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Abstract. We prove the Doran–Harder–Thompson conjecture in the case of elliptic curves
by using ideas from SYZ mirror symmetry. The conjecture claims that when a Calabi–
Yau manifold X degenerates to a union of two quasi-Fano manifolds (Tyurin degeneration),
a mirror Calabi–Yau manifold of X can be constructed by gluing the two mirror Landau–
Ginzburg models of the quasi-Fano manifolds. The two crucial ideas in our proof are to
obtain a complex structure by gluing the underlying affine manifolds and to construct the
theta functions from the Landau–Ginzburg superpotentials.
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1 Introduction

The aim of this short article is to prove the Doran–Harder–Thompson conjecture in the case of
elliptic curves by using ideas from SYZ mirror symmetry.

Given a Tyurin degeneration of a Calabi–Yau manifold X to a union of two quasi-Fano
manifolds X1 ∪Z X2 intersecting along a common smooth anti-canonical divisor Z ∈ |−KXi | for
i = 1, 2, it is natural to investigate a potential relationship between geometry of the Calabi–
Yau manifold X and that of the quasi-Fano manifolds X1 and X2. Motivated by the works of
Dolgachev [5], Tyurin [21] and Auroux [3], recently Doran–Harder–Thompson proposed a re-
markable conjecture (Conjecture 2.3), which builds a bridge between mirror symmetry for the
Calabi–Yau manifold X and that for the quasi-Fano manifolds X1 and X2 [6]. It claims that
we should be able to glue together the mirror Landau–Ginzburg models Wi : Yi → C of the pair
(Xi, Z) for i = 1, 2 to construct a mirror Calabi–Yau manifold Y of X equipped with a fibration
W : Y → P1. They provided supporting evidence for the conjecture in various different set-
tings. For instance it was shown that under suitable assumptions we can glue together the
Landau–Ginzburg models Wi : Yi → C for i = 1, 2 to obtain a C∞-manifold Y with the expected
topological Euler number χ(Y ) = (−1)dimXχ(X). Thus the topological version of the conjecture
is essentially proven. However, the real difficulty of this conjecture lies in constructing Y as
a complex manifold, which should be mirror to the symplectic manifold X (or vice versa).

In this article, we will prove the conjecture in the case of elliptic curves, beginning with a sym-
plectic elliptic curve X and constructing the mirror complex elliptic curve Y . In order to obtain
the correct complex manifold Y by gluing the mirror Landau–Ginzburg models Wi : Yi → C for
i = 1, 2, we need to keep track of the subtle complex structures of the (not necessarily algebraic)
Kähler manifold Yi for i = 1, 2. To this end, we find ideas of SYZ mirror symmetry very useful.

This paper is a contribution to the Special Issue on Modular Forms and String Theory in honor of Noriko
Yui. The full collection is available at http://www.emis.de/journals/SIGMA/modular-forms.html
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The key idea in our proof is twofold. The first is to obtain the correct complex structure
by gluing the underlying affine base manifolds of X1 and X2 in SYZ mirror symmetry. This
is based on the philosophy that a Tyurin degeneration of a Calabi–Yau manifold X can be
thought to be fibred over a Heegaard splitting of the base B of a special Lagrangian torus
fibration φ : X → B. The second is to construct theta functions out of the Landau–Ginzburg
superpotentials. As a corollary, we observe that the product formulae of the theta functions are
the manifestation of quantum corrections appearing in SYZ mirror symmetry.

It is worth mentioning that a variant of the conjecture was discussed in the work of Auroux [3].
He studied a Z/2Z-invariant version of mirror symmetry (Calabi–Yau double covers) and inves-
tigated elliptic curves from a different perspective from ours [3, Example 3.2]. Advantages of
the present work are firstly to work with not necessarily identical affine manifolds (doubling)
and secondly to construct theta functions out of the Landau–Ginzburg superpotentials in an
interesting way based on the geometry of the conjecture.

Structure of article

We will provide a self-contained description of the subjects for completeness. Section 2 builds
basic setup and formulates the main conjecture. Section 3 reviews basics of SYZ mirror symme-
try both in the Calabi–Yau and quasi-Fano settings. Section 4 is the main part of this article
and proves the conjecture in the case of elliptic curves. Section 5 comments on further research
directions.

2 Doran–Harder–Thompson conjecture

In this section, we will provide background materials and review the Doran–Harder–Thompson
conjecture, following the original article [6]. In general mirror symmetry is a conjecture about
a Calabi–Yau manifold near a large complex structure limit, which is thought to be a maximal
degeneration, in the complex moduli space. However in this article we will be interested in
another class of loci in the complex moduli space, where a Calabi–Yau manifold degenerates to
a union of two quasi-Fano manifolds.

2.1 Tyurin degeneration

A Calabi–Yau manifold X is a compact Kähler manifold such that the canonical bundle is
trivial KX = 0 and H i(X,OX) = 0 for 0 < i < dimX. A quasi-Fano manifold X is a smooth
variety X such that |−KX | contains a smooth Calabi–Yau member and H i(X,OX) = 0 for
0 < i. A Tyurin degeneration is a degeneration X → ∆ of Calabi–Yau manifolds over the
unit disc ∆ = {|z| < 1} ⊂ C, such that the total space X is smooth and the central fibre
X0 = X1 ∪Z X2 is a union of two quasi-Fano manifolds X1 and X2 intersecting normally along
a common anti-canonical divisor Z ∈ |−KXi | for i = 1, 2. Conversely, we have the following
result of Kawamata–Namikawa [15], which is slightly modified for our setting.

Theorem 2.1 ([15, Theorem 4.2]). Let X1 and X2 be quasi-Fano manifolds and Z ∈ |−KXi |
a common smooth anti-canonical divisor for i = 1, 2. Assume that there exist ample divisors
Di ∈ Pic(Xi) for i = 1, 2 which restrict to an ample divisor D1|Z = D2|Z on Z. Then the
union X1 ∪Z X2 of X1 and X2 intersecting normally along Z is smoothable to a Calabi–Yau
manifold X if and only if NZ/X1

∼= N−1Z/X2
(d-semistability). Moreover the resulting Calabi–Yau

manifold X is unique up to deformation.

A Tyurin degeneration is thought to be a complex analogue of a Heegaard splitting of a com-
pact oriented real 3-fold without boundary. Based on this analogy, in his posthumous article [21]
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Tyurin proposed to study geometry of a Calabi–Yau 3-fold by using that of quasi-Fano 3-folds
when they are related by a Tyurin degeneration.

2.2 Mirror symmetry for quasi-Fano manifolds

We consider a pair (X,Z) consisting of a quasi-Fano manifold X and an anti-canonical divisor
Z ∈ |−KX |. The complement X \ Z can be thought of as a log Calabi–Yau manifold as there
exists a nowhere vanishing volume form Ω on X \ Z with poles along Z.

Example 2.2. Let X be a toric Fano n-fold and Z the toric boundary, which is the complement
of the dense torus (C×)n ⊂ X. Then X \ Z = (C×)n carries a standard holomorphic volume
form Ω = ∧ni=1

√
−1d log zi, where (zi) are the coordinates of (C×)n.

Definition 2.3. A Landau–Ginzburg model is a pair (Y,W ) of a Kähler manifold Y and a holo-
morphic function W : Y → C, which is called a superpotential.

It is classically known that there is a version of mirror symmetry for Fano manifolds together
with an anti-canonical divisor. We expect that such mirror symmetry should hold also for
quasi-Fano manifolds (or even for varieties with effective anti-canonical divisors [2]). Here we
formulate a mirror conjecture for quasi-Fano manifolds (see for example Katzarkov–Kontsevich–
Pantev [14], Harder [9]).

Conjecture 2.4. For a pair (X,Z) of a quasi-Fano n-fold X and a smooth anti-canonical
divisor Z ∈ |−KX |, there exists a Landau–Ginzburg model (Y,W ) such that

1)
∑

j h
n−i+j,j(X) = hi(Y,W−1(s)) for a regular value s ∈ C of W ,

2) the generic fibres of W and the generic anti-canonical hypersurfaces in X are mirror
families of compact Calabi–Yau (n− 1)-folds,

where hi(Y,W−1(s)) is the rank of the relative cohomology group H i(Y,W−1(s)). The pair
(Y,W ) is called a mirror Landau–Ginzburg model of (X,Z).

The anti-canonical divisor Z can be thought of as an obstruction for the quasi-Fano mani-
fold X to be a Calabi–Yau manifold and W is an obstruction (or potential function) for the Floer
homology of a Lagrangian torus in X to be defined in the sense of Fukaya–Oh–Ohta–Ono [4, 7]
as we will see in the next section.

Example 2.5. Let X = P1 and Z = {0,∞} equipped with a toric Kähler form ω. Then the
mirror Landau–Ginzburg model of (X,Z) is given by (C×,W = z+ q

z ), where q = exp
(
−
∫
P1 ω

)
.

One justification of this mirror duality is given by the ring isomorphism

QH
(
P1
)

= C[H]/
(
H2 − q

) ∼= C
[
z±1
]
/
(
z2 − q

)
= Jac(W ).

Here QH(P1) is the quantum cohomology ring of P1 and Jac(W ) is the Jacobian ring of the
superpotential W .

Conjecture 2.4 can be generalized to the case when Z is mildly singular, but the superpoten-
tial W will no longer be proper. In fact, it is anticipated that Z is smooth if and only if W is
proper.

Example 2.6. For X = P2 with a toric Kähler form ω, we define Z0 to be the toric boundary,
Z1 the union of a smooth conic and a line intersecting 2 points, and Z2 a nodal cubic curve,
and Z3 a smooth cubic curve. The mirror Landau–Ginzburg model of (X,Z0) is given by(

Y0 = (C×)2,W0 = x+ y +
q

xy

)
,
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where q = exp
(
−
∫
H ω
)

for the line class H. A generic fiber of W0 is an elliptic curve with
3 punctures. On the other hand, the mirror Landau–Ginzburg model (Yi,Wi) of the pair (X,Zi)
is a fiberwise partial compactification of W0 such that a generic fiber of Wi is an elliptic curve
with 3− i punctures for 1 ≤ i ≤ 3.

2.3 Doran–Harder–Thompson conjecture

Mirror symmetry for Calabi–Yau manifolds and that for (quasi-)Fano manifolds have been
studied for a long time, but somewhat independently. A natural question to ask is, how are mir-
ror symmetry for these manifolds related to each other? Motivated by works of Dolgachev [5],
Tyurin [21], and Auroux [3], Doran–Harder–Thompson proposed the following remarkable con-
jecture, which we call the DHT conjecture for short.

Conjecture 2.7 (Doran–Harder–Thompson [6]). Given a Tyurin degeneration of a Calabi–Yau
manifold X to the union X1 ∪Z X2 of quasi-Fano manifolds intersecting along their common
smooth anti-canonical divisor Z, then the mirror Landau–Ginzburg models Wi : Yi → C of (Xi, Z)
for i = 1, 2 can be glued together to be a Calabi–Yau manifold Y equipped with a Calabi–Yau
fibration W : Y → P1. Moreover, Y is mirror symmetric to X.

The above gluing process can be understood as follows. We denote by n the dimension of X
and by Z∨i a fiber of the superpotential Wi mirror to a Calabi–Yau (n− 1)-fold Z.

1. Firstly, we assume that all the important information about the Landau–Ginzburg model
Wi : Yi → C is contained in the critical locus of the superpotential Wi. Therefore, with-
out much loss of information, we may replace it with a new Landau–Ginzburg model
Wi : Yi → Di for a sufficiently large disc Di which contains all the critical values.

2. Secondly, the Calabi–Yau manifolds Z∨1 and Z∨2 are both mirror symmetric to Z, and thus
we expect that they are topologically identified1.

3. Thirdly, Theorem 2.1 implies that we have NZ/X1
∼= N−1Z/X2

because X1∪ZX2 is smoothable

to a Calabi–Yau manifoldX. According to Kontsevich’s homological mirror symmetry [16],
we have an equivalence of triangulated categories

DbCoh(Z) ∼= DbFuk
(
Z∨i
)
.

Then the monodromy symplectomorphism on Z∨i associated to the anti-clockwise loop ∂Di
can be identified with the autoequivalence (−)⊗ωXi [n]|Z ∼= (−)⊗N−1Z/Xi [n] on DbCoh(Z)

(see [14, 19] for details). Therefore NZ/X1
∼= N−1Z/X2

implies, under mirror symmetry, that

the monodromy action on Z∨1 along the anti-clockwise loop ∂D1 and that on Z∨2 along the
clockwise loop −∂D2 can be identified.

Therefore, assuming various mirror symmetry statements, we are able to glue the fibrations
Wi : Yi → Di for i = 1, 2 along open neighborhoods of the boundaries ∂D1 and ∂D2 to construct
a C∞-manifold Y equipped with a fibration W : Y → S2 (Fig. 1). Note that the smoothness
of Z implies the compactness of Y , which follows from the properness of the superpotentials Wi

for i = 1, 2 (cf. Example 2.6). The highly non-trivial part of the conjecture is that there exist
a Calabi–Yau structure on Y and a complex structure on S2 in such a way that W : Y → P1 is
holomorphic and Y is mirror symmetric to the Calabi–Yau manifold X. Moreover, a fiber of W
is mirror to Z by the above construction.

1Two Calabi–Yau manifolds may be topologically different even if they share the same mirror manifold. There
is no problem if dimX = 1, 2 or 3 for example.
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Figure 1. Gluing Landau–Ginzburg models.

In [6] the authors provide supporting evidence for this conjecture in various different set-
tings, including Batyrev–Borisov mirror symmetry and Dolgachev–Nikulin mirror symmetry.
For example, in the 3-fold case, the Hodge number mirror symmetry is shown to be equivalent
to a version of Dolgachev–Nikulin mirror symmetry for K3 surfaces, provided that Y admits
a Calabi–Yau structure. Another important result is that, under reasonable assumptions, the
resulting C∞-manifold Y has the expected Euler number χ(Y ) = (−1)dimXχ(X). Thus the
conjecture is essentially proven at the topological level. However, the real difficulty of the
conjecture lies in constructing Y as a complex manifold, which should be mirror to the sym-
plectic manifold X (or vice versa). The goal of this article is to overcome this difficulty in the
1-dimensional case.

One warning is in order. The DHT conjecture is likely to be false unless we impose a condition
on how the Tyurin degeneration of a Calabi–Yau manifold X occurs in the complex moduli
space. For example, if the complex moduli space of X is 1-dimensional, the Kähler moduli space
of a mirror Calabi–Yau manifold Y is also 1-dimensional and thus Y cannot have a fibration
structure (unless it is 1-dimensional). The conjecture should be modified so that the Tyurin
degeneration occurs in a locus which contains a large complex structure limit. In such a case,
the Calabi–Yau manifold Y should be the mirror corresponding to the large complex structure
limit. Otherwise what we could expect is that there exists a homological mirror W of X equipped
with a non-commutative Calabi–Yau f ibration DbCoh(P1) → Db(W ). This can be thought of
as homological mirror to the Tyurin degeneration (see [6, Section 6] for more detials).

3 SYZ mirror symmetry

The Strominger–Yau–Zaslow (SYZ) mirror symmetry conjecture [20] provides a foundational
geometric understanding of mirror symmetry for Calabi–Yau manifolds. It claims that a mir-
ror pair of Calabi–Yau manifolds should admit dual special Lagrangian torus fibrations. It is
Hitchin [10] who first observed that the base of the fibration, which is locally the moduli space of
the special Lagrangian fibers [18], carries two natural integral affine structures. These integral
affine structures are essential in SYZ mirror symmetry and appear to be more fundamental than
symplectic and complex geometry [8]. One of the integral affine structures will play a vital role
is our proof of the DHT conjecture.

3.1 SYZ mirror symmetry for Calabi–Yau manifolds

Let X be a Calabi–Yau n-fold equipped a Kähler form ω and holomorphic volume form Ω. An
n-dimensional real submanifold L ⊂ X is called special Lagrangian if ω|L = 0 and Im(Ω)|L = 0
(after suitable change of the phase of Ω). The celebrated SYZ mirror symmetry conjecture [20]
asserts that, for a mirror pair of Calabi–Yau n-folds X and Y , there exist special Lagrangian
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Tn-fibrations φ and φ∨

X

φ   

Y

φ∨~~
B

over the common base B, which are fiberwisely dual to each other away from singular fibers.
The treatment of singular fibers constitutes the essential part where the quantum corrections
come into the play. The SYZ conjecture not only provides a powerful way to construct a mirror
manifold Y out of X as a fiberwise dual, but also explains why mirror symmetry should hold via
Fourier–Mukai type transformations [17]. It is worth noting that a mirror manifold Y depends
on a choice of a special Lagrangian fibration on X, and conjecturally this is equivalent to a choice
of a large complex structure limit, where the Gromov–Hausdorff limit of the Calabi–Yau mani-
fold X with its Ricci-flat metric normalized to have a fixed diameter is identified with the
base B.

3.2 Integral affine structures on B

Let φ : X → B be a special Lagrangian Tn-fibration of a Calabi–Yau n-fold X. We denote by Lb
the fiber of φ at b ∈ B. The complement Bo ⊂ B of the discriminant locus carries two natural
integral affine structures2, which we call symplectic and complex. They are defined by ω and
Im(Ω) respectively as follows.

Symplectic integral aff ine structure. Let U ⊂ Bo be a small open neighborhood of
b ∈ Bo. For a basis {αi} of H1(Lb,Z), the symplectic integral affine coordinates at b′ ∈ U are
defined by xi :=

∫
Ai
ω, where Ai ∈ H2(X,Lb ∪ Lb′) is the 2-dimensional cylinder traced out

by αi. This is classically known in the theory of action-angle variables.
Complex integral aff ine structure. The construction is parallel to the above. Let U ⊂ Bo

be a small open neighborhood of b ∈ Bo. For a basis {βi} of Hn−1(Lb,Z), the complex integral
affine coordinates at b′ ∈ U are defined by x∨i :=

∫
Bi

Im(Ω), where Bi ∈ Hn(X,Lb ∪ Lb′) is the
n-dimensional cylinder traced out by βi.

We can easily check that the above coordinates are well-defined because a generic fiber L
is a special Lagrangian and both ω and Ω are closed. These coordinates depend on a choice
of a base point b ∈ Bo and a choice of a basis of H1(Lb,Z) or Hn−1(Lb,Z). Different base
points and different bases of the homology group give rise to changes of coordinates by elements
in GLn(Z) nRn.

Example 3.1. For a, b ∈ R+, let X = C/(Z +
√
−1aZ) be the elliptic curve equipped with

a holomorphic volume form Ω = dz and a Kähler form ω = b
adx ∧ dy. Then X → B ' T 1,

z 7→ Im(z) defines a smooth special Lagrangian T 1-fibration. The symplectic and complex
affine lengths of the base B are given by b =

∫
E ω and a =

∫ a
0 Im(Ω) respectively. We observe

that the mirror elliptic curve Y = C/(Z +
√
−1bZ) is obtained by switching the two affine

structures on the base B. We can complexify this picture by introducing B-fields.

On the other hand, given an integral affine manifold B of dimension n, we have smooth dual
Tn-fibrations:

TB/Λ

φ ""

T ∗B/Λ∗

φ∨{{
B

2An integral affine manifold is a manifold whose local coordinate changes are given by elements in the integral
affine transformation group GLn(Z)n Rn.
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Here Λ = Z〈 ∂
∂x1

, . . . , ∂
∂xn
〉 is a fiberwise lattice in the tangent bundle TB generated by integral

affine coordinates {xi} of B, and Λ∗ is the dual lattice in the cotangent bundle T ∗B. In
a natural way, TB/Λ and T ∗B/Λ∗ are complex and symplectic manifolds respectively. In order
to make them (possibly non-compact) Calabi–Yau manifolds, we need a dual integral affine
structure on B. More precisely, we need a potential f : B → R satisfying the real Monge–

Ampére equation det( ∂2f
∂xi∂xj

) = C for a constant C ∈ R. Then the dual integral affine structure

is given by the Legendre transformation of the original one. For example, the symplectic and
complex affine structures discussed above are Legendre dual to each other. This is called semi-
flat mirror symmetry and serves as a local model for SYZ mirror symmetry without quantum
correction [17]. In general it is a very hard problem to extend this picture when singular fibers
are present.

In this article we will begin with a symplectic manifoldX and construct a complex manifold Y .
So let us take a close look at this case. Given a special Lagrangian Tn-fibration φ : X → B of
a Calabi–Yau manifold X, we endow Bo with the symplectic integral affine structure. We may
think of the semi-flat mirror Y o of Xo := φ−1(Bo) as the space of pairs (b,∇) where b ∈ Bo

and ∇ is a flat U(1)-connection on the trivial complex line bundle over Lb up to gauge. There is
a natural map φ∨ : Y o → Bo given by forgetting the second coordinate. With the same notation
as before, the complex structure of Y o is given by the following semi-flat complex coordinates

zi(b,∇) := exp

(
−2π

∫
Ai

ω

)
Hol∇(γi),

where Hol∇(γi) denotes the holonomy of ∇ along the path γi. Then we observe that the dual

fibration φ∨ is locally given by the tropicalization map (zi) 7→
(
− log |zi|

2π

)
i
.

3.3 SYZ mirror symmetry for quasi-Fano manifolds

Let us now consider a quasi-Fano n-fold X with an anti-canonical divisor Z ∈ |−KX |. Observing
that the complement X\Z carries a holomorphic n-form with poles along Z, we think of X\Z as
a log Calabi–Yau manifold, to which the SYZ construction can be applied. More generally, in the
framework of SYZ mirror symmetry for a manifold with an effective anti-canonical divisor [2, 4],
the superpotential W of a mirror Landau–Ginzburg model is obtained as the weighted count of
holomorphic discs of Maslov index µ = 2 with boundary in a smooth fiber L of a given special
Lagrangian torus fibration φ : X → B. To be more explicit, the superpotential W is a function
on the semi-flat mirror Y o given by

W (b,∇) :=
∑

β∈π2(X,Lb)
µ(β)=2

nβzβ(b,∇),

where zβ is defined to be

zβ(b,∇) := exp

(
−2π

∫
β
ω

)
Hol∇(∂β)

and nβ denotes the one-point open Gromov–Witten invariant of class β ∈ π2(X,L) defined
by the machinery of Fukaya–Oh–Ohta–Ono [7]. It is not difficult to check that W is locally
a holomorphic function on Y o.

In the following, we shall focus on the toric Fano case. Namely, we consider a toric Fano n-
foldX equipped with a toric Kähler form ω and a meromorphic volume form Ω=∧ni=1

√
−1d log zi,

where (zi)i are the standard coordinates of the open dense torus (C×)n ⊂ X. Let Z ⊂ X be
the toric boundary (Example 2.2). Then the toric moment map φ : X → Rn gives a smooth
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special Lagrangian Tn-fibration φ : X \Z → Bo, where B := φ(X) ⊂ Rn is the moment polytope
and Bo is its interior3. By construction of the semi-flat mirror, it is straightforward to check
the following assertion.

Proposition 3.2. Let Trop: (C×)n → Rn, (zi)i 7→
(
− log |zi|

2π

)
i

be the tropicalization map.
Then the semi-flat mirror Y o of the complement X \ Z ∼= (C×)n is given by the polyan-
nulus Trop−1(Bo). Moreover the dual fibration φ∨ is identified with the restriction φ∨ =
Trop |Y o : Y o → Bo.

In the toric Fano case, we do not modify Y o further, so henceforth we simply write Y = Y o.
In general, there is a discriminant locus in the interior of B and then the semi-flat mirror Y o

needs quantum corrections by the wall-crossing formulae of the superpotential W .

Let us take a close look at the projective line P1. We have a special Lagrangian T 1-fibration
φ : P1 → B = [0, Im(τ)] given by the moment map, where τ :=

√
−1
∫
P1 ω. By Proposition 3.2,

the mirror Y of P1 \ {0,∞} ∼= C× is given by the annulus

Y = A(q,1) := {q < |z| < 1} ⊂ C,

where q := e2π
√
−1τ . Each special Lagrangian fiber separates P1 into two discs, one containing 0

and the other containing ∞. The classes β1 and β2 representing these disc classes satisfy
β1 + β2 = [P1], and hence the coordinates on Y should satisfy zβ1zβ2 = q. Moreover we can
easily check that these are the only holomorphic discs of Maslov index 2 and nβ1 = nβ2 = 1.
Using z = zβ1 as a new coordinate on the mirror Y = A(q,1), we obtain the Landau–Ginzburg
superpotential

W = zβ1 + zβ2 = z +
q

z
.

So far, we discuss only the real Kähler structure for simplicity, but we can easily complexify it
in the above discussion. We will do this in the next section.

Remark 3.3. The moment map for the toric (S1)n-action is defined only up to addition of
a constant in the range Rn. In other words, the only intrinsic property of the base space B is
its affine structure and an affine embedding B ⊂ Rn is a choice. For example, we may take
another moment map φ′ : P1 → B′ =

[− Im(τ)
2 , Im(τ)

2

]
, and then the mirror Landau–Ginzburg

model becomes

W ′ : Y ′ = A(
q
1
2 ,q−

1
2

) → C, z 7→ z +
q

z
,

where

A(a,b) := {z ∈ C | a < |z| < b}

for positive real numbers a < b. Note that we have a biholomorphism A(q,1)
∼= A(

q
1
2 ,q−

1
2

), which

is induced by the translation of the underlying affine manifolds B ∼= B′ in Rn. Moreover, near
the large volume limit, where

∫
β ω →∞, we may identify Y ′ with C× = A(0,∞). In this way, we

understand that the SYZ mirror coincides with the Hori–Vafa mirror (C×, z+ q
z ), after suitably

renormalizing the superpotential (Example 2.5). We refer the reader to [11] for a physical
derivation of the mirror Landau–Ginzburg model.

3By abuse of notation, we use the same φ for the restriction of φ to X \ Z.
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It is also worth noting that the superpotential W is in general not known to converge if X
is not a toric Fano manifold. Moreover, if a fiber Lagrangian L bounds a holomorphic disc of
class β ∈ π2(X,L) of Maslov index 0, then the one-point open Gromov–Witten invariant nβ
depends on the fiber L as well as the point p ∈ L which the holomorphic discs are required
to pass through. On the other hand, we often want to take a smooth anti-canonical divisor Z
instead of the toric boundary so that the mirror Landau–Ginzburg superpotential W is proper.
In that case there appears to be a discriminant locus in the interior of the base B and we need
quantum corrections in the above toric SYZ construction [2].

4 Gluing Landau–Ginzburg models: elliptic curves

Finally we are in the position to confirm the DHT conjecture in the case of elliptic curves. In the
language of SYZ mirror symmetry, we will glue the Landau–Ginzburg models by essentially gluing
the affine base manifolds of special Lagrangian fibrations. The inspiration comes from the fact
that a Tyurin degeneration is a complex analogue of a Heegaard splitting. Another key ingredient
of the proof is to construct theta functions out of the Landau–Ginzburg superpotentials based
on the geometry of the conjecture.

Let us consider a Tyurin degeneration of an elliptic curve X → ∆, where a generic fiber
is a smooth elliptic curve and the central fiber X0 = X1 ∪Z X2 is the union of two rational
curves X1 and X2 glued at two points Z. We complexify the Kähler structure B +

√
−1ω of X

by introducing the B-field B ∈ H2(X ,R)/2πH2(X ,Z), and define

τi :=

∫
Xi

(
B +

√
−1ω

)
, qi := e2π

√
−1τi , i = 1, 2.

Then the complexified Kähler structure of a generic elliptic fiber X of the family X → ∆ is
given by

τ := τ1 + τ2 =

∫
X0

(
B +

√
−1ω

)
so that q := e2π

√
−1τ = q1q2.

Let us consider the moment maps φi : Xi → Bi for i = 1, 2, where the base affine manifolds
are B1 = [0, Im(τ1)] and B2 = [− Im(τ2), 0]. Then the mirror Landau–Ginzburgs of (X1, Z) and
(X2, Z) are respectively given by

W1 : Y1 = A(|q1|,1) → C, z1 7→ z1 +
q1
z1
,

W2 : Y2 = A(
1,|q2|−1

) → C, z2 7→ z2 +
q2
z2
,

where q1z2 = z1 (Remark 3.3). We observe that the boundary of the closure Y1 ∪ Y2 ⊂ C× can
be glued by the multiplication map z 7→ qz to form an elliptic curve Y , which is identified with
the mirror elliptic curve C×/qZ := C×/(z ∼ qz) of X. This construction corresponds to the
gluing of the boundary of the affine manifold B1 ∪ B2 = [− Im(τ2), Im(τ1)] by the shift Im(τ)
(twisted by the B-field upstairs).

In order to confirm the DHT conjecture, we moreover want a map C× → (C×C)\(0, 0) which
descends to a double covering W : C×/qZ → P1 that locally looks like the superpotential W1

(resp. W2) over the upper (resp. lower) semisphere of the base P1. Unfortunately, the naive
analytic continuation of (W1,W2) over C× does not work. The correct answer is given by
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considering all the Landau–Ginzburg models of the above sort, namely for i ∈ Z the Landau–
Ginzburg models

W2i+1 : Y2i+1 = A(
|q−iq1|,|q−i|

) → C, z2i+1 7→ z2i+1 +
q1
z2i+1

,

W2i : Y2i = A(
|q1−i|,|q1−iq−1

2 |
) → C, z2i 7→ z2i +

q2
z2i
,

where the variable zi is defined inductively by qzi+2 = zi. This means to eliminate the above
arbitrary choice of a fundamental domain of the Z-action on C× to construct the mirror elliptic
curve C×/qZ. A crucial observation is that if we consider all the even or odd superpotential Wi’s
at once (in the sense of Remark 4.1 below), they descend to the elliptic curve C×/qZ as sections
of an ample line bundle as follows. Let us first consider the infinite product

W ′1(z) :=
∞∏
i=1

(
1 +

q1
z22i−1

)(
1 +

z2−2i+1

q1

)

=

∞∏
i=1

(
1 + q2i−1

(
q2z

2
)−1)(

1 + q2i−1q2z
2
)

=
∞∏
k=1

1

1− q2k
∑
l∈Z

ql
2(
q2z

2
)l

=
e
π
√
−1τ
6

η(2τ)
ϑ 1

2
,0(2ζ − τ1, 2τ),

where we set z = z1 = e2π
√
−1ζ and

η(τ) := e
π
√
−1τ
12

∞∏
m=1

(
1− e2π

√
−1τm), ϑa,b(ζ, τ) :=

∑
n∈Z

eπ
√
−1(n+a)2τe2π

√
−1(n+a)(ζ+b)

are the Dedekind eta function and theta function with characteristic (a, b) ∈ R2 respectively.

Remark 4.1. We can think of W ′1 as the product of all the Landau–Ginzburg superpoten-
tial Wi’s for odd i ∈ Z because of the formula(

zj +
qk
zj

)(
z−j +

qk
z−j

)
= qkq

j

(
1 +

qk
z2j

)(
1 +

z2−j
qk

)
,

for all j ∈ Z and k = 1, 2.

In a similar manner, we next consider

W ′2(z) :=
∞∏
i=1

(
1 +

q2
z22i

)(
1 +

z2−2i+2

q2

)

=
∞∏
i=1

(
1 + q2i−1

q1
z2

)(
1 + q2i−1

z2

q1

)

=

∞∏
k=1

1

1− q2k
∑
l∈Z

ql
2

(
z2

q1

)l

=
e
π
√
−1τ
6

η(2τ)
ϑ0,0(2ζ − τ1, 2τ),
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which can be thought of as the product of all the Landau–Ginzburg superpotential Wi’s for even
i ∈ Z. It is a classical fact that the theta functions with characteristics

ϑ 1
2
,0(2ζ − τ1, 2τ), ϑ0,0(2ζ − τ1, 2τ)

form a basis of the (2)-polarization of the elliptic curve Y = C×/qZ. Therefore we obtain
a double covering

W : Y = C×/qZ → P1, z 7→ [W ′1(z) : W ′2(z)].

Observing that W locally looks like the superpotential Wi on each piece Yi, we confirm that it
is precisely the gluing of the two Landau–Ginzburg models argued in the DHT conjecture. This
completes a proof of the conjecture in the case of elliptic curves.

Remark 4.2. It is crucial in the above proof not to take the large volume limit but to keep track
of the complex structures on the mirror annuli. In this way, we are able to naturally glue the
Landau–Ginzburg models (without the heuristic cutting process discussed in the conjecture). It
is also interesting to observe that the product expressions of the theta functions are the mani-
festation of quantum corrections, which are encoded in the Landau–Ginzburg superpotentials,
in SYZ mirror symmetry.

The elliptic curves are somewhat special and our construction readily generalizes to a dege-
neration of an elliptic curve to a nodal union of n rational curves forming a cycle. The superpo-
tential of each rational curve corresponds to a theta function with an appropriate characteristic,
and they span a basis of the (n)-polarization of the mirror elliptic curve. Note that the same
result is obtained in [1, Section 8.4] and [13, Section 4] from different perspectives. This is due
to the accidental fact that a Tyurin degeneration of an elliptic curve can be thought of as a maxi-
mal degeneration at a large complex structure limit. A main difference shows up, for example,
when we consider a type II degeneration of an abelian surface which is neither a maximal nor
a toric degeneration [12]. However the essential mechanism of the DHT conjecture is already
apparent in the case of elliptic curves: gluing the base affine manifolds and constructing theta
functions from the Landau–Ginzburg superpotentials.

5 Further research direction

A key idea of our proof is to glue the two different affine manifolds B1 and B2 along the
boundaries to obtain a compact affine manifold R/ Im(τ)Z. This idea is not new and a similar
construction (doubling) was already suggested by Auroux [3]. However, it is in general a very
hard problem to glue together higher dimensional affine manifolds along the boundaries. The
difficulty is closely related to a choice of an anti-canonical divisor Z ∈ |−KX | of a quasi-
Fano manifold X. More precisely, we need a special Lagrangian fibration φ : X → B which
is compatible with Z, and then smoothness of Z is likely to be proportional to that of the
boundary ∂B. On the other hand, mirror symmetry for (X,Z) tends to be harder as Z gets less
singular because we need to trade singularities of ∂B with discriminant loci of the interior of B.
This seems the main obstruction to generalizing our discussion in higher dimensions.

A notable feature of the DHT conjecture is that it bridges a gap between mirror symmetry
for Calabi–Yau manifolds and that for Fano manifolds. The conjecture naturally suggests a con-
struction of a mirror Calabi–Yau manifold from a more general degeneration of a Calabi–Yau
manifold. For instance, the recent Gross–Siebert program [8] is a powerful algebro-geometric
program to construct a mirror Calabi–Yau manifold from a given toric degeneration of a Calabi–
Yau manifold, which serves as a maximal degeneration of a Calabi–Yau manifold. However, it
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is not yet clear how we should make use of the mirror of a more general degeneration limit
of a Calabi–Yau manifold. An expectation is that a mirror Calabi–Yau manifold should come
equipped with a map W , which could be obtained by gluing (or taking the linear system of)
the mirror Landau–Ginzburg superpotentials of the irreducible components of the degeneration
limit. Then the glueability condition (the weight of the superpotentials being the same) should
be mirror to a Kawamata–Namikawa type log smoothablity condition. In general W will not
provide a polarization with the mirror manifold (see also [6, Section 5.1]). For example it is the
case if the number of the irreducible components is less than the dimension of the Calabi–Yau
manifold plus 1.

Lastly, the DHT conjecture and the above speculation can be investigated from many different
perspectives and it would be of interest to ask, for example, what they mean in the Lagrangian
Floer theory and theoretical physics.
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