\2)| —g<)\1<0, Ao < 0, %<)\1—|—)\2<—6, —HS)\Q—)\l}.

Especially, 5(01 — 02+ %)111(61 — %i, 02) € Dom (]l ® All% ® ]l).

Im G

wlx

0 Im Cl

—€
—K

ol

Figure 2. The tilted rectangular which covers the arrowhead.

Proof. We know from Lemma E.5 that ¥ € H?(R? 4 iC,K). Then we can apply Lemma E.4
to S(61 — 62 + %i)\ll(ﬁl,Gg) as a function of f#; — 0; on a tilted rectangular around on the
segment between (0,0) and (—§, —%) with width v/2¢, which gives the L2-boundedness on the
rectangular. The function S(6; — 03 + %z) is bounded in R? +iC away from the line #; — 6; = 0,
hence we obtain the claimed boundedness. |

Proposition E.7. Let W, be in the following domain:

Dom(]l@---@ﬂ@(Afi’f—kAl_i)@]l@...@ﬂ)
k-th
Dom (1®- ®1®AF ©18---©1)
14k I-th

for some 0 < € < Kk and assume that V,, has zeros at 0, —0; =0 fork #1. Let {fi},l=1,...,n,
be C-valued meromorphic functions on R + i(—5=, 5= ) with the only simple pole at ¢ = 0 and

bounded outside a neighborhood of ( = 0. Then for 1 < k < n, [] fi(Or — 6;)V,(61,...,0,)
1%k
belongs to the same domain.

Proof. By looking at the variable (; and (;, we obtain the analyticity in the large triangle C in
Fig. 3. By changing the variable to ((x — (;, (x + (1), and considering the small rectangle R, we
can apply Lemma E.4 to conclude that for ¢ > 0, f;(6x — 6;)¥,,(61,...,0,) has a continuation
to an element in H?(R? + iRy, L2(R"~2)), as ¥, has a zero at 0 — 0; = 0 by assumption.
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Im ¢

Im g‘k

Figure 3. The domain of analyticity of ¥,, (the larger triangle C), the pole of S (the thick segment),
an auxiliary rectangle R (dark) and an intermediate domain C.s (the shaded triangle).

Furthermore, as f; has no other pole, it continues further to R? 4+ iC.. By K-valued three
line theorem (cf. [27, Theorem 12.9]), we obtain that the H2-norm as an element of H?(R? +
iCer, L?(R™2)) is determined at the corners of the triangle C., which have finite distance from the
line A, — 0, = 0. As S is bounded at these corners and the edges, we obtain an H?2-bound which
is uniform in €’. Finally, as € < € is arbitrary, actually we obtain that f;(0r —0;)V,,(01,...,0,) €
H?(R? +iC, L?*(R"~2)). This is equivalent to the vector f;(6 — 0;)¥,(01,...,0,) being in the
same domain, as the analyticity in the other variables are not affected.

Repeating this n — 1 times, we obtain the claim. |
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