Processing math: 100%

Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 15 (2019), 098, 27 pages      arXiv:1906.07926      https://doi.org/10.3842/SIGMA.2019.098

Exact Bohr-Sommerfeld Conditions for the Quantum Periodic Benjamin-Ono Equation

Alexander Moll
Department of Mathematics, Northeastern University, Boston, MA USA

Received June 20, 2019, in final form December 12, 2019; Published online December 18, 2019

Abstract
In this paper we describe the spectrum of the quantum periodic Benjamin-Ono equation in terms of the multi-phase solutions of the underlying classical system (the periodic multi-solitons). To do so, we show that the semi-classical quantization of this system given by Abanov-Wiegmann is exact and equivalent to the geometric quantization by Nazarov-Sklyanin. First, for the Liouville integrable subsystems defined from the multi-phase solutions, we use a result of Gérard-Kappeler to prove that if one neglects the infinitely-many transverse directions in phase space, the regular Bohr-Sommerfeld conditions on the actions are equivalent to the condition that the singularities of the Dobrokhotov-Krichever multi-phase spectral curves define an anisotropic partition (Young diagram). Next, we locate the renormalization of the classical dispersion coefficient by Abanov-Wiegmann in the realization of Jack functions as quantum periodic Benjamin-Ono stationary states. Finally, we show that the classical energies of Bohr-Sommerfeld multi-phase solutions in the renormalized theory give the exact quantum spectrum found by Nazarov-Sklyanin without any Maslov index correction.

Key words: Benjamin-Ono; solitons; geometric quantization; anisotropic Young diagrams.

pdf (791 kb)   tex (293 kb)  

References

  1. Abanov A.G., Wiegmann P.B., Quantum hydrodynamics, the quantum Benjamin-Ono equation, and the Calogero model, Phys. Rev. Lett. 95 (2005), 076402, 4 pages, arXiv:cond-mat/0504041.
  2. Andrić I., Bardek V., 1/N corrections in Calogero-type models using the collective-field method, J. Phys. A: Math. Gen. 21 (1988), 2847-2853.
  3. Awata H., Matsuo Y., Odake S., Shiraishi J., Collective field theory, Calogero-Sutherland model and generalized matrix models, Phys. Lett. B 347 (1995), 49-55.
  4. Benjamin T.B., Internal waves of permanent form in fluids of great depth, J. Fluid Mech. 29 (1967), 559-592.
  5. Bettelheim E., Abanov A.G., Wiegmann P.B., Nonlinear quantum shock waves in fractional quantum Hall edge states, Phys. Rev. Lett. 97 (2006), 246401, 4 pages.
  6. Birman M.S., Pushnitski A.B., Spectral shift function, amazing and multifaceted, Integral Equations Operator Theory 30 (1998), 191-199.
  7. Boutet de Monvel L., Guillemin V., The spectral theory of Toeplitz operators, Annals of Mathematics Studies, Vol. 99, Princeton University Press, Princeton, NJ, 1981.
  8. Calogero F., Isochronous systems, Oxford University Press, Oxford, 2008.
  9. Coleman S., Quantum sine-Gordon equation as the massive Thirring model, Phys. Rev. D 11 (1975), 2088-2097.
  10. Coleman S., Classical lumps and their quantum descendants, in New Phenomena in Subnuclear Physics, Subnuclear Series, Vol. 13, Springer, Boston, MA, 1977, 297-421.
  11. Dashen R.F., Hasslacher B., Neveu A., Nonperturbative methods and extended-hadron models in field theory. I. Semiclassical functional methods, Phys. Rev. D 10 (1974), 4114-4129.
  12. Dashen R.F., Hasslacher B., Neveu A., Nonperturbative methods and extended-hadron models in field theory. II. Two-dimensional models and extended hadrons, Phys. Rev. D 10 (1974), 4130-4138.
  13. Dashen R.F., Hasslacher B., Neveu A., Semiclassical bound states in an asymptotically free theory, Phys. Rev. D 12 (1975), 2443-2458.
  14. Davis R.E., Acrivos A., The stability of oscillatory internal waves, J. Fluid Mech. 30 (1967), 723-736.
  15. Deift P., Its A., Krasovsky I., Toeplitz matrices and Toeplitz determinants under the impetus of the Ising model: some history and some recent results, Comm. Pure Appl. Math. 66 (2013), 1360-1438.
  16. Dobrokhotov S.Yu., Krichever I.M., Multi-phase solutions of the Benjamin-Ono equation and their averaging, Math. Notes 49 (1991), 583-594.
  17. Dubrovin B., Symplectic field theory of a disk, quantum integrable systems, and Schur polynomials, Ann. Henri Poincar'e 17 (2016), 1595-1613, arXiv:1407.5824.
  18. Etingof P., Calogero-Moser systems and representation theory, Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich, 2007.
  19. Faddeev L.D., Quantum completely integrable models in field theory, in Mathematical Physics Reviews, Vol. 1, Soviet Sci. Rev. Sect. C: Math. Phys. Rev., Vol. 1, Harwood Academic, Chur, 1980, 107-155.
  20. Faddeev L.D., 40 years in mathematical physics, World Scientific Series in 20th Century Mathematics, Vol. 2, World Sci. Publ. Co., Inc., River Edge, NJ, 1995.
  21. Gérard P., Kappeler T., On the integrability of the Benjamin-Ono equation on the torus, arXiv:1905.01849.
  22. Goldstone J., Jackiw R., Quantization of nonlinear waves, Phys. Rev. D 11 (1975), 1486-1498.
  23. Guillemin V., Sternberg S., The Gelfand-Cetlin system and quantization of the complex flag manifolds, J. Funct. Anal. 52 (1983), 106-128.
  24. Janson S., Gaussian Hilbert spaces, Cambridge Tracts in Mathematics, Vol. 129, Cambridge University Press, Cambridge, 1997.
  25. Jevicki A., Nonperturbative collective field theory, Nuclear Phys. B 376 (1992), 75-98.
  26. Kac V., Vertex algebras for beginners, 2nd ed., University Lecture Series, Vol. 10, Amer. Math. Soc., Providence, RI, 1998.
  27. Karabali D., Polychronakos A.P., Exact operator Hamiltonians and interactions in the droplet bosonization method, Phys. Rev. D 90 (2014), 025002, 11 pages, arXiv:1204.2788.
  28. Kerov S.V., Interlacing measures, in Kirillov's Seminar on Representation Theory, Amer. Math. Soc. Transl. Ser. 2, Vol. 181, Amer. Math. Soc., Providence, RI, 1998, 35-83.
  29. Kerov S.V., Anisotropic Young diagrams and symmetric Jack functions, Funct. Anal. Appl. 34 (2000), 41-51, arXiv:math.CO/9712267.
  30. Kirillov A.A., Geometric quantization, in Dynamical Systems, IV, Encyclopaedia Math. Sci., Vol. 4, Springer, Berlin, 2001, 139-176.
  31. Korepin V.E., Faddeev L.D., Quantization of solitons, Theoret. and Math. Phys. 25 (1975), 1039-1049.
  32. Macdonald I.G., Symmetric functions and Hall polynomials, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995.
  33. Matsuno Y., Interaction of the Benjamin-Ono solitons, J. Phys. A: Math. Gen. 13 (1980), 1519-1536.
  34. Maulik D., Okounkov A., Quantum groups and quantum cohomology, Ast'erisque 408 (2019), ix+209 pages, arXiv:1211.1287.
  35. Mironov A., Morozov A., Nekrasov functions and exact Bohr-Sommerfeld integrals, J. High Energy Phys. 2010 (2010), no. 4, 040, 15 pages, arXiv:0910.5670.
  36. Molinet L., Global well-posedness in L2 for the periodic Benjamin-Ono equation, Amer. J. Math. 130 (2008), 635-683, arXiv:math.AP/0601217.
  37. Moll A., Random partitions and the quantum Benjamin-Ono hierarchy, Ph.D. Thesis, Massachusetts Institute of Technology, 2016, arXiv:1508.03063.
  38. Moll A., Finite gap conditions and small dispersion asymptotics for the classical periodic Benjamin-Ono equation, Quart. Appl. Math., to appear, arXiv:1901.04089.
  39. Moll A., Soliton quantization and random partitions, in preparation.
  40. Nazarov M., Sklyanin E., Integrable hierarchy of the quantum Benjamin-Ono equation, SIGMA 9 (2013), 078, 14 pages, arXiv:1309.6464.
  41. Nazarov M., Sklyanin E., Sekiguchi-Debiard operators at infinity, Comm. Math. Phys. 324 (2013), 831-849, arXiv:1212.2781.
  42. Nekrasov N.A., Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys. 7 (2003), 831-864, arXiv:hep-th/0206161.
  43. Nekrasov N., Pestun V., Shatashvili S., Quantum geometry and quiver gauge theories, Comm. Math. Phys. 357 (2018), 519-567, arXiv:1312.6689.
  44. Nekrasov N.A., Shatashvili S.L., Quantization of integrable systems and four dimensional gauge theories, in XVIth International Congress on Mathematical Physics, World Sci. Publ., Hackensack, NJ, 2010, 265-289, arXiv:0908.4052.
  45. Okounkov A., Infinite wedge and random partitions, Selecta Math. (N.S.) 7 (2001), 57-81, arXiv:math.RT/9907127.
  46. Okounkov A., On the crossroads of enumerative geometry and geometric representation theory, arXiv:1801.09818.
  47. Ono H., Algebraic solitary waves in stratified fluids, J. Phys. Soc. Japan 39 (1975), 1082-1091.
  48. Polychronakos A.P., Waves and solitons in the continuum limit of the Calogero-Sutherland model, Phys. Rev. Lett. 74 (1995), 5153-5157, arXiv:hep-th/9411054.
  49. Ruijsenaars S.N.M., Systems of Calogero-Moser type, in Particles and Fields (Banff, AB, 1994), CRM Ser. Math. Phys., Springer, New York, 1999, 251-352.
  50. Satsuma J., Ishimori Y., Periodic wave and rational soliton solutions of the Benjamin-Ono equation, J. Phys. Soc. Japan 46 (1979), 681-687.
  51. Saut J.-C., Benjamin-Ono and intermediate long wave equation: modeling, IST and PDE, arXiv:1811.08652.
  52. Sergeev A.N., Veselov A.P., Dunkl operators at infinity and Calogero-Moser systems, Int. Math. Res. Not. 2015 (2015), 10959-10986, arXiv:1311.0853.
  53. Sergeev A.N., Veselov A.P., Jack-Laurent symmetric functions, Proc. Lond. Math. Soc. 111 (2015), 63-92, arXiv:1310.2462.
  54. Sklyanin E.K., Takhtadzhyan L.A., Faddeev L.D., Quantum inverse problem. I, Theoret. and Math. Phys. 40 (1979), 688-706.
  55. Stanley R.P., Some combinatorial properties of Jack symmetric functions, Adv. Math. 77 (1989), 76-115.
  56. Sutherland B., Beautiful models: 70 years of exactly solved quantum many-body problems, World Sci. Publ. Co., Inc., River Edge, NJ, 2004.
  57. Takhtajan L.A., Quantum mechanics for mathematicians, Graduate Studies in Mathematics, Vol. 95, Amer. Math. Soc., Providence, RI, 2008.
  58. Takhtajan L.A., Alekseev A.Yu., Aref'eva I.Ya., Semenov-Tian-Shansky M.A., Sklyanin E.K., Smirnov F.A., Shatashvili S.L., Scientific heritage of L.D. Faddeev. Survey of papers, Russian Math. Surveys 72 (2017), 977-1081.
  59. Vũ Ngoc S., Quantum monodromy and Bohr-Sommerfeld rules, Lett. Math. Phys. 55 (2001), 205-217.
  60. Wiegmann P., Nonlinear hydrodynamics and fractionally quantized solitons at the fractional quantum Hall edge, Phys. Rev. Lett. 108 (2012), 206810, 5 pages, arXiv:1112.0810.
  61. Woodhouse N.M.J., Geometric quantization, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1992.

Previous article  Next article  Contents of Volume 15 (2019)