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1 Introduction

Take an element a of the first Weyl algebra A1. Rank of the centralizer C(a) of this element is
the greatest common divisor of the orders of elements in C(a) (orders as differential operators).

This note contains a proof of the following

Theorem 1.1. If the centralizer C(a) of an element a ∈ A1 \ K, where A1 is the first Weyl
algebra defined over a field K of characteristic zero, has rank 1, then C(a) can be embedded into
a polynomial ring K[z].

The classical works of Burchnall and Chaundy where the systematic research of commuting
differential operators was initiated are also devoted primarily to the case of rank 1 but the
coefficients of the operators considered by them are analytic functions. Burchnall and Chaundy
treated only monic differential operators which doesn’t restrict generality if the coefficients are
analytic functions. Situation is completely different if the coefficients are polynomial.

2 First Weyl algebra A1 and its skew field of fractions D1

Before we proceed with a proof, here is a short refresher on the first Weyl algebra.

Definition 2.1. The first Weyl algebra A1 is an algebra over a field K generated by two elements
(denoted here by x and ∂) which satisfy a relation ∂x− x∂ = 1.

When characteristic of K is zero A1 has a natural representation over the ring of polynomi-
alsK[x] by operators of multiplication by x and the derivative ∂ relative to x. Hence the elements
of the Weyl algebra can be thought of as differential operators with polynomial coefficients. They
can be written as ordinary polynomials

a =
∑

ci,jx
i∂j , ci,j ∈ K

with ordinary addition but a more complicated multiplication.

Algebra A1 is rather small, its Gelfand–Kirillov dimension is 2, hence it is a two-sided Ore
ring. Because of that it can be embedded in a skew field D1. A detailed discussion of skew fields
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related to Weyl algebras and their skew fields of fraction, as well as a definition of Gelfand–
Kirillov dimension can be found in a paper [11].

If characteristic of K is zero then the centralizer C(a) of any element a ∈ A1 \K is a com-
mutative subalgebra of A1 of the transcendence degree one. This theorem which was first proved
by Issai Schur in 1904 (see [37]) and by Shimshon Amitsur by purely algebraic methods (see [1])
has somewhat entertaining history which is described in [17].

Definition 2.2. The rank of a centralizer is the greatest common divisors of the orders of ele-
ments of C(a) considered as differential operators, i.e., of degrees of elements of C(a) relative to ∂.

3 Leading forms of elements of A1

Given ρ, σ ∈ Z it is possible to define a weight degree function w on A1 by

w(x) = ρ, w(∂) = σ, w
(
xi∂j

)
= ρi+ σj,

w(a) = maxw
(
xi∂j

)
| ci,j 6= 0 for a =

∑
ci,jx

i∂j .

Definition 3.1. The leading form ā of a is

ā =
∑

ci,jx
i∂j | w

(
xi∂j

)
= w(a).

One of the nice properties of A1 which was used by Dixmier in his seminal research of the first
Weyl algebra (see [8], Lemma 2.7) is the following property of the leading forms of elements of A1:

� if ρ + σ > 0 then [a, b] =
{
ā, b̄
}

for a, b ∈ A1, where [a, b] = ab − ba and
{
ā, b̄
}

=
ā∂ b̄x − āxb̄∂ is the standard Poisson bracket of ā, b̄ as commutative polynomials (ā∂ etc.
are the corresponding partial derivatives), provided {ā, b̄} 6= 0;

� if
{
ā, b̄
}

= 0 and w(a) 6= 0 then b̄ is proportional over K to a fractional power of ā.

The main ingredient of the considerations below is this property of the leading forms.

To make considerations clearer the reader may use the Newton polygons of elements of A1.
The Newton polygon of a ∈ A1 is the convex hull of those points (i, j) on the plane for
which ci,j 6= 0. The Newton polygons of elements of A1 are less sensible than the Newton
polygons of polynomials in two variables because they depend on the way one chooses to record
elements of A1 but only those edges which are independent of the choice will be used.

4 Proof of the theorem

Case 1: a = ∂n +
n∑

i=1

ai(x)∂n−i

If a ∈ K[∂] then C(a) = K[∂], a ring of polynomials in one variable. Otherwise consider the
leading form α of a which contains ∂n and is not a monomial. This form has a non-zero weight
and corresponding ρ, σ satisfy conditions of the Dixmier’s lemma (both ρ and σ are positive).

The leading forms of the elements from C(a) are Poisson commutative with α since these
elements commute with a. Therefore they are proportional over K to the fractional powers of α
(as a commutative polynomial). Because the rank of C(a) is 1 we should have α = c

(
∂+c1x

k
)n

.

A mapping φ of A1 to A1 defined by

x→ x, ∂ → ∂ − c1xk
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is an automorphism of A1. It is easy to see that the Newton polygon of φ(a) belongs to the
Newton polygon of a and has a smaller area.

Hence there exists an automorphism

ψ : x→ x, ∂ → ∂ + p(x)

such that ψ(a) ∈ K[∂]. Therefore C(a) = K
[
ψ−1(∂)

]
, a polynomial ring in one variable.

Case 2: a = xm∂n +
n∑

i=1

ai(x)∂n−i, m > 0

As above, the leading forms of elements of C(a) are proportional to the fractional powers of the
leading form α of a (as a commutative polynomial) as long as α is the leading form of a relative
to weights ρ, σ of x and ∂ provided ρ+ σ > 0 and the weight of α is not zero. Because of that
and since the rank is assumed to be one, n divides m.

The Newton polygon N (a) of a has the vertex (m,n). If we picture N (a) on a plane where
the x axis is horizontal and the ∂ axis is vertical then (m,n) belongs to two edges: left an right.
It is also possible that these edges coincide, or that N (a) consists just of the vertex (m,n).

If the left edge exists, i.e., is not just the vertex (m,n), then the ray with the vertex (m,n)
containing this edge cannot intersect the y axis above the origin. Indeed, assume that this is the
case and the point of intersection is (0, µ), where µ is a positive rational number, which must
be smaller than n.

If we take weights ρ = µ − n, σ = m then ρ + σ = µ − n + m > 0 since m ≥ n and we can
apply the Dixmier’s lemma to the corresponding leading form of a. But then

ā =
(
xd∂ + cxs

)n
, where s =

mn

µ− n
,

which is impossible since s < 0.
Therefore a has a non-trivial leading form of zero weight relative to the weights ρ = −1,

σ = d, where d = m
n . This form can be the monomial xm∂n, or a polynomial in xd∂.

Lemma 4.1. If a has the leading form of weight zero relative to the weights

ρ < 0 < σ, ρ+ σ ≥ 0

then C(a) is a subring of a ring of polynomials in one variable. (Here the rank of C(a) is not
essential.)

Proof. Any b ∈ C(a) has a non-zero leading form b̄ of weight zero (relative to ρ, σ). Indeed,
if ρ+ σ > 0 and w(b) 6= 0 then

{
ā, b̄
}
6= 0 by the Dixmier’s lemma.

If ρ + σ = 0 then ā ∈ K[x∂] and only elements of K[x∂] commute with it (see the remark
below).

Hence the restriction map b→ b̄ is an isomorphism. An algebra generated by all b̄ is a sub-
algebra of K[xσ∂−ρ] if we assume that ρ, σ ∈ Z and relatively prime. �

Remark 4.2. An equality

xi∂i = (t− i+ 1)(t− i+ 2) · · · (t− i+ i),

where t = x∂ is the Euler operator is easy to check since

xt = xx∂ = x(∂x− 1) = tx− x = (t− 1)x

and thus xp(t)∂ = p(t− 1)t (see similar computations in [4]).
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Case 3: a = a0(x)∂n +
n∑

i=1

ai∂
n−i

In this case a0 = αn, α ∈ K[x]. We may assume that α 6∈ K and that α(0) = 0 (applying
an automorphism x → x + c, ∂ → ∂ if necessary). We may also assume that the origin is
a vertex of N (a) since we can replace a by a + c, where c is any element of K. Then N (a)
has the horizontal edge with the right vertex (m,n) and the left vertex (m′, n) where m′ is
divisible by n. As above, the edge with vertices (m′, n) and (0, 0) corresponds to the leading
form of a of zero weight and Lemma 4.1 shows that C(a) is isomorphic to a subring of K[xd

′
∂],

where d′ = m′

n .
This finishes a proof of the theorem.
Since the proof of the theorem turned out to be too simple and too short we can complement

it by an attempt to describe the rank one centralizers more precisely. In the first case it is
already done, the centralizer is isomorphic to K[z], where z = ∂ + p(x) for some p(x) ∈ K[x].

It would be interesting to describe a for which C(a) is not isomorphic to a polynomial ring.
The second case described above provides us with examples of this phenomenon.

5 Centralizers in Case 2

Let us call (m,n) the leading vertex of N (a) and the edges containing this vertex the leading
edges. If the extension of the right leading edge intersects the x axis in the point (ν, 0), where
ν > m − n and we take ρ = n, σ = ν −m then ρ + σ = n + ν −m > 0 and by the Dixmier’s
lemma the leading form ā which corresponds to this weight is

(
xd∂+ cxk

)n
, where k ≥ d. Then,

similar to the Case 1 we will make an automorphism

x→ x, ∂ → ∂ − cxk−d,

which will collapse the right leading edge to the leading vertex.
After several steps like that we will obtain φ(a), where φ is an automorphism of A1, such

that the right leading edge of N (φ(a)) is parallel to the bisectrix of the first quadrant. For this
edge ρ+ σ = 0 and we cannot apply the Dixmier’s lemma to the corresponding leading form.

Since C(a) and C(φ(a)) are isomorphic we will assume that the right leading edge of N (a)
is parallel to the bisectrix.

If the left leading edge of N (a) is not parallel to the bisectrix we can consider the centralizer
of a as a subalgebra of K

[
∂, x, x−1

]
and proceed with automorphisms

x→ x, ∂ → ∂ − c1xk−d,

where k − d < −1 since the Dixmier’s lemma will be applicable to the corresponding leading
forms.

Hence there exists an automorphism

x→ x, ∂ → ∂ + q(x)

of K[∂, x, x−1] such that ψ(a) = xm−np(t), where t = x∂ (here q(x) is a Laurent polynomial
while p(t) is a polynomial).

We see that centralizers of elements with the leading vertex (m,n) are isomorphic to centra-
lizers of elements xm−np(t), p(t) ∈ K[t], degt(p(t)) = n. If a = xm−np(t) and m − n = 0 then
C(a) = K[t]. Assume now that m > n.

If b ∈ C(a) then we can present b as the sum of forms, homogeneous relative to the weight w
given by

w(x) = 1, w(∂) = −1: b =
∑
i

xibi(t).
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Since

[a, b] =
∑
i

[
a, xibi(t)

]
=
∑
i

xm−n+i
(
p(t− i)bi(t)− bi(t−m+ n)p(t)

)
= 0

all xibi(t) ∈ C(a). Hence C(a) is a linear span of elements, homogeneous relative to the weight w.

Lemma 5.1. If b ∈ C(a) is a w-homogeneous element then bν = caµ for some relatively prime
integers µ and ν, and c ∈ K.

Proof. The leading vertex of b is λ(m,n), where λ = µ
ν , µ, ν ∈ Z, (µ, ν) = 1 since we can apply

the Dixmier’s lemma to the leading forms of a and b relative to the weight w1(x) = 1, w1(∂) = 1.
Therefore bν and aµ have the same leading vertex µ(m,n) and degx(bν − caµ) < degx(bν) with
the appropriate choice of c ∈ K. If b1 = bν − caµ 6= 0 then b1 is a homogeneous element of C(a)
and its leading vertex must be proportional to the leading vertex of a. This is impossible since
w(b1) = µw(a) = µ(m−n): if ξ(m,n) is the leading vertex of b1 then w(b1) = ξ(m−n) = µ(m−n)
and ξ = µ. �

Since the rank of C(a) is 1 we can find two elements

b1 = xβ1q1(t), b2 = xβ2q2(t) such that degt(b2) = degt(b1) + 1.

Then b = b2b
−1
1 belongs to D1 (the skew field of fractions of A1), and commutes with a. Using

a relation xt = (t− 1)x we can write that

b = xβ2q2(t)
(
xβ1q1(t)

)−1
= xβ2q2(t)q1(t)

−1x−β1 = xβ2−β1r(t),

where r(t) ∈ K(t).
The leading vertex of b can be defined as the difference of the leading vertices of b2 and b1

and is proportional to the leading vertex of a. Since degt(r) = degt(b2)−degt(b1) = 1 this vertex
in coordinates x, t is (d− 1, 1). (Recall that d = m

n .)
If r is a polynomial then C(a) = K

[
xd−1r

]
; if d = 1 then C(a) = K[t]; if r is not a polynomial

and d > 1 then some powers of xd−1r are polynomials: say, a = cbn, c ∈ K because considerations
of Lemma 5.1 are applicable to w homogeneous elements of D1 commuting with a.

In the last case r(t) ∈ K(t) but r(t)r(t+ d− 1) · · · r(t+ (k − 1)(d− 1)) ∈ K[t] (observe that
tx = x(t+ 1)). We can reduce this to r(t)r(t+ 1) · · · r(t+ k − 1) ∈ K[t] by rescaling t and r.

By shifting t if necessary we may assume that one of the roots of r(t) is 0 and represent r
as a product r0r1, where all roots and poles of r0 are in Z and all roots and poles of r1 are not
in Z. It is clear that

r0(t)r0(t+ 1) · · · r0(t+ k − 1) ∈ K[t] and r1(t)r1(t+ 1) · · · r1(t+ k − 1) ∈ K[t].

Since deg(r) = 1 and deg(ri) ≥ 0 (because k deg(ri) ≥ 0), degree of one of the ri is equal to zero
and ri(t)ri(t+ 1) · · · ri(t+ k − 1) ∈ K for this ri. But then ri(t) = ri(t+ k) which is impossible
for a non-constant rational function. Since r0(0) = 0 and r 6= 0 we see that r1 is a constant and
all roots and poles of r are in Z.

We can assume now that 0 is the largest root of r and write

r = ts(t), where s(t) =

∏p
i=1(t+ λi)∏p
i=1(t+ µi)

∈ K(t) \K,

λi ∈ Z, µi ∈ Z, 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λp, µ1 ≤ µ2 ≤ · · · ≤ µp.

If µ1 < 0 then r(t)r(t+ 1) · · · r(t+ k − 1) would have a pole at t = −µ1. Hence µ1 > 0 and all
poles of s(t) are negative integers while all zeros of s(t) are non-positive integers.
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A fraction t+λi
t+µi

can be presented as fi(t)
fi(t+1) if λi < µi or as fi(t+1)

fi(t)
if λi > µi: indeed,

t+ d

t
=

(t+ 1)(t+ 2) · · · (t+ d)

t(t+ 1) · · · (t+ d− 1)
if d > 0,

take the reciprocal fraction if d < 0. Because of that s(t) can be written as

s1(t)s2(t+ 1)

s1(t+ 1)s2(t)
, si(t) ∈ K[t].

Write s1(t) = s3(t)s4(t), s2(t) = s4(t)s5(t), where s4(t) is the greatest common divisor of s1(t)
and s2(t). Then

s(t) =
s3(t)s4(t)s4(t+ 1)s5(t+ 1)

s3(t+ 1)s4(t+ 1)s4(t)s5(t)
=
s3(t)s5(t+ 1)

s3(t+ 1)s5(t)
.

All roots of s3(t) must be not positive, otherwise the largest positive root of s3(t) would be
a root of s(t) (which doesn’t have positive roots) since this root couldn’t be canceled by a root
of s5(t) or s3(t+ 1).

Now,

q(t) = r(t)r(t+ 1) · · · r(t+ k − 1) = t(t+ 1) · · · (t+ k − 1)
s3(t)s5(t+ k)

s3(t+ k)s5(t)

is a polynomial. If s3(t) 6∈ K and its smallest root is i, where i ≤ 0, then the denominator of q(t)
has a zero in i− k which is less then 1− k and cannot be canceled by a zero in the numerator
since s3(t+ k) and s5(t+ k) are relatively prime.

Hence

s3(t) ∈ K, s(t) =
s5(t+ 1)

s5(t)
, and q(t) = t(t+ 1) · · · (t+ k − 1)

s5(t+ k)

s5(t)
.

We can uniquely write

s5(t) =
∏
i∈I

φk,pi(t+ i), where φk,p(t) =

p∏
j=0

(t+ jk),

and all pi are maximal possible. Then

s5(t+ k)

s5(t)
=
∏
i∈I

t+ i+ pik + k

t+ i
and t+ i1 6= t+ i2 + pi2k + k

for all i1, i2 ∈ I because of the maximality of pi. Hence I ⊂ {1, . . . , k − 1} and each i is used at
most once.

As we have seen, all roots of s5(t) are of multiplicity 1 and since

(xr)N = xN
N−1∏
i=0

(t+ i)
s5(t+N)

s5(t)

the elements (xr)N ∈ K[x] for sufficiently large N . Therefore the rank of C(xr) is one. In fact,
we see that if s5 is any polynomial with only simple roots then the elements of A1 which commute
with xt s5(t+1)

s5(t)
form a centralizer of the rank one.

Observe that the rank is not stable under automorphisms: the rank of C(φ(xr)), where
φ(x) = x+ tM , φ(t) = t is M + 1.

Let us return now to C(a), where a = xm−np(t), degt(p(t)) = n. In this case

b = xd−1t
s5(t+ d− 1)

s5(t)
, bn = xm−nt(t+ d− 1) · · · (t+ (n− 1)(d− 1))

s5(t+ n(d− 1))

s5(t)

and all roots of s5(t) belong to {1− d, 2(1− d), . . . , (n− 1)(1− d)}.
Additionally we can replace t by t− c, c ∈ K.
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6 Cases 2 and 3

We understood the structure of C(a) when a = xm−np(t). Are there substantially different
examples of centralizers of rank one which are not isomorphic to a polynomial ring?

Consider the case of an order 2 element commuting with an order 3 element which was
completely researched in the work [3] of Burchnall and Chaundry for analytic coefficients.1

They showed (and for this case it is a straightforward computation) that monic commuting
operators of orders 2 and 3 can be reduced to

A = ∂2 − 2ψ(x), B = ∂3 − 3ψ(x)∂ − 3

2
ψ′(x),

where ψ′′′ = 12ψψ′, i.e., ψ′′ = 6ψ2 + c1 and (ψ′)2 = 4ψ3 + c1ψ + c2 (a Weierstrass function).
The only rational (even algebraic) solution in this case is (up to a substitution) ψ = x−2 when
c1 = c2 = 0. (If ψ is a rational function then the curve parameterized by ψ, ψ′ has genus zero,
so 4ψ3 + c1ψ + c2 = 4(ψ − λ)2(ψ − µ) and ψ is not an algebraic function of x if λ 6= µ.) The
corresponding operator

A = x−2(t− 2)(t+ 1) =

(
x−1

t2 − 1

t

)2

is homogeneous.

In our case we have

A = f(x)2∂2 + f1(x)∂ + f2(x)

since the leading form for w(x) = 0, w(∂) = 1 must be the square of a polynomial.

Here are computations for this case

A = (f∂)2 − ff ′∂ + f1(x)∂ + f2(x)

=

[
f∂ +

1

2

(
f1
f
− f ′

)]2
− 1

2

(
f1
f
− f ′

)′
f − 1

4

(
f1
f
− f ′

)2

+ f2.

Denote f∂ + 1
2

(f1
f − f

′) by D. Then

A = D2 − 2φ(x), where φ =
1

4

(
f1
f
− f ′

)′
f +

1

8

(
f1
f
− f ′

)2

− 1

2
f2 ∈ C(x).

Analogously to Burchnall and Chaundry, if there is an operator of order 3 commuting with A
then it can be written as

B = D3 − 3φD − 3

2
φ′f

(this follows from [3] but will be clear from the condition [A,B] = 0 as well). In order to find
an equation for φ we should compute [A,B]. Observe that

[D, g(x)] = g′f,
[
D2, g

]
= 2g′fD + (g′f)′f,[

D3, g
]

= 3g′fD2 + 3(g′f)′fD + ((g′f)′f)′f.

1To be on a more familiar ground in this section the field K is the filed C of complex numbers.
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Hence

[A,B] = −3

[
D2, φD +

1

2
φ′f

]
+ 2[D3 − 3φD, φ]

= −3

[
(2φ′fD + (φ′f)′f)D + (φ′f)′fD +

1

2
((φ′f)′f)′f

]
+ 2[3φ′fD2 + 3(φ′f)′fD + ((φ′f)′f)′f ]− 6φφ′f

= (−6φ′f+6φ′f)D2+(−6(φ′f)′f+6(φ′f)′f)D− 3

2
((φ′f)′f)′f+2((φ′f)′f)′f−6φφ′f

=
1

2
((φ′f)′f)′f − 6φφ′f.

Therefore

((φ′f)′f)′ = 12φφ′, (φ′f)′f = 6φ2 + c1,

(φ′f)′φ′f = 6φ2φ′ + c1φ
′, (φ′f)2 = 4φ3 + 2c1φ+ c2

and we have a parameterization of an elliptic curve. Since f, φ ∈ C(x) this curve must have
genus 0, i.e.,

4φ3 + 2c1φ+ c2 = 4(φ− λ)2(φ− µ) and (φ′f)2 = 4(φ− λ)2(φ− µ).

Take z = φ′f
2(φ−λ) . Then φ−µ = z2 and φ′f = 2z

(
z2−δ2

)
, where δ2 = λ−µ. Hence φ′ = 2zz′,

2zz′f = 2z
(
z2 − δ2

)
and z′f = z2 − δ2.

Assume that δ 6= 0. Since we can re-scale f and z as f → 2δf , z → δz, let us further assume
that δ2 = 1. Then

z′f = z2 − 1 and

∫
dz

z2 − 1
=

∫
dx

f
.

Recall that f ∈ C[x]. Since

2

∫
dz

z2 − 1
= ln

z − 1

z + 1

all zeros of f have multiplicity 1 and∫
dx

f
= ln

(∏
i

(x− νi)ci
)
,

where {νi} are the roots of f and ci = (f ′(νi))
−1. Therefore

z − 1

z + 1
= c

∏
i

(x− νi)2ci , where c 6= 0 and z =
1 + c

∏
i(x− νi)2ci

1− c
∏
i(x− νi)2ci

.

Now it is time to recall that

φ =
1

4

(
f1
f
− f ′

)′
f +

1

8

(
f1
f
− f ′

)2

− 1

2
f2,

where f, f1, f2 ∈ C[x] and thus f2φ = f2
(
z2 + µ

)
∈ C[x]. Because of that

zf = c1
1 + c

∏
i(x− νi)2ci

1− c
∏
i(x− νi)2ci

∏
i

(x− νi) ∈ C[x],

which is possible only if the rational function 1− c
∏
i(x− νi)2ci doesn’t have zeros.
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We can write
∏
i(x− νi)2ci as

∏
j(x−νj)

2cj∏
k(x−νk)2ck

, where 2cj , 2ck ∈ Z+. Then∏
k

(x− νk)2ck − c
∏
j

(x− νj)2cj ∈ C,

which is possible only if c = 1.
Since

z =

∏
k(x− νk)2ck +

∏
j(x− νj)2cj∏

k(x− νk)2ck −
∏
j(x− νj)2cj

we see that z ∈ C[x]. So to produce a 2, 3 commuting pair we should find a polynomial solution

to f = z2−1
z′ . If f , z are given then

A = (f∂ + ψ)2 − 2
(
z2 − µ

)
, B = (f∂ + ψ)3 − 3

(
z2 − µ

)
(f∂ + ψ)− 3zz′f

is a commuting pair for any ψ ∈ C[x] (indeed, fψ ∈ C[x] and ψ2 + fψ′ ∈ C[x], hence ψ ∈ C[x]).
Constant µ = −2

3 since we assumed that λ − µ = 1 and 2λ + µ = 0 because the equation is
(φ′f)2 = 4φ3 + 2c1φ+ c2.

Here is a series of examples:

z = 1 + xn, f =
x

n

(
2 + xn

)
, φ =

(
1 + xn

)2 − 2

3
= xn(2 + xn) +

1

3
,

which correspond to

A =

[
x

n
(2 + xn)∂ + ψ

]2
− 2

(
xn(2 + xn) +

1

3

)
.

Even the simplest one,

A = [x(2 + x)∂]2 − 2

[
x(2 + x) +

1

3

]
cannot be made homogeneous.

It seems that a complete classification of (2, 3) pairs is a daunting task. Our condition on z
is that z assumes values ±1 when z′ = 0. Let us call such a polynomial admissible. We can look
only at reduced monic polynomials z(x) = xn + a2x

n−2 + · · · because a substitution x→ ax+ b
preserves admissibility. Also λnz(λ−1x) preserves admissibility if deg(z) = n and λn = 1.

Examples above are just one value case. Say, an admissible cubic polynomial is x3−3 ·2−
2
3x.

If z = (x− ν)i(x+ ν)j + 1 then it is admissible when

νi+j = (−1)i−121−i−j
(i+ j)i+j

iijj
.

If a composition h(g(x)) is admissible then g′ = 0 and h′ = 0 should imply that h(g(x)) = ±1.
Hence h(x) should be an admissible function. As far as g is concerned g′ = 0 should imply that
the value of g belongs to the preimage of ±1 for h which is less restrictive if this preimage is large.
Because of that it is hard to imagine a reasonable classification of all admissible polynomials.

On the other hand

z2 ≡ 1 (mod z′) for z = xn + a2x
n−2 + · · ·+ an

leads to n−1 equations on n−1 variables with apparently finite number of solutions for each n.
Say, for n = 4 all admissible polynomials are

x4 ± 1; x4 + ax2 +
1

8
a2, a4 = 64; x4 − 3a2x2 + 2

√
2a3x+

21

8
a4, 337a8 = 64.
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Remark 6.1. The number of admissible polynomials of a given degree is finite. Indeed consider
first n − 2 homogeneous equations on the coefficients a2, . . . , an. They are satisfied if z2 ≡ c
(mod z′), where c ∈ C. If one of the components of the variety defined by these equations is
more than one-dimensional then (by affine dimension theorem) its intersection with the hyper-
surface given by the last homogeneous equation will be at least one-dimensional while condition
z2 ≡ 0 (mod z′) is satisfied only by z = xn (recall that we are considering only reduced monic
polynomials).

If δ = 0 then (φ′f)2 = 4(φ− λ)3 and (φ− λ)−1/2 = ±
∫

dx
f is a rational function.

Lemma 6.2. If f ∈C[x] and
∫

dx
f is a rational function then f is a monomial, i.e., f= a(x−b)d.2

Proof. If g′ = 1
f for g ∈ C(x) then g = h

f , h ∈ C[x] since the poles of g are the zeros of f and
if the multiplicity of a zero of f is d then the corresponding pole of g has the multiplicity d− 1.
An equality g′ = 1

f can be rewritten as h′f − hf ′ = f . If deg(h) > 1 then deg(h′f) > deg(f).

Hence the leading coefficients of polynomials h′f and hf ′ are the same. This is possible only
when deg(h) = deg(f). Therefore there exists a c ∈ C for which deg(h − cf) < deg(f). Since
(h − cf)′f − (h − cf)f ′ = f we can conclude that deg(h1) = 1 for h1 = h − cf . Changing
the variable we may assume that h1 = c1x and then c1(f − xf ′) = f which is possible only
if f = axd. �

Hence when δ = 0 we may assume that f = xd. If d = 0 then this is the first case and A is
a homogeneous operator up to an automorphism. If d > 0 then this is the second case and A is
a homogeneous operator up to an automorphism of C

[
x−1, x, ∂

]
.

These computations show that a description of the structure of centralizers of rank one in A1

is sufficiently challenging. Can the ring of regular functions of a genus zero curve with one place
at infinity be realised as a centralizer of an element of A1? Here is a more approachable relevant
question: is there an element of A ∈ D1 \ A1 for which p(A) ∈ A1 for a given a polynomial
p(x) ∈ C[x]?

7 Historical remarks

Apparently the first work which was devoted to the research of commuting differential opera-
tors is the work of Georg Wallenberg “Über die Vertauschbarkeit homogener linearer Differen-
tialausdrücke” (see [40]), in which he studied the classification problem of pairs of commuting
ordinary differential operators. He didn’t work with the Weyl algebra though. Differential
operators he was working with have coefficients which are “abstract” differentiable functions.

He mentioned that this problem did not seem to be studied before, even in the fundamental
work of Gaston Floquet Sur la théorie des équations différentielles linéaires (see [10]). He credited
Floquet with the case of two operators of order one.

Wallenberg started from this point. Then he gave a complete description of commuting
operators P and Q when ordP = ordQ = 2 and when ordP = 1, ordQ = n. So far everything
is easy. Then he studied the case of ordP = 2 and ordQ = 3, and noticed that a Weierstrass
elliptic function appears in the coefficients of these operators. He dealt with a few more examples
such as order 2 and 5, but did not obtain any general theorems.

Issai Schur read the paper of Wallenberg and published in 1904 paper “Über vertauschbare
lineare Differentialausdrücke”, which was already mentioned. He proved that centralizers of dif-
ferential operators with differentiable coefficients are commutative by introducing pseudo-diffe-
rential operators approximately fifty years before the notion appeared under this name.

2I was unable to find a published proof for this observation. This proof is a result of discussions with J. Bernstein
and A. Volberg.
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The first general results toward the classification of commuting pairs of differential operators
which were reported to the London Mathematical Society on June 8, 1922, were established
about 20 years later by Joseph Burchnall and Theodore Chaundy (see [3]).

Burchnall and Chaundy published two more papers [4] and [5] devoted to this topic. Curiously
enough they didn’t know about the Wallenberg’s paper and rediscovered his classification of 2, 3
commuting pairs and the fact that the ring of operators commuting with this pair of operators
is isomorphic to a ring of regular functions of an elliptic curve.

Arguably the most important fact obtained by them is that an algebraic curve can be related
to a pair of commuting operators.

After these works the question about commuting pairs of operators didn’t attract much
attention until the work of Jacques Dixmier [8] which appeared in 1968. He found elements
in A1 with centralizers which are also isomorphic to the ring of regular functions of an elliptic
curve. Unlike examples by Wallenberg and Burchnall and Chaundy, where it was a question
of rather straightforward computations, Dixmier’s example required ingenuity.

After another gap of approximately ten years the question on pairs of commuting operators
was raised in the context of solutions of some important partial differential equations. It seems
that Igor Krichever was the first to write on this topic in [14] which appeared in 1976. He also
rediscovered that an algebraic curve can be associated to a pair of commuting operators (and
attributes to A. Shabat first observation of this kind) and mentions that operators commuting
with an operator commute with each other.

Then Vladimir Drinfeld in [9] gave algebro-geometric interpretation of Krichever’s results.
This approach was further elucidated in a report of David Mumford [30] (D. Kajdan mentioned
at the end of the report is David Kazhdan).

Later Krichever wrote an important survey [15] devoted to application of algebraic geometry
to solutions of nonlinear PDE.

These works were primarily concerned with centralizers of rank one.

In [16] Krichever considered centralizers of an arbitrary rank and proved that for any cen-
tralizer A of a (non-constant) differential operator there exists a marked algebraic curve (γ, P )
such that A is isomorphic to a ring of meromorphic functions on γ with poles in P . He remarked
that γ is non-singular for a “general position” centralizer.

Motohico Mulase in [29] generalized the results of Krichever in [14], Drinfeld, and Mumford
to the case of arbitrary rank. His main theorem is similar to the theorem of Krichever cited
above. Apparently he didn’t know about [16].

It remains to mention the works devoted to the centralizers of elements of the first Weyl alge-
bra or its skew field of fractions. They primarily provide constructions of examples of centralizers
which correspond to the curves of high genus.

Here is a partial list: [6, 7, 12, 13, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 31, 32, 33, 34, 36,
44, 45].

Interested reader will also benefit by looking at lectures by Emma Previato [35] and at the
paper [43] by George Wilson as well as papers [38, 39, 42], and [2].

Lastly, it seems that the definition of rank of a centralizer as the greatest common divisor of
the orders of its elements first appeared in a work of Wilson [41]. A similar definition of rank
formulated slightly differently can be found in the work [9] of Drinfeld.
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(1903), 252–268.

[41] Wilson G., Algebraic curves and soliton equations, in Geometry Today (Rome, 1984), Progr. Math., Vol. 60,
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