Symmetry, Integrability and Geometry: Methods and Applications

A Linear System of Differential Equations Related
to Vector-Valued Jack Polynomials on the Torus

Charles F. DUNKL

Department of Mathematics, University of Virginia,
PO Bozx 400137, Charlottesville VA 22904-4137, USA
E-mail: c¢fd52z@Quirginia.edu

URL: http://people.virginia.edu/~cfd5z/

Received December 11, 2016, in final form June 02, 2017; Published online June 08, 2017
https://doi.org/10.3842/SIGMA.2017.040

Abstract. For each irreducible module of the symmetric group Sy there is a set of para-
metrized nonsymmetric Jack polynomials in IV variables taking values in the module. These
polynomials are simultaneous eigenfunctions of a commutative set of operators, self-adjoint
with respect to two Hermitian forms, one called the contravariant form and the other is with
respect to a matrix-valued measure on the N-torus. The latter is valid for the parameter
lying in an interval about zero which depends on the module. The author in a previous
paper [SIGMA 12 (2016), 033, 27 pages| proved the existence of the measure and that its
absolutely continuous part satisfies a system of linear differential equations. In this paper
the system is analyzed in detail. The N-torus is divided into (N —1)! connected components
by the hyperplanes x; = x;, @ < j, which are the singularities of the system. The main result
is that the orthogonality measure has no singular part with respect to Haar measure, and
thus is given by a matrix function times Haar measure. This function is analytic on each of
the connected components.
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2 C.F. Dunkl

1 Introduction

The Jack polynomials form a parametrized basis of symmetric polynomials. A special case of
these consists of the Schur polynomials, important in the character theory of the symmetric
groups. By means of a commutative algebra of differential-difference operators the theory was
extended to nonsymmetric Jack polynomials, again a parametrized basis but now for all poly-
nomials in N variables. These polynomials are orthogonal for several different inner products,
and in each case they are simultaneous eigenfunctions of a commutative set of self-adjoint op-
erators. These inner products are invariant under permutations of the coordinates, that is, the
symmetric group. One of these inner products is that of L?(T", K.(z)dm(z)), where

TV :={zeC":|z;]=1,1<j <N},

dm(z) = (2r)"Ndé, - -- doy, xj = exp(ib;), —m<0; <m, 1<j<N,
1
Kﬁ(:l,‘) = H |QZZ — $j|2n, K > —N;
1<i<j<N

defining the N-torus, the Haar measure on the torus, and the weight function respectively.
Beerends and Opdam [1] discovered this orthogonality property of symmetric Jack polyno-
mials. Opdam [9] established orthogonality structures on the torus for trigonometric polynomials
associated with Weyl groups; the nonsymmetric Jack polynomials form a special case.

Griffeth [7] constructed vector-valued Jack polynomials for the family G(n,p, N) of complex
reflection groups. These are the groups of permutation matrices (exactly one nonzero entry
in each row and each column) whose nonzero entries are n'® roots of unity and the product
of these entries is a (n/p)"™ root of unity. The symmetric groups and the hyperoctahedral
groups are the special cases G(1,1,N) and G(2,1, N) respectively. The term “vector-valued”
means that the polynomials take values in irreducible modules of the underlying group, and the
action of the group is on the range as well as the domain of the polynomials. The author [2]
together with Luque [5] investigated the symmetric group case more intensively. The basic setup
is an irreducible representation of the symmetric group, specified by a partition 7 of IV, and
a parameter k restricted to an interval determined by the partition, namely —1/h, < k < 1/h;
where h; is the maximum hook-length of the partition 7. More recently [3] we showed that there
does exist a positive matrix measure on the torus for which the nonsymmetric vector-valued Jack
polynomials (henceforth NSJP’s) form an orthogonal set. The proof depends on a matrix-version
of Bochner’s theorem about the relation between positive measures on a compact abelian group
and positive-definite functions on the dual group, which is a discrete abelian group. In the
present situation the torus is the compact (multiplicative) group and the dual is Z~. By using
known properties of the NSJP’s we produced a positive-definite matrix function on Z" and this
implied the existence of the desired orthogonality measure. Additionally we showed that the
part of the measure supported by ']Tﬁ\ég = TN\ U, < j{x: x; = x;} is absolutely continuous with
respect to the Haar measure dm and satisfies a first-order differential system. In this paper we
complete the description of the measure by proving there is no singular part. The idea is to
use the functional equations satisfied by the inner product to establish a correspondence to the
differential system. The main reason for the argument being so complicated is that the “obvious”
integration-by-parts argument which works smoothly for the scalar case with x > 1 has great
difficulty with the singularities of the measure of the form |z; — azj|_2"’“‘. We use a Cauchy
principal-value argument based on a weak continuity condition across the faces {z: z; = z;}
(as an over-simplified one-dimensional example consider the integral f_ll % f(z)dz with f(x) =

|22 4+ 2%|~1/%: the integral is divergent but the principal value li%l {f:f—l—fel }f’(a:)dx =
e—U4
f) —f(=1)+ 1i1%a {f(=e)— f((e))} and f(—¢) — f(e) = 0(53/4) hence the limit exists).
e—U4
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The differential system is a two-sided version of a Knizhnik—Zamolodchikov equation (see [6])
modified to have solutions homogeneous of degree zero, that is, constant on circles {(uzy,...,
uzy): |u| = 1}. The purpose of the latter condition is to allow solutions analytic on connected
components of ']I‘ﬁ\efg. Denote the degree of 7 by n,. The solutions of the differential system are
locally analytic n, X n, matrix functions with initial condition given by a constant matrix. That
is, the solution space is of dimension n2 but only one solution can provide the desired weight
function. Part of the analysis deals with conditions specifying this solution — they turn out to be
commutation relations involving certain group elements. In the subsequent discussion it is shown
that the weight function property holds for a very small interval of « values if these relations are
satisfied. This is combined with the existence theorem of the positive-definite matrix measure
to finally demonstrate that the measure has no singular part for any x in —1/h; < kK < 1/h,.

In a subsequent development [4] it is shown that the square root of the matrix weight function
multiplied by vector-valued symmetric Jack polynomials provides novel wavefunctions of the
Calogero-Sutherland quantum mechanical model of identical particles on a circle with 1/r?
interactions.

Here is an outline of the contents of the individual sections:

e Section 2: a short description of the representation of the symmetric group associated
to a partition; the definition of Dunkl operators for vector-valued polynomials and the
definition of nonsymmetric Jack polynomials (NSJP’s) as simultaneous eigenvectors of
a commutative set of operators; and the Hermitian form given by an integral over the
torus, for which the NSJP’s form an orthogonal basis.

e Section 3: the definition of the linear system of differential equations which will be demon-
strated to have a unique matrix solution L(x) such that L(x)*L(x)dm(x) is the weight
function for the Hermitian form; the proof that the system is Frobenius integrable and the
analyticity and monodromy properties of the solutions on the torus.

e Section 4: the use of the differential equation to relate the Hermitian form to L(x)*L(x)
by means of integration by parts; the result of this is to isolate the role of the singularities
in the process of proving the orthogonality of the NSJP’s with respect to L* Ldm.

e Section 5: deriving power series expansions of L(z) near the singular set |J,_ j {3: e TV:
T; = xj}, in particular near the set {x: xy_1 = xn}; description of commutation proper-
ties of the coefficients with respect to the reflection (N — 1, N); the behavior of L across
the mirror {z: xy_1 = zn}.

e Section 6: the derivation of global bounds on L(z) and local bounds on the coefficients of
the power series, needed to analyze convergence properties of the integration by parts.

e Section 7: the proof of a sufficient condition for the validity of the Hermitian form; the
condition is partly that s lies in a small interval around 0 and that the boundary value
of L(z) satisfies a commutativity condition; the proof involves very detailed analysis of
bounds on L, since the local bounds have to be integrated over the entire torus.

e Section 8: further analysis of the orthogonality measure constructed in [3], in particular
the proof of the formal differential system satisfied by the Fourier—Stieltjes (Laurent) series
of the measure; this is used to show that the measure has no singular part on the open
faces, such as

{(6191’6192’.”76101\],1’6101\,,1): 01 <Oy < - <On_9<On_1<6 —1—277};

in turn this property is shown to imply the validity of the sufficient condition set up in
Section 7.
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e Section 9: analyticity properties of the solutions of matrix equations with analytic coeffi-
cients; the results are used to extend the validity of the Hermitian form to the desired
interval —1/h, < k < 1/h; from the smaller interval found in Section 7.

2 Modules of the symmetric group

The symmetric group Sy, the set of permutations of {1,2,..., N}, acts on CV by permutation
N N

of coordinates. For a € Z" the norm is |a| := Y |a;| and the monomial is 2 := [] z{".
i=1 i=1

Denote Ny := {0,1,2,...}. The space of polynomials P := spang {a;a: a € Név}. Elements
of spang {xo‘: a e zZN } are called Laurent polynomials. The action of Sy is extended to
polynomials by wp(z) = p(zw) where (zw); = ;) (consider r as a row vector and w as
a permutation matrix, [w];; = 0 .,(j), then zw = x[w]). This is a representation of Sy, that is,
w1 (wap)(x) = (wap)(zwr) = p(rwiws) = (wiwe)p(z) for all wy,ws € Sy.

Furthermore Sy is generated by reflections in the mirrors {x: z; = x;} for 1 <i < j < N.
These are transpositions, denoted by (i, j), so that z(7, j) denotes the result of interchanging x;
and ;. Define the Sy-action on o € ZV so that (zw)® = 2%

N N
. o1
o o w4 ()
(rw)® = H%(i) = H Lj ;
i=1 j=1

that is (wa); = ay,-1(;) (take a as a column vector, then wa = [w]a).
The simple reflections s; := (i,i+ 1), 1 <i < N — 1, generate Sy. They are the key devices
for applying inductive methods, and satisfy the braid relations:

8i8j = 8;Si, i — 4l > 2;

S$iSi+18i = Si4+15iSi41-

We consider the situation where the group Sy acts on the range as well as on the domain
of the polynomials. We use vector spaces, called Sy-modules, on which Sy has an irreducible
unitary (orthogonal) representation: 7: Sy — Om(R) (7(w) ™' =7(w™!) = 7(w)”). See James
and Kerber [8] for representation theory, including a modern discussion of Young’s methods.

Denote the set of partitions

N T o= {AeNY: > > > )

We identify 7 with a partition of N given the same label, that is 7 € Név’+ and |7| = N.
The length of 7 is ¢(7) := max{i: 7, > 0}. There is a Ferrers diagram of shape 7 (also given
the same label), with boxes at points (7,7) with 1 < i < #(7) and 1 < j < 7;. A tableau of
shape 7 is a filling of the boxes with numbers, and a reverse standard Young tableau (RSYT)
is a filling with the numbers {1,2,..., N} so that the entries decrease in each row and each
column. We exclude the one-dimensional representations corresponding to one-row (IN) or one-
column (1,1,...,1) partitions (the trivial and determinant representations, respectively). We
need the important quantity h; := 71 + ¢(7) — 1, the maximum hook-length of the diagram (the
hook-length of the node (i,7) € 7 is defined to be 7, — j + #{k: i < k < U(1)&j < 7} + 1).
Denote the set of RSYT’s of shape 7 by Y(7) and let

Vy=span{T: T € Y(7)}

(the field is C(k)) with orthogonal basis (7). For 1 < i < N and T € Y(7) the entry i
is at coordinates (rw(i,T"),cm(i,T)) and the content is ¢(i,T) := em(i,T) — rw(i,T). Each
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N

T € Y() is uniquely determined by its content vector [c(i, T)]Y,. Let S1(7) = > ¢(i,T) (this
i=1

sum depends only on 7) and «y := S1(7)/N. The Sy-invariant inner product on V; is defined by

1
T, T/ =0 1 X <1 - . -
R A | S R R SR

c(4,T)<c(3,T)—2

> , T,T € Y(1).

It is unique up to multiplication by a constant.

N N
The Jucys—Murphy elements > (i,7) satisfy Y. 7((¢,7))T = c(i,T)T and thus the central

j=it1 j=it1
element >  (i,j) satisfies >  7((4,4))T = Si(7)T for each T € Y(7). The basis is
1<i<j<N 1<i<j<N

ordered such that the vectors T' with ¢(N — 1,T) = —1 appear first (that is, cm(N —1,T) = 1,
rw(N —1,T) = 2). This results in the matrix representation of 7((N — 1, N)) being

I, O
O Inr —mr ’

where n,; := dim V; = #)(7) and m, is given by tr(7((N — 1, N))) = n, — 2m,. From the sum
;j‘((i,j)) = S1(7)1 it follows that (];7) tr(r((N —1,N))) = Si(7)n, and m, = n, (3 — Nf}éz)l)).
i<j

(The transpositions are conjugate to each other implying the traces are equal.)

2.1 Jack polynomials

The main concerns of this paper are measures and matrix functions on the torus associated to
Pr =P ® V;, the space of V;-valued polynomials, which is equipped with the Sy action:

w(@*@T) = (zw)* @ 7(w)T, o c Név, T e Y(r),
wp(x) = T(w)p(:):w), JAS PTa

extended by linearity. There is a parameter x which may be generic/transcendental or complex.

Definition 2.1. The Dunkl and Cherednik—Dunkl operators are (1 <i < N, p € P;)

Dip(a) = 2pla) + w3 (i, ) PEL—P2E)

aSL‘Z’p o Ty — l’j
i—1

Usp(a) := Dixip(x)) — kY (i, 5))p(x(i, 1))-
j=1

The commutation relations analogous to the scalar case hold:

DiDj = Dj'Dz’, Z/lll/l] = Ujui, 1 S ’L,] S N;
wD; = Dypyw, Yw € Sn; siU; = U;s;, j#Fi—1,4

Sildis; = U1 + KS;, Uis; = silli+1 + K, Uir18; = sill; — K.

The simultaneous eigenfunctions of {U;} are called (vector-valued) nonsymmetric Jack poly-
nomials (NSJP). For generic x these eigenfunctions form a basis of P, (this property fails for
certain rational numbers outside the interval —1/h; < k < 1/h;). There is a partial order on
N x Y(r) for which the NSJP’s have a triangular expression with leading term indexed by
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(o, T) € NJ x Y(). The polynomial with this label is denoted by (, 7, homogeneous of degree
N

> «; and satisfies

i=1

UiCar = (i + 1+ ke (ro (i), T)) Ca1, 1<i<N,
Ta(i) = #{j: ;> iy +#{j: 1 <j <i,05 = i };

the rank function r, € Sy and r, = [ if and only if « is a partition. The vector
[a; + 14 ke(ra(i), T)]fil

is called the spectral vector for (o, T'). The NSJP structure can be extended to Laurent polyno-
mials. Let ey := H z;and 1:=(1,1,...,1) € Név, then ro4m1 = 1o for any a € NN and m € Z.

The commutatlon Z/I (elp) = eR(m+U;)p for 1 <i < N and p € P, imply that e{}(,,r and
Ca+m1,7 have the same spectral vector for any m € Ny. They also have the same leading term
(see [3, Section 2.2]) and hence eX/Co 17 = (oymi1r for o € N(])V . This fact allows the definition
of (o1 for any o € ZN: let m = —min; a; then o +ml € Nf)v and set (o7 = ex" Catm1,T-

For a complex vector space V' a Hermitian form is a mapping (-,-): V ® V' — C such that
(u,cv) = c(u,v), (u,v1 +v2) = (u,v1) + (u,v2) and (u,v) = (v,u) for u,vi,v2 € V, ¢ € C.
The form is positive semidefinite if (u,u) > 0 for all w € V. The concern of this paper is with
a particular Hermitian form on P, which has the properties (for all f,g € P, T,T" € Y(7),
we Sy, 1 <i<N):

AT, 1T =(T,T o, (2.1)
(wf,wg) =(f,9),

(ziDif,g) = (f, % Dig),

(zif,zi9) = (f. 9)-

The commutation U; = Dijz; — kY, (i,7) = x;D; + 1 4+ kY (i,7) together with ((i,7)f,g) =
j<i §>i

(f,(i,7)g) show that (U;f,g) = (f,U;g) for all i. Thus uniqueness of the spectral vectors (for all
but a certain set of rational x values) implies that ((a,7, (g 17) = 0 whenever (o, T) # (5,7"). In
particular polynomials homogeneous of different degrees are mutually orthogonal, by the basis
property of {(,r}. For this particular Hermitian form, multiplication by any x; is an isometry
for all 1 < ¢ < N. This involves an integral over the torus. The equations (2.1) determine the
form uniquely (up to a multiplicative constant if the first condition is removed).

Denote Cy := C\{0} and CX, := CY¥\ U {z: z; = x;}. The torus is a compact multiplicative
1<j
abelian group. The notations for the torus and its Haar measure in terms of polar coordinates
are

Ni={zeCN:|zj|=1,1<j <N},

dm(z) = (2r)"Ndé, - -- oy, xj = exp(ib;), —m<0; <m, 1<j<N.
Let Tﬁ\ég =TV N (Cﬁ\efg, then Tﬁgg has (N — 1)! connected components and each component is
homotopic to a circle (if z is in some component then so is ux = (uz1,...,uzy) for each u € T).
Definition 2.2. Let w := exp 5 20 and z = (1, w,... ,wal). Denote the connected component

of ']I‘ﬁ\e’g containing xg by Co.
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Thus Cy is the set consisting of (6101, e eigN) with 01 < 0y < --- < Oy < 01 + 2.
In [3] we showed that if —1/h, < k < 1/h; then there exists a positive matrix-valued
measure dy on TV such that for f, g € C(l)(TN; VT), weSN, 1<i<N,

—1
[ty an@a) = [ o)) an@rwg(e).
[, @i (@) dua)g(@) = / F(@)*du(e)aDig(z),
™ ™
/TN(1 STV du()1®T) = (T,TY, T € V()

We introduced the notation

f@)dp@)g(e) = Y f@)rg(@)rdurm (),

T, 7'eY(T)

where f,g € P, have the components (fr), (g7) with respect to the orthonormal basis
{(T,T)g"*T: T € y(r)}.

Thus the Hermitian form (f,g) = [rn f( wu(x)g(z) satisfies (2.1). Furthermore we showed
that

dp(x) = dps(z) + L(z)*H(C)L(z)dm(x),

where the singular part p is the restriction of p to TN\TX,, H(C) is constant and positive-

reg’
definite on each connected component C of ’H‘reg and L(x) is a matrix function solving a system
of differential equations. That system is the subject of this paper. In a way the main problem

is to show that p has no singular part.

3 The differential system

Consider the system (with 0; := 8‘2, 1 <4 < N) for n, X n; matrix functions L(x)

1
OiL(x) = kL(x) § D ———((i.4)) — %1 . 1<i<N, (3.1)
j#i J ‘
£(r)
_Si(r) 1 )
V=N =N 2 Ti(m — 20+ 1).
N
The effect of the term l_I is to make L(z) homogeneous of degree zero, that is, > x;0;L(x) = 0.
i=1

The differential system is defined on CX_, Frobenius integrable and analytic, thus any local

reg’
solution can be continued analytically to any point in Creg Different paths may produce different
values; if the analytic continuation is done along a closed path then the resultant solution is a
constant matrix multiple of the original solution, called the monodromy matrix, however if the
closed path is contained in a simply connected subset of Cﬁ\ég then there is no change.

Integrability means that 0;(kL(z)A;(x)) = 0j(kL(x)A;(z)) for i # j, writing the system as
O0iL(x) = kL(z)Ai(z), 1 < i < N (where A;(x) is defined by equation (3.1)). The condition
becomes

KJZL(x)AZ‘(I‘)Aj () + kL(x)0;Aj(x) = I€2L(LU)AJ'($)AZ'(Z‘) + kL(x)0jAi(x).
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Since 0;A;(z) = (;((_Z:CJ])))Q = 0;A;(x) it suffices to show that A;(z) = %; %2) and A;(z) =
> x(j] Z)g) commute with each other. The product A;(x)'A;(z)" is a sum of
7

the form 0

—ml, terms of
i

T(1,K)(3,0)) (1,0 (3:k))
Ti—an)(@g—ee) | imwe) (25— )

(1,7, k) and (j,1, k) occurring as

AGHGR) |, T@GRGD) (G RGR)
(@i —2j)(wj —ax) (i —ap)(2y —i) (27— 2p) (@) — 1)
A (U 10) S (L))
(@i —2p) (@5 — ) (2 —ax) (@) — 2%)’
(because (i,7)(j,k) = (i,k)(j,7) = (4,7, k) and (i,k)(4,k) = (J,i,k)) and the latter two terms
are symmetric in %, j.
We consider only fundamental solutions, that is, det L(z) # 0. Recall Jacobi’s identity:

for {i,k} N{j,¢} = @, and terms involving the 3-cycles

%det F(t)=tr (adj(F(t))gtF (t)> )

where F'(t) is a differentiable matrix function and adj(F'(t)) F'(t) = det F'(¢)I, that is, adj(F(t)) =
{det F(t)}F(t)~! when F(t) is invertible; thus

9; det L(z) = tr ({det L(z)}L(2) " '0;L(z)) = r det L(z) tr A;(z).

This can be solved: from Y 7((4,7)) = Si(7)I it follows that tr(7((7,7))) = (g)_lsl(T)nT =
i<j
570 (and n, = #Y(7)). We obtain the system

2 1 1 .
@-detL(x)/i'ynT{NlZ : '}detL(x), I1<i<N.
By direct verification

i — )2 KA/2 n,
detL@) =c [[ (_H) CoA= T (e (1,2)),

1<i<j<N :L'ij Q(N— 1)

. 22 'y
is a local solution for any ¢ € Cy, if 7, = €%, 1 < k < N then —% = 4sin? % (with
the principal branch of the power function, positive on positive reals). This implies det L(x) # 0

for € CX, (and of course det L(z) is homogeneous of degree zero).

Proposition 3.1. If L(z) is a solution of (3.1) in some connected open subset U of CN_ then

reg
L(zw)7(w)™t is a solution in Uw™!

Proof. First let w = (4, k) for some fixed j, k. If i # j, k then replace x by z(j, k) in 0;L to
obtain

AL (z(j. ) ((j. k) = mx(j,k)){ y> 1&0) | 6@9) | TGk %}T@-, k)

r; — T Ty — X T; — T4 €Ty
(+i gk ) ¢ 7 k % J %

— kL@, k)G k) S T(.(ig))+T(,(fk))+7(.(fj),) _ay
etk AT T Tk L — Ty T

9
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because (7, 7)(j,k) = (j,k)(4,k). Next let w = (4, j), then 0;[L(x(¢,7))] = (0;L)(z(7, 7)) and

OUL (el )7 (i )] = wl(aing)) 4 3 WD) TED) 2 U gy

Ty — & T; — X4 ZT;
oy 7 l 7 J 7

= L (el () § 3 LD DDA

~ Xy Ty — T4 Ty
#i,j J

( ,7)(i,£). Arguing by induction suppose L(zw)7(w)~! is a solution then

by use of (j,¢)(i,j) =
) (4, k) = L(z(4, k)w)7T((j, k)w) ™!, for any(j, k), that is, the statement

so is L(z(j, k)w)T(w

holds for w' = (j, k)w. [
Let wo :== (1,2,3,...,N) = (12)(23) --- (N — 1, N) denote the N-cycle and let (wg) denote

the cyclic group generated by wg. There are two components of ']Treg which are set-wise invariant

under (wp) namely Cy and the reverse {dy < Oy_1 < -+ < 61 < Oy + 27}. Indeed (wy) is the
stabilizer of Cy as a subgroup of Sy.
Henceforth we use L(z) to denote the solution of (3.1) in Cy which satisfies L(xz¢) = I.

Proposition 3.2. Suppose v € Cy and m € Z then L(xw{") = 7(wo) ™" L(x)7(wo)™.

Proof. Consider the solution L(zwg)7(wp)~ ! which agrees with ZL(z) for all x € Cy for some
fixed matrix =. In particular for z = xy where zgwy = (w, o wV L 1) = wxyg (recall (zw); =
Zuy(s)) we obtain EL(zo) = L(zowo)7(wo) ™! = L(wzo)7(wo) ! = L(x)7(wo) ™% because L(x) is
homogeneous of degree zero. Thus = = 7(wg)~!. Repeated use of the relation shows L(zw]') =

7(wo) " L()7 (wo)™ u
Because of its frequent use denote v := 7(wp) (the letter v occurs in the Greek word cycle).

Definition 3.3. For w € Sy set v(w) := v'~*(), For any z € ']I‘I{\efg there is a unique w, such
that w,(1) = 1 and zw; ! € Cy. Set M (w, ) := v(w,w).

As a consequence v(wj'w) = v~ "v(w) for any w € Sy and m € Z; since wi'w(l) — 1 =
(w(l) + m — 1)mod N. Also M(I,z) = I. There is a 1-1 correspondence w — Cow between
{w € Sy: w(l) = 1} and the connected components of ']I‘ﬁ\e[g

Proposition 3.4. For any wi,ws € Sy and x € Tﬁ\efg

M (wiwe, x) = M (we, xw1 )M (w1, ).
Proof. By definition M(wjwz,x) = v(wywiwz) and M(wy,x) = v(wywi) = v~ " where
wzwi (1) = m+1. Let w3y = wyy,, that is, w3(1) = 1 and :cwlwgl € Cy. From (xw;l) (wxwlwgl)
€ Cp it follows that wmwlwg_l € (wyp), in particular wg,ﬂulwg_1 = w{' because wzwlwgl(l) =
wewi (1) =m+1=wi(1). Thus M(we, zwi) = v(wswz) = V(wamwxwlwg) = v"v(wywiwe),
and v™ = M (w1, x)"!. This completes the proof. |

Corollary 3.5. Suppose w € Sy and x € Tﬁ\ég then M (w™!, zw) = M(w,z)!.
Proof. Indeed M (w™!, zw) M(w,z) = M (ww™t,z) = I. [
We can now extend L(z) to all of TY,, from its values on Cj.

Definition 3.6. For x € TV let

reg

L(z) = L(zw; ) 7(wy).
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Proposition 3.7. For any x € Tﬁgg and w € Sy

L(zw) = M(w,z)L(z)T(w).
Proof. Let w1 = wgy, that is, wi(1) = 1 and acwwl_1 € Co, then by definition L(zw) =
L(zww; ) 7(w;) and L(zw;') = L(z)7(wy) ™. Let m = wyw(1) — 1. Since wyww; * fixes Co
and wzwwl_l(l) = w,w(1l) = m+ 1 it follows that wggwwl_1 = w{". Thus wi = wy " ww,
L(zwwiy ) 1(wi) = L(zw; 'wi) 7 (wy Mwew) = v~ L(zw; ) o™ (wy ™ wew)

= v " L(zw; ) T(ww) = v L(z)7(w)

and M(w,z) = v(w,w) = v~ ™. [

3.1 The adjoint operation on Laurent polynomials and L(x)

The purpose is to define an operation which agrees with taking complex conjugates of functions
and Hermitian adjoints of matrix functions when restricted to TV, and which preserves ana-
lyticity. The parameter  is treated as real in this context even where it may be complex (to
preserve analyticity in ). For € C% define ¢z := (:Ufl,x;l, .. .,:L‘X,l), then ¢(zw) = (¢z)w
for all w € Sy.

Definition 3.8.

(1) If f(x) = > cqx® is a Laurent polynomial then f*(z) := > coz™*.

aczZN acZN
(2) If f(z) = >, Aqx® is a Laurent polynomial with matrix coefficients then f*(z) :=
aeZN
SO AraT

aeZN

(3) if F(x) is a matrix-valued function analytic in an open subset U of C¥ then F*(z) :=
TT - — .
(F(¢x)) and F* is analytic on ¢U, that is, if F'(z)= [F”(a:)]fvjz1 then F*(x)= [Fﬂ(qﬁm)]f\g:l

(for example if Fia(z) = crhrizy 4 coxdag 'zt then Fyy(x) = crray ‘oz + Gry 2w324).

Loosely speaking F*(z) is obtained by replacing x by ¢z, conjugating the complex constants
and transposing. The fundamental chamber Cy is mapped by ¢ onto {(eiej)j.v:l: 01 >0 > ---

>0y >0 — 271}, again set-wise invariant under wg. Using %{f(%)} = —t% (%f) (%) we obtain
the system
0,L(¢x) = kL(gx){ 3 a2 RA(UT)) S I G
—. Li Tj — Tj g
J#i
Transposing this system leads to (note 7(w)” = 7(w)* = 7(w™1))
OiL(¢2)" =r{ Y 2 7(67) 7 L(¢x)Y, 1<i<N.
— Ti Ty —X; Xy
J#i
Now use part (3) of Definition 3.8 and set up the system whose solution of
8L () = » ZEMJrl L*(z), 1<i<N. (3.2)

i €Ty xi—xj ZT;
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satisfying L*(xg) = I is denoted by L*(z). The constants in the system are all real so replacing
complex constants by their complex conjugates preserves solutions of the system. The effect
is that L(z)* agrees with the Hermitian adjoint of L(z) for x € Cy (for real k). The goal here
is to establish conditions on a constant Hermitian matrix H so that K(x) := L*(x)HL(x) has
desirable properties, such as K(zw) = 7(w) 'K (z)7(w) and K(x) > 0 (i.e., positive definite).

Similarly to the above 7((7, 7)) L*(x(4, 7)) is also a solution of (3.2), implying that 7(w)L*(zw)
is a solution for any w € Sy, the inductive step is

7((i, )7 (w) L(x (i, jw)” = 7((i, §)w) Lz (i, j)w)".

Also L*(a:owo) L*(wtzg) = L*(20) = I (thus there is a matrix = such that 7(wo)L* (zwg) =
L*(¢x)Z for all z € Cp, and E = 7(wp) = v. In analogy to L for z € Treg and the same
wy as above let L(pxg)T = I, L(¢px)T = 7(wy)~ 1L(¢$w;1)T (since ¢prw,' € ¢Cp). Then

L(gzw)! = r(w) L (ga)T M (w,z) .
For any nonsingular constant matrix C' the function C'L(x) also satisfies (3.1) and the function
K(z) := L*(x)C*CL(x) satisfies the system

20K (x —/12{ (i, ) K () + K (2)7((i, ) — } 1<i<N. (3.3)

xi—a:j

This formulation can be slightly generalized by replacing C*C by a Hermitian matrix H (not
necessarily positive-definite) without changing the equation.

For the purpose of realizing the form (2.1) we want K to satisfy K (zw) = 7(w) 'K (z)7(w),
that is,

K(zw) = 7(w) ' L* ()M (w, ) Y HM (w, z) L(z)7(w)
= 7(w) " L* () v Hu ™ L(z)1(w)

(from Proposition 3.7), where m = w,w(1) — 1. The condition is equivalent to
vH = Hu,

which is now added to the hypotheses, summarized here:

Condition 3.9. L(x) is the solution of (3.1) such that L(zo) = I and L(z) = L(zw;")7(wg) for
x € ']I'I{\efg where wy(1) = 1 and zw; ' € Cy; L*(x) is the solution of (3.2) satisfying L*(zo) = I,
K(x) = L*(z)HL(x) is a solution of (3.3) and H satisfies H* = H, vH = Hv.

4 Integration by parts

In this section we establish the relation between the differential system and the abstract relation
(;Dif,g9) = (f,2;D;g) holding for 1 < i < N and f,g € C* (’]I‘N;VT). We demonstrate how
close L is to providing the desired inner product, by performing an integration-by-parts over an
Sn-invariant closed set C TY,. Here L(x) and H satisfy the hypotheses listed in Condition 3.9

reg*

above. We use the identity x;0; f*(z) = —(2;0;f)*(x). For 6 > 0 let

Qs := {SEGTNI min \xiij|25}.
1<i<j<N

This set is invariant under Sy and K(z) is bounded and smooth on it. Thus the following
integrals exist.
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Proposition 4.1. Suppose H satisfies Condition 3.9 then for f,g € C* (TN; VT) and1 <t <N
{ (2:D;f(2))" K (z)g(x) + f(2) K (2)x;Dig(z) jdm(x)
= [ 20 1(@) Kla)g(a)dm(a).

Proof. By definition

x;Dig(x) = 2;0;9(x) + Kk Z

G T

(@:Dif (2))" = —2:i0if (x)" + £ )
J#i

7((2,5))(g(x) — g(x(i, 7)),

= J(x(2,5))")7 (7 7))-

Tj— xz
Thus

—(2iDif () K (x)g(x) + f(2)" K (2)ziDig(x)
= :Elazf(l‘)* + $lazg($)

+Hf($)*2{ (i, ) K (@) + K ()7 (i, ) — }9(33)

. Ty — Ty XTi— Ty
J?é J J

—K Z PR {2 f (@i, 5))7((1,0) K (2)g(2) + if (2)" K (2)7((, 5))g(x(i, ) }

= xié?z-{f( ) K (x)g(z)} (4.1)
—K Z = i - {a f (i, 9))*7((i, ) K (2)g(x) + @i f(2)* K (2)7((i, )9 (2(i, 5)) } -
g#i

For each pair {7,j} the term inside {-} is invariant under x +— z(i,j), because K(z(i,j)) =
7((4,4)) K (z)7((4, 7)), and z; — x; changes sign under this transformation. Thus

/ zj f (@(i,5)) (i, ) K (x)g(x) + wz’f(x)*K(u’U)T((i,j))g(ﬂf(i,j))dm(x) _0

Qs Tq — .I]

for each j # i because Q5 and dm are invariant under (i, j). |
Observe the value of x is not involved in the proof. Since z;0; = —ia%j when z; = el% and

dm(z) = (2r)"Nd6; - - - dfx one step of integration can be directly evaluated. Consider the case
i = N and for a fixed (N — 1)-tuple (61,...,0n—1) with 0; < 0 < --- < Ony_1 < 01 + 27 such
that ‘eiej — €l%| > § the integral over Ay is over a union of closed intervals. These are the
complement of |J {6:60; —¢ <6 <6+ 0"} in the circle, where sin %l = %. This results in

1<j<N—1
an alternating sum of values of f*K g at the end-points of the closed intervals. Analyzing the
resulting integral (over (61,...,0ny—_1) with respect to df; ---dfy_1) is one of the key steps in

showing that a given K provides the desired inner product. In other parts of this paper we find
that H must satisfy another commuting relation.

5 Local power series near the singular set

In this section assume x ¢ Z—&—%. We consider the system (3.1) in a neighborhood of the face
{z: xn_1 =zn} of Ch. We use a coordinate system which treats the singularity in a simple way.
For a more concise notation define

x(u, z) = (1,22, .., TN-2,U — Z,U + 2) E(CQI
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We consider the system in terms of the variable x(u, z) subject to the conditions that the

points x1, g, . .., TN_2,u are pairwise distinct and |z| < 1<H§£ ) |z;—ul, also |z| < |u|,Im 2 >0
<JSN-—

(these conditions imply arg(u — z) < arg(u + z)). This allows power series expansions in z.
For z1,2z90 € Cy let

ZIImT O
p(z1,22) == O ol . |

Let 0 := 7((N — 1,N)) = p(—1,1). We analyze the local solution L(z(u — z,u + z)) with an
initial condition specified later. We obtain the differential system (using 0, := %, Oy = %)
0.L(x) = OnL — On_1L
N-2 , ,
N N-1 N-1,N
{5 (2D AN o1y e

u—x;+2 U—Tj—2

Sy SR O
ot z U+ 2z uU—z

OuL(z) =0NL+ On_1L

N-2 , .
— sL Z(T((J,N)) JrT((],N—l)))_ v v

)

= u—xj—{—z U—Tj—2 U+ z U—z
N-2 .. . .
oo 55 0D 21, AN 00
i=1,ij 7 i J J J
1<j<N-2.

oo
Using the expansion ;1 = Y tj% for |z| < |t| we let
n=0

= 7((j,N))
= (u _ xj)n-i-l

for n =0,1,2,...and express the equations as (since o7((j, N))o = 7((j, N — 1)))

U+ 2 u—

0:L(x) = kL(x) {Z {(—1)"Bu(a(w.0) = oBu(a(u,0))o}e" + 7 = ——1+ 1 ZI} ,
n=0

u—+z U—2z

OuL(x) = KL(x) {Z {(=1)"Bp(x(u,0)) + 0 Bn(z(u,0))o } 2" — LA S I} ,
n=0

0,0 = nL(@) S T 5 3 rGN —(1>> (1M (GN) L,
J n=0

- imtaty T u— ;)" ’
1<j<N-2
Set
By (z(u,0)) = (=1)"Bn(z(u,0)) — 0 Bn(x(u,0))o, n=0,1,2,....
Note 0 Bpz(u,0)0 = (—1)""1 B,,(z(u, 0)). Suggested by the relation

O w o k\_E ko kB
(=) = Sp(— 2y = T(s
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we look for a solution of the form
vk

N-2 00
L(x) = (u2 - z2) H xj p(z7",2") Z an(z(u,0))z", (5.1)
j=1 n=0

where each ap(z(u,0)) is matrix-valued and analytic in z(u,0), and the initial condition is
Qg (iL'(O)) = I, where (9 is a base point, chosen as (1,w,w2, . ,wN*3,w*3/2,w*3/2) (that is,
u=w3? = 0), where w := e2™/N _Tmplicitly restrict (x1,...,2N—-1,u) to a simply connected
open subset of Cﬁ\ggl containing (l,w,wQ, oo w3 w_3/2). Substitute (5.1) in the 0, equation
(suppressing the z(u,0) argument in the a,,’s)

1 1 N—-2 o 00
0, L = kv <u+z — u—z> (u2—z2) | xj p(z_“,z“)Zanz”
]:1 n=0
N—2 o . oo
+ (u2 — 22) H x; —p(z “,z”)aZanz"
]:1 n=0
N—-2 TR [e%S)
+ (u2 — 22) H x; p(z*’“,z”) Znanz" !
j=1 n=1

j=1
xianz" iBm(u)zm—i—g—’y CE—
—~ — z ut+z u—z/)[’
which simplifies to
K - n - n—1 __ - n - m
. Z(Uan —ano)2" + Z noapz"t =K Z anz Z B (z(u,0))2™. (5.2)
n=0 n=1 n=0 m=0
The equations for 9, and 9; simplify to
N-2 o o0 1 1 o0
22 n _ n
(u z) | x; {Z@uanz Fw(u—i—v U_U>Zanz }
j=1 n=0 n=0
N—-2 o [e'¢)
=K (u2 — 22) T Z oanz”
j=1 n=0
- g Y
1) B ,0 m ,0 m_ I— Iy,
x {mz_o{( )" B @(0,0)) + 0B (a0} = T - T }
leading to (with 1 < j < N — 2)
> Ouan(@(u,0))2" = £ an(z(u,0))2" Y {(=1)"Bm(z(u,0)) + 0 fm(2(u,0))o } 2™,
n=0 n=0 m=0
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=2 =7 =)™ ((5,N))
« Z Z 1)+ (=)™ (( ))z

(u — xj)m+l
i=1,i¢tj 3)

— T
Lj v m=0

We only need the equations for ag(x(u,0)) (that is, the coefficient of 2°) to initialize the 0,
equation (this is valid because the system is Frobenius integrable):

Ao (z(u,0)) = kap(z(u,0)) {50(1’ u,0)) + O’ﬁo(x(u,()))a}, (5.3)
djao(z(u,0)) = kag(z(u,0)) i ;((1_32) _ TGN —(ul)_) ;)T((j, m) |
i=1,i¢j 7 g J
2<j<N -2

Lemma 5.1. cap(z(u,0))o = ap(z(u,0)) and ag(z(u,0)) is invertible.

Proof. By hypothesis «g (ac(o)) = I. The right hand sides of the system are invariant un-
der the transformation @) — ocQo thus ap(x(u,0)) and cag(z(u,0))o satisfy the same system.
They agree at the base-point z(?), hence everywhere in the domain. By Jacobi’s identity the
determinant satisfies (where A := tr(o) = n, — 2m;,)

Oy det ap(z(u, 0)) = k det ap(x(u, 0)) tr{Bo(x( 0)) + oBo(x(u,0))c}

= 2k det ap(z(u,0)) )\Z

(U — ;)
N-2 1 5
0; det ag(x(u,0)) = kA det ag(x(u,0)) Z - , 1<j<N-2
i—1,i¢j Tj — Ty U — Ty
A& N_9 2MK
_ Ty — Ty Ti— U
detao(r(u0)) = ][ (<o><m> I1 (w) v
1<i<j<N-2 \T; = — T i=1 \T;  —TN_y

the multiplicative constant follows from ayg (:U(O)) = I. Thus ap(z(u,0)) is nonsingular in its
domain. m

We turn to the inductive definition of {ay,(z(u,0)): n > 1}.
In terms of the block decomposition (m, + (n, —m;)) x (m; + (nr —m;)) (henceforth called
the o-block decomposition) of a matrix

alr ag2
o=
[0421 0422}
ocao = « if and only if a9 = O = a9; and cac = —« if and only if a1 = O = agy. Write the
o-block decomposition of oy, (u) as

ap 11 Qn 12
oy =
Qn 21 On 22

then the coefficient of 2”71 on the left side of equation (5.2) is

noy, 11 (n — 2K)an, 12
(n + 2K)an 21 nom, 22

Y

k(oan — ano) + nay, = [
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and on the right side it is

n—1
kSp(z(u,0)) =k Z an—1-iBi(x(u,0)),
i=0

for n > 1. Arguing inductively suppose cay,o0 = (—=1)"ay, for 0 < m < n, then oS,0 =
n—1 n—1

Y (can—1-i0)(oBio) = Y (—1)""1=Hi=lq, | ;B; and thus 05, (u)o = (—=1)"S,(u). In terms

i=0 i=0

of the o-block decomposition Snat Sz of Sy (x(u,0)) this condition implies Sy, 12 = O =
Sn21 Sp22 ’

Sn,21 when n is even, and Sy, 11 = O = Sy 22 when n is odd. This implies (for n =1,2,3,...)

o (2(u, 0)) = %Sgn(x(u,())), (5.4)

KR K

e (0,0 = p (G ) S o, 0)

and thus ooy, (z(u,0))o = (—1)"an(z(u,0)). In particular

K K
1-2k"14 2k

m@@ﬁ»=ﬂ< )%wwm»%@wm»

and all the coefficients are determined; by hypothesis x ¢ Z—i—% and the denominators are of the
form 2m + 1 + 2k.

Henceforth denote the series (5.1), solving (3.1) with the normalization g (x(o)) = [ by Li(x).
It is defined for all x(u, z) € Cp subject to |z| < 1<jrréi]1V1_2 |z; — ul, also |z < |u|, Im Z > 0. The
radius of convergence depends on z(u,0). Return to using L(x) to denote the solution from
Definition 3.6 (on all of Tfr\ég and L(zg) = I). In terms of z(u, z) the point xy corresponds to

_ 1~ =2y o _1( —1_, -2 _ N-3 :
u—i(w +w ),z—i(w —w ),x(u,z)—(l,w,...,w ,u—z,u+z),then1§jrr%1]1v1_2\u—

zj| = sin % (5+4cos ZF) and |z| = sin § (also £ = itan %) and z is in the domain of convergence
of the series L;(x). Thus the relation L;(z) = Li(xo)L(x) holds in the domain of L; in Cy. This
implies the important fact that L;(x) is an analytic function of k, to be exploited in Section 9.

5.1 Behavior on boundary

The term p(z~", 2") implies that L;(x) is not continuous at z = 0, that is, on the boundary
{z: xn_1 = zn}. However there may be a weak type of continuity, specifically

lim (K(z)— K(z(N —-1,N)))=0.
rnN_1—xN—0
With the aim of expressing the desired K () in the form L(z)*C*CL(x) (and C' is unknown at
this stage) we consider C'L(z) in series form, that is C'L;(z¢) 'L (z) (recall det L(z) # 0 in Cp).
We analyze the effect of C' on the weak continuity condition. Denote C' := C'Ly(x¢) .

From Proposition 3.7 L(z(N — 1,N)) = v((N — 1,N))L(z)7((N — 1,N)) = L(x)o, because
w(l) = 1forw = (N—1,N), [for the special case N = 3, 7 = (2, 1), Ti’eg has two components and
we define L(x) = L(x(2,3))o for the component # Cy|. By use of z(u, z)(N — 1, N) = z(u, —2)
it follows that

CL(z(u,2)(N —1,N)) = CL(z(u, 2))o = C' (xnzn-1) " p(z7", 2%) Zan(u)zna
n=0
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=Clo(zyzn-_1) "p(z7", 2") Z ap(u)(—1)"2",
n=0

because ocay,(u)o = (—1)"ay(u) and o = p(—1,1).
Recall L*(x) is defined as L(¢x)” with complex constants replaced by their conjugates. Then

ox(u, z) = (l‘fl, zy TN, L u}rz) To compute L1 (¢x(u, 2)) replace u by u' = m
and replace z by 2/ = W' When restricted to the torus v’ = %(le_l + %) = u and
N2
2 = %(le_l - ﬁ) = Z. The terms f,(u) := 2:1 % in the intermediate formulae for L
‘7:
are replaced by their complex conjugates when z(u, z) € TV. Similarly Ek Z Z o (Jx N,Z T

m=0 j=
transforms to (B;) because the constant ug is conjugated. Thus for z(u,z) € Tﬁ\ég
o0
Li(z(u,2))" = Z o (u)*z2"p(Z75,27)C * (ZNTN 1) "
am(u)* denotes the adjoint of the matrix o, (u). Then
[e.e]
Li(xz(u,z)(N —1,N)) Z ZMp(z ", 2% e C F(TneN=1) "
m=0
Furthermore (recall K(z(N — 1,N)) = oK (x)o by definition)
Z zZ" 2" p(E_“,E’“‘)C'*C'p(z_”, z”)an(u),
m,n=0
oo
K(z(u,—2)) = Z 272 (=1 g (u) p(7,2%) 0 C* Clop(27", 2%) an(u).
m,n=0

The term of lowest order in z in K(z(u,z)) — K(x(u,—z)) is
ap(u)*p(z7%,2%){C™*C" — aC"*C'o}p(27", 2%) ap(u).

In terms of the o-block decomposition, with

O — [21 cu] 7 o) = [au(u) o) }

la €22

the expression equals

@) <%) a1 (u)*cr2a22(u)
2 — K
<) a2 (1) cyary (1) 0 7

which tends to zero as z — 0 if and only if ¢1o0 = 0, that is, cC*Co = C*C.
Proposition 5.2. Suppose C"™*C' commutes with o then

K (x(u, 2)) — K(2(u, 2)(N — 1, N)) = O(|z|*~2/]).
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K

Proof. The hypothesis implies C"*C’ commutes with p(z~", 2*), thus
K(x(u, 2)) — K(2(u, 2)(N — 1,N))

o0

_ Z zmzn(l o (_1)m+n)am<u)*p(|z’—2n’ \z!%)C’*C’an(u)

+ Z 272" (1 = (=)™ ™) (u)*p(|2| 27, |2*%) C™* C' cun ().

The dominant terms come from m = 0,n =1 and m = 1,n = 0; both of order O(]z|1_2|“‘). [

We will see later for purpose of integration by parts, that the change in K between the points

($1,.. L IN_2, e ellf- E)) and (xl,..  TN_g, el e(9+5)) is a key part of the analysis; this uses
the relation K((ml,...,xN_z,ew,ei(e 5))) = oK ((21,..., 250,09 ¥))0.
6 Bounds

In this section we derive bounds on L(x) of global and local type. Throughout we adopt the

normalization L(zg) = I. The operator norm on n, X n, complex matrices is defined by

[M]| = sup{|Mv|: |v] = 1}.

Theorem 6.1. There is a constant ¢ depending on & such that | L(z)|| <c¢  [[  |o; — a4~
1<i<j<N

for each x € ’]Treg

The proof is a series of steps starting with a general result which applies to matrix functions
satisfying a linear differential equation in one variable.

Lemma 6.2. Suppose M(0) = I, LM(t) = M(t)F(t) and |[F(t)|| < f(t) for 0 <t < 1 then

dt
1M () = I|| < exp fy f(s)ds — 1 and [ M(1)]| < exp fy f(s)ds.
Proof from [11, Theorem 7.1.11]. Let ¢(t) := |[M(t) — I| then the equation M(t) — I =
fo ds and the inequalities |[M(t)|| < ||M(t) — I|| + ||{|| (and ||| = 1) imply that
g fo f(s)ds. Define differentiable functions b(¢) and h(t) by

1) = exp /0 " (s)ds

b(OA(L) = / {(Us) + 1) f(s)ds + 1.

0

Apply %to the latter equation:
b'(t)h(t) + b(t) f(t)h(t) = (E( )+ 1) f(0),

v (t {E )+1-— Z(s) +1)f(s)ds — 1}
{E )+ l)f(s)ds} <0.
Hence V/(t) < 0 and b(t) < ) = 1 which implies

() < / ((s) + 1) f(s)ds = b(t)h(t) — 1 < h(t) -

Finally | M(1)]| < [M(1) = I| +1 < exp [, f(s)ds. |
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Next we set up a differentiable path p(t) = (p1(¢),...,pn(t)) in Creg starting at x¢ and obtain
the equation

d al t) ()
dtL(( Z ZWT((%]))—WM(”I

i=1 | j#i

O —pit) M)
{1<Z<J<N () — pi(t) (z,]))—*yi:1 pi(t)l

Suppose x = ( 0 ‘91\’ € Chand 61 < Oy < --- < Oy < 61 + 27w. Define the path
p(t) = (e, .. 19N<t>) Where gi(t) = (1 — )20 449, for 1 < j < N. Then p(t) € Co
for 0 <t < because gir1(t) — gi(t) (1-— )27r —|—t(91+1 —6;) >0for 1 <i < N and

1 =
2 + g1(t) — gn(t) = 2m + 0, — (1 — )2 XDT 490 — (1 — )27 4 (27 + 6, — Oy) > 0. The
factor of 7((4,7)) in the equation is

gi(t)ei sV — gi(tyela® g [
i (g

elgj (t) — elgz(t) o 2

+i(g; (1) +g§(t))}-

~ N
We will apply Lemma 6.2 to L(z) = [] :L';%L(l'); this only changes the phase and removes the
j=1

> ?8 term. In the notation of Lemma 6.2
(1)) — g(p)ein
el9i () _ eigi(t)

:]ﬁ\Zi

1<j

(since ||7((4,7))|| = 1). To set up the integral fo t)dt let

1 1 2(5 —1
610 = 5050~ 5:0) = 5 { (1= 02T LT 1106, - )
so that gb;() 2(0; — 0; +2('7i)ﬂ) and 0 < ¢;j(t) < 7 for i < j and 0 < ¢ < 1. The terms

i(g;(t) + gi(t))| < 47 provide a simple bound (no singularities off T
1 |¢” Ccos ¢z] (t)|

reg) The dominant terms

come from f dt. There are two cases. Let ¢q, @1 satisfy 0 < ¢g, 91 < 7 and let

sin ¢y (t)
¢(t) = (1 — t)¢o + t¢1. The antiderivative [ ¢S§?Z‘é()t) dt = log sin ¢(t). The first case applies
when either 0 < ¢g,¢1 < § or § < ¢g,¢1 < 7 (assign ¢g = § = ¢1 to the first interval); then

Pcosp(t) >0if 0 < g < pr < Forf <y < o< and gZ)’ cos ¢(t) < 0 otherwise. These
imply

"¢’ cos o(1)]
o sing(t)

The second case applies when either 0 < ¢g < § < ¢1 < 7 (thus ¢’ > 0) or 0 < ¢1 < § < ¢pg < 7.
Let ¢(to) = 5 (that is, {9 = 7212__5;0). In the first situation
1 / to ./ 1
o oxoltl, (9 sxolt, [ ool
o sing(t) o sing(t) to  Sino(t)

sin ¢
singg |

dt = ‘10

= —log sin ¢y — log sin ¢1,
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since log sin § = 0; and the same value holds for the second situation. We obtain

1 Y .
/Of(t)dt§|/<a] Z {—logsinejzgz—logsin(‘] NZ)W—|—47T}.

Taking exponentials and using the lemma (recall ’€i¢1 — ei@‘ = 2sin |@’) we obtain

L@ <e T o= a7
1<i<j<N

when L(xg) commutes with v and L is extended to ’H‘ﬁ\cfg as in

This bound applies to all of Treg
Definition 3.6. This completes the proof of Theorem 6.1.
Next we find bounds on the series expansion from (5.1)

—K

N-2 o)
Li(x) = (u2 - 22) H xj p(z7",2") Z an(z(u,0))z",
j=1 n=0
where |z| < dp:= min |u— ;| and Im Z > 0. Recall the recurrence (5.4)

1<jSN-2

N-2
7_

Sy, = Zan 1— z O'B’LU}
a2n(x(u70)) = %SQTL’

K K
azn+1(@(u, 0)) = p <2n+ 1— 2 2n+1+ 2n> S2nt1-

(u—x; ’+1’

“M

Proposition 6.3. Suppose || < kg < 3 and A := (N — 2)kq then for n >0

()\)n ()\ + % — KJQ)

laczn ((u, )| < flao(2(u, 0)) | ——7 205", (6.1)
TZ.(§ B ’io)n
(Mn+1(A+3 =Ko n c—2n—
lazna (2w, 0)[| < flao(z(u, 0)) | —— 1( 2 1) &
(§ Ro)n—i-l
n—1—i
Proof. Suppose n > 1 then ||S,| < Z atn_1-il| 2N — 4)65°" (since ||7((j, N — 1))|| = 1).

for n > 2, we find

Furthermore, since ‘n i%‘ < 25

laznall < 575 +1 Znagn il L,

2n1

lagn]] < = Z llozn—1-ill65 "

To set up an inductive argument let ¢,, denote the hypothetical bound on ||a,(z(u,0))|| and
n—1 .

set v, = > tn_l_iéo_’_l; then v, = 50_1(tn_1 + vp—1) for n > 2. Setting t9, = %Ugn and
i=0

_ 2\ .
tont1 = Tl omg V2n+1 the recurrence relations become

A 2n — 1 — 2k 1_ 2A +2n — 1 — 2k -1
top = - <t2n—1 + T ton— 1> dg on ton—10g
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2 2\ + 21 »
t = (t t > oo L T 00t
T 41— 26 2”+)\2" T o1 2k 0
Starting with [joq || < 55— %0 |ao||6g ™ = t1 the stated bounds are proved inductively. [ |

By use of Stirling’s formula for 11:22125 ~ n%" we see that t, behaves like (a multiple of)

n? =1 for large n. Also there is a constant ¢’ depending on N and kg such that

> ettt < oot () (1= 1) (6:2)

We also need to analyze the effect of small changes in u. Fix a point (@, 0) and consider series
expansions of ay,(z(u,0)) in powers of (u —u). Let 01 := 1<rréi]{[1 , |t — x;|. Recall equation (5.3)
<jSN-—

O (z(u,0)) = kap(z(u, 0)){Bo(z(u,0)) + oBo(z(u,0))o},

and solve this in the form

= o, 0))(u—w)".
n=0

This leads to the recurrence (suppressing the arguments z(u,0))

Znagyn(u —a)~t
n=1
= = (N 1) +7((5, N)

_/-;E oz()nu—u"E ™ —u)™ Lyt ,

=0 =0 Ly

(TL + 1)050,n+1 =K Z aO,n—mgm($(ﬂv 0))7

m=0

(G, N = 1) +7((, N
Y (( u_;;;rmflo )

B (z(7, 0)

]:

Thus ||B|| < 255],\,2112 ) and by a similar method as above we find
1

Joan (e ) < X5 g o, 0D (6.3

where A = (N — 2)kg. From

N-2
(G, N — 1)) — (G, N))
o ”(1 ) o((w,0)) 3 (1))

Jj=

[e.e]

:p<1 );ao,nu_u

NQT , 7((4, N
XZ u_umZ‘; ((J u—w)])m“‘(l(j ))7
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we can derive a recurrence for the coefficients in oy (z(u,0)) = > a1 ,(x(u,0))(u —u)". Also

- 2) Yo im
oo @ O] < 15—l u}: sl

2A(2)‘+ )Tl —n—1

- B aola(a.0)

note 2A(2A + 1), = (2X) 1.

Essentially we are setting up bounds on behavior of L(x(u, z)) for points near x(u, 0) in terms
of ||ap(z(w,0))|| which is handled by the global bound.

In the series

> an(z(u,0)2" = > o m(@(@,0))2" (u— W)™
n=0

m,n=0

the first order terms are
aoo(z(w,0)) + a1 (z(w,0))(u — u) + ai,o(z(w,0))z,

and the bounds (6.1) for the omitted terms
n 21\? B
E ltn (2 (u, 0))[[[2]" < llao(@(w, I { =) (1- % :
9o 90
n lu— 1]\ u —a|\ " -
ENMM @ oDl < (20 () (1- 2 Jao(a@ ), (6.4)

~ i\ —2A—2

Note there is a difference between dp and d1: dg,01 are the distances from the nearest x;
(1 < j < N —2) to u,u respectively; thus the double series converges in |z| + |u — u| < 1
because this implies |z| < §; — |u — @] < dp, by the triangle inequality: 6; < |u —u| + dp .

7 Sufficient condition for the inner product property

In this section we will use the series
.

N o)
Li(y,u — z,u+2) = H xj p(z7", 2%) Z an(z(u,0))z"
j=1 n=0

normalized by «q (x(o)) = I where 20 = (1,w,w2,...,wN_?’,w_3/2,w_3/2), w = e2/N_ The
hypothesis is that there exists a Hermitian matrix H such that vH = Hv (recall v := 7(wy))
and the matrix H; defined by

Ly(2)*HyLi(z) = L(z)*HL(x) (7.1)

commutes with ¢ = 7(N — 1,N) (recall L(zg) = I). Setting z = x¢ we find that H =
Li(z9)*HiL1(z9). The analogous condition has to hold for each face of Cy and any such face
can be obtained from {xy_; = xy} by applying x — zw{" with suitable m. For notational

simplicity we will work out only the {zy_2 = xx_1} case. From the general relation w(i, j)w ™! =
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(w(i),w(j)) we obtain w (N —1,N)wg = (N —2,N —1). A matrix M commutes with 7(N —
2, N — 1) if and only if uMv~! commutes with o. Let

o= (2],... 2y g u—z,u+tz,2Y),
x/wal — (LE§V,$/1, Ce ,J/'/N_3,’LL —z,u+ Z) =z,
—K
oo
o= (o) oo 3t
n=0

This is a solution of (3.1) by Proposition 3.1. This has the analogous behavior to Lq; writing
v_lp(z_”, ) an (y, u)v = {U_lp(z_“, z“)v}{v_lan(y,u)v}
implies the relations

T(N-2,N—-1 {U_lp( vt = {U_lp( _“,z”)U}T(N—Q N —-1),
(N—QN—l{U an(y,u)v}r(N —2,N — 1) = (-1)" {v o (y,u)v}, n > 0.

We claim that the Hermitian matrix Hy defined by

Lo(x)*HyLo(x) = L(x)*HL(x) (7.2)
commutes with 7(N —2, N —1). There is a subtle change: the base point 20 = (1 w, ..., wN 72,
w_3/2,w_3/2) is replaced by ( w2 w82 32 ) and now wzrgy = (w,...,wN_l, 1) is

in the domain of convergence of Ls. Set x = wxg in (7.2) to obtain

Lo(wxg) = v, (wxowal)v = v_lLl(xo)v,
Hy = (Lg(wxo)*)leLg(wxo)fl = 71([41(xo)*)flvﬂvfllq(xo)ilv
= v (L (o)) " H Ly (z0) ' = v Hyw,
because H commutes with v (and L(wxg) = L(xg) = I by the homogeneity). Thus Hy commutes
with 7(N — 2, N — 1).
From Theorem 6.1 we have the bound

IL(2) HL(2)|| < e ] ] lws — 5|72,

1<j

Denote K(z) = L(z)*HL(x). We will show that there is an interval —r; < K < k1 where K1
depends on N such that

{anDa) @K ()g(@) = £ (@)K (@)enDyg(e) }dm(z) =0,

for each f,g € C* (TN; V;). Consider the Haar measure of {x: min |z — x;] < e}; let sin%/ = £

and i < j then m{z: |z; — x;| < e} = L&/, thus m{x: mln |x; — x]| <e} < ( ) The integral

is broken up into three pieces. The aim is to let —> O where ¢ satisfies an upper bound

0 < min ((2 sin %)2, %); the first term comes from the maximum spacing of N points on T and

d

the second is equivalent to 38 < §/2. Also ¢ := 2arcsin 3

1. Inm |z; — 2] < &, done with the integrability of ] |z; — a;|~2%l for |k < & % (from the
1<J

Selberg integral [y IT |z — x| 72 dm(z) = W), and the measure of the set is O(9).
1<

The limit as § — 0 is zero by the dominated convergence theorem.
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2.6<  min |z —x;] <d/?and § < min |z; — xp|; this case uses the same bound

1<i<j<N-1 1<i<N-1
on K and the TN~!-Haar measure of {zx € TN"1:  min |z; — 2;] < §¥/2};
1<i<j<N-1
3. min |z, —x;| > 62 and min |z; —xy| > . This is done with a detailed analysis
1<i<j<N-1 1<i<N-1

using the double series from (6.4).

The total of parts (2) and (3), that is, the integral over s, equals

/ enON{f () K (2)g(x) }dm(z).

Qs
We use the coordinates z; = e, 1 < j < N; thus zyOy = i%. For fixed (01,...,0N-1)
the condition = € s implies that the set of Op-values is a union of disjoint closed inter-
vals (it is possible there is only one, in the extreme case §; = j§' for 1 < j < N —1

the interval is No' < f6ny < 27). In case (2) the Oy-integration results in a sum of terms

(f*Kg) (e, ... €1 €?) with coefficients =1 where P ?11]{[1 |¢ — 0;| = 0. Each such sum is

bounded by 2(N — 1)¢|| fllsc[|gllocd ™ NN =DIE because [] |z; — ;] > 6NN=1/2 on Q5. Thus the
1<j
integral for part (2) is bounded by

_ 1/2
2(N — 1)Hf”ongHoo(s_N(N_l)‘“‘ <N2 1) (2 arcsin 62> < §/2-NIN=D)s|

for some finite constant ¢ (depending on f, ¢g). This term tends to zero as § — 0 if |x| < m
In part (3) the intervals [0; — ¢’,6; + ¢'] are pairwise disjoint because |6; — 6;] > 30 for i # j
(recall V& > 36). To simplify the notation assume 6; < o < --- (the other cases follow from

the group invariance of the setup). Then the 6y-integration yields
* 19 i0.: i(0,—6")
1-N (F Kg) (e, ... ef%, ... =)
(27) Z/ { f*Kg 1917'”76193-7“"61(%_,_5/)) dfy---dln_1,

where R5 = {(91, . ,HN—I) : 91 < 92 <0 < 0N—1 < 91+27r,min ‘eiaj—eiek‘ > \/5} It suffices
to deal with the term with j = N — 1; this allows the use of the double series. It is fairly easy
to show that (f*Kg) (ei‘gl, el ei(eN—lf‘S/)) — (f*Kg) (eiel, ey eieN—l,ei(eN—lJr‘sl)) tends to
zero with ¢ but this is not enough to control the integral. The idea is to show that

[(FKg) (e, e, elOvm00) — (fUg) (e, et el D))
< C//51/2—2|n| | (f*Kg) (8101, e eiGN,l 7 ei(9N71+6’)) ’

for some constant ¢’. This can then be bounded using the || K || bound for sufficiently small |x|.
Fix y = (6191, ey eleN—2) and let z(y,u —v,u+v) denote (6161, 0Ny z). We will
use the form K = LiH;L; from (7.1) with two pairs of values along with 7 = €!¥-1, and set
(= eld’

1) 7 = 2(y,u1 — 21, u1 +21) = x(y, 931, lOn-179)) “then uy = Lu(1+¢), 21 = Ju(¢-1),
up—u==z,|z1|=9

2) 1 = z(y,us — z2,us + 22) = 2y, eO¥-179) eN-1) then us = Lu(1+¢71), 20 =
%ﬂ(l — C_l) = C_lzl, Uy — U = —29, ’22| =J.
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Let n®) :x(y, elfn-1, ei(GNfl_‘S')) =n) (N -1, N), then by construction K(n(3)) :aK(n(Q))a.
We start by disposing of the f and ¢ factors: by uniform continuous differentiability there is
a constant ¢” such that Hf(n(l)) - f(n(?)))H < "¢ and Hg(n(l)) - g(n(?’))H < "¢ (same
constant for all of TV). So the error made by assuming f and g are constant is bounded by
c/”é’(HK(n(l)) |+ HK(n(Q)) |)- The problem is reduced to bounding K(n(l)) - aK(n(Q))a. To

add more detail about the effect of the *-operation on u and z we compute

L1/ 1 1 P L_1(1 u
z = — — :—7’ u = — =
2\u+z u-—=z u2 — 22 2\u+z u-—=z uZ — 22

and if u — z = eN-1 y + 2 = €N then

L %ei(eN,1+9N)/2 (elON=ON-1)/2 _ GilON-1-0)/2) _ jci(On-1+0N)/2 gy %’
2 = ie 0N H0N) /2 iy w =7z,
" — %ei(eN,ﬁeN)m (elON=ON-1)/2 4 (i(ON-1-03)/2) _ (HON-140N)/2 g %,
= eiOna+0n)/2 o IN-1 = ON

2

the x-operation agrees with complex conjugate on the torus and p(z~", z%)* = p(z7",z"). The
reason for this is to emphasize that L(x)* is an analytic function agreeing with the (Hermitian)
adjoint of L(z). Thus

[e.o]

K(nW) = Y anl@(ur,0)p(zr", ) Hip( ", 2F) (2 (ur, 0)) (1) 27
n,m=0

= Z an(x(ul,O))*Hlpﬂzl]_Q”,|zl|2“)am(9§(u1,0))ﬁmz?, (7.3)

n,m=0
because H; commutes with o and hence with p(z; ", 2f), and

K(U(S)) - aK(n(2))o

= Y (=)™ an(@(ug, 0))* Hip(|2| 7", |20 ™)t (w(u2, 0))275 ™ 25, (7.4)

n,m=0

because ooy, (2(ug,0))o = (—1)"ay (x(u2,0)) for n > 0. Now we use the expansion in powers of
(u —w)™ to evaluate K(n(l)) — K(n(3)). From the inequality (6.2)

n \Z| 2\
Z ln (2(w, ) [[2]" < /[Jexo((u, 0))]] =%

= 6| ((u, 0))]| (1 —§1/2) 7 (7.5)

with dp = 1<Héi]{} ) lu — x| = 612 we can restrict the problem to 0 < n,m < 1. The omitted
<jSN—

terms in K (nM)) — K (n®)) are bounded by ¢”§'=2l|| By ||[|ag (z(uz, 2))|?, for some constant ¢”.
Then
vk

Li(n®) = | [T " p(z1",2) {aoo( fée?,)o)(z(g,obl)()i(ﬂo()))(%l - ﬂ)},
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-k

—K K (67 xﬂ70 Oé,xaao uy —u
ot = (114 ) ot 25) ot e O~

because ooy (z(u,0))o = (—1)"a1(z(u,0)). The terms O(d) correspond to the bound in (7.5).
Drop the argument z(w,0) for brevity. Combining these with (7.3) and (7.4) we obtain

K(nW) = K(n®) = {ao1(ur — @) + a1,021 }* Hip(|21] 2%, |21*) ago

+agoHip(|2| 7, |21 *) {ao (ur — @) + a1 021}
+ {ao1(ur — @) + a1z} Hip(|z1] 72, |217)
x {ag1(ur —u) + a1 021}
—{ap,1(ug — ) — 01,0Z2}*H1p(\22|_2'€, |22|2H)0400
— agoHip(|22| 7%, |22 ){a0 1 (u1 — @) — a1 021}
—{ao1(ug — 1) + a1 022} Hip(|22] 77", |22/*)
X {1 (u2 — 1) + a1 022} + O(9).

The key fact is that the afoHip(]z1| 2%, ]21|**) oo terms cancel out (|z1] = |22]).

From [la0(2(@, 0)]| < 722507 lao(@(@,0))]| and [ag1(@(@ 0)]| < 2287 [lao(x(@, 0)]
(from (6.3)) &6, = 0 — |u| = 6/2 —§ = §'/2(1 — 6Y/2). Thus the sum of the first order terms
in K (nM) — K (n®) is bounded by ¢"”[|ag(z(w, 0))||?61/2 217l (1 — 51/2)_1||H1H, where the con-
stant ¢’ is independent of z(w,0) (but is dependent on kg and N). Note |u; — u| = |ug — u| =
|z1| = |z2| = 6. The second last step is to relate ||ao(x(w,0))|| to || L1 (17(1)) ||; indeed

—K

N o
H x§.1) p(zl_”, zf) {ag(fc(ﬂ,O)) + Zan(x(aa 0))2?} .
7=1 n=1

Similarly to (7.5)

Elmn uouu”<wm<<umw(u>( §>2A1

= ||ao(z(@, 0))[[62(1 — 64/2) 771 < || ag(x(@, 0)) |62,
(if 6 < & then 1 — §Y/2 > 2); thus
lwo (@, 0))[| (1 = "6/%) < 671 Ly (n D) .

By Theorem 6.1

L) <e TT o=yl lnln‘ele 0149

1<i<j<N— 1
< e5IWHINHD(N=2)/2+1}

Iﬁl‘eleN 1 ei(HN_l—&—é’)‘*\“\

because the first two groups of terms satisfy the bound |z; — x;| > 61/2. Combining everything
we obtain the bound

1K (n™) = K (n®)]| < ¢"[lao((@, 0))[28"/>72 (1= 2) 7| B |
< CI/HHl||51/272|H|7|H|{(N+1)(N72)+2}'
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The constant is independent of n(*) and the exponent on § is % — \FL|(NQ - N+ 2). Thus the

integral of part (3) goes to zero as § — 0 if |x| < (2(N? — N + 2))_1. This is a crude bound,
considering that we know everything works for —1/h,; < k < 1/h., but as we will see, an open
interval of k values suffices.

Theorem 7.1. If there exists a Hermitian matriz H such that

vH = Hv and (L1(z0)*) P HLy (x0)~?

commutes with o, and —(2(N2 — N+ 2))71 <K< (2(]\72 — N+ 2))71 then
/TN{(xz'Dz‘f(x))*L(x)*HL(iU)g(x) — f(2)"L(z)"HL(z)x;D;g(x) }dm(z) = 0

for f,g € CO(TN;V;) and 1 <i < N.

It is important that we can derive uniqueness of H from the relation, because the conditions
(wf,wg) = (f.9), (xif,xig) = (f,9), and (z;D;f,g) = (f,2:Dig) for w € Sy and 1 <i < N
determine the Hermitian form uniquely up to multiplication by a constant. Thus the measure
K (xz)dm(x) is similarly determined, by the density of Laurent polynomials.

8 The orthogonality measure on the torus

At this point there are two logical threads in the development. On the one hand there is
a sufficient condition implying the desired orthogonality measure is of the form L*H Ldm,
specifically if H commutes with v, (L1(z0)*)"*HL1(29) ! commutes with o, and |x| < (2(N?% —
N +2))~!. However we have not yet proven that H exists. On the other hand in [3] we
showed that there does exist an orthogonality measure of the form du = dug + L*H Ldm where
spt s C TN\TﬁXg, H commutes with v, and —1/h, < k < 1/h; (the support of a Baire
measure v, denoted by sptv, is the smallest compact set whose complement has v-measure
zero). In the next sections we will show that (Li(z0)*) 'HLi(z9)~! commutes with o and
that H is an analytic function of x in a complex neighborhood of this interval. Combined with
the above sufficient condition this is enough to show that there is no singular part, that is,
s = 0. The proof involves the formal differential equation satisfied by the Fourier—Stieltjes
series of y, which is used to show pg = 0 on {z € TV: #{xj}é\[:l = N — 1} (that is, z has at
least N — 1 distinct components). In turn this implies (L% (x0)) ' H L (z¢) ! commutes with o.
The proofs unfortunately are not short. In the sequel H refers to the Hermitian matrix in
the formula for dp and K denotes L*HL. Also H is positive-definite since the measure pu
is positive (else there exists a vector v with Hv = 0 and then the C(l)(Tﬁg;VT) function
given by f(z) := L(x) 'vg(x) where g is a smooth scalar nonnegative function with support
in a sufficiently small neighborhood of zy, has norm (f, f) = 0, a contradiction). Thus H
has a positive-definite square root C' which commutes with v. Now extend C'L(z) from Cp to
all of T, by Definition 3.6 and so K(z) = L*(z)C*CL(x) for all z € T}, (this follows from
K(zw) = 7(w) K (2)7(w)).

Furthermore [y [|K(x)|[dm(z) < oo because Kdm is the absolutely continuous part of the
finite Baire measure u.

We will show that (L% (x9))"*C*CLi(z0)~! commutes with o. The proof begins by establish-
ing a recurrence relation for the Fourier coefficients of K (x), which comes from equation (3.3).
For F(z) integrable on T, possibly matrix-valued, and o € ZV let F, = Jon F(x)z~*dm(z).
Clearly [pn 2PF(z)z=%dm(z) = Aa,ﬁ; and if 0;F(x) is also integrable then (integration-by-
parts)

/ ;0 F(x)x™%dm(z) = o F(z)z~%dm(x). (8.1)
TN TN
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For a subset J C {1,2,..., N} let £; € N}’ be defined by (¢;); = 1 if i € J and = 0 otherwise;
also ¢; := i} For 1 <i <N let

Ei = {1,2,,N}\{Z}, Eij = El\{]},
pi(e) = [[@i—z) =D (=D > a

J#i =0 JCE; #J=¢
Equation (3.3) can be rewritten as
pi(@)zi0K (@) = kY [ (@i = wo){ayr (7)) K (@) + K(@)r((i, )i} (8:2)
JF#LFL]

this is a polynomial relation which shows that p;(x)x;0; K (z) is integrable and which has impli-
cations for the Fourier coefficients of K.

Proposition 8.1. For 1 <i < N and a € ZV the Fourier coefficients K satisfy

N-1
Z (_1)£(ai + E) Z Koz-&—fa—s]
£=0 JCE;, #J=¢
N-2 R R
=rY > (D" > {9 Katee—e;—es T Kot qunye,—e,7((i,)}. (8.3)
j#i £=0 JCEij,#JZE

Proof. Multiply both sides of (8.2) by x}_N ; this makes the terms homogeneous of degree zero.
Suppose j # i then

2N T (i - 20) H(l—) ]:2 DE D DI

(#i,j (#ij =0 JCE;j, #J=(

Multiply the right side by 2~*dm/(z) and integrate over TV to obtain

N-2
Kz Z(_l)g Z {T((i7j))ka+€£i—sj—aj +I?a+(l+1)ai—aJT((i7j))}'

j#i £=0 JCE;;, #J=L

The sum is zero unless « € Z where Zy = {a VAR Z aj = O} by the homogeneity. For

the left side start with (8.1) applied to x; " p;(z)z;0; K (= )
@+ N=1) [ p@)K()el e ()

/ {(:0;pi(2)) K (x) + pi(2)(2:0;K (v)) }x; Na~*dm(z),

/T (o N~ Dpi(e) — 20 K ()}~ Na dm(z)

N-1
= / Z Yo + Oz Z 2 K (x)z”“dm(x)
™ =0

JCE; £J=¢0
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N—

—
—~

Nai+0) D Kotte,—cy
=0 JCE; #I=(

Combining the two sides finishes the proof. If « ¢ Z y then both sides are trivially zero. W

This system of recurrences has the easy (and quite undesirable) solution Ko = I for all

N-2
o € Zy and 0 otherwise. The right side becomes 2k 3" 7((i,5)) 3 (—1) (NZQ) =0 (for N > 3,

i =0
N—1 -
an underlying assumption), and the left side is > (—1)%(c;+¥) (Ng_l)f = 0. This K corresponds
=0
to the measure 5-df on the circle {€’(1,...,1): —7 < § < 7}. Next we show that fi, =

Jov 7 %dp(z) satisfies the same recurrences. Proposition 5.2 of [3] asserts that if o, 3 € Nj) and
N

>_ (aj — Bj) = 0 then

j=1
aj—oy
(i = Bi)ia—g=r Y, > 7((0:5) Batbe—c,)-5
aj>a; (=1
a;—aj—1 /BJ Bi
- R Z Z Z ] Ma-{—é(sj—sz) gk Z Z Ha—t(e;—e;)— BT((Z ]))
;> B;>Bi (=1
Bi—Bi—1
FE DD flai(e;—en-pT((1,7)). (8.4)
Bi>B; £=0
The relatlon T(w)* waT(w) = [o is shown in [3, Theorem 4.4]. Introduce Laurent series
> B ) g ® (i # j) satisfying
[ASVAN
B — Boii—e, = Ha, Bafaj(sjisi) =0,
note
i J ¢

a—oj(ej—e) = (...,ai—f—aj,...,(),...,ozgj...), L#£14, 7.
The purpose of the definition is to produce a formal Laurent series satisfying
1— J) BUd) o — oo
The ambiguity in the solution is removed by the second condition (note that ) (B((li’j ) el ) ¢
also solves the first equation for any constant c).
Proposition 8.2. Suppose i # j and o € Z then Bgf’j)T((i,j)) = T((i,j))B(g’?) .
Proof. Start with 1ia7((,7)) = 7((4, 7))/ j)o and the defining relations

B ((i,7)) = BEL, . 7((6,5)) = fiaT (i),
(5, 3B = T D) BE e e, = 7))
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subtract the second equation from the first:
B (i, 5)) = 7((3, 1)) B3y = BEEL e 7((6,0)) = 7((6 ) B e ..
By two-sided induction
B ((i,5)) = 7((3, ) B3y = B 7 ((5,5)) = (G, 3) B e e
for all s € Z, in particular for s = a; where the right hand side vanishes by definition. |

Theorem 8.3. Forvy € Zy and1 <i< N

’Yz,u'y = F@Z { (4,4)) B(j 2 B'(yl’J)T((Zaj))} (8.5)
J#i

Proof. The proof involves a number of cases (for each (¢,j) whether v; > 0 or 7; <0, 7; > 0
or 7; < 0). Consider equation (8.4), in the terms on the first line (with 7((4,j)) acting on the

left) use the substitution fi5 = B(gj’) Béj ZE) b and for the terms on the second line (with

7((4,4)) acting on the right) use the substitution fis = B(gw) Bgl_’fa) » Set ay = max(yy,0)
and By = max(0, —v,) for 1 < ¢ < N, thus v = a— . The left hand side i 1s (0t = Bi) ta—p = Yilly-
We consider two possibilities separately: (i) o; > 0, 8; = 0; (ii) o; = 0, 8; > 0; and describe
the typical 7((4,7)) terms. The sums over ¢ telescope. In the following any term of the form
7((4,7))p. or @.7((4,7)) not mentioned explicitly is zero. Proposition 8.2 is used in each case.
For case (i) and a; > o

aj—oy o —oy
) 2 : Hate(ei—ej)—B = T((Z’])) z : (B'ijrf(sifsj) B B’ijrf(sifsj)farksj)
= (=1
aj_ai ( . A) ( . A)
P It 2t
=7((63) 2 (Bifue—) ~ Bitenei—e))

/=1
_ (4:9) j i
= 7((5,) (B, —ayeresy = BY?)

= (i, 1)) (BF), — B9Y) = —7((i, ) BY) + BiD1((i, )

For case (i) and o; > a; > 0 = f3;

aj—oj—1 ai—a;—1
. B . (5.0) (4:4)
Z Hote(ej—ei)—B = _T((Z’])) Z (ny]-f—ﬁ(aj—ai) N B’Y]-I—(Z-i-l)(ai—ej))
£=0
= —T((iaj))(ng o B((]Jliv)

= —7((4,5))BY? + BEIr((i, )),

note v + (a; — o) (e — €;) = (4,7)v. For case (i) and o; > aj =0 > —f3;

a;—1 a;—1
- -~ — ;g (1) (4,%)
—7((4, 7)) Z Hate(ej—e)—B = —7((4, ) Z (B'Y{i»e(gjfgi) - Byﬁr(e+1)(€j,€i))
=0 =0
- i (4:9)
—r((i,)) (B9~ BUD ),
Bj Bj

5 N _ (7’7 ) (7’7 ) M
- § Ma—é(ai—aj)—ﬁT((%])) == E (B,y Jg(EZ,EJ) v ]g(EZ,EJ)JrEFE]) 7((4,4))
/=1 =1
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i) (i)
— 7 ,] ..
- ; (B'y teimey) ~ By lie- 1)(5175])) 7((4,7))
=1
_ i, (4.9 -
- (B’g/ ]) - B'y+'yj(gi—gj))7-((2’]))
let 6 = y+~i(ej—e;i) then 6, =~y for k # 4,4, 6; = 0, and 0; = ~;+;; also (i, )0 = y+v;(ei—¢j).

Thus the sum of the terms for this case is
—((i, /) BYD + BED7 (i, ) + (G, ) BYY + BED 7 (0, )
—7((1,4))BY? + BSD((i, 5))

For case (ii) and B; = —v; > Bi= —v >0

Bi—PBi Bi—Bi i) i)
- Z ﬁa—E(Ei—Ej)—BT((i7j)) = Z (Bwfg(ei_ej) - vi(g_l)(ai_gj))T((ivj))
/=1 (=1

— ) i,
- (_B ](“/ —v;)(ei—€5) +B'(y ])) ((4,4))
= (=B{ig, + BY)r((0.)
= —7((i,5))BY) + B (i, ).
For case (ii) and ; > ; = —v; > 0 (and a; = 0)

Bi—B;—1 Bi—B;—1 i) i)
Z .aoc—f(ej—e,-)—BT((iaj)) = Z (B,y’g(gj_gl) - B J(g.,_l)(gj_g )) ((Za]))
£=0 =0

— i,J (4,9) .
= (B,(Y 7) BV_](W_%)(SJ__Q))T((Z,j))
(B — B )r((i. )
= —7((i,5)) By + B{M97((i, 7).

For case (ii) and —f; = v; < 0 < ; = o (and 3; = 0)

a; Bi—1
T(('LJ)) Zﬁa+€(fi_sj)—ﬁ + Z :aa—ﬂ(ej—ei)—[ﬂ-((i»j))
=1 £=0
Bl (1)
;: Y+L(ei—¢e5) B'er(Zfl)(sifsj))
57,_1

(4,9) (4,9) ..
*Z (B3t ~ Byt e;-e0) T((0:9))

—r<<z,y>>(B§Tij(5i_sj>—BS“")+(B$ D= B ey 7(09))
—7((4,5))BY? + B 7((i, ),

because (i, 7)(y+7v;j(ei—€;)) = v+7i(ej—&;). In the trivial case v; = ~; so that (i, j)y = v where
are no nonzero 7((i,7)) terms the equation —T((i,j))B,(f’l) - B’(YZJ)T((i,j)) = 0 applies. Thus
in each case and for each j # i the right hand side contains the expression —«(7((4,7)) By (G4 _

B 7((i, 5))).

In the following there is no implied claim about convergence, because any term x® appears

only a finite number of times in the equation.
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Theorem 8.4. For 1 < i < N the formal Laurent series F(x) := Y. [ax® satisfies the
aEZ N
equation
pi(@)zidiF(x) = kY [ [ (@ = z){a;m((i, 1) F () + F(2)r((, )i} (8.6)
JF#L bF]

Proof. Start with multiplying equation (8.5) by ) "p;(z)z” and sum over v € Zy to obtain

[ (-2) 3o I (- 2) (- 2)

=i 1€ZN el
) X B Y B ()
~NEZN YEZN
By construction
< ) Z B(m 27 — Z (Bgi’j) B(_ngz_gj al = Z iy’
i ~EZN YEZN
and
< ) S B = < > > BYar == 3 e,

Thus the equation becomes

ﬂ (1—> > vifya?

J=1,j#i YEZN

_HZH<1—“) Yr(ig) Y e+ Y A T((i,))

J#i k#ij Y€EZN Y€EZN

This completes the proof. |

Corollary 8.5. The coefficients {jia} satisfy the same recurrences as {IA(Q} in (8.3).

8.1 Maximal singular support

Above we showed that p and K satisfy the same Laurent series differential systems (8.2)

and (8.6), thus the singular part pg also satisfies this relation. The singular part pg is the

restriction of 1 to |J {z € TV: 2; = z;}, a closed set. For each pair {k,(} let Ey, = {z €
1<J

TN: zp, # xg}, an open subset of TV. For i # j let

Tz’,j = {33 € ™. €T, = :Ej} N n {Ekg N E; N Ejk};
{k.30{i,j}=2
this is an intersection of a closed set and an open set, hence T; ; is a Baire set and the restric-

tion p; ; of u to T; ; is a Baire measure. Informally T; ; = {x €TVN: x; = xj, #{xx} = N — 1}.
We will prove that y; ; = 0 for all ¢ # j. That is, ug is supported by {JJ e TV: #{x;} <N — 2}
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(the number of distinct coordinate values is < N —2). In [3, Corollary 4.15] there is an approx-
imate identity

— L : (_n) a
o 1<x>-—2m >, 2

k=0 a€Z N, |o|=2k

which satisfies oY ~1(z) > 0 and oY ~'xv — v as n — oo, in the weak-* sense for any finite Baire
measure v on TN /D (referring to functions and measures on T homogeneous of degree zero as
Laurent series). The set T; ; is pointwise invariant under (¢,7) thus du; j(z) = dpsj(z(i, 7)) =
7_((7;’ j))dﬂi,j (w)T((Z, J)) :

Remark 8.6. The density of Laurent polynomials in C’(l)( ™ ) can be shown by using an

n

approximate identity, for example: wu,(x) = {L o (n—1j|+ 1):1:1} N=1(z); for any o € ZN

n+1
j=-n
the coefficient of % in u,(z) tends to 1 as n — oo (express o = (g —m)e; + (—m, aa, ..., aN)
N
where m = > «;). Then f xu, — f in the C’(l)(’]I‘N) norm.
=2

Let K2 = oY~=! % ug (convolution), a Laurent polynomial, fix £in 1 < ¢ < N, and consider
the functionals Fy,,, Gy, on scalar functions p € c® ('JI‘N)

Fyp(p) = /TN p(x)l;[e
J
Ginlp) = FUZ/ # ( = "Z) {Zr(ﬁ,i) K3 (x) +K;(:L~)T(e,i)}dm(x).

By construction the functionals annihilate z® for a ¢ Zy. For a fixed a € Zy the value
Frn(z™%) — Gep(x™®) is

(1 — w) 20 K, (x)dm(z),

N-—1

apAabn () + Z Z (g + 1) Aatici—e,bn(a +igg — €)
i=1 JCEZ,#J:i
—2

N . .
p Z 3 {T(&J)Aa+(i+1)ag—aj_ann(04 +(i+1)eg —gj — é‘J)} 7

Gt gl = 0 JCE, )= + Aa+’i€g*€,]7—(£’j)bn(a + ieZ - 5])
=1, iy HT=

where by, (7) := (15\7“3% (from the Laurent series of o) ~!), and A, := [,y 27 7dpg . Thus

for fixed « the coefficients b,(-) — 1 as n — oo and the expression tends to the differential
system 8.2 and

lim (Fyn(z™) — Gen(z™®)) = 0.

n—o0

This result extends to any Laurent polynomial by linearity. From the approximate identity
property

tim Gan) =Y [ o) TT (1= 2) {Erteansto) + dusterr(en |

i£L ]7% )

and

[Gun(p)l < s (o) TT (1-2)].

o J#si
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where M depends on ug. Also

Fyn(p) = - /T g g p@) [

i#t

and

i Finlp) =~ [ av0d o) TT (1= 2) paus(o

n—00 .
J#L

for Laurent polynomials p. By density of Laurent polynomials in C(1) (']I‘N / ]D>) (D={(u,u,...,u):
|u| = 1} thus functions homogeneous of degree zero on TV can be considered as functions on
the quotient group TV /D) we obtain

=% [ o T (1= 2 ) {2 r i austo) + austorr(e.n ), (8.7

for all p € C(l)(']I‘N/]D)).
Theorem 8.7. For 1 <i < j <N the restriction ps|T;; = 0.

Proof. It suffices to take i = 1,5 = 2. Let E be an open neighborhood of a point in 77 »
such that if # € E (the closure) and z; = z; for some pair ¢ < j then i = 1 and j = 2. Let
f(z) € C’(l)(’]I‘N/]D)) have support C E. Thus f(z) = 0 = 01f(x) at each point = such that

x; = x; for some pair {i,5} # {1,2} (f = 0 on a neighborhood of |J{z: z; = x;}\T12). Then
i<j
in formula (8.7) (with £ = 1) applied to f the measure pg can be replaced with jq 2. Evaluate

the derivative

210, f@ﬂj(r—z> :<1—2>f@nﬁ111<y_z>

i#1 i>2
T T T2 Zj
e 4 122 1- 2.
+ @11 < x1> + (2101 f(2)) < xl) 11 < m)
Jj>2 j>2
Each term vanishes on |J{z: z; = 2;}\T} 2, and restricted to T} 2 the value is f(z) [] (1 - i—i)
i<j j>2

Thus

- [ o @ ]

J#1

(1 - Z) dps(r) = — /TN r1014 f(@) [ (1 - Z) dpi 2 ()

j#1
€T
= — TN‘f(x)J;E <1-— xi) dulg(x)

The right hand side of the formula reduces to

« [ @1l

j>2

<1 - fc]) {””27(1, 2)dpin 2(z) + dp o ()7 (1, 2)}

I
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—2m12/ flz (1—1)@12()

since dpy 2(x)7(1,2) = 7(1,2)dp1 2(x). Thus the integral is a matrix F(f) such that

]>2

(I +2k7(1,2)F(f) =0,

which implies F(f) = 0 provided & # +3. Replacing f(z) by f(z) [T (1 — %)71 shows that
j>2
p1,2 = 0, since E was arbitrarily chosen. |

8.2 Boundary values for the measure

In this subsection we will show that K satisfies the weak continuity condition

lim  (K(z) — K(z(N —1,N))) =0

;I?N_l—CEN—)O

at the faces of Cyp and then deduce that H; commutes with o (as described in Theorem 7.1).
The idea is to use the inner product property of p on functions supported in a small enough
neighborhood of z(©) = (l,w,...,wN*?’,w*3/2,w*3/2) where pug vanishes, so that only K is
involved, then argue that a failure of the continuity condition leads to a contradiction.

Let 0 <§ < g—}{, and define the boxes

Q(;:{:L‘G']I‘N:}j |<2$1n 1<]<N}

= {xETNﬁl: |:cj—a:§»)| SQSlng, 1<y §N—1}

(so if 2; = ¢ then |, — 20| <4, for 1 <j < N—2and |6, — Z¥27 | for N—1 < j < N).
Then = € Qs implies |z; — z;| > 2sin% for 1 <i < j < Nexcept fori =N—-1,57=N
(that is, |6; — 6;] > §). Further 5 is invariant under (N — 1, N), while Q5 N Qs(i, N) = @ for
1 <t < N — 2. For brevity set ¢g = w, e'%0 = w=3/2. We consider the identity

[ oxDxt@) du@lgta) = [ f@)du(o)anDygla) =0

for f,g € C(l)(TN; V) whose support is contained in Q5. Then spt((znDy f(x))*g(z)) C Qs

and spt(f(z)*znDng(z)) C Qs.
The support hypothesis and the construction of {25 imply that 25N (’]I‘N \']I‘reg) C Tn-1,n and
thus dp can be replaced by K(z)dm(z) in the formula. Recall the general identity (4.1)

—(@nDnf(2)) K (x)g(x) + f(z) K (z)znDng(z)
= anOn{f(2) K(2)g(x)} —r ) . z; {2 f (205, N))7((G, N) K (2)g(=)

1<j<N-1
+anf(z) K(x)r((j, N))g(z(j, N))}.

Specialize to spt(f) C Qs and spt(g) C Q5 and x € Qs then only the j = N — 1 term in the
sum remains, and this term changes sign under z — z(N — 1, N).
For e > 0 let Q5. = {a; €Qs: |leny_1 —xN| > ZSin%}, then

{onOn(f(z) K (z)g(z))

Qs,¢
+ (enDn f(x)) K (2)g(2) — f(2)* K (x)anDng(z) fdm(z) = 0,
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because €25 is (N — 1, N)-invariant (similar argument to Proposition 4.1). By integrability

lim {(znDn f(2))" K (2)g(x) — f(2)"K(2)znDyg(z)dm(z)} =0,

e—=04 Qs ¢

hence

lim xNON(f(z)*K(z)g(x))dm(z) = 0.

e—04 Qs ¢

Now we use iterated integration. For fixed Op_1 the ranges for y are obtained by inserting
suitable gaps into the interval [¢g — J, ¢ + 0] (as usual, z = (6191, . ,eleN)):

1) ¢po—6<On_1 < ¢o—0d+¢e:[On_1+¢,¢0+ 6],
2) po—0+e<On_1<¢o+0d—e:[po—0,0n_1—¢|U[0n_1+¢e, Po+ 0],
3) ¢0+5—5§0N71§¢0+(52[(250—5,9]\[,1—8].

From xny0N = —i% it follows that

b
[ enonr Koo

= LG (@7, 81 ) (FEg) (€%, o1 ) )

2mi

Since f and g are at our disposal we can take their supports contained in {255 then for 0 < e < g
the dfy-integrals for (1) and (3) vanish and the integrals in (2) have the value

i. (f*Kg)((€i917 o 76101\7_1761(9]\]_175))) _ (f*Kg)((er’ o eiGN_ljei(9N—1+€)))}.

2mi
We use the power series (from (5.1))

—vK

N— 00
Li(z(u, 2)) = | (u® — 22 H p(z7", 2%) Zan(aj(u 0))z
j=1 n=0
with the notation z(u, z) = (z1,...,xNy_2,u—z,u+ 2) for z € Q5. Recall a,,(z(u,0)) is analytic

for a region including Qs and o, (z(u,0))o (—1) n(x(u,0)). Also ag(x(u,0)) is invertible.
As in Section 5 define C7 := CL(x0)~! so that L;i(x)*C;C1Li(x) = L(x)*HL(x) on their

o0
common domain, and set H; = C7Cy. It suffices to use the approximation ) ay(x(u,0))z" =
n=0

ao(z(u,0)) + O(|2]), uniformly in Qg7 /5y

Let
77(1)("1}7 97 5) = (3}17 <oy TN-2, ei@) ei(9+8))7
0 (2,0,¢) = (1,..., 252,07 ),
n(3)($, 0,¢) = (9:1, e IN_2, €0, ei(efs))

with 71, 73 € Q5N Cy and n® = (N — 1, N). Set ¢ = €. Then
1 . 1.
M = 2(uy — 21, u1 + 21), up = 5619(1 + ), z1 = 56‘9@ —1),

1. _ 1, _ _
N =a(ug — 29,u9 + 20),  up= 5619(1 +¢N), m= 5610(1 ¢ ="t
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The invariance properties of K imply K(n(3)) = O'K(T](2))O'. Then

K (1) = ao(e(us, 0)) (=7, =) Hip (=™, 25) ao(a(ur, 0)) + O (|1 2H),
oK (1) = ao(w(u2,0))"p(=5", ) o Hiop (2™, 25) ol (2, 0)) + O] =2,

because ocap(z(u,0))oc = ap(x(u,0)) and 0 = p(—1,1) commutes with p(z; ", 25). To express
K(n(l)) —oK (77(2))0 let

A= p(Zl_“,Zf)*Hm(zl_“,zf) — O(|z1\*2"’”|)7
Ay = p(z;'f, 22”)*g}&ﬁgl)(;g;"‘7 Z;) _ O(|,22\_2|’f|)7

= ag(z(u1,0))" Arag(z(u1,0)) — ag(2(ug, 0))* Asag(x(uz, 0)) + O(|z1| '),

Also us—uy = %mN,lﬁl (¢71=¢) = O(]z1]) (since |z1] = [1—¢]) thus ag(z(u1,0)) —ao(z(uz,0)) =
O(]z1]) and

K(nW) — oK (n®)o = ag(a(u1,0))* (A1 — Az)ag(z(u1,0)) + O (21|21,

Using the o-decomposition write

Hyy HIQ]
Hy = N ,
! {Hm Hiy
then
i 21\" 29\ "
Hiyilz1|72%  Hio <z> Hyp|zg| 72" —His <z>
A — Ay = 2 —K ! - 2 —K 2
Hyo* <> Hyy|z > —Hio" <> Hyqlzo|?"
L 21 Z2
I Z1 " Z9 ®
0 me{(2) +(2) )
z1 Z9
- Z1 o 29 o ’
)@} o
Z1 Z9
because |z2| = |z1|. Next
2 i ei% —1 ot 22 o0l 67_15 __i200)
1 ele — 1 ’ Z2 1— el '
z1\" z\" 20\K [ _iek —iek 9 2i0\ K
<Zl> + <22) — (—PO) {1 e = 9(—e) " cos er,

where some branch of the power function is used (the interval where it is applied is a small arc
of the unit circle), and ¢g — 61 < 0 < g — 01.

We show that His = O, equivalently H; commutes with . By way of contradiction suppose
some entry h;; # 0 (1 < i < m; < j < n;). There exist r > 0, 6; > 62 > 0 and ¢ € C with
|c] =1 such that

Re (20(—6%9)’{}7@']’) >r



38 C.F. Dunkl

for g9 — 02 < 0 < ¢ + d2. Let p(x) € C(l)(’]I‘N) such that spt(p) C €25,/2, 0 < p(x) < 1 and
p(z) = 1 for v € Qs,/4. Let f(x) = p(x)ao(x(u, 0))~le; and g(x) = cp(z)ap(x(u,0)) te; (for
x € Qs,/2). Also impose the bound 0 < & < %2. Then

) K (0 )g () = p(nV) e <2> his + O (|| ~2),
F) oK (1#)ag(n®) = —p(n)*e (Z) hij + O (|2 =),

Suppose v = (6191, . .,eieN) € €5, /5 then p(z) = 1 for ng_l—% <On_1,0n < ¢N_1—%2, thus
p(n(l)(w,Q,s)) =1 for (;50—% <6< qﬁg—%—e andp(n(3)(:c,9,£)) =1 for qﬁo—%—ke <6< (;50—%2.
By the continuous differentiability it follows that for ¢g— % <6< ¢og— % both p(n(l)) =1+0(¢e)
and p(n(g)) =1+ O(e). Thus

p( )0 ) K@) a(n)p() =) f (D) o K () og (n)p(n)
= p(n™M)%c { <Z> + Z) } hij + O(|21'72H) 4+ O(e).

By construction

Re (c { (Zl> + <Z2) } hij) > I COSER,
Z1 22

multiply the inequality by p((eial, ..., elfN-1 eifn —1))2 and integrate over the (N — 1)-box Qgg
with respect to dmy_1 = (%)N_l
thus

K K N-1
Re/ p(n(l))ZC { <Zl> + <22) } hijdmy_1 > rcoser <52> .
Q5, 21 22 2m

This contradicts the limit of the integral being zero as € — 0. The ignored parts of the integral
are 0(51_2"“) and || < 3. We have proven the following:

df; - --dfyx_1. This integral dominates the integral over ng Ja0

Theorem 8.8. For —1/h, < k < 1/h, the matriv Hy = (L}(x0)) *HLi(z0)"" commutes
with o.

9 Analytic matrix arguments

In this section we set up some tools from linear algebra dealing with matrices whose entries are
analytic functions of one variable. The aim is to establish the existence of an analytic solution
for the matrices described in Theorem 8.8. The key fact is that the solution L;(z; k) of (3.1) is
analytic in & for |k| < %, in fact for & € C\(Z+1); the series expansion in (5.1) does not apply to
k € Z+ % and a logarithmic term has to be included for this case. Set by = (2(N? — N +2))~ 1,
the bound from Section 7. One would like use analytic continuation to extend the inner product
property of L*HL from the interval —by < k < by to —1/h; < k < 1/h; but the Bochner
theorem argument for the existence of u does not allow k to be a complex variable. The
following arguments work around this obstacle.

Theorem 9.1. Suppose M (k) is an m x n complex matrix with m > n —1 such that the entries
are analytic in k € D, := {k € C: || < r}, some r > 0 and rank(M (k)) = n — 1 for a real
interval —ry < k < 11 thenrank(M (k)) = n—1 for all k € D, except possibly at isolated points \
where rank(M (X)) < n — 1, and there is a nonzero vector function v(k), analytic on D, such
that M (k)v(k) =0 and v(k) is unique up to multiplication by a scalar function.
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Proof. Let M'(k) be any n x n submatrix of M (k) (when m > n), that is, M’ is composed
of n rows of M(k), then det M’'(k) is analytic for k € D, and by hypothesis det M'(x) = 0 for
—r1 < kK < r1. This implies det M'(x) = 0 for all , by analyticity. Thus rank(M(k)) < n —1
for all kK € D,. For each subset J = {ji1,...,jn—1} with 1 < ji < -+ < jp1 < m let Mji(K)
be the (n — 1) x (n — 1) submatrix of M(k) consisting of rows # ji,...,Jn—1 and deleting
column #k, and X (k) := [det M;i(K),...,det Mj,(k)], an n-vector of analytic functions.
There exists at least one set J for which X ;(0) # [0, ...,0] otherwise rank(M(0)) < n — 1. By
continuity there exists 6 > 0 such that at least one det M (k) # 0 for || < 0 and v(k) =
[(—1)*~! det ijk(fi)]zzl is a nonzero vector in the null-space of M (k) (by Cramer’s rule and
the rank hypothesis). The analytic equation M (x)v(x) = 0 holds in a neighborhood of K = 0
and thus for all of D,. If v(k) = 0 for isolated points k1, ..., k¢ in |k| < rg < r then v(k) can

4 .
be multiplied by [] (1 — Hij)_aj for suitable positive integers ai,...,as to produce a solution
j=1

never zero in |k| < 1o < 7. (It may be possible that there are infinitely many zeros in the open
set D,.) [

We include the parameter in the notations for L and L;. The * operation replaces x; by T,
the constants by their conjugates, and transposing, but x is unchanged to preserve the analytic
dependence, see Definition 3.8. For z € ’]I‘ﬁ\ég and real x the Hermitian adjoint of Lq(x;k))
agrees with Lj(zo;k)*. The matrix M (k) is implicitly defined by the linear system with the
unknown Bj

Bl = 0’B10’,
vLi(xo; k)B1L1(z0; k) = L] (z0; k) B1L1(xo; K)v. (9.1)

(Recall v = 7(wp).) The entries of M (k) are analytic in || < 3. The equation By = 0Byo
implies that By has n := m2+(n, —m,)? possible nonzero entries, by the o-block decomposition.
The number of equations m = n2 —dim{A: Av = vA}. Because wg and (N —1, N) generate Sy
and 7 is irreducible Ac = 0A and Av = vA imply A = ¢l for ¢ € C by Schur’s lemma.
This implies n > m — 1 (else there are two linearly independent solutions). By a result of
Stembridge [10, Section 3] n can be computed from the following: (recall w := exp 2%) for
0 <j < N —1set ej equal to the multiplicity of w’ in the list of the n, eigenvalues of v and set
FT(Q) = qeo + qel 4+ o4 qu—l then

N
Frlg) =3¢ T[ (1 —¢") JI 1-¢"@)7" ¢ mod (1Y),
=1

(3,9)€T

£(r)
where n(7) := > (i — 1)7; and h(4,j) is the hook length at (i,j) in the diagram of 7 (note
i=1

N-—1

Fr(1) = n;). Thus dim{A: Av =vA} = ) e?. For example let 7 = (4,2) then n; =9, m,; =3
=0

and n = 45 while F.(¢) = 2+ ¢+ 2¢*> + ¢ + 2¢* + ¢® and dim{A: Av = vA} = 15, m = 66.

Theorem 9.2. For —1/h; < k < 1/h; there exists a unique Hermitian matriz H such that
dp = L*HLdm. Also (L1(x0)*) " HLi(z0)~! commutes with o.

Proof. For any Hermitian n, X n,; matrix B define the Hermitian form

(s [ 1) Le) BL)g(a)dmz)
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for f,g € C(l)(TN; VT). If the form satisfies (wf, wg)p = (f,g)p for all w € Sy and (z;D; f, 9)B
= (f,x;D;g)p for 1 < i < N then B is determined up to multiplication by a constant.
This follows from the density of the span of the nonsymmetric Jack (Laurent) polynomials
in ¢ (TV;V;). By Theorem 8.8 there exists a nontrivial solution of the system (9.1) for
—1/h; < k < 1/h;. Thus rank M (k) < n — 1 in this interval. Now suppose that Bj is a non-
trivial solution of (9.1) for some x such that —by < k < by. Then both BW .= By + B} and
B® :=i(B; — B}) are also solutions (by the invariance of (9.1) under the adjoint operation).
Let H® := L%(xo;x)BWLi(xo; k) for i = 1,2 then by Theorem 7.1 the forms (-,-) ) and
(-,-) g satisfy the above uniqueness condition. Hence either B; is Hermitian or BW = »B®@
for some 7 # 0 which implies By = §(r — i)B®)| that is, B is a scalar multiple of a Hermitian
matrix. Thus there is a unique (up to scalar multiplication) solution of (9.1) which implies
rank M (k) >n—11in —by < k < bn.

Hence the hypotheses of Theorem 9.1 are satisfied, and there exists a nontrivial solution Bj (k)
which is analytic in |s| < % Since the Hermitian form is positive definite for —1/h, < k < 1/h,
we can use the fact that Bj(k) is a multiple of a positive-definite matrix when « is real (in fact,
of the matrix H; arising from p as in Section 8) and its trace is nonzero (at least on a complex

neighborhood of {k: —1/h, < Kk < 1/h;} by continuity). Set Bj(k) := (nt/ i Bl(/i)n) Bi(k),
i=1

analytic and tr(Bj(k)) = 1 thus the normalization produces a unique analytic (and Hermitian
for real k) matrix in the null-space of M (k). Let H(k) = Li(xo;k)*Bi(k)L1(x0; k) then for
fixed f,g € CW(TV;V;) and 1 <i < N

(2D (2))* L* (@ ) H (1) L ) ()
/TN {—f(w)*L*(:v; k) H (s) L(z: n)x@g(az)} dm(@)

is an analytic function of x which vanishes for —by < k < by hence for all k in —1/h; < kK <
1/h;; this condition is required for integrability. This completes the proof. |

By very complicated means we have shown that the torus Hermitian form for the vector-
valued Jack polynomials is given by the measure L*H Ldm. The orthogonality measure we
constructed in [3] is absolutely continuous with respect to the Haar measure. We conjecture
that L*(x; k)H (k) L(x; k) is integrable for —1/71 < k < 1/¢(7) but H(k) is not positive outside
|k| < 1/h; (the length of 7 is ¢(7) := max{i: 7; > 1}). In as yet unpublished work we have found
explicit formulas for L* H L for the two-dimensional representations (2,1) and (2,2) of S3 and Sy
respectively, using hypergeometric functions. It would be interesting to find the normalization
constant, that is, determine the scalar multiple of H(x) which results in (1 @ T,1® T) () =
(T, T)o (see (2.1)) the “initial condition” for the form. In [3, Theorem 4.17(3)] there is an infinite
series for H(k) but it involves all the Fourier coefficients of u.
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