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Abstract. In this paper we discuss maximal superintegrability of both classical and quan-
tum Stäckel systems. We prove a sufficient condition for a flat or constant curvature
Stäckel system to be maximally superintegrable. Further, we prove a sufficient condition
for a Stäckel transform to preserve maximal superintegrability and we apply this condition
to our class of Stäckel systems, which yields new maximally superintegrable systems as
conformal deformations of the original systems. Further, we demonstrate how to perform
the procedure of minimal quantization to considered systems in order to produce quantum
superintegrable and quantum separable systems.
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1 Introduction

A real-valued function h1 on a 2n-dimensional manifold (phase space) M = T ∗Q is called
a classical maximally superintegrable Hamiltonian if it belongs to a set of n Poisson-commuting
functions h1, . . . , hn (constants of motion, so that {hi, hj} = 0 for all i, j = 1, . . . , n) and
for which there exist n − 1 additional functions hn+1, . . . , h2n−1 on M that Poisson-commute
with the Hamiltonian h1 and such that all the functions h1, . . . , h2n−1 constitute a functionally
independent set of functions. Analogously, a quantum maximally superintegrable Hamiltonian
is a self-adjoint differential operator ĥ1 acting in an appropriate Hilbert space of functions on
the configuration space Q (square integrable with respect to some metric) belonging to a set of n
commuting self-adjoint differential operators ĥ1, . . . , ĥn acting in the same Hilbert space (so that
[ĥi, ĥj ] = 0 for all i, j = 1, . . . , n) and such that it also commutes with an additional set of n− 1

differential operators ĥn+1, . . . , ĥ2n−1 of finite order. Besides, in analogy with the classical case,
it is required that all the operators ĥ1, . . . , ĥ2n−1 are algebraically independent [19]. Throughout
the paper it is tacitly assumed that n > 1 as the case n = 1 is not interesting from the point of
view of our theory.

This paper is devoted to n-dimensional maximally superintegrable classical and quantum
Stäckel systems with all constants of motion quadratic in momenta. Although superintegrable
systems of second order, both classical and quantum, have been intensively studied (see for
example [1, 2, 11, 14, 16, 17] and the review paper [19]), nevertheless all the results about
superintegrable Stäckel systems (including the important classification results) were mainly
restricted to two or three dimensions or focused on the situation when the Hamiltonian is
a sum of one degree of freedom terms and therefore itself separates in the original coordinate
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system (see for example [3, 12] or [15]). Here we present some general results concerning n-
dimensional classical separable superintegrable systems in flat spaces, constant curvature spaces
and conformally flat spaces. We also present how to separately quantize all considered classical
systems. We stress, however, that we do not develop spectral theory of the obtained quantum
systems, as it requires a separate investigation.

The paper is organized as follows. In Section 2 we briefly describe – following previous refe-
rences, for example [18] and [5] – flat and constant curvature Stäckel systems that we consider
in this paper. In Section 3 we prove (Theorem 3.3) a sufficient condition for this class of Stäckel

system to be maximally superintegrable by finding a linear in momenta function P =
n∑
s=1

ysps

on M such that {h1, P} = c (it also means that the vector field Y =
n∑
s=1

ys ∂
∂qs

in P is a Killing

vector for the metric generated by h1) which yields additional n− 1 functions hn+i = {hi+1, P}
commuting with h1 and thus turning h1 into a maximally superintegrable Hamiltonian. In Sec-
tion 4 we briefly remind the notion of Stäckel transform (a functional transform that preserves
integrability) and prove (Theorem 4.2) conditions that guarantee that a Stäckel transform trans-
forms maximally superintegrable system into another maximally superintegrable system (i.e.,
preserves maximal superintegrability). In Section 5 we apply this result to our class of maximally
superintegrable Stäckel systems, obtaining Theorem 5.2 stating when the Stäckel transform ap-
plied to the considered class of systems yields a Stäckel system that is flat, of constant curvature
or conformally flat. We also demonstrate (Theorem 5.4) that the additional integrals hn+i of
systems after Stäckel transform can be obtained in two equivalent ways. Section 6 is devoted
to the procedure of minimal quantization of considered Stäckel systems. As the procedure of
minimal quantization depends on the choice of the metric on the configurational space, we re-
mind first the result obtained in [5] explaining how to choose the metric in which a minimal
quantization is performed so that the integrability of the quantized system is preserved (Theo-
rem 6.1) and then apply Lemma 6.3 to obtain Corollary 6.4 stating under which conditions the
procedure of minimal quantization of a classical Stäckel system, considered in previous sections,
yields a quantum superintegrable and quantum separable system. The paper is furnished with
several examples that continue throughout sections. The examples are all 3-dimensional in order
to make the formulas readable but our theory works in arbitrary dimension.

2 A class of flat and constant curvature Stäckel systems

Let us first introduce the class of Hamiltonian systems that we will consider in this paper.
Consider a 2n-dimensional manifold M = T ∗Q (we remind the reader that n > 1) equipped
with a set of (smooth) coordinates (λ, µ) = (λ1, . . . , λn, µ1, . . . , µn) defined on an open dense set
of M and such that λ are the coordinates on the base manifold Q while µ are fibre coordinates.
Define the bivector

Π =

n∑
i=1

∂

∂λi
∧ ∂

∂µi
. (2.1)

Then the bivector Π satisfies the Jacobi identity so it becomes a Poisson operator (Poisson
tensor), our manifold M becomes Poisson manifold and the coordinates (λ, µ) become Darboux
(canonical) coordinates for the Poisson tensor (2.1). Consider also a set of n algebraic equations
on M

σ(λi) +
n∑
j=1

hjλ
γj
i =

1

2
f(λi)µ

2
i , i = 1, . . . , n, γi ∈ N, (2.2)
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where we normalize γn = 0 and where σ and f are arbitrary functions of one variable. The
relations (2.2) constitute a system of n equations linear in the unknowns hj . Solving these
equations with respect to hj we obtain n functions hj = hj(λ, µ) on M of the form

hj =
1

2
µTAj(λ)µ+ Uj(λ), j = 1, . . . , n, (2.3)

where we denote λ = (λ1, . . . , λn)T and µ = (µ1, . . . , µn)T . The functions hj can be interpreted
as n quadratic in momenta µ Hamiltonians on the manifold M = T ∗Q while the n × n sym-
metric matrices Aj(λ) can be interpreted as n twice contravariant symmetric tensors on Q. The
Hamiltonians hj commute with respect to Π

{hi, hj} ≡ Π(dhi, dhj) = 0 for all i, j = 1, . . . , n,

since the right-hand sides of relations (2.2) commute. Thus, the Hamiltonians in (2.3) constitute
a Liouville integrable Hamiltonian system (as they are moreover functionally independent). The
Hamiltonians (2.3) constitute a wide class of the so called Stäckel systems [24] on M while the
relations (2.2) are called separation relations [23] of this system. This is the class we will
consider throughout our paper. Note that by the very construction of hi the variables (λ, µ)
are separation variables for all the Hamiltonians in (2.3) in the sense that the Hamilton–Jacobi
equations associated with hj admit a common additively separable solution.

Let us now treat the matrix A1 as a contravariant form of a metric tensor on Q: A1 = G,
which turns Q into a Riemannian space. The covariant form of G will be denoted by g (so that
g = G−1). It turns out that the (1, 1)-tensors Kj defined by

Kj = Ajg, j = 1, . . . , n (2.4)

(so that Aj = KjG and K1 = I) are Killing tensors of the metric g.
In this article we will focus on a particular subclass of systems (2.2) that is given by the

separation relations

σ(λi) +

n∑
j=1

hjλ
n−j
i =

1

2
f(λi)µ

2
i , i = 1, . . . , n, (2.5)

(systems of the above class are known in literature as Benenti systems) where moreover

f(λ) =

m∑
j=0

bjλ
j , bj ∈ R, m ∈ {0, . . . , n+ 1}, (2.6)

σ(λ) =
∑
k∈I

αkλ
k, αk ∈ R, (2.7)

where I ⊂ Z is some finite index set (i.e., σ is a Laurent polynomial). Note that taking
k ∈ {0, . . . , n − 1} will only yield trivial terms in solutions (2.3) of (2.5), see the end of this
section. Also, the parameters αk will play a crucial roll in the sequel, when we discuss the
Stäckel transform of the above systems. The metric tensor G attains in this case, due to (2.6),
the form

G =

m∑
j=0

bjGj =

m∑
j=0

bjL
jG0, (2.8)

where L = diag(λ1, . . . , λn) is a (1, 1)-tensor (the so called special conformal Killing tensor, see
for example [10]) on Q, while

Gj = diag

(
λj1
∆1

, . . . ,
λjn
∆n

)
, j ∈ Z, ∆i =

∏
j 6=i

(λi − λj). (2.9)
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Remark 2.1. The metric (2.8) is flat for m ≤ n and of constant curvature for m = n+ 1 (see
for example [9, p. 788]). For higher m it would have a non-constant curvature.

Further, the Killing tensors Ki in (2.4) are in this case given by

Ki =
i−1∑
r=0

qrL
i−1−r = −diag

(
∂qi
∂λ1

, . . . ,
∂qi
∂λn

)
, i = 1, . . . , n. (2.10)

Here and below qi = qi(λ) are Viète polynomials in the variables λ1, . . . , λn:

qi(λ) = (−1)i
∑

1≤s1<s2<···<si≤n
λs1 · · ·λsi , i = 1, . . . , n, (2.11)

that can also be considered as new coordinates on our Riemannian manifold Q (we will call
them Viète coordinates on Q). Notice that qi are coefficients of the characteristic polynomial of
the tensor L. Notice also that the first form of Ki in (2.10) is of course valid in any coordinate
system while the second form of Ki is valid in separation coordinates λ only.

Further, due to (2.7), the potentials Uj(λ) in (2.3) are for the subclass (2.5) given by

Uj =
∑
k∈I

αkV
(k)
j , j = 1, . . . , n, (2.12)

where the “basic” potentials V k
i (k ∈ Z) satisfy the linear system

λki +

n∑
j=1

V
(k)
j λn−ji = 0, i = 1, . . . , n, k ∈ Z,

and can be computed by the recursive formula [4, 8]

V (k) = F kV (0), k ∈ Z, (2.13)

where V (k) =
(
V

(k)
1 , . . . , V

(k)
n

)T
, V (0) = (0, 0, . . . , 0,−1)T and where F is an n× n matrix given

by

F =


−q1(λ) 1

−q2(λ)
. . .

... 1
−qn(λ) 0 · · · 0

 (2.14)

with qi(λ) given by (2.11). Note that the formulas (2.13), (2.14) are non tensorial in that
they are the same in an arbitrary coordinate system, not only in the separation variables λi.
As we mentioned above, the first potentials, i.e., V (1) = (0, 0, . . . , 0,−1, 0)T up to V (n−1) =
(−1, 0, . . . , 0)T are constant, V (n) = (q1, . . . , qn) is the first nonconstant positive potential while
V (−1) = (1/qn, q1/qn, . . . , qn−1/qn)T . The potentials V (k) are for k < 0 rational functions of q
that quickly become complicated with decreasing k.

To summarize, the Hamiltonians hi generated by (2.5)–(2.7) can be explicitly written as

hr(λ) = −1

2

n∑
i=0

∂qr
∂λi

f(λi)µ
2
i − σ(λi)

∆i
= −1

2

n∑
i=0

∂qr
∂λi

f(λi)µ
2
i

∆i
+ Ur(λ), r = 1, . . . , n.
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3 Maximally superintegrable flat and constant curvature
Stäckel systems

Suppose that we have an integrable system, i.e., n functionally independent Hamiltonians on
a 2n-dimensional phase space M that pairwise commute: {hi, hj} = 0 for all i, j = 1, . . . , n. If
there exists an additional function P commuting to a constant with one of the Hamiltonians,
say with h1 (so that {h1, P} = c) and if the n− 1 functions

hn+i = {hi+1, P}, i = 1, . . . , n− 1

together with all hi are functionally independent, then the system becomes maximally superin-
tegrable (with respect to this particular Hamiltonian h1) since then by the Jacobi identity

{hn+i, h1} = −{{P, h1}, hi+1} − {{h1, hi+1}, P} = 0, i = 1, . . . , n− 1.

If moreover the first n integrals of motion hi are quadratic in momenta and if P is linear in
momenta, then the resulting n−1 extra integrals of motion hn+i are also quadratic in momenta.
Thus, in order to distinguish those constant curvature Stäckel systems that are maximally
superintegrable and have quadratic in momenta extra integrals of motion we have to find P
that commutes with h1 up to a constant and that is linear in momenta. To do it in a systematic
way, we need the following well-known result.

Lemma 3.1. Suppose that (q, p) = (q1, . . . , qn, p1, . . . , pn) are Darboux (canonical) coordinates
on a 2n-dimensional phase space M = T ∗Q. Consider two functions on M :

h =
1

2

n∑
i,j=1

piA
ij(q)pj + U(q) with A = AT and P =

n∑
i=1

yi(q)pi.

Then

{h, P} =
1

2

n∑
i,j=1

pi(LYA)ijpj + Y (U),

where Y is the vector field on Q given by Y =
n∑
i=1

yi(q) ∂
∂qi

and where LY is the Lie derivative

(on Q) along Y .

One can thus say that h and P commute if the corresponding vector field Y is the Killing
vector for the metric defined by the (2, 0)-tensor A (i.e., if LYA = 0) and if moreover Y is
symmetry of U (i.e., if Y (U) = 0).

Consider now the Stäckel system given by (2.5). The coordinates (λ, µ) are Darboux (so that
the above lemma applies to this situation) but the components of the metric (2.8) expressed in
λ-coordinates are rational functions making computations very complicated. We will therefore
perform the search for the function P in the coordinates (q, p) on M such that qi are Viète
coordinates (2.11) and such that

pi = −
n∑
k=1

(λk)
n−iµk

∆k
(3.1)

are the conjugated momenta. Since the transformation from (λ, µ) to (q, p) is a point transfor-
mation the coordinates (q, p) are also Darboux coordinates four our Poisson tensor. It can be
shown [7] that in the (q, p)-coordinates

(L)ij = −δ1
j qi + δi+1

j , (G0)ij =

n−1∑
k=0

qkδ
i+j
n+k+1, (3.2)
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and moreover

(Gr)
ij =



n−r−1∑
k=0

qkδ
i+j
n−r+k+1, i, j = 1, . . . , n− r,

−
n∑

k=n−r+1

qkδ
i+j
n−r+k+1, i, j = n− r + 1, . . . , n,

0 otherwise,

r = 1, . . . , n, (3.3)

(Gn+1)ij = qiqj − qi+j , i, j = 1, . . . , n,

where we set q0 ≡ 1 and qr = 0 for r > n. An advantage of these new coordinates is that the
geodesic parts of hi are polynomial in q.

Example 3.2. For n = 3 and in Viète coordinates (2.11) we have

L =

−q1 1 0
−q2 0 1
−q3 0 0

 , G0 =

0 0 1
0 1 q1

1 q1 q2

 , (3.4)

and hence the metric tensors Gj have the form

G1 =

0 1 0
1 q1 0
0 0 −q3

 , G2 =

1 0 0
0 −q2 −q3

0 −q3 0

 , (3.5)

G3 =

−q1 −q2 −q3

−q2 −q3 0
−q3 0 0

 , G4 =

 q2
1 − q2 q1q2 − q3 q1q3

q1q2 − q3 q2
2 q2q3

q1q3 q2q3 q2
3

 . (3.6)

In accordance with Remark 2.1, the metric tensors G0, . . . , G3 are flat, while the metric G4 is
of constant curvature.

We are now in position to perform our search for P . We do this in the case when σ is the
Laurent polynomial (2.7) and allow f to be polynomial as in (2.6); a particular case of f = λm

of the theorem below was formulated in [6].

Theorem 3.3. The Stäckel system

∑
k∈I

αkλ
k
i +

n∑
j=1

hjλ
n−j
i =

1

2
f(λi)µ

2
i , i = 1, . . . , n,

(where I ⊂ Z is a finite index set) with f(λi) given by

f(λ) =
m∑
j=0

bjλ
j , bj ∈ R, m ∈ {0, . . . , n+ 1} (3.7)

is maximally superintegrable in the following cases:

(i) case m ∈ {0, . . . , n − 1}: if I ⊂ {n, . . . , 2n −m − 1} ∪ {−1, . . . ,−r − 1}, where r is such
that bi = 0 for i = 0, . . . , r ≤ m − 1 (if all bi 6= 0, then there is no such r and no second
component in I);

(ii) case m = n and b0 = b1 = 0: if I ⊂ {n,−1, . . . ,−r + 1}, where r is such that bi = 0 for
i = 2, . . . , r ≤ n− 1;

(iii) case m = n + 1 (case of constant curvature) and b0 = b1 = 0: if I ⊂ {−1, . . . ,−r + 1},
where r is such that bi = 0 for i = 2, . . . , r ≤ n.
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The additional integrals hn+r commuting with h1 are given in (q, p)-coordinates by

hn+r =
1

2

n∑
i,j=1

pi(LYAr+1)ijpj + Y (Ur+1), r = 1, . . . , n− 1, (3.8)

where Y is a vector field on Q given by

(i) for m ∈ {0, . . . , n− 1}

Y =

m∑
i=0

bm−i
∂

∂qn−m+i
, (3.9)

(ii) for m = n

Y = qn

n∑
i=2

bn−i+2
∂

∂qi
, (3.10)

(iii) for m = n+ 1

Y = qn

n∑
i=1

bn−i+2
∂

∂qi
, (3.11)

and where LY denotes the Lie derivative along Y .

Proof. We will search for a function P that commutes with h1 and we will perform this search
in the (q, p)-coordinates (2.11), (3.1). The Hamiltonian h1 has in these coordinates the form

h1 =
1

2

n∑
i,j=1

Gij(q)pipj + V
(k)

1 (q)

with G given by (2.8) and further by (3.2), (3.3) and with the potential V
(k)

1 (q) defined by (2.13)
and (2.14).

(i) For m = 0, . . . , n− 1, the Killing equation LYG = 0 has a unique (up to a multiplicative

constant) constant solution (3.9) which also satisfies Y
(
V

(k)
1

)
= 0 for k = n, . . . , 2n−m− 2 and

Y
(
V

(2n−m−1)
1

)
= c. In consequence, due to Lemma 3.1, the function

P = bmpn−m + bm−1pn−m+1 + · · ·+ b0pn

satisfies

{h1, P} = 0 (3.12)

for k = n, . . . , 2n−m− 2 and

{h1, P} = c

for k = 2n−m− 1. Moreover, if bi = 0 for i = 0, . . . , r ≤ m− 1, then (3.12) is satisfied also for
k = −1, . . . ,−r − 1.

(ii) For m = n, there is no constant solution of LYG = 0. This equation has a simple linear
in q solution (3.10) provided that b0 = b1 = 0; Y is then also a symmetry for the single nontrivial

potential V
(n)

1 , i.e., Y
(
V

(n)
1

)
= 0. In consequence, the function

P = qn(bnp2 + bn−1p3 + · · ·+ b2pn)
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satisfies (3.12). Moreover, if bi = 0 for i = 2, . . . , r ≤ n − 1 then (3.12) is satisfied also for
k = −1, . . . ,−r + 1.

(iii) For m = n + 1 there is no constant solution of LYG = 0. This equation has a simple
linear in q solution (3.11) provided that b0 = b1 = 0 but Y is not a symmetry for any nontrivial

potential V
(k)

1 . In consequence, the function

P = qn(bn+1p1 + bnp2 + · · ·+ b2pn).

Poisson commutes only with the geodesic part E1 of h1: {E1, P} = 0. However, if bi = 0 for
i = 2, . . . , r ≤ n then (3.12) is satisfied for k = −1, . . . ,−r + 1.

Finally, the form of additional integrals hn+r in (3.8) is obtained through hn+r = {hr+1, P}
by using Lemma 3.1. Due to their form, the functions h1, . . . , h2n−1 are functionally indepen-
dent. �

Remark 3.4. The above theorem provides us with a sufficient condition for maximal super-
integrability of Stäckel systems of constant curvature (flat in particular) in case when f(λ) is
a polynomial of maximal order n + 1. In consequence, the case (i) of Theorem 3.3 yields an
(n+ 1)-parameter family of maximally superintegrable systems, parametrized by

{br, . . . , bm, α−r−1, . . . , α−1, αn, . . . , α2n−m−1}, r = 0, . . . ,m,

where bj parametrize superintegrable metrics (2.6), (2.8) and αj parametrize families of non-
trivial superintegrable potentials U (2.12) (in case there is no r, i.e., all bi 6= 0) then there is
no α−j in the above set. Similarly, in the cases (ii) and (iii) Theorem 3.3 yields appropriate
n-parameter families of superintegrable systems. A particular case of that classification (for the
monomial case f(λ) = λm) was presented in [21].

It is possible to calculate explicitly the structure of the geodesic parts En+r of the extra
integrals hn+r in the separation coordinates (λ, µ).

Proposition 3.5. The geodesic parts

En+r =
1

2

n∑
i,j=1

µiA
ij
n+r(λ)µj , r = 1, . . . , n− 1

of additional integrals of motion hn+r = {hr+1, P} with r = 1, . . . , n− 1 are given by

(i) for 0 ≤ m ≤ n− 1

Aijn+r = − ∂2qr
∂λi∂λj

f(λi)f(λj)

∆i∆j
, i 6= j,

Aiin+r =
f(λi)

∆i

n∑
j=1

∂2qr
∂λi∂λj

f(λj)

∆j
,

where qr = qr(λ) are given by (2.11), f(λ) are given by (2.6) while ∆i by (2.9),

(ii) for m = n, n+ 1

Aijn+r = − ∂2qr
∂λi∂λj

∂qn
∂λi

1

λj

f(λi)f(λj)

∆i∆j
, i 6= j,

Aiin+r =
f(λi)

∆i

n∑
j=1

∂2qr
∂λi∂λj

f(λj)

∆j

∂qn
∂λj

1

λj
.
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Let us illustrate the above considerations by some examples.

Example 3.6. Consider the flat case n = 3, m = 1, b1 = 1, (so that f(λ) = b0 + λ) with
σ(λ) = αλk and where k = −1, 3 or 4. The commuting Hamiltonians hi are given by separation
relations (2.5)

αλki + h1λ
2
i + h2λi + h3 =

1

2
(b0 + λi)µ

2
i , i = 1, 2, 3.

Then, according to (2.10), (3.4), (3.6) and to (2.13), (2.14) the corresponding Stäckel Hamilto-
nians attain in the (q, p) coordinates (2.11), (3.1) the form

h1 = p1p2 + b0p1p3 + b0q1p2p3 +
1

2
(q1 + b0)p2

2 +
1

2
(b0q2 − q3)p2

3 + αV
(k)

1 (q),

h2 =
1

2
p2

1 +
1

2

(
q2

1 + 2b0q1 − q2

)
p2

2 +
1

2
(b0q1q2 − q1q3 − b0q3)p2

3 + (q1 + b0)p1p2

+ b0q1p1p3 +
(
b0q

2
1 − q3

)
p2p3 + αV

(k)
2 (q),

h3 =
1

2
b0p

2
1 +

1

2
(b0q

2
1 − q3)p2

2 +
1

2

(
−b0q1q3 + b0q

2
2 − q2q3

)
p2

3 + b0q1p1p2

+ (b0q2 − q3)p1p3 + (b0q1q2 − q1q3 − b0q3)p2p3 + αV
(k)

3 (q),

where

V
(−1)

1 =
1

q3
, V

(−1)
2 =

q1

q3
, V

(−1)
3 =

q2

q3
,

V
(3)

1 = q1, V
(3)

2 = q2, V
(3)

3 = q3,

V
(4)

1 = −q2
1 + q2, V

(4)
2 = −q1q2 + q3, V

(4)
3 = −q1q3.

According to Theorem 3.3 Y = ∂
∂q2

+ b0
∂
∂q3

so that P = p2 + b0p3 and thus

{h1, P} =


0 for k = −1 and b0 = 0,

0 for k = 3,

α for k = 4
(
then Y

(
V

(4)
1

)
= 1
)
.

Hence, the system is maximally superintegrable with additional constants of motion for h1

given by:
for k = −1 and b0 = 0

h4 = {h2, P} = −1

2
p2

2, h5 = {h3, P} = −1

2
q3p

2
3 + α

q3

q2
3

,

for k = 3

h4 = {h2, P} = −1

2
p2

2 −
1

2
b20p

2
3 − b0p2p3 + α,

h5 = {h3, P} = −1

2
b0p

2
2 +

(
1

2
b0q2 −

1

2
q3 −

1

2
b20q1

)
p2

3 − b20p2p3 + αb0,

and for k = 4

h4 = {h2, P} = −1

2
p2

2 −
1

2
b20p

2
3 − b0p2p3 + α(b0 − q1),

h5 = {h3, P} = −1

2
b0p

2
2 +

1

2
(b0q2 − q3 − b20q1)p2

3 − b20p2p3 − αb0q1.
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Example 3.7. Consider the case n = 3, m = 1, with the monomial f(λ) = λ, given by the
separation relations

α4λ
4
i + α3λ

3
i + h1λ

2
i + h2λi + h3 + α−1λ

−1
i =

1

2
λiµ

2
i , i = 1, 2, 3, (3.13)

so that I = {−1, 3, 4} and satisfies the condition in part (i) of Theorem 3.3. The system is thus
maximally superintegrable and has a three-parameter family of potentials (cf. Remark 3.4).
Consider now the point transformation from (q, p)-coordinates (2.11), (3.1) to non-orthogonal
coordinates (r, s) such that ri are given by [7]

q1 = r1, q2 = r2 +
1

4
r2

1, q3 = −1

4
r2

3, (3.14)

while

sj =
3∑
i=1

∂qi
∂rj

pi, j = 1, 2, 3 (3.15)

are new conjugated momenta. Then ri are flat coordinates for the metric G1 = A1 in h1. In
these coordinates we get in this case

G = G1 =

0 1 0
1 0 0
0 0 1

 , L =

−1
2r1 1 0
−r2 −1

2r1 −1
2r3

−1
2r3 0 0

 , (3.16)

while the first three commuting Hamiltonians in (r, s)-variables become

h1 = s1s2 +
1

2
s2

3 + α−1V
(−1)

1 (r) + α3V
(3)

1 (r) + α4V
(4)

1 (r),

h2 =
1

2
s2

1 −
1

2
r2s

2
2 +

1

2
r1s

2
3 +

1

2
r1s1s2 −

1

2
r3s2s3 + α−1V

(−1)
2 (r) + α3V

(3)
2 (r) + α4V

(4)
2 (r),

h3 =
1

8
r2

3s
2
2 +

(
1

2
r2 +

1

8
r2

1

)
s2

3 −
1

2
r3s1s3 −

1

4
r1r3s2s3

+ α−1V
(−1)

3 (r) + α3V
(3)

3 (r) + α4V
(4)

3 (r), (3.17)

with

V
(−1)

1 =
4

r2
3

, V
(−1)

2 =
4r1

r2
3

, V
(−1)

3 =
r2

1 + 4r2

r2
3

, (3.18)

V
(3)

1 = r1, V
(3)

2 =

(
r2 +

1

4
r2

1

)
, V

(3)
3 = −1

4
r2

3, (3.19)

V
(4)

1 = r2 −
3

4
r2

1, V
(4)

2 = −
(
r1r2 +

1

4
r3

1 +
1

4
r2

3

)
, V

(4)
3 =

1

4
r1r

2
3. (3.20)

In accordance with Theorem 3.3 and after the transformation to (r, s)-coordinates we have
P = s2, and Y = ∂

∂r2
so the additional constants of motion hn+i of h1 are

h4 = {h2, P} = −1

2
s2

2 + α3 − α4r1, h5 = {h3, P} =
1

2
s2

3 +
4α−1

r2
3

. (3.21)

Example 3.8. Consider the constant curvature case n = 3, m = 4 and I = {−2,−1}. In
order to apply part (iii) of Theorem 3.3 we have to put b0 = b1 = 0. Assume further that also
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b2 = b3 = 0 and b4 = 1 (so that f(λ) = λ4 is again a monomial). The commuting Hamiltonians
are then given by the separation relations

α−2λ
−2
i + α−1λ

−1
i + h1λ

2
i + h2λi + h3 =

1

2
λ4
iµ

2
i , i = 1, 2, 3.

Then again, according to (2.10), (3.4)–(3.6) and to (2.13), (2.14), the corresponding Stäckel
Hamiltonians attain in the (q, p)-variables the form

h1 =
1

2

(
q2

1 − q2

)
p2

1 +
1

2
q2

2p
2
2 +

1

2
q2

3p
2
3 + (q1q2 − q3)p1p2 + q1q3p1p3 + q2q3p2p3

+ α−2V
(−2)

1 + α−1V
(−1)

1 ,

h2 =
1

2
(q1q2 − q3)p2

1 + q2q3p
2
2 + q2

2p1p2 + q2q3p1p3 + q2
3p2p3 + α−2V

(−2)
2 + α−1V

(−1)
2 ,

h3 =
1

2
q1q3p

2
1 +

1

2
q2

3p
2
2 + q2q3p1p2 + q2

3p1p3 + α−2V
(−2)

3 + α−1V
(−1)

3

with

V
(−1)

1 =
1

q3
, V

(−1)
2 =

q1

q3
, V

(−1)
3 =

q2

q3
,

V
(−2)

1 = −q2

q2
3

, V
(−2)

2 =
1

q3
− q1q2

q2
3

, V
(−2)

3 =
q1

q3
− q2

2

q2
3

.

Now, according to part (iii) of Theorem 3.3, P = q3p1, Y = q3
∂
∂q1

and {h1, P} = 0 so the
additional constants of motion are

h4 = {h2, P} = −1

2
q2q3p

2
1 − q2

3p1p2 + α−1 − α−2
q2

q3
, h5 = {h3, P} = −1

2
q2

3p
2
1 + α−2.

4 Stäckel transforms preserving maximal superintegrability

In this chapter we apply a 1-parameter Stäckel transform to our systems (2.5)–(2.7) to produce
new maximally superintegrable Stäckel systems. As the transformation parameter α we will
always use one of the αi from (2.7).

Stäckel transform is a functional transform that maps a Liouville integrable systems into
a new integrable system. It was first introduced in [13] (where it was called the coupling-
constant metamorphosis) and later developed in [9]. When applied to a Stäckel separable system,
this transformation yields a new Stäckel separable system, which explains its name. In the
original paper [13] the authors used only one parameter (one coupling constant). In [22] the
authors introduced a multiparameter generalization of this transform. This idea has been further
developed in [8] and later in [4].

In this section we prove a theorem (Theorem 4.2) that yields sufficient conditions for Stäckel
transform to preserve maximal superintegrability of a Stäckel system.

Let us first, following [4], remind the definition of the multiparameter Stäckel transform.
Consider again a manifold M equipped with a Poisson tensor Π and the corresponding Poisson
bracket {·, ·}. Suppose we have r smooth functions hi : M → R on M, each depending on k ≤ r
parameters α1, . . . , αk so that

hi = hi(x, α1, . . . , αk), i = 1, . . . , r, (4.1)

where x ∈ M . Let us now from r functions in (4.1) choose k functions hsi , i = 1, . . . , k, where
{s1, . . . , sk} ⊂ {1, . . . , r}. Assume also that the system of equations

hsi(x, α1, . . . , αk) = α̃i, i = 1, . . . , k,
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(where α̃i is another set of k free parameters, or values of Hamiltonians hsi) involving the
functions hsi can be solved for the parameters αi yielding

αi = h̃si(x, α̃1, . . . , α̃k), i = 1, . . . , k, (4.2)

where the right hand sides of these solutions define k new functions h̃si on M , each depending
on k parameters α̃i. Finally, let us define r− k functions h̃i for i = 1, . . . , r, i /∈ {s1, . . . , sk}, by
substituting h̃si from (4.2) instead of αi in hi:

h̃i = hi|α1→h̃s1 ,...,αk→h̃sk
, i = 1, . . . , r, i /∈ {s1, . . . , sk}. (4.3)

Definition 4.1. The functions h̃i = h̃i(x, α̃1, . . . , α̃k), i = 1, . . . , r, defined through (4.2)
and (4.3) are called the (generalized) Stäckel transform of the functions (4.1) with respect to
the indices {s1, . . . , sk} (or with respect to the functions hs1 , . . . , hsk).

Unless we extend the manifold M this operation cannot be obtained by any coordinate
change of variables. Moreover, if we perform again the Stäckel transform on the functions h̃i
with respect to h̃si we will receive back the functions hi in (4.1). In this sense the Stäckel
transform is a reciprocal transform. Note also that neither r nor k are related to the dimension
of the manifold M .

In [4] we proved that if dimM = 2n, k = r = n and if all hi are functionally independent then
also all h̃i will be functionally independent and if all hi are pairwise in involution with respect
to Π then also all h̃i will pairwise Poisson-commute. That means that if the functions hi,
i = 1, . . . , n constitute a Liouville integrable system then also h̃i will constitute a Liouville
integrable system. In other words, Stäckel transform preserves Liouville integrability. But what
about superintegrability?

Theorem 4.2. Consider a maximally superintegrable system on a 2n-dimensional Poisson
manifold, i.e., a set of 2n − 1 functionally independent Hamiltonians h1, . . . , h2n−1 such that
the first n Hamiltonians pairwise commute, and assume that all the Hamiltonians depend on
k ≤ n parameters αi:

hi = hi(x, α1, . . . , αk), i = 1, . . . , 2n− 1,

{hi, hj} = 0, i, j = 1, . . . , n, for all αi, (4.4)

{h1, hn+j} = 0, j = 1, . . . , n− 1, for all αi.

Suppose that {s1, . . . , sk} ⊂ {1, . . . , 2n − 1} are chosen so that s1 = 1 and that {s2, . . . , sk}
⊂ {2, . . . , n} and moreover that h1 = h1(x, α1). Then the Stäckel transform h̃i, i = 1, . . . ,
2n−1 given by (4.2), (4.3) also satisfy (4.4) and therefore constitute a maximally superintegrable
system.

Note that the Hamiltonian h1 is now distinguished as the one that commutes with all the
remaining hi and as it can only depend on one parameter. Note also that the first n functions hi
pairwise commute with each other and therefore constitute a Liouville integrable system. The
same is true about the first n functions h̃i.

Proof. Differentiating the identity

hsi
(
x, h̃s1(x, α̃1, . . . , α̃k), . . . , h̃sk(x, α̃1, . . . , α̃k)

)
= α̃i, i = 1, . . . , k

with respect to x we get

dhsi = −
k∑
j=1

∂hsi
∂αj

dh̃sj , i = 1, . . . , k, (4.5)
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while differentiation of (4.3) yields

dhi = dh̃i −
k∑
j=1

∂hi
∂αj

dh̃sj , i = 1, . . . , 2n− 1, i /∈ {s1, . . . , sk}. (4.6)

The transformation (4.5), (4.6) can be written in a matrix form as

dh = Adh̃,

where we denote dh = (dh1, . . . , dh2n−1)T and dh̃ = (dh̃1, . . . , dh̃2n−1)T and where the (2n− 1)
×(2n− 1) matrix A has the form

Aij = δij for j /∈ {s1, . . . , sk}, Aisj = − ∂hi
∂αj

for j = 1, . . . , k.

Since

detA = ±det

(
∂hsi
∂αj

)
is not zero and since hi are by assumption functionally independent on M we conclude that
also the functions h̃i are functionally independent on M . Further, since sk ≤ n (the Stäckel
transform is taken with respect to the Hamiltonians belonging to the Liouville integrable system
h1, . . . , hn) the columns with derivatives of hi with respect to parameters αj all lie in the left
hand side of the matrix A. Moreover, the fact that h1 = h1(x, α1) also means that the first row
of A is zero except A11 = − ∂hi

∂α1
. Let us now introduce the (2n− 1)× (2n− 1) matrices C and D

through Cij = {hi, hj} and Dij = {h̃i, h̃j}. A direct calculation yields

{
h̃i, h̃j

}
=

2n−1∑
l1,l2=1

(
A−1

)
il1

(
A−1

)
jl2
{hl1 , hl2}Π

or in matrix form

D = A−1C
(
A−1

)T
,

and due to the aforementioned structure of A we have Dij = 0 for i, j = 1, . . . , n (meaning
that h̃1, . . . , h̃n constitute a Liouville integrable system) and moreover that D1i = Di1 = 0 for
i = 1, . . . , 2n− 1, so that {h̃1, h̃i} = 0 for all i. That concludes the proof. �

Remark 4.3. A similar statement with an analogous proof is valid for any superintegrable
system of the form (4.4), not only the maximally superintegrable one.

5 Stäckel transform of maximally superintegrable
Stäckel systems

In this section we perform those Stäckel transforms of our systems (2.5)–(2.7) that preserve
maximal superintegrability. According to Theorem 4.2, the Hamiltonian h1 of the considered
system can only depend on one parameter h1 = h1(x, α). It is then natural to choose one of
the ak in (2.7) as this parameter.

Consider thus a maximally superintegrable system (h1, . . . , h2n−1) with the first n commuting
Hamiltonians h1, . . . , hn defined by our separation relations∑

s∈I
αsλ

s
i + h1λ

n−1
i + h2λ

n−2
i + · · ·+ hn =

1

2
f(λi)µ

2
i , i = 1, . . . , n,
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where the index set I satisfies the assumptions of Theorem 3.3 and where the higher integrals
hn+r are constructed as usual through hn+r = {hr+1, P} with P constructed as in Theorem 3.3.
Let us now choose one of the parameters αs, with s ∈ I, say αk, (we will suppose that k ≥ n
or k < 0 otherwise the corresponding potential is trivial, as explained earlier) and define the
functions Hr, r = 1, . . . , 2n− 1, through

hr = Hr + αkV
(k)
r , r = 1, . . . , 2n− 1. (5.1)

Then V
(k)
r for r = 1, . . . , n obviously coincide with V

(k)
r defined through (2.5)–(2.7) or equiva-

lently through (2.13), (2.14).
We now perform the Stäckel transform on this system (h1, . . . , h2n−1) with respect to the

chosen parameter αk as described in Theorem 4.2. It means that we first solve the relation

h1 = α̃, i.e., H1 + αkV
(k)

1 = α̃ with respect to αk which yields

h̃1 = αk = − 1

V
(k)

1

H1 + α̃
1

V
(k)

1

, (5.2)

and then replace αk with h̃1 in all the remaining Hamiltonians:

h̃r = Hr −
V

(k)
r

V
(k)

1

H1 + α̃
V

(k)
r

V
(k)

1

, r = 2, . . . , 2n− 1. (5.3)

We obtain in this way a new superintegrable system (h̃1, . . . , h̃2n−1) where the first n commuting
Hamiltonians h̃r are defined by (see [4]) the following separation relations

h̃1λ
k
i +

∑
s∈I, s 6=k

αsλ
s
i + α̃λn−1

i + h̃2λ
n−2
i + · · ·+ h̃n =

1

2
f(λi)µ

2
i , i = 1, . . . , n, (5.4)

as it is easy to see, since on the level of the separation relations our Stäckel transform replaces αk
with h̃1 and h1 with α̃. For k ≥ n or k < −1 the system (5.4) is no longer in the class (2.5),
while for k = −1 it can be easily transformed by a simple point transformation to the form (2.5).

Lemma 5.1. The separable system

αkλ
k
i +

∑
s∈I, s 6=k

αsλ
s
i + h1λ

n−1
i + h2λ

n−2
i + · · ·+ hn =

1

2
λmi µ

2
i , i = 1, . . . , n

attains after the Stäckel transform (5.2), (5.3) and after the consecutive point transformation
on M given by

λi → 1/λi, µi → −λ2
iµi, i = 1, . . . , n (5.5)

the form

α̃λ−1
i +

∑
s∈I, s 6=k

αsλ
n−2−s
i + h̃1λ

n−k−2
i + h̃nλ

n−2
i + · · ·+ h̃2

=
1

2
λn−m+2
i µ2

i , i = 1, . . . , n. (5.6)

Note that the transformation (5.5) on M does not change the separation web of the system
on Q. Denoting, as before

h̃r = H̃r + α̃Ṽr, r = 1, . . . , 2n− 1, (5.7)
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where h̃r for r = 1, . . . , n are defined by (5.4) while h̃r for r = n+ 1, . . . , 2n− 1 are obtained as
usual through h̃n+r =

{
h̃r+1, P

}
, we see from (5.3) that

Ṽr = Vr −
V

(k)
r

V
(k)

1

V1, r = 2, . . . , 2n− 1,

and from (5.2) it also follows that the geodesic part Ẽ1 of h̃1 has the form

Ẽ1 =
n∑

i,j=1

G̃ijpipj , G̃ = − 1

V
(k)

1

G. (5.8)

It means that the metric G̃ is a conformal deformation of either a flat or a constant curvature
metric G. In the following theorem we list the cases when the metric G̃ is actually flat or of
constant curvature as well. The theorem is formulated only for f in (2.6) being a monomial,
f = λm (in this case there is a maximum number of flat metrics G̃).

Theorem 5.2. Consider the system (5.4) with f = λm where m ∈ {0, . . . , n+ 1}.

(i) For 0 ≤ m ≤ n− 1 the system (5.4) is maximally superintegrable for k ∈ {−m, . . . ,−1, n,
. . . , 2n −m − 1}. The metric G̃ in (5.8) is flat for k ∈ {−[m/2], . . . ,−1, n, . . . , n − 1 +
[(n−m)/2]}, where [·] denotes the integer part. Moreover, for m = 1 and k = −1 G̃ is of
constant curvature. Otherwise G̃ is conformally flat.

(ii) For m = n the system (5.4) is maximally superintegrable for k ∈ {−(n − 2), . . . ,−1, n}.
The metric G̃ in (5.8) is flat for k ∈ {−[n/2], . . . ,−1}. Otherwise G̃ is conformally flat.

(iii) For m = n+ 1 the system (5.4) is maximally superintegrable for k ∈ {−(n− 1), . . . ,−1}.
The metric G̃ in (5.8) is flat for k ∈ {−[(n+ 1)/2], . . . ,−1}. Otherwise G̃ is conformally
flat.

If f is a polynomial then the admissible values of k must satisfy the above type of bonds for
all powers of λ in f , not only for the highest power m so we choose not to present this more
general theorem, only to maintain the simplicity of the picture. In order to prove Theorem 5.2
we need one more lemma.

Lemma 5.3 ([20]). The Ricci scalars R and R̃ of the conformally related (covariant) metric
tensors g and g̃ = σg are related through

R̃ = σ−1R− 1

2
(n− 1)σ−1sijG

ij , (5.9)

where G = g−1 and where

sij = sji = 2∇isj − sisj +
1

2
gijsks

k with si = σ−1 ∂σ

∂xi
,

where xi are any coordinates on the manifold.

Proof of Theorem 5.2. The values of k for which (5.1) is maximally superintegrable follows
from the specification of Theorem 3.3 to the case f = λm. For (i) and (ii) the metric G in (5.8) is
flat so that its Ricci scalar R = 0. Therefore, according to (5.9), R̃ = 0 if and only if sijG

ij = 0.
This condition can be effectively calculated in flat coordinates ri of the metric G given by [7]

qi = ri +
1

4

i−1∑
j=1

rjri−j , i = 1, . . . , n−m,

qi = −1

4

n∑
j=i

rjrn−j+i, i = n−m+ 1, . . . ,m.
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In these coordinates

(Gm)kl = δk+l
n−m+1 + δk+l

2n−m+1

and the condition sijG
ij = 0 yields both statements. The case in (i) when G̃ is of constant

curvature (m = 1, k = −1) can be however more effectively proven using Lemma 5.1 since in
this case the system (5.4) attains after the transformation (5.5) the form

h̃1λ
n−1
i +

∑
s∈I, s 6=k

αsλ
n−2−s
i + h̃nλ

n−2
i + · · ·+ h̃2 + α̃λ−1

i =
1

2
λn+1
i µ2

i , i = 1, . . . , n.

Due to Remark 2.1 the metric G̃ of this system has constant curvature. Finally, in the case (iii)
(m = n+ 1) we have only negative potentials so by using Lemma 5.1 we transform this system
to

h̃1λ
n−k−2
i +

∑
s∈I, s 6=k

αsλ
n−2−s
i + h̃nλ

n−2
i + · · ·+ h̃2 + α̃λ−1

i =
1

2
λiµ

2
i , i = 1, . . . , n,

where k < 0, and this is the system from case (i) with m = 1 and therefore G̃ is flat for
k ≥ −[(n+ 1)/2]. For other values of k the metric G̃ is conformally flat. �

If Y (V
(k)

1 ) = 0 then Y (1/V
(k)

1 ) = 0 and due to (5.8) also LY G̃ = 0 so that {h̃1, P} = 0 as
well and the same P as in the “non-tilde”-case (i.e., before the Stäckel transform) can be used
as an alternative definition of extra Hamiltonians through h̄n+r = {h̃r+1, P}, r = 1, . . . , n − 1.

This is however no longer true if Y
(
V

(k)
1

)
= c 6= 0 (according to Theorem 3.3, it happens only in

the case when m < n and k = 2n−m− 1). It turns out that it leads to the same extra integrals
of motion, as the following theorem states

Theorem 5.4. If Y (V
(k)

1 ) = 0 then both sets of extra integrals of motion:

h̄n+r = {h̃r+1, P}, r = 1, . . . , n− 1

and

h̃n+r = hn+r|α=h̃1(α̃)
, r = 1, . . . , n− 1

coincide.

Proof. On one hand, according to (5.3) and due to the fact that {h̃1, P} = 0 we have

h̄n+r =
{
h̃r+1, P

}
=

{
Hr+1 −

V
(k)
r+1

V
(k)

1

H1 + α̃
V

(k)
r+1

V
(k)

1

, P

}

= {Hr+1, P} −
H1

V
(k)

1

{
V

(k)
r+1, P

}
+

α̃

V
(k)

1

{
V

(k)
r+1, P

}
= {Hr+1, P}+ h̃1

{
V

(k)
r+1, P

}
.

On the other hand, due to

h̃n+r = hn+r|α=h̃1(α̃)
= {hr+1, P}|α=h̃1(α̃)

= {Hr+1, P}+ α
{
V

(k)
r+1, P

}∣∣
α=h̃1(α̃)

,

which yields the same result. �



Classical and Quantum Superintegrability of Stäckel Systems 17

Thus, if Y (V
(k)

1 ) = 0, the diagram below commutes

(h1, . . . , hn)
P−→ (h1, . . . , h2n−1) with hn+r = {hr+1, P}

| |
Stäckel transform Stäckel transform

↓ ↓(
h̃1, . . . , h̃n

) P−→
(
h̃1, . . . , h̃2n−1

)
with h̃n+r =

{
h̃r+1, P

}
.

Example 5.5. Let us apply the relations (5.2), (5.3) to perform the Stäckel transform on the
system from Example 3.7. To keep the formulas simple, we assume that all the αs in (2.7) are
zero except the transformation parameter αk. Thus, we consider again the system given by the
separation relations

αkλ
k
i + h1λ

2
i + h2λi + h3 =

1

2
λiµ

2
i , i = 1, 2, 3

with k = −1, 3 or 4, respectively. Applying Stäckel transform to the resulting Hamiltonians
(3.17)–(3.21) we obtain a maximally superintegrable system with the separation relations of the
form:

h̃1λ
k
i + α̃λ2

i + h̃2λi + h̃3 =
1

2
λiµ

2
i , i = 1, 2, 3. (5.10)

Again we perform our calculations in the (r, s)-variables (3.14), (3.15). Explicitly, we obtain for
k = −1

h̃1 =
1

8
r2

3s
2
3 +

1

4
r2

3s1s2 −
1

4
α̃r2

3,

h̃2 =
1

2
s2

1 −
1

2
r2s

2
2 −

1

2
r1s1s2 −

1

2
r3s2s3 + α̃r1,

h̃3 =
1

8
r2

3s
2
2 −

(
1

4
r2

1 + r2

)
s1s2 −

1

2
r3s1s3 −

1

4
r1r3s2s3 +

1

4
α̃
(
r2

1 + 4r2

)
,

h̃4 = −1

2
s2

2, h̃5 = −s1s2 + α̃, (5.11)

for k = 3

h̃1 = − 1

r1
s1s2 −

1

2

1

r1
s2

3 + α̃
1

r1
,

h̃2 =
1

2
s2

1 +
1

4

r2
1 − 4r2

r1
s1s2 −

1

2
r2s

2
2 −

1

2
r3s2s3 +

1

8

3r2
1 − 4r2

r1
s2

3 +
1

4
α̃
r2

1 + 4r2

r1
,

h̃3 =
1

4

r2
3

r1
s1s2 −

1

2
r3s1s3 +

1

8
r2

3s
2
2 −

1

4
r1r3s2s3 +

1

8

r3
1 + 4r1r2 + r2

3

r1
s2

3 −
1

4
α̃
r2

3

r1
,

h̃4 = − 1

r1
s1s2 −

1

2
s2

2 −
1

2

1

r1
s2

3 + α̃
1

r1
, h̃5 =

1

2
s2

3,

and for k = 4

h̃1 = − 1

r2 − 3
4r

2
1

s1s2 −
1

2

1

r2 − 3
4r

2
1

s2
3 + α̃

1

r2 − 3
4r

2
1

,

h̃2 =
1

2
s2

1 −
1

2
r2s

2
2 −

1

8

2r3
1 − 8r1r2 − r2

3

r2 − 3
4r

2
1

s2
3 −

1

8

r3
1 − 12r1r2 − 2r2

3

r2 − 3
4r

2
1

s1s2 −
1

2
r3s2s3

− α̃
r1r2 + 1

4r
3
1 + 1

4r
2
3

r2 − 3
4r

2
1

,
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h̃3 =
1

8
r2

3s
2
2 −

1

32

3r4
1 + 8r2

1r2 + 4r1r
2
3 + 16r2

2

r2 − 3
4r

2
1

s2
3 +

1

4

r1r
2
3

r2 − 3
4r

2
1

s1s2 −
1

2
r3s1s3 −

1

4
r1r3s2s3

+
1

4
α̃

r1r
2
3

r2 − 3
4r

2
1

,

h̃4 = −1

2
s2

2 +
1

2

r1

r2 − 3
4r

2
1

s2
3 +

r1

r2 − 3
4r

2
1

s1s2 − α̃
r1

r2 − 3
4r

2
1

, h̃5 =
1

2
s2

3. (5.12)

According to part (i) of Theorem 5.2 the metrics of h̃1 are of constant curvature, flat and
conformally flat, respectively.

6 Quantization of maximally superintegrable Stäckel systems

This section is devoted to separable quantizations of Stäckel systems that were considered in
the classical setting in the previous sections. Let us consider, as in the classical case, an n-
dimensional Riemannian space Q equipped with a matric tensor g and the quadratic in momenta
Hamiltonian on the cotangent bundle T ∗Q:

h =
1

2

n∑
i,j=1

piA
ij(x)pj + U(x).

By its minimal quantization [5] we mean the following self-adjoint operator

ĥ = −1

2
}2

n∑
i,j=1

∇iAij(x)∇j + U(x) = −1

2
}2

n∑
i,j=1

1√
|g|
∂i
√
|g|Aij(x)∂j + U(x) (6.1)

(both expressions on the right hand side of (6.1) are equivalent) acting in the Hilbert space

H = L2(Q, dµ), dµ = |g|1/2dx, |g| = |det g|,

where ∇ is the Levi-Civita connection of the metric g. Note that a priori there is no relation
between the tensor A and the metric g. Let us now consider an arbitrary Stäckel system of
the form (2.3) coming from the separation relations (2.2). Applying the procedure of minimal
quantization to this system will in general yield a non-integrable and non-separable quantum
system. In order to preserve integrability and separability we have to carefully choose the
metric g. To do this, we will use the following theorem, proved in [5].

Theorem 6.1. Suppose that hj are Hamiltonian functions (2.3), defined by separation rela-
tions (2.2). Suppose also that θ is an arbitrary function of one variable. Applying to hj the
procedure of minimal quantization (6.1) with the metric tensor

g = ϕ
2
n gθ, (6.2)

where gθ = G−1
θ with Gθ given by

Gθ = diag

(
θ(λ1)

∆1
, . . . ,

θ(λn)

∆n

)
, (6.3)

and with ϕ being a particular function of λ1, . . . , λn, uniquely defined by (2.2) (see formula (27)
in [5] for details), we obtain a quantum integrable and separable system. More precisely, we
obtain n operators ĥi of the form (6.1) such that (i) [ĥi, ĥj ] = 0 for all i, j and (ii) eigenvalue

problems for all ĥi

ĥiΨ = εiΨ, i = 1, . . . , n
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have for each choice of eigenvalues εi of ĥi the common multiplicatively separable eigenfunction

Ψ(λ1, . . . , λn) =
n∏
i=1

ψ(λi) with ψ satisfying the following ODE (quantum separation relation)(
ε1λ

γ1 + ε2λ
γ2 + · · ·+ εn

)
ψ(λ)

= −1

2
~2f(λ)

[
d2ψ(λ)

dλ2
+

(
f ′(λ)

f(λ)
− 1

2

θ′(λ)

θ(λ)

)
dψ(λ)

dλ

]
+ σ(λ)ψ(λ). (6.4)

Remark 6.2. For Stäckel systems defined by (2.5), when (γ1, . . . , γn) = (n− 1, . . . , 0) in (2.2),
we have ϕ = 1 and the most natural choice in (6.3) is to put θ = f which yields the metric for
quantization

G = Gf = A1. (6.5)

On the other hand, for Stäckel systems defined by (5.4) we have ϕ = −V (k)
1 (as it follows

from (5.2) and the formula (27) in [5]) and again the simplest choice in (6.3) is to put θ = f
which yields according to (6.2) and (5.8) the metric for quantization

G = ϕ−
2
nGf = ϕ1− 2

n Ã1. (6.6)

For the choice (6.5) and (6.6) the quantum separation equation (6.4) reduce to(
ε1λ

γ1 + ε2λ
γ2 + · · ·+ εn

)
ψ(λ) = −1

2
~2f(λ)

[
d2ψ(λ)

dλ2
+

1

2

f ′(λ)

f(λ)

dψ(λ)

dλ

]
+ σ(λ)ψ(λ), (6.7)

where (γ1, . . . , γn) = (n−1, n−2, . . . , 0) in the first case (6.5) and (γ1, . . . , γn) = (k, n−2, n−3,
. . . , 0) in the second case (6.6).

Let us now pass to the issue of quantum superintegrability of considered Stäckel systems. We
formulate now a quantum analogue of Lemma 3.1.

Lemma 6.3. Suppose that ĥ is given by (6.1) and that Y =
n∑
i=1

yi(x)∇i is a vector field on the

Riemannian manifold Q with a metric g. Then[
ĥ, Y

]
=

1

2
}2

n∑
i,j=1

∇i(LYA)ij∇j +
1

2
}2

n∑
i,j,k=1

Aij
(
∇j∇kyk

)
∇i − Y (U).

One proves this lemma by a direct computation. Thus, a sufficient condition for [ĥ, Y ] = c
is satisfied when Y is a Killing vector for both A and g and if moreover U is constant along Y ,
that is when

LYA = 0, LY g = 0, Y (U) = c (6.8)

(note that LY g = 0 implies
n∑
i=1
∇kyk = 0).

Corollary 6.4. Suppose we have a quantum integrable system on the configuration space Q, that
is a set of n commuting and algebraically independent operators ĥ1, . . . , ĥn of the form (6.1)
acting in the Hilbert space L2(Q, |g|1/2dx) where g is some metric on Q. Suppose also that
a vector field Y satisfies (6.8) with A1 and U1 instead of A and U (so that [ĥ1, Y ] = c). Then,
analogously to the classical case, the operators

ĥn+r =
[
ĥr+1, Y

]
=

1

2
}2

n∑
i,j=1

∇i(LYAr+1)ij∇j − Y (Ur+1), r = 1, . . . , n− 1 (6.9)

satisfy [ĥn+r, ĥ1] = 0 and the system ĥ1, . . . , ĥ2n−1 is algebraically independent; that is we obtain
a quantum separable and quantum superintegrable system.
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We can now apply this corollary to construct quantum superintegrable counterparts of classi-
cal systems considered in previous sections. According to Remark 6.2, for the systems generated
by the separation relations (2.5) the most natural choice of the metric g is to take G = A1 as
in (6.5). Then, by construction, [ĥi, ĥj ] = 0 for i, j = 1, . . . , n while the remaining operators ĥn+r

are constructed by the formula (6.9) and are – up to a sign – identical with minimal quantization
(in the metric G) of the extra integrals hn+r obtained in (3.8).

Example 6.5. Consider again separation relations (3.13) from Example 3.7, so that f(λ) = λ
and σ = α−1λ

−1 +α3λ
3 +α4λ

4. Performing the minimal quantization of the Hamiltonians (3.17)
in the metric G = A1, i.e., given by (3.16), we obtain, in the flat r-coordinates (3.14)

ĥ1 = −1

2
}2

(
∂1∂2 +

1

2
∂2

3

)
+ α−1V

(−1)
1 (r) + α3V

(3)
1 (r) + α4V

(4)
1 (r),

ĥ2 = −1

4
}2

(
∂2

1 − ∂2r2∂2 + r1∂3∂3 +
1

2
∂1r1∂2 +

1

2
r1∂2∂1 − r3

1

2
∂2∂3 −

1

2
∂3r3∂2

)
+ α−1V

(−1)
2 (r) + α3V

(3)
2 (r) + α4V

(4)
2 (r),

ĥ3 = −1

8
}2

(
1

2
r2

3∂
2
2 +

(
2r2 +

1

2
r2

1

)
∂2

3 − r3∂1∂3 − ∂3r3∂1 −
1

2
r1r3∂2∂3 −

1

2
r1∂3r3∂2

)
+ α−1V

(−1)
3 (r) + α3V

(3)
3 (r) + α4V

(4)
3 (r),

where ∂i = ∂/∂ri and V
(k)
i are given by (3.18)–(3.20). The respective separation equation,

according to (3.13) and (6.7), is of the form

(
α−1λ

−1 + α3λ
3 + α4λ

4 + ε1λ
2 + ε2λ+ ε3

)
ψ(λ) = −1

2
~2

[
λ
d2ψ(λ)

dλ2
+

1

2

dψ(λ)

dλ

]
.

Now Y = ∂2 satisfies the conditions (6.8) and the extra operators ĥ4, ĥ5 can be obtained either
by using the formula (6.9) or directly by minimal quantization of functions h4, h5 in (3.21). The
result is (up to a sign)

ĥ4 =
1

4
}2∂2

2 − α3 + α4r1, ĥ5 = −1

4
}2∂2

3 +
4α−1

r2
3

.

If we want to perform the separable quantization of superintegrable systems obtained by the
Stäckel transform, as in Section 5, we have two cases: either the system – after the Stäckel
transform – belongs again to the same class (2.5) or belongs to the other class, given by the
separation relations (5.4) that are different from (2.5) as soon as k 6= −1. Again by Remark 6.2,
in the first case the natural choice of the metric in which we perform the minimal quantization
is to take G̃ = Ã1, i.e., G̃ as given by (5.8). In the second case we have to use the metric given

by (6.2) which in our case is given by (6.6), i.e., by G = ϕ1− 2
n Ã1 with ϕ = −V (k)

1 .

Example 6.6. Let us now minimally quantize the Stäckel Hamiltonians h̃1, h̃2, h̃3 given
in (5.11), obtained through a Stäckel transform in Example 5.5, generated by the separation
relations (5.10) with k = −1, that is by

h̃1λ
−1
i + α̃λ2

i + h̃2λi + h̃3 =
1

2
λiµ

2
i , i = 1, 2, 3.

The metric associated with h̃1

G̃ =
1

4
r2

3

0 1 0
1 0 0
0 0 1

 (6.10)
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is of constant curvature as – by Lemma 5.1 – after applying transformation (5.5), in the new
separation coordinates the separation relations (5.10) turns to

α̃λ−1
i + h̃1λ

2
i + h̃3λi + h̃2 =

1

2
λ4
iµ

2
i , i = 1, 2, 3

and belong again to the class (2.5). Thus, by Remark 6.2, we have to perform the minimal quan-
tization of this system with respect to the original metric Ã1 of the system which is just (6.10).
Observing that

√
|g̃| = 8/r3

3, we obtain the following quantum superintegrable system (we use
the second expression in (6.1)):

̂̃
h1 = −1

4
}2r2

3

(
1

2
r3∂3

1

r3
∂3 + ∂1∂2

)
− 1

4
α̃r2

3,

̂̃
h2 =

1

4
}2

(
−2∂2

1 + 2∂2r2∂2 + ∂1r1∂2 + r1∂2∂1 + r3∂2∂3 + r3
3∂3

1

r2
3

∂2

)
+ α̃r1,

̂̃
h3 =

1

8
}2

[
−r2

3∂
2
2 + (r2

1 + 4r2)∂1∂2 + ∂1r
2
1∂2 + 4∂2r2∂1 + 2r3∂1∂3 + 2r3

3∂3
1

r2
3

∂1

+ r1r3∂2∂3 + r1r
3
3∂3

1

r2
3

∂1

]
+

1

4
α̃
(
r2

1 + 4r2

)
,

̂̃
h4 =

1

2
}2∂2

2 ,
̂̃
h5 = }2∂1∂2 + α̃.

Example 6.7. Let us finally minimally quantize the Stäckel Hamiltonians h̃1, h̃2, h̃3 given
in (5.12), obtained through a Stäckel transform in Example 5.5) and generated by separation
relations (5.10) with k = 4

h̃1λ
4
i + α̃λ2

i + h̃2λi + h̃3 =
1

2
λiµ

2
i , i = 1, 2, 3.

The metric associated with h̃1

G̃ =
1

3
4r

2
1 − r2

0 1 0
1 0 0
0 0 1


is conformally flat. By Remark 6.2, we have to perform minimal quantization of this system
with respect to the metric (6.6) given by

G =
(
− V (4)

1

)1− 2
3 G̃ =

(
r2 −

3

4
r2

1

)− 2
3

0 1 0
1 0 0
0 0 1

 .

Observing that
√
|g| = V

(4)
1 = r2 − 3

4r
2
1, we obtain the following quantum operators (we use

again the second expression in (6.1)):

̂̃
h1 =

1

2
}2

(
r2 −

3

4
r2

1

)−1 (
2∂1∂2 + ∂2

3

)
+

α̃

r2 − 3
4r

2
1

,

̂̃
h2 = −1

2
}2

(
r2 −

3

4
r2

1

)−1∑
i,j

∂iB
ij
2 ∂j − α̃

r1r2 + 1
4r

3
1 + 1

4r
2
3

r2 − 3
4r

2
1

,

̂̃
h3 = −1

2
}2

(
r2 −

3

4
r2

1

)−1∑
i,j

∂iB
ij
3 ∂j +

1

4
α̃

r1r
2
3

r2 − 3
4r

2
1

,
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̂̃
h4 = −1

2
}2

(
r2 −

3

4
r2

1

)−1 [
∂1r1∂2 + r1∂2∂1 − ∂2

(
r2 −

3

4
r2

1

)
∂2 + r1∂

2
3

]
− α̃ r1

r2 − 3
4r

2
1

,

̂̃
h5 = −1

2
}2∂2

3 ,

where

B2 =

 r2 − 3
4r

2
1

3
2r1r2 − 1

8r
3
1 + 1

4r
2
3 0

3
2r1r2 − 1

8r
3
1 + 1

4r
2
3 −r2

(
r2 − 3

4r
2
1

)
−1

2r3

(
r2 − 3

4r
2
1

)
0 −1

2r3

(
r2 − 3

4r
2
1

)
2r1r2 − 1

2r
3
1 + 1

4r
2
3

 ,

B3 =

 0 −1
4r1r

2
3 −1

2r3

(
r2 − 3

4r
2
1

)
−1

4r1r
2
3

1
4r

2
3

(
r2 − 3

4r
2
1

)
−1

4r1r3

(
r2 − 3

4r
2
1

)
−1

2r3

(
r2 − 3

4r
2
1

)
−1

4r1r3

(
r2 − 3

4r
2
1

)
−1

2r
2
1r2 + r2

2 − 1
4r1r

2
3 − 3

16r
4
1


with B =

√
|g|A in (6.1). It can be checked that it is again a quantum superintegrable system.
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26–50, arXiv:1201.0446.
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