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Abstract. For cubic pencils we define the notion of an involution curve. This is a curve
which intersects each curve of the pencil in exactly one non-base point of the pencil. Invo-
lution curves can be used to construct integrable maps of the plane which leave invariant
a cubic pencil.
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1 Introduction

One clear definition of an integrable map is the notion of Liouville integrability, which requires
the existence of sufficiently many invariant functions in involution with each other [6, 20]. One
way to obtain such maps is by reduction from integrable lattice equations [12, 19]. For pla-
nar maps, integrability is equivalent to the preservation of a pencil of curves and measure-
preservation [16]. A rather large (18-parameter) family of integrable maps of the plane was
obtained by Quispel, Roberts and Thompson (QRT) [14, 15]. These maps preserve a pencil
of biquadratic curves, and have been studied in the context of algebraic geometry of elliptic
surfaces in [5, 7, 17]. It follows from [8] that birational maps preserving a pencil of curves are
necessarily the composition of two involutions. The classification of birational involutions, of P2,
is a classical problem [1, 2] and has lead to the following three types: De Jonquieres involutions,
Geiser involutions, and Bertini involutions.

Consider a linear pencil of cubic curves in the (u, v)-plane of the form

P (C) := F (u, v)− CG(u, v) = 0, C ∈ P1(C). (1.1)

Such a pencil has (at most) 32 base points, which are the solutions of F = G = 0 (Bezout’s
theorem). A straight line through a (non-singular) base point p will intersect each curve in the
pencil in 2 other points. Thus one can define a map which interchanges these 2 points. Such
a map, denoted ιp, is coined a Manin [9] involution in [5, Section 4.2] and a p-switch in [18].
The composition of two Manin involutions τp,q = ιq ◦ ιp is an integrable map of the plane, as it
leaves invariant a pencil of curves and is measure preserving [18, Proposition 8].

Similarly, one can construct involutions that leave invariant pencils of curves of degree N = 2,
or N = 4 [18]. For N = 2, the point p, which is called the involution point of ιp, can be chosen
to be any non-base point. For N = 4, one requires the pencil to have two base points which
are double points of both F = 0 and G = 0, and these points are taken as involution points.
In [18] it was shown that this construction does not generalise to maps which preserve a pencil
of degree > 4 and that all generalised Manin transformations obtained in this way are equivalent
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to a QRT map [14, 15] through a projective collineation. Recall that the QRT map preserves
a special N = 4 pencil, namely a biquadratic pencil. In P2 such a pencil has 2 double base
points, at (1 : 0 : 0) and (0 : 1 : 0). The corresponding involutions are the horizontal switch ι1,
and the vertical switch ι2, and the QRT map is the composition τ = ι2 ◦ ι1 [5, p. viii].

In [13] a new type of Manin involutions was introduced. Given a pencil P , another pencil V is
constructed such that each curve in P intersects each curve in V in two non-base points, which
are interchanged by the involution. This construction includes ιp as a special case, where V
has degree D = 1 and base point p, cf. Figure 1. In general, the pencil V can have a degree
D > 1. For example, consider a pencil P of degree N = 4 with 2 double base points and 8
simple ones. Taking 4 base points of P , including the 2 double base points, one constructs the
unique pencil V of degree D = 2 which has those points as simple base points. Then each curve
of V intersects each curve of P in precisely two other points. Thus an involution can be defined
that switches these 2 points.

In this paper, we describe another type of Manin involutions. Recently, a planar map γ
[3, equation (1.1)] was obtained by taking an open boundary reduction from the Q1(δ = 0)
quad-equation, and it was shown to be a composition of two involutions, γ = ιq ◦ ιp, where one
involution point, e.g. p, is a simple base point of a singular cubic pencil, and the other involution
point, q = q(C), depends on the particular curve in the pencil. Such involution points can be
obtained as the unique non-base point intersection of a so-called involution curve with the
pencil. The Bertini involution can be understood as a Manin involution with an involution
curve of degree 4 with a triple base point at one of the base points of the invariant cubic pencil,
cf. [11]. The birational equivalence of other Manin involutions with involution curves to De
Jonquieres involutions or Geiser involutions will not be studied here. As the reader may have
noticed, the term ‘Manin involution’ is used to denote a variety of involutions, including ones
that leave invariant quadratic pencils, and degenerate pencils of singular cubics, which could
be called degenerate Manin involutions. We also note that a p-switch in one set of coordinates
may not be a p-switch after a birational transformation, i.e., when the transformation is not
a collineation. As usual, a non-trivial composition of two Manin involutions is called a Manin
transformation. If one of the involutions, or both, is a Manin involution with an involution
curve, the composition is called a Manin transformation with an involution curve. We describe
several geometric settings in which involution curves lead to classes of maps that leave invariant
pencils of cubic curves and are measure-preserving. We show that for singular cubic pencils there
are two classes of involution curves of degree M , for any M . For non-singular cubic pencils the
number of classes of involution curves seems to grow linearly with the degree.

2 A map obtained by open reduction of the Q1(δ = 0) equation

The map γ found in [3] is given by

γ(u, v) =
(u+ v)(au+ b(au+ v + 1)v)2

b(u+ (ub+ v + 1)v)Z

(
u(au+ (abu+ bv + a)v)

a(u+ (au+ v + 1)v)
, v

)
,

where Z =
(
a2 + b

)
uv2 + a

(
bu2 + v2

)
v + a(u+ v)2. It leaves invariant a singular pencil of cubic

curves (of genus 0), of the form (1.1) with

F (u, v) = v2(1 + u+ v) + au

(
u

b
+ uv + v2

)
, G(u, v) = uv. (2.1)

This pencil has 5 base points in homogeneous coordinates

b0 = (0 : 0 : 1), b1 = (0 : −1 : 1), b2 = (1 : 0 : 0),
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b3 = (1 : −1 : 0), b4 = (1 : −a : 0),

of which the first one is a double point. The simple base points yield the following b-switches

ιb1(u, v) =

(
u
(
abu2v + abuv2 + abuv + buv2 + bv3 + au2 + buv + 2bv2 + vb

)
bv(v + 1)(v + u+ 1)(au+ v + 1)

,

au2

(au+ v + 1)(v + u+ 1)vb

)
,

ιb2(u, v) =

(
bv2(v + 1)

ua(vb+ 1)
, v

)
,

ιb3(u, v) =

(
vb(v + u+ 1)(u+ v)

buv + bv2 + au+ vb
,

au(u+ v)

buv + bv2 + au+ vb

)
,

ιb4(u, v) =

(
vb(au+ v + 1)(au+ v)

a
(
abuv + bv2 + vb+ u

) , u(au+ v)

abuv + bv2 + vb+ u

)
.

One can check that each of the compositions γ ◦ ιbi and ιbi ◦ γ is a involution. In fact, they are
p-switches, where p depends not only on a, b but also on C, the parameter of the pencil P (C).
We define γ ◦ ιbi = ιhi

and ιbj ◦ γ = ιkj .
The involution point of a p-switch δ, which leaves invariant the same pencil as γ, can be

calculated as follows. Starting with x1 = (u, v), determine

x2 = δ(x1), x3 = γ(x1), x4 = δ(x3).

The involution point p of δ = ιp is obtained as the intersection of the lines x1x2 and x3x4.
Following this procedure, for each map ιhi

and ιkj , the variables u, v can be eliminated, and
explicit expressions for the involution points hi and kj in terms of a, b, C can be obtained, cf. [3],
where h1 and h2 were provided, and Appendix A. The points hi, kj are in the intersection of the
pencil P (C) with curves that we denote by Hi, Kj . These curves can be obtained as follows.
For an involution point p(a, b, C) eliminate (using a Groebner basis) the variable C from the set
of equations {u = p1, v = p2}. We obtain

H1 := uvab+ v2b+ au+ av = 0,

H2 := auv + v2 + u+ v = 0,

H3 := vbu2a+ au2 +
(
a2 + b

)
uv2 + 2auv + av3 + av2 = 0,

H4 := uvb+ v2 + u+ v = 0,

K1 := a2bu2v + a2u2 +
(
ba2 + ab

)
uv2 + 2uvab+ bv3a+ b2v2 = 0,

K2 := u2vab2 + a2u2 +
(
ab2 + b2

)
uv2 + 2uvab+ b2v3 + b2v2 = 0,

K3 := au+ vb = 0,

K4 := a2bu2v + a2u2 +
(
ba2 + b2

)
uv2 + 2uvab+ b2v3 + b2v2 = 0.

Each of the above curves intersects the pencil P (C), with F , G given by (2.1) in some (or all)
of the base points of the pencil. The type of intersection at the base points of the pencil is given
in Table 1. Note that all curves in P (C) are tangent to each other at base point b2, i.e., there are
two infinitely near base points, b2 and b′2. The intersection number of the quadratic curve H1

with the pencil P (C) equals 2 · 3 = 6. On the other hand, the sum of the intersection numbers
at the base points is 2+0+(1+1)+0+1 = 5. This means that there is only one non-base point
in the intersection of the two curves. Similarly, the intersection number of the cubic curve K2

with the pencil P (C) equals 3 · 3 = 9, and the sum of the intersection numbers at the base
points is 4 + 1 + (1 + 0) + 1 + 1 = 8. In fact, one can check that for all curves Hi, Ki, apart
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Table 1. Degrees of the curves defined by involution points, and their multiplicities.

Curve Degree b0 b1 b2 b′2 b3 b4

H1 2 1 0 1 1 0 1

H2 2 1 1 1 0 0 1

H3 3 2 1 1 1 0 1

H4 2 1 1 1 1 0 0

K1 3 2 0 1 1 1 1

K2 3 2 1 1 0 1 1

K3 1 1 0 0 0 0 0

K4 3 2 1 1 1 1 0

from the intersection at the base points, there is only one non-base point simple intersection
between the curve and the pencil. This makes it possible to define, for each curve in the pencil,
the involution point to be this unique non-base point intersection.

A further simplification of the map γ is possible. The pencil P (C), with (2.1), is a special
subset (i.e., those curves which contain b′1) of the net of cubic curves with a zero of the second
order at b0 and zeros of the first order at b1, b2, b3, and b4,

N =
{
c1F (u, v) + c2G(u, v) + c3H(u, v) = 0 | (c1 : c2 : c3) ∈ P2(C)

}
,

with H(u, v) = u2. By change of variables x = F (u, v)/G(u, v), y = H(u, v)/G(u, v) the map γ
is transformed into

γ(x, y) =

(
x,− b((2a+ bx)y + a− b)

a((a− b)y − b(x+ 2))

)
, (2.2)

which is the case of a birational map preserving the structure of a ruled surface in the classifica-
tion by [4]. In terms of x, y, each involution ιbi , ιhi

and ιki has the same form as (2.2), leaving x
invariant and the image of y being fractional linear in y, and we still have

γ = ιhi
◦ ιbi = ιbi ◦ ιki , i = 1, . . . , 4. (2.3)

The algebraically simplest representation is γ = ιh4 ◦ ιb4 with

ιh4(x, y) =

(
x,
b(bx− ay + a)

a(ay + b)

)
, ιb4(x, y) =

(
x,
bx− ay + b

a(y + 1)

)
.

We note that the decompositions (2.3) of γ(x, y) would be hard to find if you were only
given (2.2), as all base points have disappeared. Moreover, in terms of x, y the involutions are
no longer p-switches; each involution leaves invariant, besides x, one or more multi-parameter
families of curves quadratic in y.

3 Involutions curves for cubic pencils

In the sequel, we refer to a curve which consists of involution points as an involution curve.

Definition 3.1. A curve Q is an involution curve for a cubic pencil P (C) if the intersection
numbers of Q with any curve of P (C) at the base points of P (C) add up to 3 deg(Q)− 1.



A New Class of Integrable Maps of the Plane 5

Let Q be an involution curve for a cubic pencil P (C) whose set of base points is denoted B.
An involution ιQ can be constructed as follows. For any given p 6∈ B let Cp be the value of C
such that p is on the curve R = P (Cp). We take q to be the unique non-base point intersection
of Q and R, and define the restriction of ιQ to R to be simply given by the q-switch ιq. The
following four cases belong to the standard definition of a q-switch. If p = q is a flex point of R
then ιQ(p) = p. If p = q is a not a flex point of R then ιQ(p) is the unique intersection r 6= p of
the tangent line to R at p and R. If p 6= q and the line pq is tangent to R at p then ιQ(p) = p.
Finally, if p 6= q intersects R in a third point r, then ιQ(p) = r.

In Figure 1 we illustrate the action of a q-switch on a cubic curve R by connecting points
p ∈ R to their images ιq(p) using straight lines through the involution point q ∈ R.

Figure 1. The action of a q-switch on a cubic curve. Three of the straight blue lines are tangent to the

red curve R, and for two points p we have ιq(p) = p. The five blue lines are members of a pencil of degree

M = 1, whose base point is the blue dot.

3.1 Involution curves for singular cubic pencils

The pencil in the previous section, apart from being singular, has a special extra feature, namely
that all curves are tangent in one point. For such pencils the following is clear.

Proposition 3.2. Let P (C) be a pencil of cubic curves, which has 1 double base point b0, two
infinitely near base points b1, b′1 (so each curve in P (C) has the same tangent line at b1, say T ),
and simple base points b2, b3, b4. Let Q be a curve such that either

� deg(Q) = 2, b0 is on Q, b1, b′1 are on Q, and Q contains one other point bi with i ∈ {2, 3, 4},
or

� deg(Q) = 3, b0 is a double point on Q, b1, b′1 are on Q, and Q contains two distinct
points bi with i ∈ {2, 3, 4}.

Then Q is an involution curve.

Example 3.3. Consider the pencil P (C) with

F = 3u3 + 6u2v + 9uv2 + 12v3 − 23u2 − 31uv + 24v2,

G = (2v + u)
(
35u2 − 28uv + 26v2 − 85u+ 52v

)
. (3.1)

It has a double base point at b1 = (0, 0), simple base points at b1 = (2,−1), b2 = (1, 1),
b3 = (0,−2), and b4 = (331971/549181, 394350/549181). All curves have tangent line T =
20u+ 43v + 3 = 0 at b1. The pencil

Q(D) := 38u2 + 41uv − 88v2 + 9u−D(u+ 2v)(2u+ v − 3) = 0

is a pencil of involution curves for P (C), which have simple base points at b0, b1, b2, b3, and
tangent line T at b1. An involution is defined for any curve in Q(D), the involution point being

q(C,D) =
(
6(5D + 88)(13C − 3)K,−3(65DC − 37D − 3545C + 901)K

)
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with K =
(
D2 + 222DC − 55D + 156C − 36

)(
195CD3 + 43290C2D2 − 23D3 − 16290CD2 +

4572C2D+2256D2+246267DC+13055022C2−64059D−7024452C+939542
)−1

. The expression
for ιQ(D)(u, v) is too large to be included here. It is a rational function, of degree 5 in u, v,
degree 6 in D, and degree 4 in C. By substituting C = F/G, one obtains a rational function
of degree 9 in u, v, which takes the form (P1P2/P4, P1P3/P4) with P1, P2, P3, P4 polynomials
in u, v of degree 5, 4, 4, 9 respectively. We have illustrated the action of ιb3 ◦ ιQ(−25/2) on two
different curves in P (C) in Figure 2.

−2 −1 0 1 2 3 u

v

1

−1

−2

−2 −1 0 1 2 3 u

v

1

−1

−2

Figure 2. The straight blue lines represent the action of ιb3 ◦ ιQ(−25/2) on the point (3, 0) ∈
P (−7/10) (red curve, left) and on (−1, 0) ∈ P (13/60) (red curve, right). The involution curve

Q(−25/2) is shown in aquamarine. The non-base point intersection of Q(−25/2) with P (−7/10)

is (−2195006/9401267,−15699575/9401267), and the non-base point intersection of Q(−25/2) with

P (13/60) is (−13617/489844,−1221525/979688).

In Figure 2 and the subsequent figures, the involution points are indicated by blue dots, and
the base points of the pencil by grey dots. The invariant curves are displayed in red, and the
involution curves have colors aquamarine or turquoise. The blue straight lines represent the
actions of the two involutions, acting on points represented by purple dots.

Composing two Manin involutions with distinct involution curves also gives an integrable
map of the plane. The action of ιQ(−25/2) ◦ ιQ(25/2) on the same curves in P (C) is illustrated
in Figure 3.

−4 −3 −2 −1 0 1 2 3 4 u

v
2

1

−1

−2

−4 −3 −2 −1 0 1 2 3 4 u

v
2

1

−1

−2

Figure 3. The action of ιQ(−25/2) ◦ ιQ(25/2) on the point (3, 0) ∈ P (−7/10) (left) and on

(−1, 0) ∈ P (13/60) (right). The involution curve Q(−25/2) is shown in aquamarine, and the invo-

lution curve Q(25/2) is turquoise. The non-base point intersection of Q(25/2) with P (−7/10) is

(1040561214/525932177, 671760675/525932177), and the non-base point intersection of Q(25/2) with

P (13/60) is (−136052/672789, 378550/672789).

The previous section, cf. Table 1, also showed that the special extra feature is not necessary.
For pencils with or without infinitely near base points we have the following possibilities.
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Proposition 3.4. Let P (C) be a pencil of cubic curves, which has 1 double base point b0 and
simple base points b1, b2, b3, b4, b5, which may or may not be infinitely near. Let Q be a curve
such that either

� deg(Q) = 1, b0 is a simple point on Q, or

� deg(Q) = 1, 2 simple base point of P (C) are simple points on Q, or

� deg(Q) = 2, 5 simple base points of P (C) are simple points on Q, or

� deg(Q) = 2, 4 base points of P (C) including b0 are simple points on Q, or

� deg(Q) = 3, b0 is a double point on Q, 4 other base points of P (C) are simple points on Q.

Then Q is an involution curve.

In fact, Proposition 3.2 arises as special cases of the last two items in Proposition 3.4.

Example 3.5. The pencil P (C) with (3.1) admits the involution curves:

L := 3x− y − 2 = 0, Z := 5509x3 + 3032y3 − 12719x2 − 1886xy + 6064y2.

The line L intersects P (C) in the base points b2, b3, and the point
(
2 370C−121
1295C−426 ,−2 185C−63

1295C−426
)
.

The singular cubic Z is one curve in a net of curves which admits b0 as double point and b1, b2,
b3, b4 as simple points. The remaining intersection point for Z is(

4
3016440C3 − 12063555C2 + 13156506C − 2480504

6032880C3 − 26341812C2 + 31299114C − 2389403
,

− 7
861840C3 − 5355090C2 + 8301321C − 1677988

6032880C3 − 26341812C2 + 31299114C − 2389403

)
.

The expressions ιZ(u, v) and ιL(u, v) are rational functions of degree 5 in u, v, and of degree 6,
resp. 2 in C. After substitution of C = F/G the expressions are of degree 13 resp. 5 in u, v.
The action of the composition of ιZ and ιL on selected curves of P (C) is illustrated in Figure 4.

−2 −1 0 1 2 3u

v

1

−1

−2

−2 −1 0 1 2 3u

v

1

−1

−2

Figure 4. The action of ιZ ◦ ιL on the point (3, 0) ∈ P (−7/10) (left) and on (−1, 0) ∈ P (13/60)

(right). The involution curve Z is shown in aquamarine, and the involution curve L is turquoise. The

non-base point intersection of L with P (−7/10) is (304/533,−154/533), the non-base point intersection

of Z with P (−7/10) is (1863583907/981888713,−1821490636/981888713), the non-base point intersec-

tion of L with P (13/60) is (196/349,−110/349), the non-base point intersection of Z with P (13/60) is

(−2223/10798, 5733/21596).

Other classes of involution curves, of degree higher than 3 exist, see Appendix B.
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3.2 Involution curves for non-singular cubic pencils

It is possible to construct involution curves for non-singular cubic pencils.

Proposition 3.6. Let P (C) be a non-singular pencil of cubic curves, with base points
b0, b1, . . . , b8. Let Q be a curve of degree 3 such that b0 is a double point on Q and six base
points of P (C) are simple points on Q. Then Q is an involution curve.

Example 3.7. We construct a pencil of cubic curves with finite base points

b0 = (0, 0), b1 = (2,−1), b2 = (1, 4), b3 = (0,−2),

b4 = (5, 3), b5 = (3, 1), b6 = (−2, 3), b7 = (−3, 1). (3.2)

This fixes a pencil P (C) with

F = 135u2v − 1276uv2 + 1436v3 + 1173u2 + 2737uv − 2488v2 − 1461u− 10720v,

G = 391u3 − 772u2v + 673uv2 − 777v3 − 1173uv + 1539v2 − 3019u+ 6186v, (3.3)

which has 9-th base point

b8 =

(
126933249

5530213
,
75665173

5530213

)
. (3.4)

The following involution curve is the unique curve which has a double point at b0 and simple
points b1, b2, b3, b4, b5, b6 in common with P (C):

Q := 597u3 − 310u2v − 481uv2 + 104v3 − 1329u2 − 79uv + 208v2 = 0. (3.5)

The unique non-base point intersection between Q and P (C) is given by−598

5174263414217C3 + 26456591132843C2

+44024545626872C + 23947542820608

2293729901271491C3 + 7965008023759238C2

+8157021862775051C + 2203322144658228

,

−3

1636188291089981C3 + 7577888329154480C2

+11109497069357891C + 5212332367047960

2293729901271491C3 + 7965008023759238C2

+8157021862775051C + 2203322144658228

.
The rational function ιQ(u, v) is of degree 5 in u, v, and of degree 6 in C. After substitution
of C = F/G the expression has degree 14 in u, v. The action of ιb0 ◦ ιQ on two curves of the
pencil is illustrated in Figure 5.

Proposition 3.8 (Bertini involution). Let P (C) be a non-singular pencil of cubic curves, with
base points b0, . . . , b8. Let Q be a curve of degree 4 such that b0 is a triple point on Q and
b1, . . . , b8 are simple points on Q. Then Q is an involution curve.

Example 3.9. Consider the pencil P (C) with (3.3). The unique curve of degree 4 which has
a triple point at b0 and simple points at b1, . . . , b8 given by (3.2) and (3.4),

B := 1461x4 + 6793x3y − 6663x2y2 − 15727y3x+ 1416y4 − 9057x3 − 6958yx2

+ 36103y2x+ 2832y3 = 0,
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−4 −2 0 2 4 u

v

4

3

2

1

−1

−2

−3

−4 −2 0 2 4 u

v

4

3

2

1

−1

−2

−3

Figure 5. The action of ιb0 ◦ ιQ on the point (97/100,−2) ∈ P (−37210300/12948573) (left) and on

(−4, 409/1000) ∈ P (−17169083242044/13796901723833) (right), where the pencil P (C) given by (3.3).

The involution curve Q, given by (3.5), is shown in aquamarine. Its non-base point intersections with

the two curves of P (C) are given in Appendix C.

is an involution curve. The unique non-base point intersection between B and P (C) is gi-
ven by 2

17

2215543962789C4 + 35968027317846C3 + 117454744627949C2

+131413745083336C + 42208499157120

106600301109C4 + 1562236994153C3 + 3806116035387C2

+2550071307523C + 301292311428

,

1

17

2162537091387C4 + 30313406379925C3 + 45123416722925C2

−5407306540485C − 11504965908312

106600301109C4 + 1562236994153C3 + 3806116035387C2

+2550071307523C + 301292311428

. (3.6)

The rational function ιB(u, v) is of degree 5 in u, v, and of degree 8 in C. After substitution
of C = F/G the expression has degree 16 in u, v. The action of ιb3 ◦ ιB on two curves of
the pencil is illustrated in Figure 6. We have also shown the fact that the tangent to the
cubic,

(3019C − 1461)
(
716309073C3 + 10387523662C2 + 19973364953C + 7874719992

)
x

− 2(3093C + 5360)
(
716309073C3 + 10387523662C2 + 19973364953C

+ 7874719992
)
y = 0

intersects the quartic in (3.6), cf. [11].

For non-singular cubic pencils, many other classes of involution curves exist, cf. Appendix B.

4 Measure preservation

We verified for each involution considered explicitly in the previous section, that it is anti
measure-preserving with density 1/F . We expect this is true for any involution ιQ with involution
curve Q, which preserves a pencil of cubic curves F − CG = 0.
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−4 −2 0 2 4 u

v

4

3

2

1

−1

−2

−3

−4 −2 0 2 4 u

v
8

6

4

2

−2

Figure 6. The action of ιb3 ◦ ιB on the same points as in figure 5. The involution curve B, given

by (3.9), is shown in aquamarine. Its non-base point intersections with the two curves of P (C) are

given in Appendix C. The tangents at b0, which are given by 335692483u − 233693640v = 0 (left) and

184119528711639u+ 106636413156536v = 0 (right), are drawn with dotted black lines.

A Involution points for the map γ

The formulas for the intersections of the pencil with the involution curves for the map obtained
by open reduction of the Q1(δ = 0) equation, i.e., the parametrisations of the involution points,
are given by

h1 =

( (
Ca− Cb+ a2 − b2

)
a

(−Ca2 + Cab− 2a3 + 2ba2 + C2 + 4Ca+ 4a2)b
,− a(C + a+ b)

b
(
−a2 + ab+ C + 2a

)) ,
h2 =

(
− C2 + Ca+ 3Cb+ 2ab+ 2b2

Ca2 − Cab+ 2ba2 − 2ab2 + a2 − 2ab+ b2
,− C + a+ b

Ca+ 2ab+ a− b

)
,

h3 =

(
Aa

D
,−

(
C2 + 2Ca+ 2Cb+ a2 + 2ab+ b2

)
a

Ca3 − Ca2b+ 3a3b− 4a2b2 + ab3 − Cab+ Cb2 + a3 − 4ba2 + 3ab2

)
,

h4 =

(
−Cab− Cb

2 + ba2 − b3 + C2 + Ca+ 3Cb+ 2ab+ 2b2

B
,

C + a+ b

ab− b2 − a+ b

)
,

k1 =

(
−(C2a− C2b+ 2Ca2 − 2Cb2 + a3 + ba2 − ab2 − b3)b2

aE
,

−
(
C2 + 2Ca+ 2Cb+ a2 + 2ab+ b2

)
b

Ca2b− Cab2 + 3a2b2 − 4ab3 + b4 + C2a+ 5Cab− Cb2 + 6ab2 − 2b3

)
,

k2 =

((
C3 + 4C2a+ 2C2b+ 5Ca2 + 6Cab+ Cb2 + 2a3 + 4ba2 + 2ab2

)
b

F
,

−
(
C2 + 2Ca+ 2Cb+ a2 + 2ab+ b2

)
a

C2b2 − Ca2b+ 5Cab2 − 2a3b+ 6a2b2 − Cab+ Cb2 + a3 − 4ba2 + 3ab2

)
,

k3 =

(
− b(C + a+ b)

a(ab− b2 − a+ b)
,

C + a+ b

ab− b2 − a+ b

)
,

k4 =

(
bG

H
,−

(
C2 + 2Ca+ 2Cb+ a2 + 2ab+ b2

)
a

Ca3 − Ca2b+ 3a3b− 4a2b2 + ab3 − Cab+ Cb2 + a3 − 4ba2 + 3ab2

)
,
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with

A = C3a+ 2C2a2 + 5C2ab− C2b2 + Ca3 + 8Ca2b+ 5Cab2 − 2Cb3 + 3a3b

+ 5a2b2 + ab3 − b4,
B = Cab2 − Cb3 + 2a2b2 − 2ab3 − Cab+ Cb2 − 3ba2 + 4ab2 − b3 + a2 − 2ab+ b2,

D = C2a3b− C2a2b2 − Ca5 + 4Ca4b− 4Ca2b3 + Cab4 − 3a5b+ 13a4b2 − 13a3b3

+ 3a2b4 − C2ab2 + C2b3 + 2Ca3b− 8Ca2b2 + 6Cab3 − a5 + 7a4b− 15a3b2 + 9a2b3,

E = C2a2b− C2ab2 + 5Ca2b2 − 6Cab3 + Cb4 + 6a2b3 − 8ab4 + 2b5 + C3a+ 7C2ab

− C2b2 + 16Cab2 − 4Cb3 + 12ab3 − 4b4,

F = C2ab2 − C2b3 − Ca3b+ 6Ca2b2 − 5Cab3 − 2a4b+ 8a3b2 − 6a2b3 − Ca2b+ 2Cab2

− Cb3 + a4 − 5a3b+ 7a2b2 − 3ab3,

G = −C2a2 + C2ab− 2Ca3 + 2Cab2 − a4 − a3b+ a2b2 + ab3 + C3 + 4C2a+ 2C2b

+ 5Ca2 + 6Cab+ Cb2 + 2a3 + 4ba2 + 2ab2,

H = C2a4 − C2a3b+ 5Ca4b− 6Ca3b2 + Ca2b3 + 6a4b2 − 8a3b3 + 2a2b4 − C2a2b

+ C2ab2 + 2Ca4 − 6Ca3b+ 2Ca2b2 + 2Cab3 + 5a4b− 15a3b2 + 11a2b3 − ab4

− Ca2b+ 2Cab2 − Cb3 + a4 − 5a3b+ 7a2b2 − 3ab3.

B Higher degree involution curves

An irreducible curve Q, of degree M , with mi singular points of multiplicity i ≥ 2 has non-
negative genus, i.e.,

(M − 1)(M − 2)

2
−
∑
i

mi
i(i− 1)

2
≥ 0. (B.1)

One can recursively generate, for each M , all sequences m = (m2,m3, . . . ,mr) such that (B.1)
is satisfied. For given m, define the sequence

s(m) = (s1, s2, . . .) =
(mr times︷ ︸︸ ︷
r, . . . , r, . . . ,

m2 times︷ ︸︸ ︷
2, . . . , 2, 1, 1, . . .

)
.

One can easily verify for each m whether

2s1 +

6∑
i=2

si ≥ 3M − 1, (B.2)

or

9∑
i=1

si ≥ 3M − 1. (B.3)

Condition (B.2) is a necessary condition for Q to be an involution curve for a cubic pencil with
a singular base point, whereas (B.3) is a necessary condition for Q to be an involution curve for
a non-singular cubic pencil.
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Higher degree involution curves for singular pencils

Using Maple [10], we have observed (for M ≤ 14) that 2s1 +
∑6

i=2 si ≤ 3M − 1 for all m, and
that equality holds when, with M > 3,

� m = (3) or m = (0, 1) for M = 4,

� m = (6) or m = (3, 1) for M = 5,

� m = (4, 2) or m = (4, 0, 1) for M = 6,

� m =
( k times︷ ︸︸ ︷

0, . . . , 0, 3, 2,

k times︷ ︸︸ ︷
0, . . . , 0, 1

)
or m =

( k times︷ ︸︸ ︷
0, . . . , 0, 5, 0, 0,

k times︷ ︸︸ ︷
0, . . . , 0, 1

)
for M = 7 + 3k,

� m =
( k times︷ ︸︸ ︷

0, . . . , 0, 0, 5,

k times︷ ︸︸ ︷
0, . . . , 0, 1

)
or m =

( k times︷ ︸︸ ︷
0, . . . , 0, 2, 3, 0,

k times︷ ︸︸ ︷
0, . . . , 0, 1

)
for M = 8 + 3k,

� m =
( k times︷ ︸︸ ︷

0, . . . , 0, 0, 4, 1,

k times︷ ︸︸ ︷
0, . . . , 0, 1

)
or m =

( k times︷ ︸︸ ︷
0, . . . , 0, 1, 4, 0, 0,

k times︷ ︸︸ ︷
0, . . . , 0, 1

)
for M = 9 + 3k.

It is easily verified that equality holds for given m for all M ≥ 7, e.g., for M = 7 + 3k we have

3(k + 2) + 2(k + 3) + 2(2k + 4) = 3(7 + 3k)− 1.

Higher degree involution curves for non-singular pencils

Using Maple [10], we have observed (for M ≤ 14) that
∑9

i=1 si ≤ 3M for all m. For M > 3,
when 3 divides M there are 3 cases where equality holds and when 3 does not divide M there is
one such m. When M < 9 these cases give rise to an involution curve, when M > 9 they don’t.
When M = 9 we have m = (1, 7, 1), which gives rise to an involution curve Q which has 7 triple
points, 1 quadruple point and 1 simple point at base points of P (C), as 1 ·1+7 ·3+1 ·4 = 9 ·3−1.
When M = 9, we also have m = (0, 9) and m = (1, 9), which do not give rise to an involution
curve. All cases for 3 < M < 9 are

M = 4, m = (3); M = 5, m = (6); M = 6, m = (9), (10), (7, 1);

M = 7, m = (6, 3); M = 8, m = (3, 6).

The number of sub-maximal cases, where
∑9

i=1 si = 3M − 1, which all correspond to a class of
involution curves, seems to be growing linearly with M . All cases where 3 < M ≤ 9 are

M = 4, m = (2), (0, 1);

M = 5, m = (5), (3, 1);

M = 6, m = (8), (6, 1), (4, 2);

M = 7, m = (7, 2), (8, 2), (9, 2), (5, 3), (3, 4), (8, 0, 1), (9, 0, 1), (6, 1, 1);

M = 8, m = (4, 5), (5, 5), (6, 5), (2, 6), (0, 7), (5, 3, 1), (6, 3, 1), (3, 4, 1), (6, 1, 2);

M = 9, m = (1, 8), (2, 8), (3, 8), (4, 8), (2, 6, 1), (3, 6, 1), (4, 6, 1), (0, 7, 1), (3, 4, 2), (4, 4, 2),

(1, 5, 2), (4, 2, 3), (3, 5, 0, 1).

C The non-base point intersections in Figures 5 and 6

In Figures 5, the non-base point intersection of Q with P (−37210300/12948573) is(
− 9333678816679178366330705702

22460621861042274504800702759
,−80704486762119296736852734835

89842487444169098019202811036

)
,
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and the non-base point intersection of Q with P (−17169083242044/13796901723833) is(
8837578153661106499492508487599309494380015

3038431764392156856522470880096484622269351
,

− 67326893085562606742284626232543966149925005

24307454115137254852179767040771876978154808

)
.

In Figures 6, the non-base point intersection of B with P (−37210300/12948573) is(
3405617043949343809719957414870

2300148977745403069873998022303
,
19568184082895458339483642588681

9200595910981612279495992089212

)
,

and the non-base point intersection of Q with P (−17169083242044/13796901723833) is(
−1708121913130392164253959202492088885616083137916763

1128060630129279953146116160050550093652807049241987
,

23594087034110982474932797732767927894864716720290971

9024485041034239625168929280404400749222456393935896

)
.
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