| 
 SIGMA 15 (2019), 100, 11 pages       arXiv:1403.3226     
https://doi.org/10.3842/SIGMA.2019.100 
 
Picard-Vessiot Extensions of Real Differential Fields
Teresa Crespo a and Zbigniew Hajto b
 a)  Departament de Matemàtiques i Informàtica, Universitat de Barcelona, Gran Via de les Corts Catalanes 585, 08007 Barcelona, Spain
 b)  Faculty of Mathematics and Computer Science, Jagiellonian University, ul. Prof. S. Łojasiewicza 6, 30-348 Kraków, Poland
 
 
Received July 04, 2019, in final form December 22, 2019; Published online December 24, 2019
 Abstract 
For a linear differential equation defined over a formally real differential field $K$ with real closed field of constants $k$, Crespo, Hajto and van der Put proved that there exists a unique formally real Picard-Vessiot extension up to $K$-differential automorphism. However such an equation may have Picard-Vessiot extensions which are not formally real fields. The differential Galois group of a Picard-Vessiot extension for this equation has the structure of a linear algebraic group defined over $k$ and is a $k$-form of the differential Galois group $H$ of the equation over the differential field $K\big(\sqrt{-1}\big)$. These facts lead us to consider two issues: determining the number of $K$-differential isomorphism classes of Picard-Vessiot extensions and describing the variation of the differential Galois group in the set of $k$-forms of $H$. We address these two issues in the cases when $H$ is a special linear, a special orthogonal, or a symplectic linear algebraic group and conclude that there is no general behaviour.
 Key words: real Picard-Vessiot theory; linear algebraic groups; group cohomology; real forms of algebraic groups. 
pdf (312 kb)  
tex (17 kb)  
 
 
References 
- Amano K., Masuoka A., Picard-Vessiot extensions of Artinian simple module algebras, J. Algebra 285 (2005), 743-767.
 
- André Y., Différentielles non commutatives et théorie de Galois différentielle ou aux différences, Ann. Sci. École Norm. Sup. (4) 34 (2001), 685-739, arXiv:math.GM/0203274.
 
- Audin M., Exemples de hamiltoniens non intégrables en mécanique analytique réelle, Ann. Fac. Sci. Toulouse Math. (6) 12 (2003), 1-23.
 
- Bachmayr A., Harbater D., Hartmann J., Differential Galois groups over Laurent series fields, Proc. Lond. Math. Soc. 112 (2016), 455-476.
 
- Bayer-Fluckiger E., Parimala R., Classical groups and the Hasse principle, Ann. of Math. 147 (1998), 651-693, Correction, Ann. of Math. 163 (2006), 381.
 
- Bochnak J., Coste M., Roy M.-F., Real algebraic geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), Vol. 36, Springer-Verlag, Berlin, 1998.
 
- Borel A., Lie groups and linear algebraic groups. I. Complex and real groups, in Lie Groups and Automorphic Forms, AMS/IP Stud. Adv. Math., Vol. 37, Amer. Math. Soc., Providence, RI, 2006, 1-49.
 
- Crespo T., Hajto Z., Algebraic groups and differential Galois theory, Graduate Studies in Mathematics, Vol. 122, Amer. Math. Soc., Providence, RI, 2011.
 
- Crespo T., Hajto Z., Real Liouville extensions, Comm. Algebra 43 (2015), 2089-2093, arXiv:1206.2283.
 
- Crespo T., Hajto Z., Sowa E., Picard-Vessiot theory for real fields, Israel J. Math. 198 (2013), 75-89.
 
- Crespo T., Hajto Z., van der Put M., Real and $p$-adic Picard-Vessiot fields, Math. Ann. 365 (2016), 93-103, arXiv:1307.2388.
 
- Deligne P., Milne J.S., Tannakian categories, in Hodge cycles, motives, and Shimura varieties, Lecture Notes in Math., Vol. 900, Editors P. Deligne, J.S. Milne, A. Ogus, K.-Y. Shih, Springer-Verlag, Berlin - New York, 1982, 101-228.
 
- Dyckerhoff T., The inverse problem of differential Galois theory over the field ${\mathbb R}(z)$, arXiv:0802.2897.
 
- Gel'fond O.A., Hovanskii A.G., Real Liouville functions, Funct. Anal. Appl. 14 (1980), 122-123.
 
- Kamensky M., Pillay A., Interpretations and differential Galois extensions, Int. Math. Res. Not. 2016 (2016), 7390-7413.
 
- Kneser M., Lectures on Galois cohomology of classical groups, Tata Institute of Fundamental Research Lectures on Mathematics, Vol. 47, Tata Institute of Fundamental Research, Bombay, 1969.
 
- Knus M.-A., Merkurjev A., Rost M., Tignol J.-P., The book of involutions, American Mathematical Society Colloquium Publications, Vol. 44, Amer. Math. Soc., Providence, RI, 1998.
 
- Kolchin E.R., Algebraic matric groups and the Picard-Vessiot theory of homogeneous linear ordinary differential equations, Ann. of Math. 49 (1948), 1-42.
 
- León Sánchez O., Pillay A., Some definable Galois theory and examples, Bull. Symb. Log. 23 (2017), 145-159, arXiv:1511.05541.
 
- Malle G., Testerman D., Linear algebraic groups and finite groups of Lie type, Cambridge Studies in Advanced Mathematics, Vol. 133, Cambridge University Press, Cambridge, 2011.
 
- Prestel A., Lectures on formally real fields, Lecture Notes in Math., Vol. 1093, Springer-Verlag, Berlin, 1984.
 
- Serre J.-P., Local fields, Graduate Texts in Mathematics, Vol. 67, Springer-Verlag, New York - Berlin, 1979.
 
- Serre J.-P., Cohomologie galoisienne, 5th ed., Lecture Notes in Math., Vol. 5, Springer-Verlag, Berlin, 1994.
 
- Springer T.A., Linear algebraic groups, 2nd ed., Progress in Mathematics, Vol. 9, Birkhäuser Boston, Inc., Boston, MA, 1998.
 
- Steinberg R., Lectures on Chevalley groups, Yale University, New Haven, Conn., 1968.
 
- Tits J., Classification of algebraic semisimple groups, in Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965), Amer. Math. Soc., Providence, R.I., 1966, 33-62.
 
- van der Put M., Singer M.F., Galois theory of linear differential equations, Grundlehren der Mathematischen Wissenschaften, Vol. 328, Springer-Verlag, Berlin, 2003.
 
 
 | 
 |