Loading [MathJax]/jax/output/HTML-CSS/jax.js

Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 14 (2018), 007, 18 pages      arXiv:1706.04743      https://doi.org/10.3842/SIGMA.2018.007
Contribution to the Special Issue on the Representation Theory of the Symmetric Groups and Related Topics

Alvis-Curtis Duality for Finite General Linear Groups and a Generalized Mullineux Involution

Olivier Dudas a and Nicolas Jacon b
a) Université Paris Diderot, UFR de Mathématiques, Bâtiment Sophie Germain, 5 rue Thomas Mann, 75205 Paris CEDEX 13, France
b) Université de Reims Champagne-Ardenne, UFR Sciences exactes et naturelles, Laboratoire de Mathématiques EA 4535, Moulin de la Housse BP 1039, 51100 Reims, France

Received June 17, 2017, in final form January 22, 2018; Published online January 30, 2018

Abstract
We study the effect of Alvis-Curtis duality on the unipotent representations of GLn(q) in non-defining characteristic . We show that the permutation induced on the simple modules can be expressed in terms of a generalization of the Mullineux involution on the set of all partitions, which involves both and the order of q modulo .

Key words: Mullineux involution; Alvis-Curtis duality; crystal graph; Harish-Chandra theory.

pdf (543 kb)   tex (26 kb)

References

  1. Alvis D., The duality operation in the character ring of a finite Chevalley group, hrefhttps://doi.org/10.1090/S0273-0979-1979-14690-1textitBull. Amer. Math. Soc. (N.S.) 1 (1979), 907-911.
  2. Bezrukavnikov R., Hilbert schemes and stable pairs, unpublished notes.
  3. Brundan J., Modular branching rules and the Mullineux map for Hecke algebras of type A, Proc. London Math. Soc. 77 (1998), 551-581.
  4. Cabanes M., Enguehard M., Representation theory of finite reductive groups, New Mathematical Monographs, Vol. 1, Cambridge University Press, Cambridge, 2004.
  5. Cabanes M., Rickard J., Alvis-Curtis duality as an equivalence of derived categories, in Modular Representation Theory of Finite Groups (Charlottesville, VA, 1998), de Gruyter, Berlin, 2001, 157-174.
  6. Chuang J., Rouquier R., Derived equivalences for symmetric groups and sl2-categorification, Ann. of Math. 167 (2008), 245-298, math.RT/0407205.
  7. Chuang J., Rouquier R., Perverse equivalences, in preparation.
  8. Curtis C.W., Truncation and duality in the character ring of a finite group of Lie type, J. Algebra 62 (1980), 320-332.
  9. Curtis C.W., Reiner I., Methods of representation theory, Vol. II, With applications to finite groups and orders, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1987.
  10. Deligne P., Lusztig G., Duality for representations of a reductive group over a finite field, J. Algebra 74 (1982), 284-291.
  11. Dipper R., Du J., Harish-Chandra vertices and Steinberg's tensor product theorems for finite general linear groups, Proc. London Math. Soc. 75 (1997), 559-599.
  12. Dreyfus-Schmidt L., Équivalences perverses splendides, conditions de stabilité et catégorification du complexe de Coxeter, Ph.D. Thesis, Paris Diderot - Paris 7, 2014.
  13. Dudas O., Varagnolo M., Vasserot E., Categorical actions on unipotent representations I. Finite unitary groups, arXiv:1509.03269.
  14. Ford B., Kleshchev A.S., A proof of the Mullineux conjecture, Math. Z. 226 (1997), 267-308.
  15. Geck M., On the modular composition factors of the Steinberg representation, J. Algebra 475 (2017), 370-391.
  16. Geck M., Hiss G., Malle G., Cuspidal unipotent Brauer characters, J. Algebra 168 (1994), 182-220.
  17. Geck M., Hiss G., Malle G., Towards a classification of the irreducible representations in non-describing characteristic of a finite group of Lie type, Math. Z. 221 (1996), 353-386.
  18. Gerber T., Hiss G., Jacon N., Harish-Chandra series in finite unitary groups and crystal graphs, Int. Math. Res. Not. 2015 (2015), 12206-12250, arXiv:1408.1210.
  19. Hiss G., Harish-Chandra series of Brauer characters in a finite group with a split BN-pair, J. London Math. Soc. 48 (1993), 219-228.
  20. Kleshchev A.S., Branching rules for modular representations of symmetric groups. III. Some corollaries and a problem of Mullineux, J. London Math. Soc. 54 (1996), 25-38.
  21. Lascoux A., Leclerc B., Thibon J.-Y., Hecke algebras at roots of unity and crystal bases of quantum affine algebras, Comm. Math. Phys. 181 (1996), 205-263.
  22. Linckelmann M., Schroll S., A two-sided q-analogue of the Coxeter complex, J. Algebra 289 (2005), 128-134.
  23. Losev I., Supports of simple modules in cyclotomic Cherednik categories O, arXiv:1509.00526.
  24. Losev I., Rational Cherednik algebras and categorification, in Categorification and Higher Representation Theory, Contemp. Math., Vol. 683, Amer. Math. Soc., Providence, RI, 2017, 1-40, arXiv:1509.08550.
  25. Misra K., Miwa T., Crystal base for the basic representation of Uq(^sl(n)), Comm. Math. Phys. 134 (1990), 79-88.
  26. Mullineux G., Bijections of p-regular partitions and p-modular irreducibles of the symmetric groups, J. London Math. Soc. 20 (1979), 60-66.
  27. Seeber J., On Harish-Chandra induction and the Hom-functor, MSc Thesis, RWTH Aachen University, 2016.

Previous article  Next article   Contents of Volume 14 (2018)