| 
 SIGMA 17 (2021), 015, 13 pages       arXiv:2010.03638     
https://doi.org/10.3842/SIGMA.2021.015 
 
Stäckel Equivalence of Non-Degenerate Superintegrable Systems, and Invariant Quadrics
Andreas Vollmer ab
 a) Institute of Geometry and Topology, University of Stuttgart, 70550 Stuttgart, Germany
 b) Dipartimento di Scienze Matematiche (DISMA), Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy
 
 
Received October 09, 2020, in final form February 02, 2021; Published online February 17, 2021
 Abstract 
A non-degenerate second-order maximally conformally superintegrable system in dimension 2 naturally gives rise to a quadric with position dependent coefficients. It is shown how the system's Stäckel class can be obtained from this associated quadric.The Stäckel class of a second-order maximally conformally superintegrable system is its equivalence class under Stäckel transformations, i.e., under coupling-constant metamorphosis.
 Key words: Stäckel equivalence; quadrics; superintegrable systems. 
pdf (370 kb)  
tex (23 kb)  
 
 
References 
- Bertrand J.M., Mémoire sur quelques-unes des forms les plus simples que  puissent présenter les intégrales des équations différentielles du  mouvement d'un point matériel, J. Math. Pures Appl. 2  (1857), 113-140.
 
- Błaszak M., Marciniak K., On reciprocal equivalence of Stäckel systems,  Stud. Appl. Math. 129 (2012), 26-50, arXiv:1201.0446.
 
- Błaszak M., Marciniak K., Classical and quantum superintegrability of  Stäckel systems, SIGMA 13 (2017), 008, 23 pages, arXiv:1608.04546.
 
- Bolsinov A.V., Matveev V.S., Pucacco G., Normal forms for pseudo-Riemannian  2-dimensional metrics whose geodesic flows admit integrals quadratic in  momenta, J. Geom. Phys. 59 (2009), 1048-1062,  arXiv:0803.0289.
 
- Boyer C.P., Kalnins E.G., Miller Jr. W., Stäckel-equivalent integrable  Hamiltonian systems, SIAM J. Math. Anal. 17 (1986),  778-797.
 
- Capel J.J., Invariant classification of second-order conformally flat  superintegrable systems, Ph.D. Thesis, University of New South Wales, 2014.
 
- Darboux G., Sur un probléme de mécanique, Arch. Néerl.  6 (1901), 371-376.
 
- Daskaloyannis C., Quadratic Poisson algebras of two-dimensional classical  superintegrable systems and quadratic associative algebras of quantum  superintegrable systems, J. Math. Phys. 42 (2001),  1100-1119, arXiv:math-ph/0003017.
 
- Daskaloyannis C., Ypsilantis K., Unified treatment and classification of  superintegrable systems with integrals quadratic in momenta on a  two-dimensional manifold, J. Math. Phys. 47 (2006), 042904,  38 pages, arXiv:math-ph/0412055.
 
- Dini U., Sopra un problema che si presenta nella teoria generale delle  rappresentazioni geografiche di una superficie su di un'altra, Ann.  di Matem. 3 (1869), 269-293.
 
- Genest V.X., Ismail M.E.H., Vinet L., Zhedanov A., The Dunkl oscillator in  the plane: I. Superintegrability, separated wavefunctions and overlap  coefficients, J. Phys. A: Math. Theor. 46 (2013), 145201,  21 pages, arXiv:1212.4459.
 
- Hietarinta J., Grammaticos B., Dorizzi B., Ramani A., Coupling-constant  metamorphosis and duality between integrable Hamiltonian systems,  Phys. Rev. Lett. 53 (1984), 1707-1710.
 
- Kalnins E.G., Kress J.M., Miller Jr. W., Second-order superintegrable systems  in conformally flat spaces. I. Two-dimensional classical structure  theory, J. Math. Phys. 46 (2005), 053509, 28 pages.
 
- Kalnins E.G., Kress J.M., Miller Jr. W., Second order superintegrable systems  in conformally flat spaces. II. The classical two-dimensional Stäckel  transform, J. Math. Phys. 46 (2005), 053510, 15 pages.
 
- Kalnins E.G., Kress J.M., Miller Jr. W., Second order superintegrable systems  in conformally flat spaces. IV. The classical 3D Stäckel transform  and 3D classification theory, J. Math. Phys. 47 (2006),  043514, 26 pages.
 
- Kalnins E.G., Kress J.M., Miller Jr. W., Nondegenerate 2D complex Euclidean  superintegrable systems and algebraic varieties, J. Phys. A: Math.  Theor. 40 (2007), 3399-3411.
 
- Kalnins E.G., Kress J.M., Miller Jr. W., Nondegenerate three-dimensional  complex Euclidean superintegrable systems and algebraic varieties,  J. Math. Phys. 48 (2007), 113518, 26 pages,  arXiv:0708.3044.
 
- Kalnins E.G., Kress J.M., Miller Jr. W., Separation of variables and  superintegrability. The symmetry of solvable systems, IOP Expanding Physics,  IOP Publishing, Bristol, 2018.
 
- Kalnins E.G., Kress J.M., Miller Jr. W., Post S., Laplace-type equations as  conformal superintegrable systems, Adv. in Appl. Math. 46  (2011), 396-416.
 
- Kalnins E.G., Kress J.M., Pogosyan G.S., Miller Jr. W., Completeness of  superintegrability in two-dimensional constant-curvature spaces,  J. Phys. A: Math. Gen. 34 (2001), 4705-4720,  arXiv:math-ph/0102006.
 
- Kalnins E.G., Miller Jr. W., Post S., Contractions of 2D 2nd order quantum  superintegrable systems and the Askey scheme for hypergeometric orthogonal  polynomials, SIGMA 9 (2013), 057, 28 pages,  arXiv:1212.4766.
 
- Kalnins E.G., Pogosyan G.S., Miller Jr. W., Completeness of multiseparable  superintegrability in two dimensions, Phys. Atomic Nuclei  65 (2002), 1033-1035.
 
- Kress J.M., Equivalence of superintegrable systems in two dimensions,  Phys. Atomic Nuclei 70 (2007), 560-566.
 
- Kress J., Schöbel K., An algebraic geometric classification of  superintegrable systems in the Euclidean plane, J. Pure Appl.  Algebra 223 (2019), 1728-1752, arXiv:1602.07890.
 
- Kress J., Schöbel K., Vollmer A., An algebraic geometric foundation for a  classification of superintegrable systems in arbitrary dimension,  arXiv:1911.11925.
 
- Kress J., Schöbel K., Vollmer A., Algebraic conditions for conformal  superintegrability in arbitrary dimension, arXiv:2006.15696.
 
- Maciejewski A.J., Przybylska M., Tsiganov A.V., On algebraic construction of  certain integrable and super-integrable systems, Phys. D  240 (2011), 1426-1448, arXiv:1011.3249.
 
- Manno G., Vollmer A., (Super-)integrable systems associated to 2-dimensional  projective connections with one projective symmetry, J. Geom. Phys.  145 (2019), 103476, 22 pages, arXiv:1905.01396.
 
- Manno G., Vollmer A., Normal forms of two-dimensional metrics admitting exactly  one essential projective vector field, J. Math. Pures Appl.  135 (2020), 26-82, arXiv:1705.06630.
 
- Matveev V.S., Two-dimensional metrics admitting precisely one projective vector  field, Math. Ann. 352 (2012), 865-909.
 
- Post S., Coupling constant metamorphosis, the Stäckel transform and  superintegrability, AIP Conf. Proc. 1323 (2011), 265-274.
 
- Post S., Models of quadratic algebras generated by superintegrable systems in  2D, SIGMA 7 (2011), 036, 20 pages, arXiv:1104.0734.
 
- Sergyeyev A., Błaszak M., Generalized Stäckel transform and reciprocal  transformations for finite-dimensional integrable systems,  J. Phys. A: Math. Theor. 41 (2008), 105205, 20 pages,  arXiv:0706.1473.
 
- Topalov P., Matveev V.S., Geodesic equivalence via integrability, Geom.  Dedicata 96 (2003), 91-115, arXiv:math.DG/9911062.
 
- Tsiganov A.V., Duality between integrable Stäckel systems,  J. Phys. A: Math. Gen. 32 (1999), 7965-7982,  arXiv:solv-int/9812001.
 
- Tsiganov A.V., Transformation of the Stäckel matrices preserving  superintegrability, J. Math. Phys. 60 (2019), 042701,  13 pages, arXiv:1809.05824.
 
- Tsiganov A.V., Superintegrable systems and Riemann-Roch theorem,  J. Math. Phys. 61 (2020), 012701, 14 pages,  arXiv:1910.08269.
 
- Vollmer A., Projectively equivalent 2-dimensional superintegrable systems with  projective symmetries, J. Phys. A: Math. Theor. 53 (2020),  095202, 25 pages, arXiv:1812.03591.
 
 
 | 
 |