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Abstract. We study Kohn–Dirac operators Dθ on strictly pseudoconvex CR manifolds with
spinC structure of weight ` ∈ Z. Certain components of Dθ are CR invariants. We also de-
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1 Introduction

The classical Schrödinger–Lichnerowicz formula

D2 = ∆ +
scal

4

of Riemannian geometry relates the square of the Dirac operator to the spinor Laplacian and
scalar curvature. This Weitzenböck formula can be used to prove vanishing theorems for har-
monic spinors on closed manifolds. Via Hodge theory and Dolbeault’s theorem this give rise to
vanishing theorems for holomorphic cohomology on Kähler manifolds (see [5]). Moreover, via the
index theorem for elliptic differential operators, the Â-genus is understood to be an obstruction
to positive scalar curvature on spin manifolds (see [14]).

Due to J.J. Kohn there is also an harmonic theory for the Kohn–Laplacian on strictly pseu-
doconvex CR manifolds (see [4, 7]). Even though the Kohn–Laplacian is not elliptic, this theory
shows that classes in the cohomology groups of the tangential Cauchy–Riemann complex (or
Kohn–Rossi complex) are represented by harmonic forms. In particular, the (non-extremal)
Kohn–Rossi groups are finite dimensional over closed manifolds.

In [21] Tanaka describes this harmonic theory for the Kohn–Laplacian on (p, q)-forms with
values in some CR vector bundle E over (abstract) strictly pseudoconvex CR manifolds. The
Kohn–Laplacian is defined with respect to some pseudo-Hermitian structure θ and the corre-
sponding canonical connection. In particular, Tanaka derives Weitzenböck formulas and proves
vanishing theorems for the Kohn–Rossi groups. On the other hand, in [18] R. Petit introduces
spinor calculus and Dirac-type operators to strictly pseudoconvex CR manifolds with adapted
pseudo-Hermitian structure (cf. also [12, 20]). Deriving some Schrödinger–Lichnerowicz-type for-
mula for the Kohn–Dirac operator, this approach gives rise to vanishing theorems for harmonic
spinors over closed CR manifolds (cf. also [9]).
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We study in this paper the Kohn–Dirac operator Dθ for spinC structures of weight ` ∈ Z
on strictly pseudoconvex CR manifolds with adapted pseudo-Hermitian structure θ. Our con-
struction of Dθ uses the Webster–Tanaka spinor derivative, only. The Kohn–Dirac operator Dθ

does not behave naturally with respect to conformal changes of the underlying pseudo-Hermitian
structure. However, similar as in Kähler geometry, the spinor bundle Σ decomposes with respect
to the CR structure into eigenbundles Σµq of certain eigenvalues µq. For µq = −` the restric-
tion D` of the Kohn–Dirac operator to Γ

(
Σµq

)
acts CR-covariantly. This observation gives rise

to CR invariants for the underlying strictly pseudoconvex CR manifold.

Complementary to Dθ we also have twistor operators. In the spin case [12] we discuss special
solutions of the corresponding twistor equation, which realize some lower bound for the square
of the first non-zero eigenvalue of the Kohn–Dirac operator Dθ. For µq = ` the corresponding
twistor operator P` is a CR invariant.

Analyzing the Clifford multiplication on the spinor bundle for spinC structures over strictly
pseudoconvex CR manifolds shows that the Kohn–Dirac operator is a square root of the Kohn–
Laplacian acting on (0, q)-forms with values in some CR line bundle E. Thus, our discussion of
the Kohn–Dirac operator fits well to Kohn’s harmonic theory, as described in [21]. In particular,
harmonic spinors correspond to cohomology classes of certain twisted Kohn–Rossi complexes.
Computing the curvature term of the corresponding Schrödinger–Lichnerowicz-type formula
gives rise to vanishing theorems for twisted Kohn–Rossi groups.

For example, on a closed, strictly pseudoconvex CR manifold M of even CR dimension
m ≥ 2 with spin structure given by a square root

√
K of the canonical line bundle, we have for

µq = ` = 0 the Schrödinger–Lichnerowicz-type formula

D∗0D0 = ∆tr +
scalW

4

for the CR-covariant component D0 of Dθ, where ∆tr denotes the spinor sub-Laplacian and scalW

is the Webster scalar curvature. In this case harmonic spinors correspond to cohomology classes
in the Kohn–Rossi group H

m
2

(
M,
√
K
)
. Positive Webster scalar curvature scalW > 0 on M im-

mediately implies that this Kohn–Rossi group is trivial. On the other hand, H
m
2

(
M,
√
K
)
6= {0}

poses an obstruction to the existence of any adapted pseudo-Hermitian structure θ on M of posi-
tive Webster scalar curvature. In this case the Yamabe invariant in [6] for the given CR structure
is non-positive.

In Sections 2 to 5 we introduce CR manifolds and pseudo-Hermitian geometry with spinC

structures. In Section 6 the Kohn–Dirac and twistor operators are constructed. The CR-
covariant components D` and P` are determined in Section 7. In Section 8 we recall the
Schrödinger–Lichnerowicz-type formula and derive a basic vanishing theorem for harmonic spi-
nors (see Proposition 8.1). Section 9 briefly reviews the harmonic theory for the Kohn–Laplacian.
In Section 10 we derive vanishing theorems for twisted Kohn–Rossi groups. In Section 11 we
discuss CR circle bundles of Kähler manifolds and relate holomorphic cohomology groups to
Kohn–Rossi groups. Finally, in Section 12 we construct closed, strictly pseudoconvex CR mani-
folds with H

m
2

(
M,
√
K
)
6= 0.

2 Strictly pseudoconvex CR structures

Let Mn be a connected and orientable, real C∞-manifold of odd dimension n = 2m + 1 ≥ 3,
equipped with a pair (H(M), J) of a corank 1 subbundle H(M) of the tangent bundle T (M)
and a bundle endomorphism J : H(M) → H(M) with J2(X) = −X for any X ∈ H(M). The
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Lie bracket [·, ·] of vector fields defines a bilinear skew pairing

{·, ·} : H(M)×H(M)→ T (M)/H(M),

(X,Y ) 7→ −[X,Y ] modH(M),

with values in the real line bundle T (M)/H(M).
We call the pair (H(M), J) a strictly pseudoconvex CR structure on M (of hypersurface type

and CR dimension m ≥ 1) if the following conditions are satisfied:

� {JX, Y }+ {X, JY } = 0 modH(M) for any X,Y ∈ H(M) and

� the symmetric pairing {·, J ·} on H(M) is definite, i.e., {X, JX} 6= 0 for any X 6= 0,

� the Nijenhuis tensor NJ(X,Y ) = [X,Y ]− [JX, JY ] +J([JX, Y ] + [X, JY ]) vanishes iden-
tically for any X,Y ∈ H(M).

Throughout this paper we will deal with strictly pseudoconvex CR structures on M . For exam-
ple, in the generic case when the Levi form is non-degenerate, the smooth boundary of a domain
of holomorphy in Cm+1 is strictly pseudoconvex.

The complex structure J extends C-linearly to H(M) ⊗ C, the complexification of the Levi
distribution, and induces a decomposition

H(M)⊗ C = T10 ⊕ T01

into ±i-eigenbundles. Then a complex-valued p-form η on M is said to be of type (p, 0) if ιZη = 0
for all Z ∈ T01. This gives rise to the complex vector bundle Λp,0(M) of (p, 0)-forms on M . For
the (m+ 1)st exterior power Λm+1,0(M) of Λ1,0(M) we write K = K(M). This is the canonical
line bundle of the CR manifold M with first Chern class c1(K) ∈ H2(M,Z). Its dual is the
anticanonical bundle, denoted by K−1.

When dealing with a strictly pseudoconvex CR manifold, we will often assume the existence
and choice of some (m+ 2)nd root E(1) of the anticanonical bundle K−1, that is a complex line
bundle over M with

E(1)m+2 = K−1.

The dual bundle of this root is denoted by E(−1). Then, for any integer p ∈ Z, we have the pth
power E(p) of E(1). We call p the weight of E(p). In particular, the canonical bundle K has
weight −(m+ 2), whereas the anticanonical bundle K−1 has weight m+ 2.

In general, the existence of an (m + 2)nd root E(1) is restrictive to the global nature of the
underlying CR structure on M . For the application of tractor calculus in CR geometry this
assumption is basic. In fact, the standard homogeneous model of CR geometry on the sphere
allows a natural choice for E(1) (see [2]). For our treatment of spinC structures in CR geometry
the choice of some E(1) is useful as well.

3 Pseudo-Hermitian geometry

Let
(
M2m+1, H(M), J

)
, m ≥ 1, be strictly pseudoconvex. Since M is orientable, there exists

some 1-form θ on M , whose kernel Ker(θ) defines the contact distribution H(M). The differen-
tial dθ is a non-degenerate 2-form on H(M), and the conditions

ιT θ = θ(T ) = 1 and ιTdθ = 0

define a unique vector field T = Tθ, which is the Reeb vector field of θ. We use to call T the
characteristic vector. The tangent bundle T (M) splits into the direct sum

T (M) = H(M)⊕ RT
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with corresponding projection πθ : T (M) → H(M). We use to say that vectors in H(M) are
transverse (to the characteristic direction of T ). Note that LT θ = LTdθ = 0 for the Lie
derivatives with respect to Tθ.

Furthermore,

gθ(X,Y ) :=
1

2
dθ(X, JY ), X, Y ∈ H(M),

defines a non-degenerate, symmetric bilinear form, i.e., a metric on H(M), which is either
positive or negative definite. In case gθ is positive definite, we call θ ∈ Ω1(M) an adapted pseudo-
Hermitian structure for

(
M2m+1, H(M), J

)
. Note that any two pseudo-Hermitian structures θ

and θ̃ differ only by some positive function or conformal scale, i.e., θ̃ = e2fθ for some f ∈ C∞(M).
Let us fix some adapted pseudo-Hermitian structure θ on M . To θ we have the Webster–

Tanaka connection∇W on T (M) (see [21, 22]), for which by definition the characteristic vector T ,
the metric gθ and the complex structure J on H(M) are parallel. Hence, the structure group
of ∇W is the unitary group U(m). In characteristic direction, we have

∇W
T X =

1

2
([T,X]− J [T, JX])

for X ∈ Γ(H(M)).
The torsion is given by some obligatory part

∇W
X Y −∇W

Y X − [X,Y ] = dθ(X,Y )T

with transverse X, Y in H(M) and, furthermore, by

TorW(T,X) = −1

2
([T,X] + J [T, JX]), X ∈ H(M).

We call the latter part

τ(X) := TorW(T,X), X ∈ H(M),

Webster torsion tensor of θ on (M,H(M), J). This is a symmetric and trace-free tensor. The
composition τ ◦ J = −J ◦ τ is symmetric and trace-free as well. We set τ(X,Y ) = gθ(τX, Y ),
X,Y ∈ H(M).

As usual the curvature operator RW(X,Y ) of ∇W is defined by

RW(X,Y ) := ∇W
X∇W

Y −∇W
Y ∇W

X −∇W
[X,Y ]

for any X,Y ∈ T (M). Since ∇W is metric, RW(X,Y ) is skew-symmetric with respect to gθ
on H(M). The first Bianchi identity for X,Y, Z ∈ H(M) is given by the cyclic sum∑

XY Z

RW(X,Y )Z =
∑
XY Z

dθ(X,Y )τ(Z). (3.1)

For any X ∈ T (M), the Webster–Ricci endomorphism RicW(X) is the gθ-trace of R(X, ·)(·),
and the Webster scalar curvature is the trace scalW = trθ RicW of the Webster–Ricci tensor
on H(M). On the other hand, the pseudo-Hermitian Ricci form is given by

ρθ(X,Y ) :=
1

2
trθ
(
gθ
(
RW(X,Y, J ·, ·)

))
for any X,Y ∈ H(M). Then we have

RicW(X,Y ) = ρθ(X, JY ) + 2(m− 1)τ(X,JY )
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for any X,Y ∈ H(M), where ρθ corresponds to the J-invariant and τ is the J-antiinvariant part
of RicW on H(M).

Ifm ≥ 2 and the pseudo-Hermitian Ricci form ρθ is a multiple of dθ we call θ a pseudo-Einstein
structure on the CR manifold

(
M2m+1, H(M), J

)
(see [11]). For m = 1 this condition is vacuous.

However, for m > 1 the pseudo-Einstein condition implies RicW(T, JX) = 1
4mX

(
scalW

)
for

any X ∈ H(M). This is a suitable replacement for the Einstein condition when m = 1 (see [3]).

In any case we have ρθ = scalW

4m dθ and the Webster scalar curvature of some pseudo-Einstein
structure θ need not be constant. In fact, it is constant if and only if

RicW(T ) = trθ
(
∇W
· τ
)
(·) = 0.

4 SpinC structures

Recall that the group SpinC(2m) is a central extension of SO(2m) given by the exact sequence

1→ Z2 → SpinC(2m)→ SO(2m)×U(1)→ 1.

This gives a twisted product SpinC(2m) = Spin(2m) ×Z2 U(1) with the spin group. We have
SpinC(2m)/U(1) ∼= SO(2m), and a group homomorphism λ : SpinC(2m) → SO(2m) as well as
SpinC(2m)/Spin(2m) ∼= U(1). Note that there is also a canonical homomorphism

j : U(m)→ SpinC(2m),

which is the lift of ι× det : U(m)→ SO(2m)×U(1).
Now let θ be a pseudo-Hermitian form on the strictly pseudoconvex CR manifold

(
M2m+1,

H(M), J
)
, m ≥ 1. This gives rise to the metric gθ on the Levi distribution H(M). We denote

by SO(H(M)) the principal SO(2m)-bundle of orthonormal frames in H(M). A spinC structure
to θ on M is a reduction (P,Λ) of the frame bundle SO(H(M)). This means here, P → M is
some principal SpinC(2m)-bundle with fiber bundle map Λ: P → SO(H(M)) such that Λ(p·s) =
Λ(p) · λ(s) for all p ∈ P and s ∈ SpinC(2m).

Let (P,Λ) be some fixed spinC structure for (M, θ). Then P1 := P/Spin(2m) → M is
a principal U(1)-bundle, and we denote the associated complex line bundle by L→M . This is
the determinant bundle of the spinC structure. The corresponding fiber bundle map Λ1 : P →
SO(H(M))× P1 over M is a twofold covering. On the other hand, let L(β)→M be a complex
line bundle determined by some integral class β ∈ H2(M,Z). Then, if

β ≡ −c1(K) mod 2,

there exists a spinC structure (P,Λ) to θ on M with determinant bundle L(β).
There exists always the canonical spinC structure to θ on M , which stems from the lift

j : U(m) → SpinC(2m). The corresponding determinant bundle is K−1. All other spinC struc-
tures differ from the canonical one by multiplication with a principal U(1)-bundle, related to
some line bundle E(α), α ∈ H2(M,Z). The corresponding determinant bundle L(β) satisfies
E(α)2 = K ⊗ L(β). SpinC structures with the same determinant bundle L(β) are parametrized
by the elements in H1(M,Z2) (see [10, 18]).

In particular, if c1(K) ≡ 0 mod 2, then θ on M admits some spinC structure with trivial
determinant bundle. This represents an ordinary spin structure for the Levi distribution H(M)
with metric gθ (cf. [12]). More generally, let us consider the powers E(p), p ∈ Z, of an (m+ 2)nd
root E(1) of K−1. Then −c1(K) = (m + 2)c1(E(1)), and a spinC structure for (M, θ) with
determinant bundle L = E(p) exists when

(m+ 2− p)c1(E(1)) ≡ 0 mod 2.
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Lemma 4.1. Let E(1) be an (m + 2)nd root of K−1 → M2m+1. Then θ on M admits a spinC

structure with determinant bundle L = E(p), p ∈ Z, if

(i) E(1) itself admits some square root, or

(ii) m and p ∈ Z are odd, or

(iii) m and p are even.

We say that a spinC structure with determinant bundle L = E(p) has weight p. In the
following we assume that spinC structures to θ on M exist for all necessary weights p ∈ Z.

5 Spinors and connections

Let
(
M2m+1, H(M), J

)
be a strictly pseudoconvex CR manifold of hypersurface type and CR

dimension m ≥ 1, and let (P,Λ) be a spinC structure of weight ` ∈ Z for some given pseudo-
Hermitian form θ on M . The choice of (P,Λ) gives rise to an associated spinor bundle

Σ(H(M)) := P ×ρ2m Σ

over M , where ρ2m denotes the representation of SpinC(2m) on the complex spinor module Σ.
Note that the center U(1) acts by complex scalar multiplication on Σ. The spinor bundle has
rkC(Σ(H(M)) = 2m.

The spinor bundle Σ(H(M)) is equipped with a Hermitian inner product 〈·, ·〉, and we have
a Clifford multiplication

c : H(M)⊗ Σ(H(M))→ Σ(H(M)),

(X,φ) 7→ X · φ,

which satisfies

〈X · ψ, φ〉 = −〈ψ,X · φ〉

for any transverse X ∈ H(M) and φ ∈ Σ(H(M)), given at some point of M . The multiplication c
extends to the complex Clifford bundle Cl(H(M)) of the Levi distribution.

The Webster–Tanaka connection ∇W to θ stems from a principal fiber bundle connection on
the unitary frame bundle, contained in SO(H(M)). This gives rise to a covariant derivative ∇W

on any root of K−1 and its powers, in particular, for E(1) and the determinant bundle L = E(`).

Recall that (P,Λ) induces a twofold covering map P → SO(H(M))×P1. Then the Webster–
Tanaka connection lifts to P , which in turn gives rise to some covariant derivative on spinor
fields:

∇Σ : Γ(T (M))⊗ Γ(Σ(H(M))→ Γ(Σ(H(M)),

(X,φ) 7→ ∇Σ
Xφ.

Note that this construction does not need an auxiliary connection on the determinant bundle L.
We only use the Webster–Tanaka connection on L and call ∇Σ the Webster–Tanaka spinor
derivative to the given spinC structure of weight `.

The spinor derivative satisfies the rules

∇Σ
Y (X · φ) =

(
∇W
Y X

)
· φ+X · ∇Σ

Y φ and Y 〈φ, ψ〉 =
〈
∇Σ
Y φ, ψ

〉
+
〈
φ,∇Σ

Y ψ
〉
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for any X ∈ Γ(H(M)), Y ∈ Γ(T (M)) and φ, ψ ∈ Γ(Σ(H(M))). Locally, with respect to some
orthonormal frame s = (s1, . . . , s2m), the spinor derivative is given by the formula

∇Σφ = dφ+
1

2

2m∑
j<k

gθ
(
∇Wsj , sk

)
sjsk · φ+

1

2
AW,sφ,

where AW,s denotes the local Webster–Tanaka connection form on P1 with values in iR. The
curvature RΣ of the spinor derivative ∇Σ is then given by

RΣ(X,Y )φ = ∇Σ
X∇Σ

Y φ−∇Σ
Y∇Σ

Xφ−∇Σ
[X,Y ]φ

=
1

4

2m∑
j,k=1

gθ
(
RW(X,Y )sj , sk

)
sjsk · φ+

1

2
dAW(X,Y )φ

for any X,Y ∈ TM and spinor φ ∈ Γ(Σ(H(M))). Note that

dAW =
−i`

m+ 2
ρθ (5.1)

is a multiple of the pseudo-Hermitian Ricci form ρθ.

The underlying pseudo-Hermitian form θ gives rise to further structure on the spinor bundle
Σ(H(M)). In fact, recall that dθ is ∇W-parallel and basic, i.e., ιTdθ = 0. We set Θ := i dθ

2 ∈
Cl(H(M)) in the complex Clifford bundle. Then Θ acts by real eigenvalues µq = m − 2q,
q ∈ {0, . . . ,m} on Σ(H(M)). We obtain the decomposition

Σ(H(M)) =
m⊕
q=0

Σµq(H(M))

into Θ-eigenspaces Σµq(H(M)) of rank (mq ) to the eigenvalue µq (see [18]). We call the bundles
to the Θ-eigenvalues µq = ±m extremal. (We also define Σa = {0} to be trivial for any a > m
and a < −m.) Accordingly, we can decompose any spinor φ on M into

φ =
m∑
q=0

φµq ,

where Θφµq = (m− 2q)φµq . This decomposition is compatible with the spinor derivative ∇Σ.

6 Kohn–Dirac and twistor operators

Let
(
M2m+1, H(M), J

)
, m ≥ 1, be strictly pseudoconvex. We have H(M)⊗C = T10 ⊕ T01 and

any real transverse vector X ∈ H(M) can be written as X = X10 +X01 with

X10 =
X − iJX

2
∈ T10 and X01 =

X + iJX

2
∈ T01.

If e = (e1, . . . , em) denotes a complex orthonormal basis of (H,J, gθ), i.e., s = (e1, Je1, . . . , em,
Jem) is a real orthonormal basis of (H, gθ), we set

Eα := (eα)10 =
eα − iJeα

2
, α = 1, . . . ,m.
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The vectors (E1, . . . , Em) form an orthogonal basis with respect to the Levi form on T10. As
elements in the complexified Clifford algebra Cl(H(M)) we have EαEα = 0 and EαEβ+EβEα =
−δαβ for any α, β = 1, . . . ,m. Moreover,

m∑
α=1

EαEα = −1

2
(m+ Θ),

m∑
α=1

EαEα = −1

2
(m−Θ).

Now let θ be a pseudo-Hermitian form on M with spinC structure of weight ` ∈ Z. The
spinorial derivative ∇Σ on Σ(H(M)) is induced by the Webster–Tanaka connection. In the
following, we allow covariant derivatives with respect to Z ∈ H(M) ⊗ C. This is defined by
C-linear extension and denoted by ∇tr

Z . This derivative in transverse direction decomposes into

∇tr = ∇10 ⊕∇01,

i.e., for any spinor φ ∈ Γ(Σ(H(M))), we have locally

∇10φ =

m∑
α=1

E∗α ⊗∇tr
Eαφ and ∇01φ =

m∑
α=1

Eα
∗ ⊗∇tr

Eα
φ

with respect to some frame (E1, . . . , Em) of T10.
Recall that Clifford multiplication is denoted by c. Then we can define the first order differ-

ential operators

D−φ = c(∇10φ) and D+φ = c(∇01φ)

for spinors φ ∈ Γ(Σ(H(M))). Locally, the two operators are given by

D−φ = 2
m∑
α=1

Eα · ∇tr
Eαφ and D+φ = 2

m∑
α=1

Eα · ∇tr
Eα
φ.

Note that Θ ·X10 −X10 ·Θ = −2X10 for X10 ∈ T10. This shows

T10 · Σµq ⊆ Σµq+1 and T01 · Σµq ⊆ Σµq−1

for any q ∈ {0, . . . ,m}. Hence, the operator D+ maps spinors from Γ
(
Σµq

)
to Γ

(
Σµq+1

)
.

Similarly, D− : Γ
(
Σµq

)
→ Γ

(
Σµq−1

)
. In fact, we have [Θ, D+] = −2D+ and [Θ, D−] = 2D−.

We compute the square of D+. Locally, around any p ∈ M , we can choose a synchronized
frame of the form (e1, . . . , em) with

∇W
eαeβ(p) = 0, α, β ∈ {1, . . . ,m}.

Then

(D+)2φ = 4
m∑

α,β=1

EαEβ∇tr
Eα
∇tr
Eβ
φ = 2

∑
α,β

EαEβ ·RΣ
(
Eα, Eβ

)
φ

= −2

(∑
α,β

Eατ(Eα)EβEβ + EαEαEβτ
(
Eβ
))
φ = 0,

where we use (3.1), (5.1) and the fact that τ , τ ◦ J are trace-free. Similarly, we obtain D2
− = 0.

Thus, we have constructed two chain complexes

0→ Γ
(
Σµ0

) D+−→ Γ
(
Σµ1

) D+−→ · · · D+−→ Γ
(
Σµm−1

) D+−→ Γ
(
Σµm

)
→ 0 (6.1)
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and

0→ Γ
(
Σµm

) D−−→ Γ
(
Σµm−1

) D−−→ · · · D−−→ Γ
(
Σµ1

) D−−→ Γ
(
Σµ0

)
→ 0.

From the discussions in Section 10 it will become clear that these complexes produce finite
dimensional cohomology groups. This compares to the construction of spinorial cohomology on
Kähler manifolds as described in [15].

Next we define

Dθφ = c
(
∇tr
· φ
)

= (D+ +D−)φ.

This is a first order, subelliptic differential operator acting on spinor fields φ ∈ Γ(Σ(H(M)). We
call Dθ the Kohn–Dirac operator to θ with spinC structure of weight ` on M (see [18]; cf. [12, 20]).
Locally, with respect to an orthonormal frame (s1, . . . , sm), the Kohn–Dirac operator is given by

Dθφ =

2m∑
i=1

si · ∇tr
siφ.

Obviously, Dθ does not preserve the decomposition of spinors with respect to Θ-eigenvalues.
However, we have the identity

D2
θ = D+D− +D−D+,

which shows that the square of the Kohn–Dirac operator maps sections of Σµq(H(M)) to sections
of Σµq(H(M)) again, i.e.,

D2
θ : Γ

(
Σµq

)
→ Γ

(
Σµq

)
, q = 0, . . . ,m.

On the spinor bundle, we have the L2-inner product defined by

(φ, ψ) :=

∫
M
〈φ, ψ〉 volθ

for compactly supported spinors φ, ψ ∈ Γc(Σ), where

volθ := θ ∧ (dθ)m

denotes the induced volume form of the pseudo-Hermitian structure θ on M . The Kohn–Dirac
operator Dθ is formally self-adjoint with respect to this L2-inner product (·, ·) on Γc(Σ) (see [12]).

Complementary to the Kohn–Dirac operator Dθ, we have twistor operators P (µq) acting on
Γ
(
Σµq(H(M))

)
for q = 0, . . . ,m. In fact, there are orthogonal decompositions

T ∗10 ⊗ Σµq ∼= Ker(c)⊕ Σµq−1 and T ∗01 ⊗ Σµq ∼= Ker(c)⊕ Σµq+1 ,

where Ker(c) denote the corresponding kernels of the Clifford multiplication. Then with

aq :=
1

2(q + 1)
and bq :=

1

2(m− q + 1)

we have for the derivatives ∇10φµq and ∇01φµq of a spinor φµq ∈ Γ
(
Σµq

)
the decompositions

∇10φµq = P10φµq − bq
m∑
α=1

E∗α ⊗ Eα ·D−φµq ,

∇01φµq = P01φµq − aq
m∑
α=1

Eα
∗ ⊗ Eα ·D+φµq ,
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where the twistor operators map to Ker(c) by

P10(φµq) =
m∑
α=1

E∗α ⊗
(
∇Eαφµq + bqEα ·D−φµq

)
,

P01(φµq) =

m∑
α=1

Eα
∗ ⊗

(
∇Eαφµq + aqEα ·D+φµq

)
,

respectively. The sum P (µq) = P10 +P01 is given with respect to a local orthonormal frame s by

P (µq)φµq =

2m∑
i=1

s∗i ⊗
(
∇tr
siφµq + aq

si + iJsi
2

D+φµq + bq
si − iJsi

2
D−φµq

)
.

This is the projection of ∇trφµq to the kernel Ker(c).

7 Covariant components and spinorial CR invariants

In the previous section we have introduced Kohn–Dirac operators Dθ and twistor operators P (µq)

for spinC structures of weight ` ∈ Z. We have only used the Webster–Tanaka connection for
their construction. Now we compute the transformation law for Dθ and P (µq) under conformal
change of the pseudo-Hermitian structure. It turns out that certain components of Dθ and P (µq)

are CR invariants.
Let θ and θ̃ = e2fθ be two adapted pseudo-Hermitian structures on

(
M2m+1, H(M), J

)
,

m ≥ 1. We denote by ∇W and ∇Σ derivatives with respect to θ. The derivatives with respect
to θ̃ are simply denote by ∇̃. Note that the structure group of the Webster–Tanaka connection
is U(m) for any pseudo-Hermitian form. We have the transformation rule

∇̃X10Y = ∇W
X10

Y + 2X10(f)Y10 + 2Y10(f)X10 − 2gθ(X10, Y01) grad01(f),

∇̃X01Y = ∇W
X01

Y + 2X01(f)Y01 + 2Y01(f)X01 − 2gθ(X01, Y10) grad10(f), (7.1)

where X = X10 + X01 and Y = Y10 + Y01 are transverse vectors (see, e.g., [11]). The gradient
gradθ(f) ∈ Γ(H(M)) with complex components grad10(f) ∈ Γ(T10) and grad01(f) ∈ Γ(T01) is
dual via gθ to the restriction of the differential df to H(M).

Now let (P,Λ) be some spinC structure of weight ` ∈ Z to θ on
(
M2m+1, H(M), J

)
. The

canonical bundle K and all line bundles E(p), p ∈ Z, are natural for the underlying CR structure.
In particular, the determinant bundle L → M of weight ` is natural, and the corresponding
principal U(1)-bundles P1 and P̃1 of frames in L with respect to θ and θ̃, respectively, are
naturally identified. The same is true for the orthonormal frames in H(M) to θ and θ̃. Thus,
there exists a unique spinC structure

(
P̃ , Λ̃

)
with respect to θ̃ on M , whose spinor frames

are naturally identified with those of (P,Λ). Of course, the determinant bundle to
(
P̃ , Λ̃

)
has

weight ` again, and there exists an unitary isomorphism

Σ(H(M)) ∼= Σ̃(H(M)),

φ 7→ φ̃,

between the two kinds of spinor bundles such that X · φ is sent to e−fX ·̃φ̃ for any transverse
vector X ∈ H(M) and spinor φ ∈ Σ(H(M)). Also note that Θ̃φ̃ = (Θφ)̃, i.e., the decomposition
Σ(H(M)) = ⊕mq=0Σµq(H(M)) into Θ-eigenspaces is CR-invariant.

We compare now the spinor derivatives with respect to θ and θ̃, respectively. First, let
σ = E1 ∧ · · · ∧ Em be a local section in K−1 → M and σ̃ = Ẽ1 ∧ · · · ∧ Ẽm the corresponding
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section with respect to θ̃. Then σ̃ = e−mfσ and with (7.1) we obtain the transformation rule

∇̃X10 σ̃ = (Aσ(X10) + (m+ 2)X10(f)) σ̃ = Aσ̃(X10)σ̃,

∇̃X01 σ̃ = (Aσ(X01)− (m+ 2)X01(f)) σ̃ = Aσ̃(X01)σ̃,

X = X10 +X01, for the local connections forms of K−1. This gives

Aσ̃(X)−Aσ(X) = −i(m+ 2)(JX)(f), X ∈ H(M).

Accordingly,

Aσ̃(X)−Aσ(X) = −i`(JX)(f), X ∈ H(M),

for the local connection forms on L = E(`). With formulas in [12] we obtain for spinors φ the
transformation rule

∇̃X10 φ̃ = ∇̃Σ
X10

φ− (X10 · grad01(f) · φ)̃ +
`− 2

2
X10(f)φ̃− 1

2
X10(f)(Θφ)̃,

∇̃X01 φ̃ = ∇̃Σ
X01

φ− (X01 · grad10(f) · φ)̃ − `+ 2

2
X01(f)φ̃+

1

2
X01(f)(Θφ)̃.

This gives for φµq ∈ Γ(Σµq), q ∈ {0, . . . ,m},

D̃−φ̃µq = e−f
(
D−φµq +

(
m+ 1 +

µq + `

2

)
grad01(f)φµq

)̃
,

D̃+φ̃µq = e−f
(
D+φµq +

(
m+ 1− µq + `

2

)
grad10(f)φµq

)̃
,

and we obtain

D̃−
(
e−v−f φ̃µq

)
= e−(v−+1)f D̃−φµq for v− = m+ 1 +

µq + `

2
,

D̃+

(
e−v+f φ̃µq

)
= e−(v++1)f D̃+φµq for v+ = m+ 1− µq + `

2
.

Hence, for the Θ-eigenvalue µq = −`, we have

Dθ̃

(
e−(m+1)f φ̃−`

)
= e−(m+2)f D̃θφ−`, (7.2)

i.e., the restriction of the Kohn–Dirac operator Dθ of weight ` to Γ
(
Σ−`

)
acts CR-covariantly.

Recall that the given spinC structure of weight ` ∈ Z on M is determined by some complex
line bundle E(α), α ∈ H2(M,Z).

Definition 7.1. Let
(
M2m+1, H(M), J

)
, m ≥ 1, be strictly pseudoconvex with pseudo-Hermi-

tian form θ and spinC structure of weight ` ∈ Z.

(a) A spinor φ ∈ Γ(Σ(H(M)) in the kernel of the Kohn–Dirac operator, i.e., Dθφ = 0, is
called harmonic. We denote by Hq(α) the space of harmonic spinors with Θ-eigenvalue µq,
q ∈ {0, . . . ,m}. Its dimension is denoted hq(α).

(b) For weight ` ∈ {−m,−m+ 2, . . . ,m− 2,m} the differential operator

D` : Γ
(
Σ−`

)
→ Γ

(
Σ−`+2

)
⊕ Γ

(
Σ−`−2

)
denotes the restriction of Dθ (of weight `) to spinors of Θ-eigenvalue −`. We call D` the
`th (CR-covariant) component of the Kohn–Dirac operator.

(c) A spinor φ in the kernel of D` is called harmonic of weight `.

Since D` acts by (7.2) CR-covariantly, harmonic spinors of weight ` are CR invariants of
(H(M), J) on M . The dimension hm+`

2
(α) is a CR invariant as well. In Section 10 we will see

that in fact all dimensions hq(α), 0 < q < m, are CR-invariant numbers.
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Let us consider the twistor operators P10 and P01. Calculating as above we find

∇̃X10

(
e−w−f φ̃µq

)
+ bqX10D̃−

(
e−w−f φ̃µq

)
= e−w−f ·

(
∇X10φµq + bqX10D−φµq

)̃
exactly for w− =

`−µq
2 − 1, and

∇̃X01

(
e−w+f φ̃µq

)
+ aqX01D̃+

(
e−w+f φ̃µq

)
= e−w+f ·

(
∇X01φµq + aqX01D−φµq

)̃
exactly for w+ =

µq−`
2 − 1. Hence, the twistor operator P (µq) = P10 + P01 is CR-covariant for

the Θ-eigenvalue µq = `.

Definition 7.2. Let
(
M2m+1, H(M), J

)
, m ≥ 1, be strictly pseudoconvex with pseudo-Hermi-

tian form θ and spinC structure of weight ` ∈ Z.

(a) For weight ` ∈ {−m,−m+ 2, . . . ,m− 2,m} the differential operator

P` : Γ
(
Σ`
)
→ Γ(Ker(c)) ⊂ Γ

(
H(M)⊗ Σ`

)
denotes the `th component of the twistor operator to θ.

(b) A (non-trivial) element in the kernel of P` is called CR twistor spinor of weight `. The
dimension p` of Ker(P`) denotes a CR invariant.

In the non-extremal cases, i.e., for ` 6= ±m, the twistor equation is overdetermined. In fact,
similar as in [19], we suppose the existence of a twistor connection such that CR twistor spinors
correspond to parallel sections in certain twistor bundles. This would imply that for ` 6= ±m
the CR invariants p` are numbers.

Example 7.3. Parallel spinors of weight ` ∈ {−m,−m+2, . . . ,m−2,m} are CR twistor spinors.
For the spin case (` = 0) we discuss parallel spinors to any eigenvalue µq in [13]. They occur
on pseudo-Einstein spin manifolds. In Section 12 we demonstrate the construction of closed CR
manifolds admitting parallel spinors with ` = µq = 0, i.e., CR twistor spinors.

Example 7.4. In [12] we describe pseudo-Hermitian Killing spinors for the case of a spin
structure on M . These spinors are in the kernel of the twistor operator and realize a certain
lower bound for the non-zero eigenvalues of the Kohn–Dirac operator Dθ. In particular, we find
CR twistor spinors of weight ` = 0 on the standard spheres S2m+1 of even CR dimension m ≥ 2.

We also find Killing spinors in case that θ is related to some 3-Sasakian structure on M .
However, in this situation the CR dimension m is odd and ` = 0 is impossible. Such Killing
spinors are not CR twistor spinors.

8 Vanishing theorems for harmonic spinors

Let
(
M2m+1, H(M), J

)
, m ≥ 1, be strictly pseudoconvex with pseudo-Hermitian structure θ and

Kohn–Dirac operator Dθ to some spinC structure of weight ` ∈ Z. The operator Dθ is formally
self-adjoint and there exists a Schrödinger–Lichnerowicz-type formula (see [18]; cf. [12]). We use
this formula to derive vanishing theorems for harmonic spinors.

Let ∇tr denote the transversal part of the Webster–Tanaka spinorial derivative to a chosen
spinC structure of weight ` ∈ Z. Then ∆tr = − trθ

(
∇tr ◦∇tr

)
denotes the spinor sub-Laplacian,

and we have

∆tr = ∇∗10∇10 +∇∗01∇01,
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where ∇∗10 and ∇∗01 are the formal adjoint to ∇10 and ∇01, respectively. As in [12] we obtain
with (5.1) the equation

D2
θφ = ∆trφ− i`

2(m+ 2)
ρθφ+

1

4
scalW · φ− dθ∇Σ

Tφ

for the square of the Kohn–Dirac operator. For the spinorial derivative in characteristic direction
we compute

∇Σ
Tφ =

i

4m

(
2∇∗10∇10 − 2∇∗01∇01 + iρθ −

` scalW

2(m+ 2)

)
(φ).

This results in the Schrödinger–Lichnerowicz-type formula (cf. [12, 18])

D2
θ =

((
1− Θ

m

)
∇∗10∇10 +

(
1 +

Θ

m

)
∇∗01∇01

)
− i

2

(
`

m+ 2
+

Θ

m

)
ρθ +

(
1 +

`Θ

m(m+ 2)

)
scalW

4
. (8.1)

The curvature part in (8.1) acts by Clifford multiplication as a self-adjoint operator on spinors.
In case that this operator is positive definite, at each point of some closed manifold M , we
immediately obtain vanishing results for harmonic spinors in the non-extremal bundles Σµq

(µq 6= ±m). We aim to specify the situation. Let us call the pseudo-Hermitian Ricci form ρθ
positive (resp. negative) semidefinite if all eigenvalues are nonnegative (resp. nonpositive) on M .
We can state our basic vanishing result as follows.

Proposition 8.1. Let θ be some pseudo-Hermitian structure on a closed CR manifold M2m+1,
m ≥ 1, with spinC structure of weight ` ∈ Z.

(a) A non-extremal bundle Σµq allows no harmonic spinors under the following conditions:

(1) µq = − m`
m+2 and scalW ≥ 0 on M with scalW(p) > 0 at some point p ∈M .

(2) µq > − m`
m+2 , ρθ semidefinite on M and (m+ 2− `)scalW > 0 at some point p ∈M .

(3) µq < − m`
m+2 , ρθ semidefinite on M and (m+ 2 + `)scalW > 0 at some point p ∈M .

(b) If |`| > m + 2 and ρθ 6≡ 0 is negative semidefinite then any harmonic spinor is a section
of the extremal bundles Σm ⊕ Σ−m.

(c) If |`| < m+ 2 and ρθ 6≡ 0 is positive semidefinite then any harmonic spinor is a section of
the extremal bundles Σm ⊕ Σ−m.

Proof. Let φ = φµq 6≡ 0 be a spinor with Θφ = (m− 2q)φ. We put

Qq = − i

2

(
`

m+ 2
+
µq
m

)
ρθ +

(
1 +

`µq
m(m+ 2)

)
scalW

4
(8.2)

and

A(φ) =

∫
M

〈
Qqφ, φ

〉
volθ .

The Schrödinger–Lichnerowicz-type formula (8.1) gives

‖Dθφ‖2 =
2q

m
‖∇10φ‖2 +

2(m− q)
m

‖∇01φ‖2 +A(φ). (8.3)
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If the eigenvalues of ρθ have no different signs, we have by Cauchy–Schwarz inequality∣∣∣∣〈 iρθ
2
· φ, φ

〉∣∣∣∣ ≤ scalW

4
|φ|2.

Hence,

A(φ) ≥ (m− µq)(m+ 2− `)
m(m+ 2)

∫
M

scalW

4
|φ|2 volθ

for m`+ (m+ 2)µq ≥ 0, and

A(φ) ≥ (m+ µq)(m+ 2 + `)

m(m+ 2)

∫
M

scalW

4
|φ|2 volθ

for m`+ (m+ 2)µq ≤ 0.
We assume that µq 6= ±m is non-extremal. Then A(φ) is obviously positive for the three

cases of part (a) of the proposition. In particular, the right hand side of (8.3) is always positive.
This shows that no harmonic spinors exist in these three cases.

If |`| > m+ 2 and ρθ 6≡ 0 is negative semidefinite then either condition (2) or (3) of part (a)
is satisfied for any non-extremal Θ-eigenvalue µq 6= ±m. If |`| < m + 2 and ρθ 6≡ 0 is positive
semidefinite, one of the three conditions of part (a) is satisfied for any non-extremal Θ-eigenvalue
µq 6= ±m. �

Note that we have no vanishing results for harmonic spinors in the extremal bundles Σ−m

or Σm. Such spinors are simply holomorphic or antiholomorphic, respectively. So far we also have
no vanishing results for the canonical and anticanonical spinC structures when ` = ±(m + 2).
However, there are vanishing results in these cases (see [21] and Section 10).

Example 8.2. Any pseudo-Einstein spin manifold M (i.e., ` = 0) admits parallel spinors in the
extremal bundles, no matter of the sign of the Webster scalar curvature (see [13]). For scalW > 0
these are the only harmonic spinors on closed M .

Let us consider the CR-covariant components D` of the Kohn–Dirac operator. The formal
adjoint of D`, ` ∈ {−m,−m+ 2, . . . ,m− 2,m}, is the restriction of Dθ to the image of D`, i.e.,

D∗` = Dθ : Im(D`)→ Γ
(
Σ−`

)
.

Then the Schrödinger–Lichnerowicz-type formula (8.1) for D` is expressed by

D∗`D` =
m+ `

m
∇∗10∇10 +

m− `
m
∇∗01∇01 +

i`ρθ
m(m+ 2)

+

(
1− `2

m(m+ 2)

)
scalW

4
. (8.4)

Especially, for ` = 0, we have

D∗0D0 = ∆tr +
scalW

4
.

The latter formula looks like the classical Schrödinger–Lichnerowicz formula of Riemannian
geometry. This immediately shows that in the spin case hm

2
(α) > 0 (i.e., a harmonic spinors

of weight ` = 0 exists) poses an obstruction to the existence of any adapted pseudo-Hermitian
structure on the CR manifold (M,H(M), J) with positive Webster scalar scalW > 0. We give
a more general version of this statement in terms of Kohn–Rossi cohomology in Corollary 10.4.
Similarly, (8.4) implies that the CR invariants hm+`

2
(α) > 0, |`| < m, are obstructions to the

positivity of the Ricci form ρθ > 0.
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Example 8.3. In Section 12 we construct closed CR manifolds over hyperKähler manifolds
which admit harmonic spinors of weight ` = 0. Such CR manifolds admit no adapted pseudo-
Hermitian structure θ of positive Webster scalar curvature.

Example 8.4. There exist compact quotients of the Heisenberg group, which are strictly pseu-
doconvex and spin with harmonic spinors of weight ` = 0 (see [20]).

9 Harmonic theory for the Kohn–Rossi complex

We briefly review here the Kohn–Rossi complex [8] over CR manifolds, twisted with some CR
vector bundle E. With respect to a pseudo-Hermitian form we construct the Kohn Laplacian �E .
Even though �E is not an elliptic operator, there is a well behaving harmonic theory, similar to
Hodge theory. In particular, Kohn–Rossi cohomology groups are finite and cohomology classes
admit unique harmonic representatives over closed manifolds. This theory is due to J.J. Kohn
(see [4, 7]). Our exposition of the topic follows [21] by N. Tanaka.

Let
(
M2m+1, H(M), J

)
be a closed manifold equipped with a strictly pseudoconvex CR struc-

ture of hypersurface type and CR dimension m ≥ 1. With respect to the complex structure J
we have the decomposition H(M)⊗ C = T10 ⊕ T01 of the Levi distribution. We define complex
differential forms of degree (p, q) on H(M) by

Λp,q(H(M)) := ΛpT ∗10 ⊗ ΛqT ∗01.

Then

Λr(H(M))⊗ C =
⊕
p+q=r

Λp,q(H(M)).

(Note that (p, q)-forms on H(M) are not complex differentials form on M .)

We are interested in the bundles Λ0,q(H(M)) = ΛqT ∗01 of (0, q)-forms. The corresponding
spaces of smooth sections over M are denoted by Cq(M), q = 0, . . . ,m. There exist tangential
Cauchy–Riemann operators

∂̄b : Cq(M)→ Cq+1(M), q ∈ {0, . . . ,m}.

These differential operators are by construction CR invariants and the sequence

0 −→ C0(M)
∂̄b−→ C1(M)

∂̄b−→ · · · ∂̄b−→ Cm−1(M)
∂̄b−→ Cm(M) −→ 0

is called Kohn–Rossi complex. Its cohomology groups are denoted by H0,q(M), q ≥ 0.

More generally, let us consider a complex vector bundle E over M . We assume that E is
equipped with some Cauchy–Riemann operator

∂̄E : Γ(E)→ Γ(E ⊗ T ∗01),

i.e., ∂̄E satisfies

∂̄E(fu)(X01) = X01(f) · u+ f ·
(
∂̄Eu

)
(X01),

(∂̄Eu)([X01, Y01]) = ∂̄E
(
∂̄Eu(X01)

)
(Y01)− ∂̄E

(
∂̄Eu(Y01)

)
(X01)

for any smooth C-valued function f and sections X01, Y01 in T01. We call
(
E, ∂̄E

)
a CR vector

bundle over M . Smooth sections u of E with ∂̄Eu = 0 are holomorphic sections (see [21]).
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Furthermore, for some CR vector bundle E over M , we set Cq(M,E) = ΛqT ∗01 ⊗ E and
Cq(M,E) = Γ(Cq(M,E)) for smooth sections. The holomorphic structure ∂̄E on E extends to
Cauchy–Riemann operators

∂̄E : Cq(M,E)→ Cq+1(M,E)

for any q ∈ {0, . . . ,m}. This is by construction a twisted complex
(
Cq(M,E), ∂̄E

)
, and we

denote the corresponding cohomology groups by Hq(M,E), q ∈ {0, . . . ,m}. For E the trivial
line bundle over M , these are the Kohn–Rossi cohomology groups H0,q(M) (see [21]).

Let us assume now that a pseudo-Hermitian form θ is given on M and that the CR vector
bundle E → M is equipped with a Hermitian inner product 〈·, ·〉E . In this setting we have
a direct sum decomposition

T (M)⊗ C = T10 ⊕ T01 ⊕ RTθ,

which gives rise to a unique identification of Cq(M,E) with a subbundle of Λq(T ∗(M)) ⊗ E.
And there exists a canonical connection D : Γ(E)→ Γ(T ∗(M)⊗ E) compatible with 〈·, ·〉E and
related to the Cauchy–Riemann operator by DX01u = ∂̄Eu(X01), X01 ∈ T01, for any u ∈ Γ(E).
Together with the Webster–Tanaka connection ∇W we obtain covariant derivatives

D : Γ
(
Λq(M)⊗ E

)
→ Γ

(
Λq+1(M)⊗ E

)
, q ∈ {0, . . . ,m},

and with respect to a local frame (E1, . . . , Em) of T10 the Cauchy–Riemann operators are given by

∂̄Eu =

m∑
α=1

Eα
∗ ∧DEα

u

for u ∈ Cq(M,E).

Moreover, for any q ∈ {0, . . . ,m}, the vector bundle Cq(M,E) is equipped with a Hermitian
inner product, which gives rise via volθ to an L2-inner product on Cq(M,E). This allows the
construction of a formally adjoint differential operator

∂̄∗E : Cq+1(M,E)→ Cq(M,E)

to ∂̄E . With respect to a local frame (E1, . . . , Em) the operator ∂̄∗E is given by

∂̄∗Eu = −
m∑
α=1

ιEαDEαu

for u ∈ Cq+1(M,E).

Finally, we can construct the Kohn Laplacian

�E := ∂̄∗E ∂̄E + ∂̄E ∂̄
∗
E : Cq(M,E)→ Cq(M,E), q ∈ {0, . . . ,m},

with respect to θ on M . This is a 2nd order differential operator, which is formally self-adjoint
with respect to (·, ·)L2 on Cq(M,E). Due to results of Kohn the operator �E is sub- and
hypoelliptic. We put

Hq(M,E) :=
{
u ∈ Cq(M,E) |�Eu = 0

}
for the space of harmonic (0, q)-forms. Since �E is formally self-adjoint the harmonic equation
�Eu = 0 is equivalent to ∂̄Eu = ∂̄∗Eu = 0 on M . It is known that Hq(M,E) is finite dimensional
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for any q ∈ {1, . . . ,m−1}. Moreover, every class in the Kohn–Rossi cohomology group Hq(M,E)
admits a unique harmonic representative, i.e.,

Hq(M,E) ∼= Hq(M,E).

In particular, the Kohn–Rossi cohomology groups Hq(M,E) are finite dimensional for q ∈
{1, . . . ,m − 1}. The groups H0(M,E) and Hm(M,E) are infinite dimensional, in general.
However, we still have H0(M,E) ∼= H0(M,E) and Hm(M,E) ∼= Hm(M,E) for any m ≥ 2
(cf. [21]). In case m = 1 and M ⊆ C2 is embedded as CR manifold H0(M,E) ∼= H0(M,E) and
H1(M,E) ∼= H1(M,E) are certainly true as well.

10 Vanishing theorems for twisted Kohn–Rossi cohomology

The harmonic theory of the previous section fits well to our discussion of Kohn–Dirac operators
and harmonic spinors. In fact, the square D2

θ of the Kohn–Dirac operator has a natural interpre-
tation as Kohn Laplacian �E if we only make the appropriate choice for the CR line bundle E
(see [18]). This justifies the name for Dθ and gives rise via the Schrödinger–Lichnerowicz-type
formula to vanishing results for twisted Kohn–Rossi cohomology (see in [21, Section II, § 7];
cf. [11]).

Let
(
M2m+1, H(M), J

)
be a closed manifold equipped with strictly pseudoconvex CR struc-

ture of hypersurface type and CR dimension m ≥ 1. We fix a pseudo-Hermitian form θ on M
with spinC structure of weight ` ∈ Z. The corresponding spinor bundle Σ(H(M))→M decom-
poses into

Σ(H(M)) =
m⊕
q=0

Σµq(H(M)).

The Kohn–Dirac operator is given by Dθ = D+ + D−. In particular, we have the spinorial
complex (6.1)

(
Γ
(
Σµq

)
, D+

)
with cohomology groups, which we denote by Sq(M), q = 0, . . . ,m

(cf. the notion of spinorial cohomology in [15]).
Recall that the chosen spinC structure on (M, θ) is uniquely determined by some complex line

bundle E(α) → M , α ∈ H2(M,Z), which is a square root of K ⊗ L, L = E(`) the determinant
bundle. Note that we can use the Webster–Tanaka connection ∇W to define a holomorphic
structure on E(α) through ∂̄E(α)η(X01) := ∇W

X01
η, X01 ∈ T01, for η ∈ Γ(E(α)).

Studying the spinor module Σ with Clifford multiplication c shows that the spinor bundle
Σ(H(M))→M is isomorphic to

m⊕
q=0

ΛqT ∗01 ⊗ Σµ0(H(M)).

Moreover, the factor Σµ0(H(M)) is isomorphic to the line bundle E(α). In fact, we have
Σµq(H(M)) ∼= ΛqT ∗01 ⊗ E(α) of rank rkC = (mq ). Hence, the identifications

Γ(Σµq) ∼= Cq(M,E(α)), q = 0, . . . ,m, (10.1)

with the chain groups of the Kohn–Rossi complex, twisted by E(α).
Examining the Clifford multiplication shows that the operator 1√

2
D+ corresponds via (10.1)

to the Cauchy–Riemann operator ∂̄E(α). In particular, we have

Sq(M) ∼= Hq(M,E(α)), q ∈ {0, . . . ,m},

for the cohomology groups of the spinorial complex.
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Moreover, the formal adjoint 1√
2
D− corresponds to ∂̄∗E(α). Hence, via (10.1) we have

Dθ =
√

2 ·
(
∂̄E(α) + ∂̄∗E(α)

)
for the Kohn–Dirac operator and D2

θ = 2�E(α) for the square (cf. [18]). This shows that har-
monic spinors with Θ-eigenvalue µq = m − 2q, q = 0, . . . ,m, are in 1-to-1-correspondence with
harmonic (0, q)-forms with values in E(α). In particular, with results of Section 9 we can inter-
pret harmonic spinors on closed M as representatives of twisted Kohn–Rossi cohomology classes.

Theorem 10.1. Let
(
M2m+1, H(M), J

)
, m ≥ 2, be a strictly pseudoconvex and closed CR

manifold with pseudo-Hermitian form θ and spinC structure, determined by α ∈ H2(M,Z).

1. For the space of harmonic spinors to the eigenvalue µq, q = 0, . . . ,m, we have

Hq(α) ∼= Hq(M,E(α)) ∼= Hq(M,E(α)) ∼= Sq(M).

2. The space Hq(α) of harmonic spinors on M is finite dimensional for any q ∈ {1, . . . ,m−1}.

Remark 10.2. The cohomology groups Hq(M,E(α)), q ∈ {0, . . . ,m}, of the twisted Kohn–
Rossi complex are invariant objects of the underlying CR structure on M , whereas the construc-
tion of the spaces of harmonic spinors Hq(α) and harmonic (0, q)-forms Hq(M,E(α)) depends
on the pseudo-Hermitian structure θ. It is only for µq = −` that we have seen in Section 7 that

harmonic spinors in H
m+`
2 (α) are solutions of a CR invariant equation.

Theorem 10.1 shows now that elements in Hq(α), q ∈ {0, . . . ,m}, can be identified for
different pseudo-Hermitian forms θ and θ̃ via the corresponding Kohn–Rossi cohomology groups.
In particular, all the dimensions hq(α) of the spaces Hq(α), q ∈ {1, . . . ,m−1}, are CR invariant
numbers.

Recall that a spin structure for the Levi distribution H(M) on M is given by some square
root E(α) of the canonical bundle K → M . We denote the chosen square root by

√
K. On the

other hand, the canonical spinC structure on M is given by the trivial line bundle E(α) = M×C.
In this case ` = m+ 2. We have the following vanishing results for Kohn–Rossi cohomology.

Theorem 10.3. Let
(
M2m+1, H(M), J

)
, m ≥ 2, be a strictly pseudoconvex and closed CR

manifold with pseudo-Hermitian form θ and spinC structure of weight ` determined by α ∈
H2(M,Z).

1. If ρθ 6≡ 0 is negative semidefinite, |`| > m+ 2 and q ∈ {1, . . . ,m− 1}, then

Hq(M,E(α)) = {0}

for the qth (α-twisted) Kohn–Rossi cohomology group.

2. If ρθ 6≡ 0 is positive semidefinite, |`| < m+ 2 and q ∈ {1, . . . ,m− 1}, then

Hq(M,E(α)) = {0}.

3. If ρθ > 0 is positive definite, E(α) = M × C and q ∈ {1, . . . ,m− 1}, then

H0,q(M) = {0}

for the qth Kohn–Rossi group.

4. If scalW 6≡ 0 is non-negative on a closed CR spin manifold M of even CR dimension m,
then

H
m
2
(
M,
√
K
)

= {0}.
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Proof. Part (1) and (2) of Theorem 10.3 follow immediately from Proposition 8.1 via the
identifications in Theorem 10.1. Part (3) is the statement of Proposition 7.4 on p. 62 in [21] for
Kohn–Rossi cohomology. We reprove this result here.

The curvature term (8.2) decomposes into two summands as follows:

Qq = − i

2

(
`

m+ 2
+
µq
m

)
ρθ +

(
1 +

`µq
m(m+ 2)

)
scalW

4

=
(

1 +
µq
m

)(
− i

2
ρθ +

scalW

4

)
− i(`−m− 2)

2(m+ 2)

(
ρθ −

scalW · dθ
4m

)
=:

2(m− q)
m

R∗ +K.

The second summand K vanishes for ` = m+ 2. In any case we have trθK = 0.
Via (10.1) Clifford multiplication on (0, q)-forms u ∈ ΛqT ∗01 is given by

X · u =
√

2 ·
(
X∗01 ∧ u− ιX01u

)
for any X ∈ H(M) (see, e.g., [16] and [18]). Then a short computations shows that R∗ =

− i
2ρθ + scalW

4 acts on u ∈ Cq(M,E(α)) by

(R∗u)
(
X1, . . . , Xq

)
=

q∑
α=1

u
(
X1, . . . , ρθ

(
Xα

)
, . . . , Xq

)
for any X1, . . . , Xq ∈ ΛqT ∗01, i.e., R∗ is the Ricci operator on Cq(M,E(α)).

On the other hand, the action of K is induced by the curvature of the canonical connec-
tion on E(α) (which differs from the Webster–Tanaka connection, in general). Thus, Qq =
2(m−q)
m R∗ + K is exactly the curvature term of the Weitzenböck formula in Proposition 5.1 on

p. 47 of [21].
In particular, for the case of the canonical spinC structure α = 0, we have ` = m + 2 and

K = 0. If ρθ > 0 is positive definite on M , R∗ is positive definite as well. Application of the
Weitzenböck formula for Cq(M,E(α)) shows that there are no harmonic forms.

Finally, in the spin case ` = 0 with even m, we have Q
m
2 = scalW

4 and (8.1) shows that there

are no harmonic spinors. Hence, no harmonic forms in C
m
2

(
M,
√
K
)
. �

On the other hand, non-trivial Kohn–Rossi groups pose obstructions to positive Webster
curvature on the underlying CR manifold. We put

q̂ = q̂(m, `) :=
m(m+ `+ 2)

2(m+ 2)

and highlight the following result, which resembles the classical obstruction for positive scalar
curvature on Kähler manifolds (cf. [5, 14]).

Corollary 10.4. Let
(
M2m+1, H(M), J

)
, m ≥ 2, be a strictly pseudoconvex and closed CR

manifold with spinC structure of weight ` ∈ Z to α ∈ H2(M,Z). If

|`| < m+ 2, q̂ ∈ Z and H q̂(M,E(α)) 6= {0},

then M admits no adapted pseudo-Hermitian structure θ of positive Webster scalar curvature
scalW > 0.

Proof. For q̂ ∈ Z, we have µq̂ = − m`
m+2 ∈ Z and Qq̂ =

(
1 − `2

(m+2)2

)
scalW

4 . If |`| < m + 2, then

q̂ ∈ {1, . . . ,m − 1} and the functions Qq̂ and scalW have the same sign. The non-vanishing of
H q̂(M,E(α)) implies the existence of a harmonic spinor in Γ(Σµq̂). This is impossible by (8.1)
when scalW > 0. �
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Example 10.5. If M is a closed and strictly pseudoconvex CR spin manifold of even CR
dimension m ≥ 2, then the cohomology group

H
m
2
(
M,
√
K
)

poses an obstruction to scalW > 0. We give some concrete example of this case in Section 12
(cf. also Corollary 11.2).

Example 10.6. If m = 4 and ` = −3, then q̂ = 1 and H1(M,E(α)) poses an obstruction to
scalW > 0.

Example 10.7. Let
(
M2m+1, θ

)
, m ≥ 2, be some pseudo-Einstein space with RicW(T ) = 0.

Then scalW is constant on M . E.g., this happens when the Webster torsion τ is parallel, or
when the characteristic vector Tθ is a transverse symmetry of the underlying CR structure (cf.
Section 11).

We assume a spinC structure of weight ` and ρθ 6≡ 0. Then, either ρθ > 0 and, for |`| ≤ m+ 2
and 1 < q < m, we have Hq(M,E(α)) = {0} (by Theorem 10.3). E.g., Einstein–Sasakian
manifolds of Riemannian signature give rise to such pseudo-Hermitian structures θ (see, e.g., [1]
for the notion of Sasakian structures). In Section 12 we construct regular Einstein–Sasakian
manifolds from Kähler geometry.

In the other case ρθ < 0 and Hq(M,E(α)) = {0} for |`| > m + 2 and any 1 < q < m. E.g.,
Einstein–Sasakian manifolds of Lorentzian signature fit to this situation.

11 Cohomology of regular, torsion-free CR manifolds

Let
(
M2m+1, H(M), J

)
, m ≥ 2, be strictly pseudoconvex with pseudo-Hermitian form θ. We

call the characteristic vector Tθ regular if all its integral curves are 1-dimensional submanifolds
of M and the corresponding leaf space N is a smooth manifold of dimension 2m with smooth
projection π : M → N . If, in addition, θ has vanishing Webster torsion τ = 0 then Tθ is an
infinitesimal automorphism of the underlying CR structure and a Killing vector for the Webster
metric gW = gθ + θ ◦ θ on M . Such a vector Tθ is called transverse symmetry. (Here we
understand transverse to H(M).) It is straightforward to see that in this case the pseudo-
Hermitian structure (H(M), J, θ) projects to a Kähler structure on the leaf space N . Note that
if M is closed then π : M → N is a circle fiber bundle. In this case we call π : (M, θ) → N
a (regular, torsion-free) CR circle bundle of complex dimension m ≥ 2.

11.1 Holomorphic cohomology and vanishing theorems

Let us consider the underlying leaf space N with Kähler metric h, complex structure J and
fundamental form ω. As for any complex manifold, we have the (p, q)-forms Λp,q(N) and the
Cauchy–Riemann operators

∂̄ : Γ
(
Λp,q(N)

)
→ Γ

(
Λp,q+1(N)

)
,

which in turn give rise to the Dolbeault cohomology groups Hp,q(N), p, q ≥ 0. In the following we
are interested in the cohomology groups H0,q(N), q ≥ 0. In fact, more generally, let E′ → N be
some holomorphic vector bundle and O(E′) the sheaf of local holomorphic sections of E′. Then
we have the qth cohomology group Hq(N,O(E′)) of the sheaf O(E′), which is, by Dolbeault’s
theorem, isomorphic to H0,q(N,E′), q ≥ 0.

Now let E′ be some complex line bundle over the Kähler manifold N . We assume that E′

is a root of some power of the anticanonical line bundle K′−1 → N . This ensures that E′ is
equipped with a holomorphic structure and Hermitian inner product, both compatible with the
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Levi-Civita connection of the Kähler metric. The pullback E = π∗E′ is a line bundle over M
with Hermitian inner product and the Webster–Tanaka connection induces some holomorphic
structure on E as well. Then any smooth section u′ ∈ Γ(E′) lifts to some smooth section u = π∗u′

of E →M . By construction, the Lie derivative LTu of the lift in characteristic direction vanishes
identically on M . In fact, any smooth section u ∈ Γ(E) with LTu = 0 is the pullback of some
unique section u′ in E′ → N . We call such sections in E → M projectable. More generally, for
q ≥ 0, we have the subspaces

Cq(0)(M,E) ⊆ Cq(M,E)

of projectable (0, q)-forms in the chain groups of the Kohn–Rossi complex with values in the
line bundle E. These subgroups are naturally identified with the (0, q)-forms Γ

(
Λ0,q ⊗E′

)
with

values in E′ over the Kähler manifold N .
Since the Webster torsion τθ vanishes on M , the holomorphic structures on E′ and on its

pullback E are compatible: ∂̄Eπ
∗v′ = π∗∂̄E′v

′ for any (0, q)-form v′ on N . Also ∂̄∗Eπ
∗v′ = π∗∂̄∗E′v

′

is true. Now let γ ∈ H0,q(N,E′) be a class in the qth Dolbeault group. By classical Hodge
theory γ is uniquely represented by some harmonic (0, q)-form u′ with values in E′. In general,
the lift u = π∗u′ of some non-trivial harmonic u′ is a non-trivial element of Cq(0)(M,E), which is
harmonic with respect to the Kohn Laplacian �E . Thus, we have an inclusion

π∗ : Hq(N,E′) ↪→ Hq(M,E)

of spaces of harmonic forms. This again gives rise to a natural inclusion

π∗ : Hq(N,O(E′)) ↪→ Hq(M,E)

of the holomorphic cohomology group Hq(N,O(E′)) into the Kohn–Rossi group Hq(M,E) for
any q ≥ 0. We denote the image of this inclusion by Hq

(0)(M,E). By construction, classes

in Hq
(0)(M,E) are represented by projectable harmonic (0, q)-forms on M , i.e., by elements

of Hq(0)(M,E).

Let us assume now that the given holomorphic line bundle E′ → N is a square root of K′⊗L′,
where L′ → N is a line bundle of weight ` ∈ Z, i.e., L′m+2 is the `th power of the anticanonical
bundle K′−1 over N . Then E′ determines a spinC structure on N with determinant bundle L′

of weight `. This lifts to a spinC structure on (M, θ) with determinant bundle L = π∗L′ of
weight `. Of course, the corresponding spinor bundle Σ′ → N pulls back to the spinor bundle Σ
over (M, θ) and harmonic spinors in Σ′ lift to harmonic spinors in Σ→M .

Theorem 11.1. Let π : (M, θ) → N be some CR circle bundle of complex dimension m ≥ 2
with spinC structure of weight |`| < m + 2 (determined by some line bundle E = π∗E′ → M)

and assume q̂ = m(m+`+2)
2(m+2) ∈ Z.

(a) If the scalar curvature scalh 6≡ 0 is non-negative on the Kähler manifold N then there
exist no harmonic spinors on M to the Θ-eigenvalue µq̂ = − m`

m+2 and the Kohn–Rossi

cohomology group H q̂(M,E) = {0} is trivial.

(b) If the holomorphic cohomology group H q̂(N,O(E′)) 6= {0} is non-trivial then the strictly
pseudoconvex CR manifold M admits no adapted pseudo-Hermitian structure of positive
Webster scalar curvature.

Proof. Since Tθ is a transverse symmetry, we have ιTθR
W = 0 for the Webster curvature

operator. Hence, the pseudo-Hermitian Ricci form ρθ is the lift of the Ricci 2-form on N , and
the Webster scalar curvature on M is the lift of the Riemannian scalar curvature on N .
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If scalh 6≡ 0 is non-negative on N , the curvature term Qq̂ =
(
1 − `2

(m+2)2

)
scalW

4 6≡ 0 is non-

negative as well. The Schrödinger–Lichnerowicz-type formula implies H q̂(M,E) = {0}. On
the other hand, we have an inclusion of H q̂(N,O(E′)) into H q̂(M,E). Hence, if H q̂(N,O(E′))
is non-trivial then H q̂(M,E) as well. By Corollary 10.4, this obstructs the existence of some
pseudo-Hermitian form with positive Webster scalar curvature. �

In case of spin structures we have the following special result.

Corollary 11.2. Let π : (M, θ) → N be some CR circle bundle of even complex dimension
m ≥ 2 with spin structure

√
K′ → N .

(a) If scalh 6≡ 0 is non-negative on N , the Kohn–Rossi cohomology group

H
m
2
(
M,
√
K
)

= {0}

is trivial.

(b) If the holomorphic cohomology group H
m
2

(
N,O

(√
K′
))
6= {0} is non-trivial then the

strictly pseudoconvex CR manifold M admits no adapted pseudo-Hermitian structure of
positive Webster scalar curvature.

11.2 Shifting cohomology

Let
(
M2m+1, θ

)
, m ≥ 2, be some closed pseudo-Hermitian manifold with vanishing Webster

torsion τθ = 0. We assume now that the characteristic vector T of θ is induced from some
free U(1)-action on M . This implies that T is regular with underlying Kähler manifold N . In
fact, here π : (M, θ) → N is a smooth principal U(1)-bundle and θ is a connection form. We
call π : (M, θ)→ N a CR principal U(1)-bundle. The corresponding holomorphic line bundle is
denoted by F ′ → N and F = π∗F ′ is its pullback to M .

Let Cq(M) denote the chain groups of the Kohn–Rossi complex on M . In [21] the differential
operator

N : Cq(M)→ Cq(M), q ≥ 0,

u 7→ i∇W
T u,

is introduced. Let us denote by

Cq(λ)(M) :=
{
u ∈ Cq(M) : Nu = λu

}
the corresponding λ-eigenspace. Since the Webster torsion τθ = 0 vanishes, we have in general
∇W
T u = LTu for the Lie derivative of any chain u ∈ Cq(M). This shows that Cq(0)(M) are exactly

the projectable (0, q)-forms on M .
The operator N is self-adjoint and commutes with ∂̄ and ∂̄∗. Hence, N acts on the har-

monic spaces H0,q(M), q ≥ 0, as well. All eigenvalues λ are real. In fact, since H0,q(M) is
finite dimensional for 0 < q < m, we have finitely many real eigenvalues λ and a direct sum
decomposition

H0,q(M) =
⊕
λ

H0,q
(λ)(M),

which implies for the Kohn–Rossi groups:

H0,q(M) =
⊕
λ

H0,q
(λ)(M), 1 ≤ q ≤ m− 1.
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In [21] it is shown that for any integers q, s ∈ Z the cohomology groups

H0,q
(s) (M) ∼= Hq

(
N,O(F ′s)

)
are naturally identified. Here F ′s denotes the sth power of the line bundle F ′ → N , which is
associated to the given CR principal U(1)-bundle π : (M, θ)→ N .

On the other hand, let F = π∗F ′ → M denote the pullback of F ′. Via the projection
π : M → N the holomorphic cohomology group Hq(N,O(F ′s)) is identified with the subgroup
Hq

(0)(M,F s) ⊆ Hq(M,F s) of F s-twisted Kohn–Rossi cohomology. This gives rise to a natural
identification

H0,q
(s) (M) ∼= Hq

(0)(M,F s), (11.1)

where the classes in Hq
(0)(M,F s) are uniquely represented by projectable harmonic (0, q)-forms

with values in F s. We call (11.1) a shift in Kohn–Rossi cohomology over the CR principal
U(1)-bundle π : (M, θ)→ N .

We apply (11.1) to our situation of spinC structures. For this we assume that the pullback
F = π∗F ′ → M of the line bundle F ′ → N associated to π : M → N has weight f ∈ Z. Then
E := F s = E(sf) determines a spinC structure of weight ` = 2sf +m+ 2 on (M, θ).

Theorem 11.3. Let π :
(
M2m+1, θ

)
→ N , m ≥ 2, be some CR principal U(1)-bundle of weight

f ∈ Z and E := E(sf), s ∈ Z. Then

1. Hq
(0)(M,E) = {0} for q < m and s > 0.

2. If msf
m+2 ∈ {1−m, . . . ,−1} and scalh > 0 then H0,q̂

(s) (M) = {0} for q̂ = m
(
1 + sf

m+2

)
.

Proof. (1) Comparing the Kohn Laplacian � = ∂̄∗∂̄+ ∂̄∂̄∗ with � = ∂∗∂+ ∂∂∗ gives �+ (m−
q)N = � (see [21]). Hence, the subgroups Hq

(0)(M,E) ∼= H0,q
(s) (M), q < m, are all trivial for

eigenvalues s > 0.
(2) This result follows directly from Theorem 11.1 and the shift (11.1). �

Example 11.4. Let us assume that the CR dimension m ≥ 2 is even and the weight f of F → N
is a positive factor of m

2 + 1, i.e., s := −m+2
2f ∈ Z. Then E2 = F 2s = K, i.e., F s → M defines

a spin structure on the CR manifold M . Hence, if the scalar curvature scalh of the underlying

Kähler manifold is positive, the Kohn–Rossi subgroup H
0,m

2

(s) (M) ∼= H
m
2

(0)(M,F s) is trivial.

In other words, in this situation the (untwisted) Kohn–Rossi subgroup

H
0,m

2

(s) (M) 6= {0}

to the negative N -eigenvalue s = −m+2
2f ∈ Z is an obstruction to positive Webster scalar

curvature on M .

12 Examples of CR principal U(1)-bundles

We discuss some examples of CR principal U(1)-bundles with applications of vanishing theo-
rems for harmonic spinors and Kohn–Rossi cohomology. The construction here is based on the
underlying Kähler manifold.

For our construction, let
(
N2m, ω, J

)
, m ≥ 2, be a closed Kähler manifold such that a non-

trivial multiple α := c[ω], c ∈ R \ {0}, of the Kähler class [ω] 6= 0 is integral, i.e., α ∈ H2(N,Z).
By Lefschetz’s theorem on (1, 1)-classes, there exists some Hermitian line bundle L′ → N with
first Chern class c1(L′) = α. Let π : M → N be the corresponding principal U(1)-bundle to
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which L′ → N is associated. By the ddc-lemma, this bundle admits a connection form Aω with
curvature dAω = π∗ω, the lift of the Kähler form. The lift of the complex structure J to the hor-
izontal distribution H(M) of the connection Aω gives rise to a CR structure (H(M), J) onM,
which is by construction strictly pseudoconvex of hypersurface type with CR dimension m.

In addition, we set θ := 2Aω. This is an adapted pseudo-Hermitian form, which has by
construction vanishing torsion τ = 0, the characteristic vector T is regular and gθ = 1

2dθ(·, J ·)
is the lift of the Kähler metric to H(M). Thus,

(M, H(M), J)

is a CR principal U(1)-bundle with pseudo-Hermitian form θ over the Kähler manifold N . Let
us call π : M→ N the CR α-bundle.

Example 12.1. Let N2m be a closed Kähler–Einstein manifold of positive scalar curvature
scalh > 0 and let π : M → N be the principal U(1)-bundle to which the anticanonical bundle

K′−1 → N is associated. The Ricci 2-form is given by ρ = scalh

2m ω and the first Chern class
is c1(N) = −c1(K′) =

[
1

2πρ
]
∈ H2(N,Z). Hence, π : M → N is the CR c1(N)-bundle. The

adapted pseudo-Hermitian form θ is some multiple of the Levi-Civita connection onM, and the
lift of the Ricci 2-form ρ along π : M → N is the pseudo-Hermitian Ricci form ρθ of θ on M.
This shows that ρθ is positive definite in this case.

Let M be given some spinC structure of weight ` ∈ Z, determined by some line bundle
E → M. For |`| < m + 2, Proposition 8.1 shows that any harmonic spinor on M is a section
of the extremal bundles. Accordingly, Theorem 10.3 shows that, for |`| ≤ m + 2 and any
1 ≤ q ≤ m − 1, the qth Kohn–Rossi group Hq(M, E) = {0} is trivial. In particular, if N2m

(m even) is spin, so is M and H
m
2

(
M,
√
K
)

= {0}.
For example, the Hopf fibration π : S2m+1 → CPm over the complex projective space is a CR

principal U(1)-bundle of this kind. In fact, the associated line bundle to π is K′−1, and S2m+1 is
equipped with the standard CR structure. Hence, for any spinC structure of weight |`| ≤ m+ 2
and 0 < q < m, we have Hq

(
S2m+1, E

)
= {0} (cf. [21]). (Note that CPm is spin only for m

odd. However, the standard CR manifold S2m+1 is spin for any m.)

Example 12.2. Let N2m, m ≥ 2 and even, be some closed manifold with hyperKähler metric h,
i.e., h is Ricci-flat and its holonomy group is contained in Sp

(
m
2

)
. In particular, N is spin and

admits some parallel spinor φ0 in Σ0(N), i.e., H
m
2

(
N,O

(√
K′
))
6= {0}.

We assume now that h is a Hodge metric, i.e., the corresponding Kähler class [ω] ∈ H2(N,Z)
is integral. E.g., any projective K3 surface admits some integral Kähler class [ω]. Then the CR
[ω]-bundle π : M → N exists. Furthermore, the pullback of the spin structure on N gives rise
to some spin structure

√
K →M and the lift ψ0 := π∗φ0 is a parallel section of Σ0(M(H)) with

respect to the spinorial Webster–Tanaka connection ∇Σ. In fact, the basic holonomy group of
the adapted pseudo-Hermitian structure θ onM is contained in Sp

(
m
2

)
(cf. [13]). In particular,

ψ0 is some harmonic spinor in Σ0(M(H)) and the Kohn–Rossi group H
m
2

(
M,
√
K
)
6= {0}

is non-trivial. Accordingly, Corollary 10.4 states that the CR manifold M admits no pseudo-
Hermitian structure of positive Webster scalar curvature. Similarly, we can apply Corollary 11.2,
since H

m
2

(
N,O

(√
K′
))
6= {0}.

Observe that ψ0 is in the kernel of the twistor operator P0 as well, i.e., ψ0 is an example for
a CR twistor spinor of weight ` = 0 on some closed, strictly pseudoconvex CR manifold.

Finally, note that in the spin case there is a theory of Kählerian twistor spinors on the
underlying N (see [17, 19]). The lift of such twistor spinors gives rise to projectable spinors in
the kernel of twistor operators on (M, θ). For the case µq = ` = 0, this gives rise to CR twistor
spinors. However, Kählerian twistor spinors on N with µq = 0 are necessarily parallel. Hence,
as in our example, the corresponding CR twistor spinors on M are parallel as well. Apart from
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the standard CR sphere, we do not know further examples (of non-extremal weight) on closed
CR manifolds.
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