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Abstract. Logarithmic differential forms and logarithmic vector fields associated to a hyper-
surface with an isolated singularity are considered in the context of computational complex
analysis. As applications, based on the concept of torsion differential forms due to A.G. Alek-
sandrov, regular meromorphic differential forms introduced by D. Barlet and M. Kersken,
and Brieskorn formulae on Gauss—Manin connections are investigated. (i) A method is
given to describe singular parts of regular meromorphic differential forms in terms of non-
trivial logarithmic vector fields via Saito’s logarithmic residues. The resulting algorithm is
illustrated by using examples. (i4) A new link between Brieskorn formulae and logarithmic
vector fields is discovered and an expression that rewrites Brieskorn formulae in terms of non-
trivial logarithmic vector fields is presented. A new effective method is described to compute
non trivial logarithmic vector fields which are suitable for the computation of Gauss—Manin
connections. Some examples are given for illustration.
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1 Introduction

In 1975, K. Saito introduced, with deep insight, the concept of logarithmic differential forms and
that of logarithmic vector fields and studied Gauss—Manin connection associated with the versal
deformations of hypersurface singularities of type As and Ajs as applications. These results
were published in [33]. He developed the theory of logarithmic differential forms, logarithmic
vector fields and the theory of residues and published in 1980 a landmark paper [34]. One of
the motivations of his study, as he himself wrote in [34], came from the study of Gauss—Manin
connections [5, 32]. Another motivation came from the importance of these concepts he realized.
Notably the logarithmic residue, interpreted as a meromorphic differential form on a divisor,
is regarded as a natural generalization of the classical Poincaré residue to the singular cases.
In 1990, A.G. Aleksandrov [2] studied Saito theory and gave in particular a characterization
of the image of the residue map. He showed that the image sheaf of the logarithmic residues
coincides with the sheaf of regular meromorphic differential forms introduced by D. Barlet [5]
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and M. Kersken [15, 16]. We refer the reader to [4, 8, 9, 10, 12, 29, 30] for more recent results
on logarithmic residues.

We consider logarithmic differential forms along a hypersurface with an isolated singularity
in the context of computational complex analysis. In our previous paper [40], we study torsion
modules and give an effective method for computing them. In the present paper, we first consider
a method for computing regular meromorphic differential forms. We show that, based on the
result of A.G. Aleksandrov mentioned above, representatives of regular meromorphic differential
forms can be computed by adapting the method presented in [40] on torsion modules. Main
ideas of our approach are the use of the concept of logarithmic residues and that of logarithmic
vector fields. Next, we discuss a relation between logarithmic differential forms and Brieskorn
formulae [5, 35, 37] and we show that Brieskorn formulae can be rewritten in terms of logarithmic
vector fields. Applications to the computation of Gauss—Manin connections are illustrated by
using examples.

In Section 2, we briefly recall some basics on logarithmic differential forms, logarithmic
residues, Barlet sheaf and torsion differential forms. In Section 3, we first recall the notion
of logarithmic vector fields and a result gave in [40] to show that torsion differential forms
can be described in terms of non trivial logarithmic vector fields. Next, we recall our previ-
ous results to show that non-trivial logarithmic vector fields can be computed by using a polar
method and local cohomology. Lastly in Section 3, we present Theorem 3.11 which say that
regular meromorphic differential forms can be explicitly computed by modifying our previous
algorithm on torsion differential forms. In Section 4, we give some examples to illustrate the
proposed method of computing non-trivial logarithmic vector fields and regular meromorphic
differential forms. In Section 5, we consider Brieskorn formulae on Gauss—Manin connections.
We show that Brieskorn formulae described in terms of logarithmic differential forms can be
rewritten in terms of non-trivial logarithmic vector fields. We give a new method for computing
non-trivial logarithmic vector fields which is suitable in use to compute a connection matrix
of Gauss—Manin connections. Finally, we show that the use of integral dependence relations
provides a new effective tool for computing saturations of Gauss—Manin connection.

2 Logarithmic differential forms and residues

In this section, we briefly recall the concept of logarithmic differential forms and that of loga-
rithmic residues and fix notation. We refer the reader to [34] for details. Next we recall the
result of A.G. Aleksandrov on regular meromorphic differential forms. Then, we recall a result
of G.-M. Greuel on torsion modules.

Let X be an open neighborhood of the origin O in C". Let Ox be the sheaf on X of holo-
morphic functions and Ox o the stalk at O of the sheaf Ox.

2.1 Logarithmic residues

Let f be a holomorphic function defined on X. Let § = {z € X|f(z) = 0} denote the
hypersurface defined by f.

Definition 2.1. Let w be a meromorphic differential ¢g-form on X, which may have poles only
along S. The form w is a logarithmic differential form along S if it satisfies the following
equivalent four conditions:

(i) fw and fdw are holomorphic on X.
(17) fw and df A w are holomorphic on X.

(7i7) There exist a holomorphic function g(z) and a holomorphic (¢ — 1)-form £ and a holomor-
phic ¢-form 1 on X, such that:



Computing Regular Meromorphic Differential Forms via Saito’s Logarithmic Residues 3

(a) dimg(SN{z € X|[g(z) =0}) <n—2,
(b) gw = i{A§+n

(tv) There exists an (n — 2)-dimensional analytic set A C S such that the germ of w at any
point p € § — A belongs to df A Qq ! st prv where Qg(p denotes the module of germs
of holomorphic ¢-forms on X at p.

For the equivalence of the condition above, see [34]. Let Q% (log S) denote the sheaf of loga-
rithmic ¢-forms along S. Let Mg be the sheaf on S of meromorphic functions, let Qf be the
sheaf on S of holomorphic g-forms defined to be

0% = Q% /(fO% +df AQET).

Definition 2.2. The residue map res: Q% (logS) — Mg @0, Q%" is defined as follows:
For w € Q% (log S), by definition, there exist g, £ and 7 such that

(a) dimc(SN{zr € X |g(z) =0}) <n—2, and

(b) gw = (y

Then the residue of w is defined to be res(w) =

NE+ .

Q

. -1
‘S in Mg ®p, Q% .

Note that it is easy to see that the image sheaf of the residue map res of the subsheaf

% AQE QL of Q% (log S) is equal to Qg{l‘sz

df -1 -1
res(f/\Qg( +Q§() = Q% ‘S.

See also [34] for details on logarithmic residues. The concept of residues for logarithmic
differential forms can be actually regarded as a natural generalization of the classical Poincaré
residue.

2.2 Barlet sheaf and torsion differential forms

In 1978, by using results of F. El Zein on fundamental classes, D. Barlet introduced in [5]
the notion of the sheaf w% of regular meromorphic differential forms in a quite general setting.
He showed that for the case ¢ = n — 1, the sheaf wg_l coincides with the Grothendieck dualizing
sheaf and w% can also be defined in the following manner.

Definition 2.3. Let S be a hypersurface in X C C”. Let wgfl be the Grothendieck dua-
lizing sheaf Exté)x (OS,Q}). Then, the sheaf of regular meromorphic differential forms wg,,
q=0,1,...,n—2on S is defined to be

w? = Hompy (Qg_l_q,wg_l).
In 1990, A.G. Aleksandrov [2] obtained the following result.
Theorem 2.4. For any q > 0, there is an isomorphism of Og modules
res(Q% (log S)) = wi .

See [2] or [3] for the proof.
Let Tor(Q%) denote the sheaf of torsion differential g-forms of Q.
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Example 2.5. Let X be an open neighborhood of the origin O in C2. Let f(z,y) = 2> — 3°
and S = {(z,y) € X | f(x,y) = 0}. Then, for stalk at the origin of the sheaves of logarithmic
differential forms, we have

Qko(log )= OX,O<df B dz A dy>7

i f

where Ox o is the stalk at the origin of the sheaf Ox of holomorphic functions and 8 = 2ydx —
3zdy. The differential form S, as an element of Q}g = Q}( / ((’) xdf + fQ}(), is a torsion. The dif-
ferential form yg is also a torsion. Since the defining function f is quasi-homogeneous, the

dimension of the vector space Tor(Q}g) is equal to the Milnor number p = 2 of S [18, 47].
Therefore we have Tor (%) = Ox,0(8) = C(3,y8).

), 03 o (log ) = Ox,o(

In 1988 [1], A.G. Aleksandrov studied logarithmic differential forms and residues and proved
in particular the following.

Theorem 2.6. Let S = {x € X | f(x) = 0} be a hypersurface in X C C". For ¢ =0,1,...,n,
there exists an exact sequence of sheaves of Ox modules,

df . g
0—— AT+ Q% — Q4 (log S) 5 Tor(Q%) — 0.

The result above yields the following observation: Tor(Q%) plays a key role to study the
structure of res(Q% (log 9)).

2.3 Vanishing theorem

In 1975, in his study [13] on Gauss—Manin connections G.-M. Greuel proved the following results
on torsion differential forms.

Theorem 2.7. Let S = {x € X | f(z) = 0} be a hypersurface in X with an isolated singularity
at O € C". Then,

(i) Tor(Q%) =0,¢=0,1,...,n—2.

(44) Tor(Qg_l) 1s a skyscraper sheaf supported at the origin O.

(iii) The dimension, as a vector space over C, of the torsion module Tor (Qg_l) is equal to T(f),
the Tjurina number of the hypersurface S at the origin defined to be

7(f) = dimc¢ <0X,o/<f,af o 8f)>,

Ox1’ Oxzo’ " Oz

where (f, of Of ﬂ) is the ideal in Ox o generated by f, of " Of 9f

0x1’ Oxa’ """ Oxn 0x1’ Ox2’ """ Oxp *

Note that the first result was obtained by U. Vetter in [46] and the last result above is
a generalization of a result of O. Zariski [47]. G.-M. Greuel obtained much more general results
on torsion modules. See [13, Proposition 1.11, p. 242].

Assume that the hypersurface S has an isolated singularity at the origin. We thus have,
by combining the results of G.-M. Greuel above and of A.G. Aleksandrov presented in the
previous section, the following:

(i) Q% o(logS) = % NS+ 0% 0 a=12,...,n-2,
(ii) 0 — % NS+ Q% 5 — Q% 5(log 9) N Tor (') — 0.

Accordingly we have the following.
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Proposition 2.8. Let S = {x € X | f(z) = 0} be a hypersurface in X with an isolated sin-
gularity at O € C™. Then, ws =0%,¢=0,1,...,n— 3 holds.

Proof. Since res(Q%(log9)) = Q% 1’5’ g = 1,2,...,n — 2, the result of A.G. Aleksandrov

presented in the last section yields the result. |

3 Description via logarithmic residues

In this section, we recall results given in [40] to show that torsion differential forms can be descri-
bed in terms of non-trivial logarithmic vector fields. We also recall basic ideas and the framework
for computing non-trivial logarithmic vector fields. As an application, we give a method for
computing logarithmic residues.

3.1 Logarithmic vector fields

A vector field v on X with holomorphic coefficients is called logarithmic along the hypersurface .5,
if the holomorphic function v(f) is in the ideal (f) generated by f in Ox. Let Derx(—log5)
denote the sheaf of modules on X of logarithmic vector fields along S [34].

Let wx = dzy Adzg A--- Adx,. For a holomorphic vector field v, let i, (wx) denote the inner
product of wx by v.

Proposition 3.1. Let S = {x € X | f(z) = 0} be a hypersurface with an isolated singularity at
the origin. Then, Q% 5(log S) is isomorphic to Derx o(—log S), more precisely

0 g 5) = { )

v e Deero(— log S)}

holds.

Proof. Let f = i,(wx), and set w = ? Then, fw = B is a holomorphic differential form.

Therefore, the meromorphic differential n— 1 form w is logarithmic if and only if d f /\? is a holo-
morphic differential n-form. Since df A 8 = df Aiy(wx) = v(f)wx, we have df A ? = @wx.
Hence, the condition above means v(f) is in the ideal (f) C Ox o generated by f. This completes
the proof. |

A germ of logarithmic vector field v generated over Ox o by

0 i=19 . .. (09 089
ox;’ I Oz Ox; axzﬁxj

f

1 <1<y <n,

is called trivial.

Lemma 3.2. Let v be a germ of a logarithmic vector field. Then, the following conditions are
equivalent:

: d
(1) w= bo(wx) belongs to—f/\Q” —i—QXO,

f f

(1) v is a trivial vector field.

Proof. The logarithmic differential form w = il (;’X ) is in Q7 01 + df A Q2 X0 if and only if the

numerator i,(wx) is in fQ" +df A% 5. The last condition is equwalent to the triviality
of the vector field v, which completes the proof. |
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For g € Q}Tol, let [5] denote the Kéahler differential form in Qg_ol defined by 3, that is, [3] is
the equivalence class in Q}% / ( f Q}% +df A 9}702) of 3.

The lemma above amount to say that, for logarithmic vector fields v, [i,(wx)] is a non-zero
torsion differential form in Tor (ngl) if and only if v is a non-trivial logarithmic vector field.

We say that germs of two logarithmic vector fields v,v" € Dery o(—logS) are equivalent,
denoted by v ~ v/, if v — ¢’ is trivial. Let Derx o(—logS)/~ denote the quotient by the
equivalence relation ~. (See [39].)

Now consider the following map

0: Derxo(—logS)/~ — Q}jol /( ng;jg +df A Q}jg)

defined to be O([v]) = [iy(wx)], where [v] is the equivalence class in Derx o(—1logS)/~ of v.
It is easy to see that the map © is well-defined. We arrive at the following description of the
torsion module.

Theorem 3.3 ([40]). The map
©: Derx o(—logS)/~ — Tor(Qg_l)

s an isomorphism.

3.2 Polar method

In [39], based on the concept of polar variety, logarithmic vector fields are studied and an effective
and constructive method is considered. Here in this section, following [27, 39] we recall some
basics and give a description of non-trivial logarithmic vector fields.

Let S = {x Ea?( | g ng) = 0} be a hypersurface with an isolated singularity. In Whag ﬁollg;vs, we

assume that f, Bas’ Dag’ ng is a regular sequence and the common locus V(f, D230 Dag
of

E) N X is the origin O. See [19] for an algorithm of testing zero-dimensionality of varieties at
a point.

, Let (fé%, %,@. . %) : (g—i) denote the ideal quotient, in the local ring Ox o, of (f, aaT];’
8—!3, cee %) by (8751) We have the following.

Lemma 3.4. Let a(x) be a germ of holomorphic function in Ox o. Then, the following are
equivalent:

. of 9of of \ ([ of
(7) a($)€<f’ax2’8:c?,"”’3:m)'<8xl)'

(i7) There exists a germ of logarithmic vector field v in Derx o(—logS) such that

d 0 0 0
v = a(x)a—xl + CLQ(x)aim +eo an_1(a:)axn_1 + an(:v)a—%,
where az(z),...,an(z) € Ox 0.

Note that in [24, 27], by utilizing local cohomology and Grothendieck local duality, an effective
method of computing a set of generators over the local ring Ox o of the module of logarithmic
vector fields is given. See the next section.

Lemma 3.5. Assume that f, 887’;, (%f;, cen % is a reqular sequence. Let v' be a logarithmic

vector fields in Derx o(—log S) of the form

0 0 0
/ —_— — — ... —
v = ag(:c)aac2 + ag,(:c)am3 4+ -+ an(x)axn.

Then, V' is trivial.
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Lemmas 3.4 and 3.5 immediately yield the following.

Proposition 3.6. Let f, 5%7 5%, R Bx be a reqular sequence. Let v be a germ of logarithmic
vector field along S of the form
v=a1(x)=— +a(x)=— +---+a (:1:)7—i-a(ac)i
o Oy Y 0, T By,

Then, the following conditions are equivalent:

(i) v is trivial,
(ii) ai(x) € (f, 2L, 20 .. A1),

) Do’ Oxg’ ) Oy

Therefore, we have the following.

Theorem 3.7 ([39]). Derx o(—logS)/~ is isomorphic to

<<‘9faf ‘9f>.<3f>>/<f‘9f‘3’f ‘9f>
"Oxy’ Ox3” T Oz ) T \ 01 "Oxy’ Ox3” T Oz, )

To be more precise, let A be a basis as a vector space of the quotient

<<fafaf ‘9f>.<‘9f>)/<fafaf ‘9f>
"0y’ Ox3” T Oz ) T \ 01 "Oxy’ Ox3” T Oz, )

Then the corresponding logarithmic vector fields,

0 0 0 0
v=a(x)=— + as +- ot ap—1(x)s— +an(z )am ,

e (z )amz a(z) € A

(%n 1

give rise to a basis of Derx o(—logS)/~

3.3 Local cohomology and duality

In this section, we briefly recall some basics on local cohomology and Grothendieck local duality.
We give an outline for computing non-trivial logarithmic vector fields. We refer to [40] for details.
Let H’{“O} (Q}) denote the local cohomology supported at the origin O of the sheaf Q% of holo-
morphic n-forms. Then, the stalk Ox o and the local cohomology ’H?O} (Q}) are mutually dual
as locally convex topological vector spaces.
The duality is given by the point residue pairing:

Res{o}(*, *): OX,O X 7‘[?0} (Q&) — C.

Let Wp(y) denote the set of local cohomology classes in H {O}( ) that are annihilated by f,

of of  of .
8$2’3w37"'78xn'
n of af
Wr(p) = {@eH{O}Q 'fgo @:...:ax@zo}‘

Then, a complex analytic version of Grothendieck local duality on residue implies that the
pairing

of of af
OX’O/<f78x27a$37”'781‘n> XWF(f) — C

is non-degenerate.
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Let p(f) and pu(f|m,,) denote the Milnor number of f and that of a hyperplane section f|n,,
of f, where f|p,, is the restriction of f to the hyperplane H,, = {z € X |21 = 0}. Then, the
classical Lé—Teissier formula [17, 43] and the Grothendieck local duality imply the following:

dim¢ WF(f) =u(f)+ N(f|Hxl ).

Let v: Wr(sy — Wrp(s) be a map defined by v(p) = % * ¢ and let Wr(y) be the image of

the map ~:
of
Waw = {(%IW‘WGWM)}-

Let Annpy ,(Wa(s)) be the annihilator in Ox o of the set W) of local cohomology classes.

We have the following.
2] 2] 0 0

Lemma 3.8 ([39)). Anno, ,(Wacp) = (f, 2L, 5L, ... 2L)  (5L).
Proof. See [20, 39, 41]. [ |

Recall that the ideal quotient ( f of of ﬁ) : (8%]1) is coefficient ideal w.r.t. 8%1

) Ozo? Oxg’ " Oxp
of logarithmic vector fields along S. The lemma above says that the coefficient ideal can be de-

scribed in terms of local cohomology Way).
Let Wrp(ys) be the kernel of the map v. By definition we have

n (On of of of
WT(f)_{SDEH{O}(QX)‘f‘P_8%1@_83:2%0_'”_8%190_0}-

Since the pairing

of of of  Of
OX’O/(f’ Ox1 Oxy’ 8:63"“’837”) X Wy — €

is non-degenerate by Grothendieck local duality, dimc(Wrp(y)) is equal to

7 = dimg <0X70/< of of of 8f>>,

78%1 8:62781’3’ "’c’h;n

the Tjurina number.
From the exactness of the sequence

0= Wr(py — Wey) — Wagy) — 0,
we have
dimec Wa(p) = u(f) = 7(f) + p(fln,,)-
The argument above also implies the following.

Corollary 3.9 ([39]).

dimc (Dery,o(—log S)/~) =T.
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Notice that the dimension of Wx sy that measures the way of vanishing of coefficients of loga-
rithmic vector fields depends on the choice of a system of coordinates, or a hyperplane. In order
to analyze complex analytic properties of logarithmic vector fields, as we observed in [39], it is
important to select an appropriate system of coordinates or a generic hyperplane. We return
to this issue afterwards at the end of this section.

Now let H["O](Ox) = klggo Exto (Ox,o/(fm, Lo, ..., :En)k, OX) be the sheaf of algebraic local

cohomology and let

Hy {d)eHO](’)X‘fqb a:L»f f¢_0}

NG {axl¢ ‘ ¢ € Hr(y) } :
Then, the following holds
Wiy =1{¢-wx|¢ € Hrpn},  Way) =1{¢-wx |¢ € Hap)}-

In [41], algorithms for computing algebraic local cohomology classes and some relevant algo-
rithms are given. Accordingly, Hr(s), Ha(y) are computable. Note also that a standard basis

of the ideal quotient (f, (%J;, 5’4’ s %) (ag ) can be computed by using Ha(y) in an efficient
manner [41].

Now we present an outline of a method for constructing a basis, as a vector space, of the

. af 8f af of of af

quotlent Sspace ((f, Dzg? Oxg’ " %) (81‘1))/(f7 Og’ Dxz? ) E)

We fix a term ordering > on H[O](OX) and its inverse term ordering ="' on the local
ring Ox 0.
Step 1: Compute a basis @) of Hr(y).

Step 2: Compute a monomial basis Mp(y) of the quotient space Oxyo/(f, 887{;, é%, cee %),
with respect to =1, by using Pr(y)-

Step 3: Compute %¢ of each ¢ € Pp(y) and compute a basis P () of Ha(yp).

Step 4: Compute a standard basis SB of the ideal Annp, ,(Ha(y)) by using @y

Step 5: Compute the normal form NF, -1 (2}s(z)) of z*s(z) for z* € My, s(z) € SB.

Step 6: Compute a basis A, as a vector space, of SpanC{NF (2 s(z)) |2 € Mp ),
s(x) € SB}.

Then, we have the following:

of of of \ ([ of of of of
Span({:( ) <<f7 81’2 6333 . 781'n> . <ax1>>/<fv 81’2 Bxg . 7al'n>

Note that, by utilizing algorithms given in [22], the method proposed above can be extended
to treat parametric cases, the case where the input data contain parameters.

In order to obtain non-trivial logarithmic vector fields, it is enough to do the following.

For each a(x) € A, compute az(x),as(x),...,an(x),b(z) € Ox 0, such that

0 0 0 0
0@ 2t @ 2t a0 5+ )2~ b)) =
Then,
0 0 0 0
a($)871'1+a2($)871‘2+"'+an71( )8:1;” ) +6Ln( )Oixn’ CL(CIT) €A

gives rise to the desired set of non-trivial logarithmic vector fields.
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The step above can be executed efficiently by using an algorithm described in [21]. See
also [40] for details.

Before ending this section, we turn to the issue on the genericity. For this purpose, let us
recall a result of B. Teissier on this subject.

Let p' = (p},ph,...,p),) be a non-zero vector and let [p'] denote the corresponding point
in the projective space P"~!. We identify the hyperplane

Hp/ = {(.’El,{EQ, e 7mn) € C’"« |p,1:1:1 +p/2$2 + - +p'ln,‘rn — 0}
with the point [p/] in P?~1. In [43, 44], B. Teissier introduced an invariant (=Y (f) as

=D(f) = min
p) = min p(fl),
where f[p, is the restriction of f to Hy and p(f|n,,) is the Milnor number at the origin O
of the hyperplane section f| Hy of f. He also proved that the set

U={p) P u(flm,) = n"D ()}

is a Zariski open dense subset of P~

Accordingly, in order to obtain good representations of logarithmic vector fields, it is desirable
to use a generic system of coordinate or a generic hyperplane H,, that satisfies the condition
u(fla,) = nD(F).

In a previous paper [25], methods for computing limiting tangent spaces were studied and
an algorithm of computing u(f| Hp,), p’ € P! was given. In [23, 26], more effective algorithms
for computing p("~1) were given. Utilizing the results in [23, 26], an effective method for compu-
ting logarithmic vector fields that takes care of the genericity condition is designed in [27, 40].
See also [42] for related results.

3.4 Regular meromorphic differential forms

Now we are ready to consider a method for computing regular meromorphic differential forms.
For simplicity, we first consider a 3-dimensional case. Assume that a non-trivial logarithmic
vector field v is given:

D @2+ s 2
61‘1 2 81‘2 3 8%‘3'

Let v(f) = b(z) f(z) and f = iy(wx), where wx = dzy Adze A dzs. We have 8 = a1 (z)dza A
dzs — as(x)dxy A des + as(z)dx; A dze. We introduce differential forms £ and 7 as

v=aq(x)

¢ = —ag(x)dxs + az(z)dze, n = b(x)dza A dzs.
Let g(x) = 8‘%. Then, the following holds

g(@)B=df N+ fz)n.
Accordingly, the logarithmic differential form w = 7 satisfies

g(fﬂ)w:(gA£+n-

We may assume that the coordinate system (x1,z2,23) is generic [27] and g(x) satisfies the
condition (a), (b) of (éi7) in Definition 2.1.
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Since g(x) = I e have, by definition, the following:

ox1’

BY _ ¢
-()-$

Notice that the differential form £ above is directly defined from the coefficients of the logarithmic
vector field v.

S

Proposition 3.10. Let S = {x € X | f(x) = 0} be a hypersurface with an isolated singularity

at the origin O € X C C". Assume that the coordinate system (x1,xa,...,xy,) is generic so that
(f, aa—mf;, 5%{37 e %) is a reqular sequence and g(x) = (%fl satisfies the condition (a), (b) of (ii7)
wn Definition 2.1. Let
0 0
v= al(x)a—xl + ag(x)a—x2 +-+ an(x)a

be a germ of non-trivial logarithmic vector field along S. Let v(f) = b(x)f(z), B = iy(wx).
Let &, n denote the differential form defined to be
&= —ag(x)des Adxg A -+ - ANdxy + as(z)dee Adzg A--- Aday, — - -
+ (—1)(”+1)an(x)dx2 ANdzz A Adxg_1,
n= blx)dza Adxz A Adxy,.

Then,

g(a:)?zc!i};f/\§+n and res<§> :gifl

s
hold.

Note that, in 1984, M. Kersken [16] obtained related results on regular meromorphic differ-
ential forms. The statement in Proposition 3.10 above is a refinement a result of M. Kersken.

Theorem 3.11. Let S = {z € X | f(x) = 0} be a hypersurface with an isolated singularity at the
origin O € X C C". LetV = {v1,va,...,v:} be a set of non-trivial logarithmic vector fields such
that the class [v1], [v2], . .., [v] constitute a basis of the vector space Derx o(—log S)/~, where T
stands for the Tjurina number of f. Let £1,&,...,& be the differential forms correspond to
v1,09,...,0; defined in Proposition 3.10.

Then, any logarithmic residue in res(Q”_l(log S)), or a regular meromorphic differential

form v in wg_Q can be represented as

1
Y= <af(01§1 +cbot+ -+ Crfr)) +a,
Par S
where ¢; € C,1=1,2,...,7, andaeﬂnXiﬂs‘

4 Examples

In this section, we give examples of computation for illustration. Data is an extraction from [40].
Let fo(z,z,y) = 2® + 32 + z* and let fi(z,2,y) = fo(z,z,y) + txyz?, where t is a deformation
parameter. We regard z as the first variable. Then, fy is a weighted homogeneous polynomial
with respect to a weight vector (3,4,4) and f; is a p-constant deformation of fy, called Uy
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singularity. The Milnor number u(f;) of Ujs singularity is equal to 12. In contrast, the Tjurina
number 7(f;) depends on the parameter ¢t. In fact, if ¢t = 0, then 7(fy) = 12 and if ¢ # 0, then
7(f;) = 11. In the computation, we fix a term order =~* on O x,0 which is compatible with the
weight vector (3,4,4).

We consider these two cases separately.

Example 4.1 (weighted homogeneous Uy singularity). Let fo(z,7,y) = 23 + 3> + 2%, Then,

u(fo) = 7(fo) = 12. The monomial basis M with respect to the term ordering =~! of the

quotient space Ox,0/(fo, %7 %7];0) is

M= {z'y/2F|i=0,1, j=0,1, k=0,1,2,3}.

The standard basis Sb of the ideal quotient ( fo, %, %—’Z)) (%J; 0) i

Sb = {xz,yz,z}.

The normal form in (’)X,o/(foa %, %) of 22, y? and z are

NF, -1(2?) =NF, -1 (y*) =0,  NF,-1(z) = 2.

Therefore, A = {z'y/2*|i = 0,1, j = 0,1, k = 1,2,3}. Notice that A consists of 12 elements.
It is easy to see that the Euler vector field

0 0 0
v = 4:68—36 +4ya—y +3z$

that corresponds to the element z € A is a non-trivial logarithmic vector field. Therefore, the
torsion module of the hypersurface Sy = {(x, y,2) |23 +yd + 2t = 0} is given by

Tor(Q%,) = {z'y/2"i,(wx)|i= 0,1, j=0,1, k=1,2,3},

where wx = dz A dx A dy.
Let ¢ = —4axdy+4ydz. Then res(@) = %
are same.

5 Computation of other logarithmic residues

The following is also an extraction from [40].
Example 4.2 (semi quasi-homogeneous Uy singularity). Let f(z,y, z) = 2% 4+ 3> + 2% + toy2?,

t # 0. Then, u(f) =12, 7(f) = 11 and pu(f|H.) = 4. We have dim¢ Hp(p) = 16, dimg Ha(f) = 5.
Let > be a term ordering on H [30}((’) x) which is compatible with the weight vector (4,4, 3).

A basis @) of Hp(yy is given by
1 1
w222 |7 | a222| 7 |yt

(el [ L L ] [
] o) Ll Lt [ 5 )

1] t[ 1] t[1
rlyz 3 |zytz 3 |zy2®|’

l\.’)
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The monomial basis M with respect to the term ordering >=—! of the quotient Ox.0 /( 1

oz’ Oy
M= {z'y/2F|i=0,1, j=0,1, k=0,1,2,3}.

A basis ®(y) of Ha(y) is given by

{onel - love] [ o] ] 6 e }

We see from this data that the standard basis of the ideal quotient (f, %, %5) : (%) in the
local ring Ox o is

t
Sb = {z2 — 6:L"y,xz,yz,x2,y2} .

From Sb and M, we have
t
A= {z2 — %Y 12,97, 23,122 y2?, xyz,xz3,yz3,xyz2,xyz3} .

These 11 elements in A are used to construct non-trivial logarithmic vector fields and regular
meromorphic differential forms. We give the results of computation.

(i) Let a = 622 — tay. Then,

v = 2 ﬁ—i— a2 2—|—(6,z2—1fzv )2
2T 13220z 2T+ 13220y r

is a non-trivial logarithmic vector field, where
di = 216z — 6t%y%z — 2t*2%yz, dy = 216yz + 24t%2° 2 + 1083y 2> — 2t zy>2.

(7i) Let a = xz. Then,

v = 1 ﬁ + 2 2 +xz—
2T+ 13220x 2T+ 13220y 0z

is a non-trivial logarithmic vector field, where

dy = 3622 — 6y2% — 6t2xy?, dy = 36xy + 26223 — 4t?y3 — 26224

We omit the other nine cases. As described in Theorem 3.11, regular meromorphic differential
forms can be constructed directly from these data.

5 Brieskorn formula

In 1970, B. Brieskorn studied the monodromy of Milnor fibration and developed the theory
of Gauss—Manin connection [7]. He proved the regularity of the connection and proposed an alge-
braic framework for computing the monodromy via Gauss—Manin connection. He gave in par-
ticular a basic formula, now called Brieskorn formula, for computing Gauss—-Manin connection.

We show in this section a link between Brieskorn formula, torsion differential forms and log-
arithmic vector fields. We present an alternative method for computing non-trivial logarithmic
vector fields. The resulting algorithm can be used as a basic tool for studying Gauss—Manin
connections. We also present some examples for illustration.
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5.1 Brieskorn lattice and Gauss—Manin connection

We briefly recall some basics on Brieskorn lattice and Brieskorn formula. We refer to [6, 7, 37].
Let f(z) be a holomorphic function on X with an isolated singularity at the origin O € X,
where X is an open neighborhood of O in C". Let
Hy= Q¥ 5/ (Af NUXS+dO%5),  H = Q% o/df AdQY S,
Then, df A H) C Hj. A map D: df A Hy — H{/ is defined as follows:
D(Af Ng)=[dgl, QS

Let o = Y0 [ (—=1)h(x)dzy Adag A -+ Adzi—1 Adxigq A -+ Aday,. Then

df Ao = (Zh gsﬁ)”’

where wxy = dz; Adxy A -+ Adx,. Therefore in terms of the coordinate we have the following,
known as Brieskorn formula

D(df/\cp)—( ‘ g?)cux

Example 5.1. Let f(z,y) = 22 — 3> and S = {(z,y) € X |f(z,y) = 0} where X C C? is
an open neighborhood of the origin O. The Jacobi ideal J of f is (a;, y2) C Ox,pand M = {1,y}
is a monomial basis of the quotient Ox o/J. Let 7 denote the Tjurina number. Then, since f
is a weighted homogeneous polynomial, we have 7 = u = 2 (see Example 2.5).

Let v = %(3m8% + Qy%) be the Euler vector field. Then, v is logarithmic along S.

Let 8 = iy(wx). Then, 8 = ¢(3zdy — 2ydz). Since v(f) = f, we have df A 8 = fwx, where
wx = dz A dy. By Brieskorn formula, we have

D(fwx) = D(df N B) = *wx

Note that the formula above is equivalent d(f%) =0, with A = %.
Likewise, for y3, we have df A (y8) = f(z,y)ywx and

7
D(f(x,y)ywx) = D(Af A (yB)) = gywx,
which is equivalent to d(%) =0, with A =
Since Df = fD + 1 as operators, we hav
1 1

fD(wx) = WX fD(ywx) = Ghex.

Notice that 8, y8 are non-zero torsion differential forms in Qg and v, yv are non-trivial loga-
rithmic vector fields along S. Note also that yv(f) = yf. Notably, Brieskorn formula described
in terms of differential forms can be rewritten in terms of non-trivial logarithmic vector fields v
and yv which satisfy v(f) = f and yv(f) = yf respectively.

7
6
e

Let S = {x € X | f(z) = 0} be the hypersurface with an isolated singularity at the origin

O € X defined by f. Consider, for instance, a trivial vector field v/ = %6%1 — %3%2. Since

V'(f) = 0 and Bar (aazJ;) + 312( a%fl) = 0 hold, we have a trivial relation D((0-wx) =0 - wx.
It is easy to see in general that, from a trivial vector field Brieskorn formula only gives the trivial
relation.

The observation above leads the following.
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Proposition 5.2. Let S = {z € X | f(x) = 0} be a hypersurface with an isolated singularity at

the origin O € X, where X C C™. Let
0 0
v—al(x)a—xl—i- as(z )a s +- —I—an(:v)a—mn

be a germ of non-trivial logarithmic vector field along S. Let v(f) = b(x)f(x) Then,

Oa;
D
(F (@)l (Z axl)
holds, where wx = dxy ANdaxg A--- Adxy,.

Proof. Let = i,(wx). Since df A 8 = v(f)wx, we have df A 5 = (Z?Zl a;(x )g{ ) wx. Since
v(f) = b(x)f(z), Brieskorn formula implies the result. |

Notice that the action of Df on b(z)wx in the formula above is completely written in terms
of non-trivial logarithmic vector field v such that v(f) = b(z)f. To the best of our knowledge,
this simple observation has not been explicitly stated in literature on Gauss—-Manin connections.

Now we present an alternative method for computing the module of germs of non-trivial
logarithmic vector fields.

Step 1: Compute a monomial basis M of the quotient space

of of of
OX7O/<833178]327.”783771).

Step 2: Compute a standard basis Sb of the ideal quotient

of of  or\
(st

Step 3: Compute a basis B of the vector space by using Sb and M
of of | 01\ () /(01 o of
Oz, Oxy’ 01y ) Oxy Oxy’ T Oy )

Step 4: For each b(z) € B, compute a logarithmic vector field along S such that
v(f) = b(z)f(x).

The method above computes a basis of non-trivial logarithmic vector fields. Each step can
be effectively executable, as in [40], by utilizing algorithms described in [20, 21, 22, 41].

Note that, the number of non-trivial logarithmic vector fields in the output is equals to the
Tjurina number 7(f). See also [18].

Let

v=ai(x)=— + (12(:1/:)i + - —I—an(x)a—%

be a germ of non-trivial logarithmic vector field along S, such that v(f) = b(z)f(z). Then from
Proposition 5.2, we have

D(f(x)b( (Z g;;)

Therefore, the proposed method can be used as a basic procedure for computing a connection
matrix of Gauss—Manin connection.

One of the advantages of the proposed method lies in the fact that the resulting algorithm
also can handle parametric cases.
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5.2 Examples

Let us recall that z® + y” + txy® is the standard normal form of semi quasi-homogeneous F1o
singularity. The weight vector is (7,3) and the weighted degree of the quasi-homogeneous part
is equal to 21 and the weighted degree of the upper monomial tx1° is equal to 22. We examine
here, by contrast, the case where the weighted degree of an upper monomial is bigger than 22.

Example 5.3. Let f(z,y) = 2% + y” + txy®, where t is a parameter. Notice that the polyno-
mial f is not weighted homogeneous. The weighted degree of the upper monomial tzy® is equal
to 25, which is bigger than that of tzy®. Accordingly f is a quasi homogeneous function. The
Milnor number g is equal to 12.

Let H; denote the set of local cohomology classes in H [20’0} (Ox) that are killed by the Jacobi

ideal J = (%L, 5L):

) )
Hjy = {1/} € Hfj 4 (Ox) ’ a%d’ = a}’;w = o}.

Then, by using an algorithm given in [22, 41], a basis as a vector space of H; is computed as
1 1 1 1 1 1 1 1 1 1 1
Ty ) xyZ ) l,yS ) x2y ) xy4 ) x2y2 ) :ry5 ) x2y3 ) xyﬁ ) $23/4 ) $2y5 )

1 67171 2,1
[9322/6] — 7 chf} 7 [933?/] ’

where [ ] stands for Grothendieck symbol.

It is easy to see that every local cohomology classes in Hj is killed by f, that is f-¢ =0,
V¢ € Hj. Therefore, f is in the ideal (%, %) C Ox,0-

Therefore, by a classical result of K. Saito [31], f is in fact quasi-homogeneous. The Tjurina

number 7 is equal to the Milnor number 1 = 12. A monomial basis M of Ox o/ (%, %) is

M= {Ly, v w5’ ey, y" 2y’ %, wy’ ayt 2y}
Since a standard basis Sb of (%, %1]:) : (f) is {1}, a basis B of the vector space ((%, %) :
(f))/(%, %) is equal to M that consists of 7 = 12 elements.
By using an algorithm given in [21], we compute a logarithmic vector field which plays the

role of Euler vector field. The result of computation is the following:

d 9, da K
3(49 + 12¢3y4) 0x ~ 3(49 + 12t3y*) Oy’

where
dy = 49z + 8t%y° + 1263 zy4, dy = 21y — 4dtx + 4t3°.

The vector field v enjoys v(f) = f. Note also that for the case ¢t = 0, we have

1 0 0
= —|Te— +3y— ).
YT ar < Y or * y@y)
We emphasize here the fact that, the algorithm in [27] for computing logarithmic vector fields
can handle parametric cases. Since v(f) = f holds, the other non-trivial logarithmic vector fields
can be obtained from v. In fact, for 'y’ € M, we have ziylv(f) = 2y’ f.

Therefore, thanks to Brieskorn formula, Gauss—Manin connection can be determined explici-
tly by using these non-trivial logarithmic vector fields,
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Remark 5.4. Recall that, according to Grothendieck local duality theorem, the vector space H ;
can be regarded as a dual space to Ox o/J. Since these local cohomology classes given above
constitute a dual basis of the monomial basis M of the quotient space Ox o/J, the normal form
of a holomorphic function w.r.t. Ox o/J can be computed by using the basis of H; in an efficient
manner, without using division algorithms [41].

Therefore the use of local cohomology classes in reduction steps allows us to design an effective
procedure for computing the connection matrix of Gauss—Manin connection.

J. Scherk studied in [35] the following case.

ual to 11
) isM =

1) () s

Example 5.5. Let f(z,y) = 2° + 2%y? + 3°. Then, the Milnor number u(f) is
and the Tjurina number 7(f) is equal to 10. A monomial basis M of Ox o/ (

{1,36,:62,1‘3,x4,w5,xy, y,y2,y3,y4}. A standard basis Sb of the ideal quotient

{z,y}. A basis B of the vector space ((gi, g?];) : (f))/(%, %) is

is e
af 0
ot
(5%

Q’\Sig ‘%@

B = {‘T7 x27x37x47w57‘ry7 y? y27y37y4}'

Since SbN B = {z,y}, we first compute non-trivial logarithmic vector fields associated to z
and y.

(i) For b(x,y) = z, we have
IR R B ')
~ 5(4 —25zy) Ox  5(4 — 25xy) Oy’
where dy = 422 — 2523y — 593, dy = 62y — 2522y?
Since v(f) = xf, by a direct computation, we have for instance

7 3 x 25 of o0
D(f(:c,y)xwx):<10x— >1<6 y4>wx mod (8?85)

Since xiv(f) = o1 f, i = 1,2,3,4 and yv(f) = zyf hold, we can compute the action
of Df on z''wy and zywyx by using the vector field v above.

(13) For b(z,y) =y, we have

dy 0 da 0

V= 54— 250y) 9z | 5(4 = 252y) 9y’

where dy = 6zy — 252292, dy = 4y? — 25xy> — 523 and

7 af o

Since the vector field v above satisfies v(f) = yf, we also have y/v(f) = »/*1f, 7 =1,2,3.

We can use these relations to compute the action of Df on y/*lwy, j = 1,2,3. In this way,
we obtain 7 = 10 fundamental relations.

Since the Milnor number u is equal to 11, these 10 relations are not enough to compute
a connection matrix of the Gauss—Manin connection. We have to compute the saturation.

Now recall the classical result on integral closure due to J. Briangn and H. Skoda [38]. From

the Briangn-Skoda theorem, we see that the function f? is in the ideal J = (%, %)' In [35],
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J. Scherk computed the following relation explicitly and exploited it as the starting point for
computing D(f?wx) and D(fD(fwx)):

9
25(4 — 25xy) f2 = { (202 — 1252%y) f + da®y? — 5ay® — 259”4?‘/3}%
X

+ {(20y — 125xy2)f + 622y — 25x3y4}gf

Here we propose a slightly different approach. By using an algorithm given in [28], we can
compute the following integral dependence relation

25(4 — 25zy) f* = 10x<gf>f+10 <8f>f+d20<gf> +d11<8£> <a£>+doz<§£> :

where
doo = 22% — 2523y — 10y, dy = 1lzy — 50x2y?, doo = 2y — 252y — 102°.

Compare to the relation used by Scherk, the integral dependence relation given above repre-
sent much more precise relations between f2, f(gg:), f(ggj), (g]xc) , (8];) (85)’ (8f) . Thanks
to this property, the use of the integral dependence relation, or the integral equation leads
an effective method for computing D(wiX) and D(fD(fwx)).

Note that in [28], we consider integral dependence relations in the context of symbolic com-
putation and introduced a concept of generalized integral dependence relations. From this
point of view relations obtained from non-trivial logarithmic vector fields can be interpreted as
generalized integral dependence relations. These relations can also be computed by using the
algorithms described in [28].

Let f(z) be a holomorphic function defined on X C C"™. Assume that the degree of integral
equation, or the integral number of f over the Jacobi ideal in the local ring Ox o is equal to two.
Let

n
af
2+ ai(x)f(x) )+ Y ais o () =0
; Gacz 83:]
=1 j>i
be the integral equation of f. Then, from the Brieskorn formula, we have

D(f(2)%wx) = —D{ 3 ( )+ Y as(a) ) @) 5e m}

=1 j>t

9
_{ Z axz ( + ZazJ 81'J ) }WX
=1 j>t
which is equal to

Y 3am x) pw
_{Z 83:1 Z 81‘] R( )} X

i=1 7>

R(x):<,n gf? ) @)+ aai(e) axzax]()'

j>i
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If, there exist holomorphic functions ¢;(x), i = 1,2,...,n such that
R = 7 )
0) =L eite)g )

then, we have for instance the following relation that can be used as a starting point of the
computation of a saturation

n 0 i 0 ) a 1
D?(f(z)*wx) = — Z <3Zi () + “ ) Z 355](15);]52 W

=1

Computing Gauss—Manin connections is a quite difficult problem [11, 14, 35, 36, 45]. We ex-
pect that the approach presented in this paper provides a method to reduce difficulty to some
extent.

Acknowledgements

This work has been partly supported by JSPS Grant-in-Aid for Scientific Research (C)
(18K03320 and 18K03214).

References

[1] Aleksandrov A.G., A de Rahm complex of nonisolated singularities, Funct. Anal. Appl. 22 (1988), 131-133.

[2] Aleksandrov A.G., Nonisolated hypersurface singularities, in Theory of Singularities and its Applications,
Adv. Soviet Math., Vol. 1, Amer. Math. Soc., Providence, RI, 1990, 211-246.

[3] Aleksandrov A.G., Logarithmic differential forms, torsion differentials and residue, Complex Var. Theory
Appl. 50 (2005), 777-802.

[4] Aleksandrov A.G., Tsikh A.K., Théorie des résidus de Leray et formes de Barlet sur une intersection complete
singuliere, C. R. Acad. Sci. Paris Sér. I Math. 333 (2001), 973-978.

[5] Barlet D., Le faisceau w’ sur un espace analytique X de dimension pure, in Fonctions de plusieurs variables
complexes, III (Sém. Francois Norguet, 1975-1977), Lecture Notes in Math., Vol. 670, Springer, Berlin, 1978,
187-204.

[6] Brasselet J.P., Sebastiani M., Brieskorn and the monodromy, J. Singul. 18 (2018), 84-104.

[7] Brieskorn E., Die Monodromie der isolierten Singularitaten von Hyperflachen, Manuscripta Math. 2 (1970),
103-161.
[8] Brunella M., Some remarks on indices of holomorphic vector fields, Publ. Mat. 41 (1997), 527-544.

[9] Corréa M., da Silva Machado D., Residue formulas for logarithmic foliations and applications, Trans. Amer.
Math. Soc. 371 (2019), 6403-6420, arXiv:1611.01203.

[10] Corréa M., da Silva Machado D., GSV-index for holomorphic Pfaff systems, Doc. Math. 25 (2020), 1011—
1027, arXiv:1611.09376.

[11] Douai A., Trés bonnes bases du réseau de Brieskorn d’un polynéme modéré, Bull. Soc. Math. France 127
(1999), 255—287.

[12] Granger M., Schulze M., Normal crossing properties of complex hypersurfaces via logarithmic residues,
Compos. Math. 150 (2014), 1607-1622, arXiv:1109.2612.

[13] Greuel G.M., Der Gauss—-Manin-Zusammenhang isolierter Singularititen von vollstdndigen Durchschnitten,
Math. Ann. 214 (1975), 235-266.

[14] Guimaraes A.G., Polinémio de Bernstein—Sato de uma hipersuperficie com singularidade isolada, Ph.D. The-
sis, ICMC-USP, Sao Carlos, 2002.

[15] Kersken M., Der Residuenkomplex in der lokalen algebraischen und analytischen Geometrie, Math. Ann.
265 (1983), 423-455.

[16] Kersken M., Reguldre Differentialformen, Manuscripta Math. 46 (1984), 1-25.


https://doi.org/10.1007/BF01077604
https://doi.org/10.1070/sm1990v065n02abeh001164
https://doi.org/10.1080/02781070500128313
https://doi.org/10.1080/02781070500128313
https://doi.org/10.1016/S0764-4442(01)02166-8
https://doi.org/10.1007/BFb0064400
https://doi.org/10.5427/jsing.2018.18f
https://doi.org/10.1007/BF01155695
https://doi.org/10.5565/PUBLMAT_41297_17
https://doi.org/10.1090/tran/7584
https://doi.org/10.1090/tran/7584
https://arxiv.org/abs/1611.01203
https://doi.org/10.25537/dm.2020v25.1011-1027
https://arxiv.org/abs/1611.09376
https://doi.org/10.24033/bsmf.2348
https://doi.org/10.1112/S0010437X13007860
https://arxiv.org/abs/1109.2612
https://doi.org/10.1007/BF01352108
https://doi.org/10.1007/BF01455946
https://doi.org/10.1007/BF01185193

20 S. Tajima and K. Nabeshima

[17] Lé D.T., Calcul du nombre de cycles évanouissants d’une hypersurface complexe, Ann. Inst. Fourier (Greno-
ble) 23 (1973), 261-270.

[18] Michler R., Torsion of differentials of hypersurfaces with isolated singularities, J. Pure Appl. Algebra 104
(1995), 81-88.

[19] Nabeshima K., Tajima S., Testing zero-dimensionality of varieties at a point, Math. Comput.Sci., to appear,
arXiv:1903.12365.

[20] Nabeshima K., Tajima S., Computing Tjurina stratifications of u-constant deformations via parametric local
cohomology systems, Appl. Algebra Engrg. Comm. Comput. 27 (2016), 451-467.

[21] Nabeshima K., Tajima S., Solving extended ideal membership problems in rings of convergent power se-
ries via Grobner bases, in Mathematical Aspects of Computer and Information Sciences, Lecture Notes in
Comput. Sci., Vol. 9582, Springer, Cham, 2016, 252-267.

[22] Nabeshima K., Tajima S., Algebraic local cohomology with parameters and parametric standard bases for
zero-dimensional ideals, J. Symbolic Comput. 82 (2017), 91-122, arXiv:1508.06724.

[23] Nabeshima K., Tajima S., Computing pu*-sequences of hypersurface isolated singularities via parametric
local cohomology systems, Acta Math. Vietnam. 42 (2017), 279-288.

[24] Nabeshima K., Tajima S., Computation methods of logarithmic vector fields associated to semi-weighted
homogeneous isolated hypersurface singularities, Tsukuba J. Math. 42 (2018), 191-231.

[25] Nabeshima K., Tajima S., A new method for computing the limiting tangent space of an isolated hypersurface
singularity via algebraic local cohomology, in Singularities in Generic Geometry, Adv. Stud. Pure Math.,
Vol. 78, Math. Soc. Japan, Tokyo, 2018, 331-344.

[26] Nabeshima K., Tajima S., Alternative algorithms for computing generic p*-sequences and local Euler ob-
structions of isolated hypersurface singularities, J. Algebra Appl. 18 (2019), 1950156, 13 pages.

[27] Nabeshima K., Tajima S., Computing logarithmic vector fields and Bruce-Roberts Milnor numbers via local
cohomology classes, Rev. Roumaine Math. Pures Appl. 64 (2019), 523-540.

[28] Nabeshima K., Tajima S., Generalized integral dependence relations, in Mathematical Aspects of Computer
and Information Sciences, Lecture Notes in Computer Science, Vol. 11989, Springer, Cham, 2020, 48-63.

[29] Pol D., On the values of logarithmic residues along curves, Ann. Inst. Fourier (Grenoble) 68 (2018), 725-766,
arXiv:1410.2126.

[30] Pol D., Characterizations of freeness for equidimensional subspaces, J. Singul. 20 (2020), 1-30,
arXiv:1512.06778.

[31] Saito K., Quasihomogene isolierte Singularitidten von Hyperflichen, Invent. Math. 14 (1971), 123-142.

[32] Saito K., Calcul algébrique de la monodromie, Astérisque 7 (1973), 195-211.

[33] Saito K., On the uniformization of complements of discriminant loci, in Hyperfunctions and Linear Partial
Differential Equations, RIMS Koékytroku, Vol. 287, Res. Inst. Math. Sci. (RIMS), Kyoto, 1977, 117-137.

[34] Saito K., Theory of logarithmic differential forms and logarithmic vector fields, J. Fac. Sci. Univ. Tokyo
Sect. TA Math. 27 (1980), 265-291.

[35] Scherk J., On the Gauss-Manin connection of an isolated hypersurface singularity, Math. Ann. 238 (1978),
23-32.

[36] Scherk J., On the pole order and Hodge filtrations of isolated hypersurface singularities, Canad. Math. Bull.
36 (1993), 368-372.

[37] Schulze M., Algorithms for the Gauss—Manin connection, J. Symbolic Comput. 32 (2001), 549-564.

[38] Skoda H., Briangon J., Sur la cléture intégrale d’un idéal de germes de fonctions holomorphes en un point
de C", C. R. Acad. Sci. Paris Sér. A 278 (1974), 949-951.

[39] Tajima S., On polar varieties, logarithmic vector fields and holonomic D-modules, in Recent Development
of Micro-Local Analysis for the Theory of Asymptotic Analysis, RIMS Koékytiroku Bessatsu, Vol. 40, Res.
Inst. Math. Sci. (RIMS), Kyoto, 2013, 41-51.

[40] Tajima S., Nabeshima K., An algorithm for computing torsion differential forms associated to an isolated
hypersurface singularity, Math. Comput.Sci., to appear.

[41] Tajima S., Nakamura Y., Nabeshima K., Standard bases and algebraic local cohomology for zero dimensional

ideals, in Singularities — Niigata—Toyama 2007, Adv. Stud. Pure Math., Vol. 56, Math. Soc. Japan, Tokyo,
2009, 341-361.


https://doi.org/10.5802/aif.491
https://doi.org/10.5802/aif.491
https://doi.org/10.1016/0022-4049(94)00117-2
https://doi.org/10.1007/s11786-020-00484-y
https://arxiv.org/abs/1903.12365
https://doi.org/10.1007/s00200-016-0289-4
https://doi.org/10.1007/978-3-319-32859-1_22
https://doi.org/10.1016/j.jsc.2017.01.003
https://arxiv.org/abs/1508.06724
https://doi.org/10.1007/s40306-016-0198-4
https://doi.org/10.21099/tkbjm/1554170422
https://doi.org/10.2969/aspm/07810331
https://doi.org/10.1142/S0219498819501561
https://doi.org/10.1007/978-3-030-43120-4_6
https://doi.org/10.5802/aif.3176
https://arxiv.org/abs/1410.2126
https://doi.org/10.5427/jsing.2020.20a
https://arxiv.org/abs/1512.06778
https://doi.org/10.1007/BF01405360
https://doi.org/10.1007/BF01351450
https://doi.org/10.4153/CMB-1993-050-9
https://doi.org/10.1006/jsco.2001.0482
https://doi.org/10.1007/s11786-020-00486-w
https://doi.org/10.2969/aspm/05610341

Computing Regular Meromorphic Differential Forms via Saito’s Logarithmic Residues 21

42]

Tajima S., Shibuta T., Nabeshima K., Computing logarithmic vector fields along an ICIS germ via Matlis
duality, in Computer Algebra in Scientific Computing, Lecture Notes in Computer Science, Vol. 12291,
Springer, Cham, 2020, 543-562.

Teissier B., Cycles évanescents, sections planes et conditions de Whitney, Astérisque 7 (1973), 285-362.

Teissier B., Variétés polaires. I. Invariants polaires des singularités d’hypersurfaces, Invent. Math. 40 (1977),
267-292.

van Straten D., The spectrum of hypersurface singularities, arXiv:2002.00519.

Vetter U., AuBere Potenzen von Differentialmoduln reduzierter vollstandiger Durchschnitte, Manuscripta
Math. 2 (1970), 67-75.

Zariski O., Characterization of plane algebroid curves whose module of differentials has maximum torsion,
Proc. Nat. Acad. Sci. USA 56 (1966), 781-786.


https://doi.org/10.1007/978-3-030-60026-6_32
https://doi.org/10.1007/BF01425742
https://arxiv.org/abs/2002.00519
https://doi.org/10.1007/BF01168480
https://doi.org/10.1007/BF01168480
https://doi.org/10.1073/pnas.56.3.781

	1 Introduction
	2 Logarithmic differential forms and residues
	2.1 Logarithmic residues
	2.2 Barlet sheaf and torsion differential forms
	2.3 Vanishing theorem

	3 Description via logarithmic residues
	3.1 Logarithmic vector fields
	3.2 Polar method
	3.3 Local cohomology and duality
	3.4 Regular meromorphic differential forms

	4 Examples
	5 Brieskorn formula
	5.1 Brieskorn lattice and Gauss–Manin connection
	5.2 Examples

	References

