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Figure 3. On the left the Hirzebruch surface (with the ruling), together with the curves C∞ = σ∞ ∪
F1 ∪ F2 ∪ F3 ∪ F4 and C0 = σ0 is depicted. The concentric circles indicate double blow-ups – after one

blow-up at each of the four points we get the middle configuration, while four further blow-ups provide

the right hand diagram, with two I∗0 fibers.

zero-sets of two sections of the same holomorphic line bundle, hence there is a pencil of curves
containing both. Blowing up the four basepoints (which are the intersections of the fibers with
the section) twice, we get an elliptic fibration on the 8-fold blow-up of F2 (which is a rational
elliptic surface), with two singular fibers, each of type I∗0 . For the blow-up process, see Fig. 3.

In some sense the converse of the above example also holds. Indeed, if we get a fibration by
blowing up a pencil on F2 containing C∞, then the pencil has at least 4 basepoints, each on
different fibers of the ruling on F2, hence the fibration has at least four disjoint (−1)-sections.
In addition, these sections intersect different curves in the fiber (of type I∗0 ) coming from the
curve C∞ at infinity.
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