|
SIGMA 15 (2019), 098, 27 pages arXiv:1906.07926
https://doi.org/10.3842/SIGMA.2019.098
Exact Bohr-Sommerfeld Conditions for the Quantum Periodic Benjamin-Ono Equation
Alexander Moll
Department of Mathematics, Northeastern University, Boston, MA USA
Received June 20, 2019, in final form December 12, 2019; Published online December 18, 2019
Abstract
In this paper we describe the spectrum of the quantum periodic Benjamin-Ono equation in terms of the multi-phase solutions of the underlying classical system (the periodic multi-solitons). To do so, we show that the semi-classical quantization of this system given by Abanov-Wiegmann is exact and equivalent to the geometric quantization by Nazarov-Sklyanin. First, for the Liouville integrable subsystems defined from the multi-phase solutions, we use a result of Gérard-Kappeler to prove that if one neglects the infinitely-many transverse directions in phase space, the regular Bohr-Sommerfeld conditions on the actions are equivalent to the condition that the singularities of the Dobrokhotov-Krichever multi-phase spectral curves define an anisotropic partition (Young diagram). Next, we locate the renormalization of the classical dispersion coefficient by Abanov-Wiegmann in the realization of Jack functions as quantum periodic Benjamin-Ono stationary states. Finally, we show that the classical energies of Bohr-Sommerfeld multi-phase solutions in the renormalized theory give the exact quantum spectrum found by Nazarov-Sklyanin without any Maslov index correction.
Key words: Benjamin-Ono; solitons; geometric quantization; anisotropic Young diagrams.
pdf (791 kb)
tex (293 kb)
References
- Abanov A.G., Wiegmann P.B., Quantum hydrodynamics, the quantum Benjamin-Ono equation, and the Calogero model, Phys. Rev. Lett. 95 (2005), 076402, 4 pages, arXiv:cond-mat/0504041.
- Andrić I., Bardek V., 1/N corrections in Calogero-type models using the collective-field method, J. Phys. A: Math. Gen. 21 (1988), 2847-2853.
- Awata H., Matsuo Y., Odake S., Shiraishi J., Collective field theory, Calogero-Sutherland model and generalized matrix models, Phys. Lett. B 347 (1995), 49-55.
- Benjamin T.B., Internal waves of permanent form in fluids of great depth, J. Fluid Mech. 29 (1967), 559-592.
- Bettelheim E., Abanov A.G., Wiegmann P.B., Nonlinear quantum shock waves in fractional quantum Hall edge states, Phys. Rev. Lett. 97 (2006), 246401, 4 pages.
- Birman M.S., Pushnitski A.B., Spectral shift function, amazing and multifaceted, Integral Equations Operator Theory 30 (1998), 191-199.
- Boutet de Monvel L., Guillemin V., The spectral theory of Toeplitz operators, Annals of Mathematics Studies, Vol. 99, Princeton University Press, Princeton, NJ, 1981.
- Calogero F., Isochronous systems, Oxford University Press, Oxford, 2008.
- Coleman S., Quantum sine-Gordon equation as the massive Thirring model, Phys. Rev. D 11 (1975), 2088-2097.
- Coleman S., Classical lumps and their quantum descendants, in New Phenomena in Subnuclear Physics, Subnuclear Series, Vol. 13, Springer, Boston, MA, 1977, 297-421.
- Dashen R.F., Hasslacher B., Neveu A., Nonperturbative methods and extended-hadron models in field theory. I. Semiclassical functional methods, Phys. Rev. D 10 (1974), 4114-4129.
- Dashen R.F., Hasslacher B., Neveu A., Nonperturbative methods and extended-hadron models in field theory. II. Two-dimensional models and extended hadrons, Phys. Rev. D 10 (1974), 4130-4138.
- Dashen R.F., Hasslacher B., Neveu A., Semiclassical bound states in an asymptotically free theory, Phys. Rev. D 12 (1975), 2443-2458.
- Davis R.E., Acrivos A., The stability of oscillatory internal waves, J. Fluid Mech. 30 (1967), 723-736.
- Deift P., Its A., Krasovsky I., Toeplitz matrices and Toeplitz determinants under the impetus of the Ising model: some history and some recent results, Comm. Pure Appl. Math. 66 (2013), 1360-1438.
- Dobrokhotov S.Yu., Krichever I.M., Multi-phase solutions of the Benjamin-Ono equation and their averaging, Math. Notes 49 (1991), 583-594.
- Dubrovin B., Symplectic field theory of a disk, quantum integrable systems, and Schur polynomials, Ann. Henri Poincar'e 17 (2016), 1595-1613, arXiv:1407.5824.
- Etingof P., Calogero-Moser systems and representation theory, Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich, 2007.
- Faddeev L.D., Quantum completely integrable models in field theory, in Mathematical Physics Reviews, Vol. 1, Soviet Sci. Rev. Sect. C: Math. Phys. Rev., Vol. 1, Harwood Academic, Chur, 1980, 107-155.
- Faddeev L.D., 40 years in mathematical physics, World Scientific Series in 20th Century Mathematics, Vol. 2, World Sci. Publ. Co., Inc., River Edge, NJ, 1995.
- Gérard P., Kappeler T., On the integrability of the Benjamin-Ono equation on the torus, arXiv:1905.01849.
- Goldstone J., Jackiw R., Quantization of nonlinear waves, Phys. Rev. D 11 (1975), 1486-1498.
- Guillemin V., Sternberg S., The Gelfand-Cetlin system and quantization of the complex flag manifolds, J. Funct. Anal. 52 (1983), 106-128.
- Janson S., Gaussian Hilbert spaces, Cambridge Tracts in Mathematics, Vol. 129, Cambridge University Press, Cambridge, 1997.
- Jevicki A., Nonperturbative collective field theory, Nuclear Phys. B 376 (1992), 75-98.
- Kac V., Vertex algebras for beginners, 2nd ed., University Lecture Series, Vol. 10, Amer. Math. Soc., Providence, RI, 1998.
- Karabali D., Polychronakos A.P., Exact operator Hamiltonians and interactions in the droplet bosonization method, Phys. Rev. D 90 (2014), 025002, 11 pages, arXiv:1204.2788.
- Kerov S.V., Interlacing measures, in Kirillov's Seminar on Representation Theory, Amer. Math. Soc. Transl. Ser. 2, Vol. 181, Amer. Math. Soc., Providence, RI, 1998, 35-83.
- Kerov S.V., Anisotropic Young diagrams and symmetric Jack functions, Funct. Anal. Appl. 34 (2000), 41-51, arXiv:math.CO/9712267.
- Kirillov A.A., Geometric quantization, in Dynamical Systems, IV, Encyclopaedia Math. Sci., Vol. 4, Springer, Berlin, 2001, 139-176.
- Korepin V.E., Faddeev L.D., Quantization of solitons, Theoret. and Math. Phys. 25 (1975), 1039-1049.
- Macdonald I.G., Symmetric functions and Hall polynomials, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995.
- Matsuno Y., Interaction of the Benjamin-Ono solitons, J. Phys. A: Math. Gen. 13 (1980), 1519-1536.
- Maulik D., Okounkov A., Quantum groups and quantum cohomology, Ast'erisque 408 (2019), ix+209 pages, arXiv:1211.1287.
- Mironov A., Morozov A., Nekrasov functions and exact Bohr-Sommerfeld integrals, J. High Energy Phys. 2010 (2010), no. 4, 040, 15 pages, arXiv:0910.5670.
- Molinet L., Global well-posedness in L2 for the periodic Benjamin-Ono equation, Amer. J. Math. 130 (2008), 635-683, arXiv:math.AP/0601217.
- Moll A., Random partitions and the quantum Benjamin-Ono hierarchy, Ph.D. Thesis, Massachusetts Institute of Technology, 2016, arXiv:1508.03063.
- Moll A., Finite gap conditions and small dispersion asymptotics for the classical periodic Benjamin-Ono equation, Quart. Appl. Math., to appear, arXiv:1901.04089.
- Moll A., Soliton quantization and random partitions, in preparation.
- Nazarov M., Sklyanin E., Integrable hierarchy of the quantum Benjamin-Ono equation, SIGMA 9 (2013), 078, 14 pages, arXiv:1309.6464.
- Nazarov M., Sklyanin E., Sekiguchi-Debiard operators at infinity, Comm. Math. Phys. 324 (2013), 831-849, arXiv:1212.2781.
- Nekrasov N.A., Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys. 7 (2003), 831-864, arXiv:hep-th/0206161.
- Nekrasov N., Pestun V., Shatashvili S., Quantum geometry and quiver gauge theories, Comm. Math. Phys. 357 (2018), 519-567, arXiv:1312.6689.
- Nekrasov N.A., Shatashvili S.L., Quantization of integrable systems and four dimensional gauge theories, in XVIth International Congress on Mathematical Physics, World Sci. Publ., Hackensack, NJ, 2010, 265-289, arXiv:0908.4052.
- Okounkov A., Infinite wedge and random partitions, Selecta Math. (N.S.) 7 (2001), 57-81, arXiv:math.RT/9907127.
- Okounkov A., On the crossroads of enumerative geometry and geometric representation theory, arXiv:1801.09818.
- Ono H., Algebraic solitary waves in stratified fluids, J. Phys. Soc. Japan 39 (1975), 1082-1091.
- Polychronakos A.P., Waves and solitons in the continuum limit of the Calogero-Sutherland model, Phys. Rev. Lett. 74 (1995), 5153-5157, arXiv:hep-th/9411054.
- Ruijsenaars S.N.M., Systems of Calogero-Moser type, in Particles and Fields (Banff, AB, 1994), CRM Ser. Math. Phys., Springer, New York, 1999, 251-352.
- Satsuma J., Ishimori Y., Periodic wave and rational soliton solutions of the Benjamin-Ono equation, J. Phys. Soc. Japan 46 (1979), 681-687.
- Saut J.-C., Benjamin-Ono and intermediate long wave equation: modeling, IST and PDE, arXiv:1811.08652.
- Sergeev A.N., Veselov A.P., Dunkl operators at infinity and Calogero-Moser systems, Int. Math. Res. Not. 2015 (2015), 10959-10986, arXiv:1311.0853.
- Sergeev A.N., Veselov A.P., Jack-Laurent symmetric functions, Proc. Lond. Math. Soc. 111 (2015), 63-92, arXiv:1310.2462.
- Sklyanin E.K., Takhtadzhyan L.A., Faddeev L.D., Quantum inverse problem. I, Theoret. and Math. Phys. 40 (1979), 688-706.
- Stanley R.P., Some combinatorial properties of Jack symmetric functions, Adv. Math. 77 (1989), 76-115.
- Sutherland B., Beautiful models: 70 years of exactly solved quantum many-body problems, World Sci. Publ. Co., Inc., River Edge, NJ, 2004.
- Takhtajan L.A., Quantum mechanics for mathematicians, Graduate Studies in Mathematics, Vol. 95, Amer. Math. Soc., Providence, RI, 2008.
- Takhtajan L.A., Alekseev A.Yu., Aref'eva I.Ya., Semenov-Tian-Shansky M.A., Sklyanin E.K., Smirnov F.A., Shatashvili S.L., Scientific heritage of L.D. Faddeev. Survey of papers, Russian Math. Surveys 72 (2017), 977-1081.
- Vũ Ngoc S., Quantum monodromy and Bohr-Sommerfeld rules, Lett. Math. Phys. 55 (2001), 205-217.
- Wiegmann P., Nonlinear hydrodynamics and fractionally quantized solitons at the fractional quantum Hall edge, Phys. Rev. Lett. 108 (2012), 206810, 5 pages, arXiv:1112.0810.
- Woodhouse N.M.J., Geometric quantization, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1992.
|
|