Processing math: 100%

Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 17 (2021), 060, 58 pages      arXiv:2011.01012      https://doi.org/10.3842/SIGMA.2021.060

Linear Zn2-Manifolds and Linear Actions

Andrew James Bruce, Eduardo Ibarguëngoytia and Norbert Poncin
Department of Mathematics, University of Luxembourg, Maison du Nombre, 6, avenue de la Fonte, L-4364 Esch-sur-Alzette, Luxembourg

Received November 05, 2020, in final form May 30, 2021; Published online June 16, 2021

Abstract
We establish the representability of the general linear Zn2-group and use the restricted functor of points – whose test category is the category of Zn2-manifolds over a single topological point – to define its smooth linear actions on Zn2-graded vector spaces and linear Zn2-manifolds. Throughout the paper, particular emphasis is placed on the full faithfulness and target category of the restricted functor of points of a number of categories that we are using.

Key words: supergeometry; ringed spaces; functors of points; linear group actions.

pdf (787 kb)   tex (67 kb)  

References

  1. Aizawa N., Isaac P.S., Segar J., Z2×Z2 generalizations of N=1 superconformal Galilei algebras and their representations, J. Math. Phys. 60 (2019), 023507, 11 pages, arXiv:1808.09112.
  2. Aizawa N., Kuznetsova Z., Tanaka H., Toppan F., Z2×Z2-graded Lie symmetries of the Lévy-Leblond equations, Prog. Theor. Exp. Phys. (2016), 123A01, 26 pages, arXiv:1609.08224.
  3. Aizawa N., Segar J., Z2×Z2 generalizations of N=2 super Schrödinger algebras and their representations, J. Math. Phys. 58 (2017), 113501, 14 pages, arXiv:1705.10414.
  4. Albuquerque H., Majid S., Quasialgebra structure of the octonions, J. Algebra 220 (1999), 188-224, arXiv:math.QA/9802116.
  5. Albuquerque H., Majid S., Clifford algebras obtained by twisting of groupalgebras, J. Pure Appl. Algebra 171 (2002), 133-148, arXiv:math.QA/0011040.
  6. Balduzzi L., Carmeli C., Cassinelli G., Super vector bundles, J. Phys. Conf. Ser. 284 (2011), 012010, 10 pages.
  7. Bartocci C., Bruzzo U., Hernández Ruipérez D., The geometry ofsupermanifolds, Mathematics and its Applications, Vol. 71, Kluwer Academic Publishers Group, Dordrecht, 1991.
  8. Bernstein J., Leites D., Molotkov V., Shander V., Seminars of Supersymmetries. Vol. 1. Algebra and calculus, MCCME, Moscow, 2013.
  9. Bonavolontà G., Poncin N., On the category of Lie n-algebroids, J. Geom. Phys. 73 (2013), 70-90.
  10. Bruce A.J., On a Zn2-graded version of supersymmetry, Symmetry 11 (2019), 116, 20 pages, arXiv:1812.02943.
  11. Bruce A.J., Grabowski J., Riemannian structures on Zn2-manifolds, Mathematics 8 (2020), 1469, 23 pages, arXiv:2007.07666.
  12. Bruce A.J., Ibarguengoytia E., The graded differential geometry of mixed symmetry tensors, Arch. Math. (Brno) 55 (2019), 123-137, arXiv:1806.04048.
  13. Bruce A.J., Ibarguengoytia E., Poncin N., The Schwarz-Voronov embedding of Zn2-manifolds, SIGMA 16 (2020), 002, 47 pages, arXiv:1906.09834.
  14. Bruce A.J., Poncin N., Functional analytic issues in Zn2-geometry, Rev. Un. Mat. Argentina 60 (2019), 611-636, arXiv:1807.11739.
  15. Bruce A. J., Poncin N., Products in the category of Zn2-manifolds, J. Nonlinear Math. Phys. 26 (2019), 420-453, arXiv:1807.11740.
  16. Carmeli C., Caston L., Fioresi R., Mathematical foundations of supersymmetry, EMS Series of Lectures in Mathematics, European Mathematical Society (EMS), Zürich, 2011.
  17. Carmeli C., Fioresi R., Varadarajan V.S., Super bundles, Universe 4 (2018), 46, 12 pages, arXiv:1801.07181.
  18. Covolo T., Grabowski J., Poncin N., The category of Zn2-supermanifolds, J. Math. Phys. 57 (2016), 073503, 16 pages, arXiv:1602.03312.
  19. Covolo T., Grabowski J., Poncin N., Splitting theorem for Zn2-supermanifolds, J. Geom. Phys. 110 (2016), 393-401, arXiv:1602.03671.
  20. Covolo T., Kwok S., Poncin N., Differential calculus on Zn2-supermanifolds, arXiv:1608.00949.
  21. Covolo T., Kwok S., Poncin N., The Frobenius theorem for Zn2-supermanifolds, arXiv:1608.00961.
  22. Covolo T., Kwok S., Poncin N., Local forms of morphisms of colored supermanifolds, J. Geom. Phys. 168 (2021), 104302, 21 pages, arXiv:2010.10026.
  23. Covolo T., Ovsienko V., Poncin N., Higher trace and Berezinian of matrices over a Clifford algebra, J. Geom. Phys. 62 (2012), 2294-2319, arXiv:1109.5877.
  24. Deligne P., Morgan J.W., Notes on supersymmetry (following Joseph Bernstein), in Quantum Fields and Strings: a Course for Mathematicians, Vols. 1, 2 (Princeton, NJ, 1996/1997), Amer. Math. Soc., Providence, RI, 1999, 41-97.
  25. di Brino G., Pištalo D., Poncin N., Koszul-Tate resolutions as cofibrant replacements of algebras over differential operators, J. Homotopy Relat. Struct. 13 (2018), 793-846, arXiv:1801.03770.
  26. Di Brino G., Pištalo D., Poncin N., Homotopical algebraic context over differential operators, J. Homotopy Relat. Struct. 14 (2019), 293-347, arXiv:1706.05922.
  27. Drühl K., Haag R., Roberts J.E., On parastatistics, Comm. Math. Phys. 18 (1970), 204-226.
  28. Green H.S., A generalized method of field quantization, Phys. Rev. 90 (1953), 270-273.
  29. Greenberg O.W., Messiah A.M.L., Selection rules for parafields and the absence of para particles in nature, Phys. Rev. 138 (1965), B1155-B1167.
  30. Hamilton R.S., The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc. (N.S.) 7 (1982), 65-222.
  31. Hartshorne R., Algebraic geometry, Graduate Texts in Mathematics, Vol. 52, Springer-Verlag, New York - Heidelberg, 1977.
  32. Kostant B., Graded manifolds, graded Lie theory, and prequantization, in Differential Geometrical Methods in Mathematical Physics (Proc. Sympos., Univ. Bonn, Bonn, 1975), Lecture Notes in Math., Vol. 570, Springer, Berlin - Heidelberg, 1977, 177-306.
  33. Leites D.A., Introduction to the theory of supermanifolds, Russian Math. Surveys 35 (1980), no. 1, 1-64.
  34. Leites D.A., Serganova V., Models of representations of some classical supergroups, Math. Scand. 68 (1991), 131-147.
  35. Mac Lane S., Categories for the working mathematician, 2nd ed., Graduate Texts in Mathematics, Vol. 5, Springer-Verlag, New York, 1998.
  36. Manin Yu.I., Gauge field theory and complex geometry, Grundlehren der Mathematischen Wissenschaften, Vol. 289, Springer-Verlag, Berlin, 1997.
  37. Poncin N., Towards integration on colored supermanifolds, in Geometry of Jets and Fields, Banach Center Publ., Vol. 110, Polish Acad. Sci. Inst. Math., Warsaw, 2016, 201-217.
  38. Sánchez-Valenzuela O.A., Linear supergroup actions. I. On the defining properties, Trans. Amer. Math. Soc. 307 (1988), 569-595.
  39. Schwarz A.S., Supergravity, complex geometry and G-structures, Comm. Math. Phys. 87 (1982), 37-63.
  40. Schwarz A.S., On the definition of superspace, Theoret. and Math. Phys. 60 (1984), 657-660.
  41. Tennison B.R., Sheaf theory, London Mathematical Society Lecture Note Series, Vol. 20, Cambridge University Press, Cambridge, England - New York - Melbourne, 1975.
  42. Toën B., Vezzosi G., Homotopical algebraic geometry. I. Topos theory, Adv. Math. 193 (2005), 257-372, arXiv:math.AG/0207028.
  43. Toën B., Vezzosi G., Homotopical algebraic geometry. II. Geometric stacks and applications, Mem. Amer. Math. Soc. 193 (2008), x+224 pages, arXiv:math.AG/0404373.
  44. Tolstoy V.N., Super-de Sitter and alternative super-Poincaré symmetries, in Lie Theory and its Applications in Physics, Springer Proc. Math. Stat., Vol. 111, Springer, Tokyo, 2014, 357-367, arXiv:1610.01566.
  45. Varadarajan V.S., Supersymmetry for mathematicians: an introduction, Courant Lecture Notes in Mathematics, Vol. 11, Amer. Math. Soc., Providence, RI, 2004.
  46. Voronov A.A., Maps of supermanifolds, Theoret. and Math. Phys. 60 (1984), 660-664.
  47. Waelbroeck L., Topological vector spaces and algebras, Lecture Notes in Math., Vol. 230, Springer-Verlag, Berlin - New York, 1971.
  48. Yang W., Jing S., A new kind of graded Lie algebra and parastatistical supersymmetry, Sci. China Ser. A 44 (2001), 1167-1173, arXiv:math-ph/0212004.

Previous article  Next article  Contents of Volume 17 (2021)