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Abstract. We review deformed quantum phase spaces and their realizations in terms
of undeformed phase space. In particular, methods of calculation for the star product,
coproduct of momenta and twist from realizations are presented, as well as their properties
and the relations between them. Lie deformed quantum phase spaces and Snyder type
spaces are considered. Examples of linear realizations of the xk-Minkowski spacetime are
elaborated. Finally, some new results on quadratic deformations of quantum phase spaces
and a generalization of Yang and triply special relativity models are presented.
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1 Introduction

Noncommutative NC spaces appeared in theoretical physics in the efforts to understand and
model Planck scale phenomena. The first proposed model of NC geometry was that of the Snyder
spacetime [116]. In order to obtain quantum gravity models that reconcile general relativity (GR)
and quantum mechanics (QM), one of the main ideas is to introduce noncommutative quantum
spacetimes [32, 33, 37] and also look for quantum deformations of the quantum-mechanical
relativistic phase space algebra [118]. For example, a widely studied model is the x-Minkowski
spacetime, where the parameter  is usually interpreted as the Planck mass or the quantum
gravity scale and the coordinates themselves close a Lie algebra [7, 30, 35, 65, 66, 72].

A successful approach to noncommutative geometry is based on the formalism of Hopf al-
gebras [28, 71], describing the relativistic symmetries of the quantum spacetime [11, 14]. The
k-Poincaré quantum group [38, 73, 119], as a possible quantum symmetry of the x-Minkowski
spacetime, allows for the study of deformed relativistic spacetime symmetries and the corre-
sponding dispersion relations [5, 8, 12, 13, 77]. It is an example of a Hopf algebra, where the
algebra sector is the same as that of the Poincaré algebra, but the coalgebra sector is deformed.
In general, in the Hopf algebra framework, it is possible to deform the Hopf algebra using a twist
element which satisfies the 2-cocycle condition, which again produces a Hopf algebra, with the
algebra sector unaltered and the coalgebra sector deformed. Deformations of relativistic sym-
metries play an important role in the study of phenomenologically relevant effects of quantum
gravity [2, 3, 4, 9, 54, 55, 70]. The interplay between spacetime curvature, speed of light and
quantum deformations of relativistic symmetries was presented in [15].
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A powerful tool in the study of NC spaces is that of realizations in terms of the Weyl-
Heisenberg algebra [20, 22, 34, 41, 42, 46, 77, 79, 83, 84, 95, 97, 115]. Namely, the NC coordinates
are expressed in terms of the commutative coordinates and the corresponding momenta, which
allows one to simplify the methods of calculation on the deformed spacetime. Every realization
corresponds to a specific ordering and one special example is the Weyl realization, related to
the symmetric ordering. Exponential formulas [21, 88, 89, 90, 99] are related to the deformed
coproduct of momenta in NC spaces and also appear in the computations of star products,
which are both needed for the definition of a field theory, the notion of differential calculus
and other calculations in a NC spacetime [6, 29, 43, 49, 69]. Exponential formulae, which were
used to obtain the coproducts and star products were also presented in [23, 87, 101]. A Lie
deformed phase space obtained from a twists in the Hopf algebroid approach was considered
in [47, 51, 63, 64].

A class of deformed quantum phase spaces, i.e., a deformed Heisenberg algebra, is generated
with NC coordinates Z,, and commutative momenta p, defined as

['%,uvi‘lf] = i@w/(lvi‘vp)’ [p,u?i'l/] = —igpm,(l,p), [p/“pl/] =0, (1'1)

with all Jacobi identities satisfied and [ a real parameter of order of the Planck length. There
are also deformed quantum phase space models with NC momenta p,, including the cosmological
radius R [55, 118]. The undeformed phase space is defined as

[$u7xV] = 07 [p;upu] = 07 [.’L'/“py] = _inuua H, V= _17 e, n = 17

where 7, = diag(—1,1,...,1), z, are coordinates and p, are momenta.

Examples of NC spaces where 0, (1.1) do not depend on the momenta p, are the canonical
theta space [33, 110], with ©,,, = const, Lie algebra type spaces [6, 7, 19, 29, 30, 31, 35, 36, 40,
63, 65, 66, 67, 72, 79, 102], for which ©,, =iC},, %y, and quadratic deformations of Minkowski
space, with ©,,, = O"*7¢,&, [67, 117].

In the Snyder space [16, 17, 27, 39, 44, 61, 62, 86, 103, 104, 105, 106, 107, 108, 109, 113,
114, 116], one has [%,,#,] = 1[?M,,,, where M,, are Lorentz generators, NC coordinates &,
do not close an algebra between themselves, but &, and M), close a Lie algebra. The Snyder
space and the k deformed Snyder space [89, 90] lead to a non associative star product and
non coassociative coproduct [21, 39]. Recently, the extended Snyder model and the x deformed
extended Snyder model with additional tensorial coordinates were proposed [91, 92, 93]. These
models are of Lie algebra type NC spaces in which star products are associative and coproducts
are coassociative [92].

Some new developements in the applications of NC geometry to physics can be found in
[24, 25, 26, 57, 59, 60, 74, 75, 111, 112].

In this review we survey the above mentioned types of deformed quantum phase spaces, their
properties and the relations between realizations of NC coordinates in terms of undeformed
phase space, star products and twists. Many technical results important for this review have
appeared previously in the literature and are cited appropriately. However this list of references
is not exhaustive. We also present some new results in Sections 3, 4, 6 and 7.

The plan of paper is as follows. In Section 2, the Lie deformed quantum phase space and
realizations are presented. In Section 3, a star product from realizations is constructed. In
Section 3.1, we present the Snyder space and its extension with tensorial coordinates. In Sec-
tion 4, the coproduct of momenta and twist from star product and realizations are obtained.
In Section 5, some examples of linear realizations of the x deformed Minkowski spacetime, spe-
cially the right covariant, left covariant and light like realizations, are revisited. In Section 6,
some aspects of quadratic deformations of quantum phase spaces are elaborated, specially in
Section 6.1, quadratic deformations of the Minkowski space from dilatation. A generalization of
Yang and triply special relativity models is given in Section 7.
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2 Lie deformed quantum phase space and realizations

The undeformed quantum phase space is defined with coordinates z, and momenta p,,

[x,luxll] = 07 [p;upll] = O) [p;mxl/] = _inw/v Hm, V= 07 ]-7 cee, N — 17

where 7, = diag(—1,1,...,1). The generalization of 7,, to a metric with arbitrary Lorentz
signature is straightforward.

We consider the deformed quantum phase space defined with noncommutative (NC) coordi-
nates Z, and momenta p, of the type

['%,Udi.l/] = ijfoccuuoc(lap) + idMV(l7p)7 [p;m-fu] = —iﬂ%u(lvl))a [p,lupu] = O, (21>

where [ is a parameter of order of the Planck length and summation over repeated indices is
assumed. For [ = 0, Cpa(0,p) = 0 and d,,(0,p) = 0. Functions C),n and ¢, depend on
momenta p,, where C,,, are a generalization of the structure constants.

For example, the original Snyder space is defined with

[0, 2] = 1> M, (2.2)
where M), are Lorentz generators. The realization Snyder proposed [116] is given by

53” =z, + l2(l‘ : p)puv M;w = TypPv — TPy = iupu - -%l/pu-

Hence

C,uua(lvp) =[? (nuapu - nuapu)~

If Cppa are structure constants, then NC coordinates Z,, close a Lie algebra. A perturbative
construction of ¢, (I, p) corresponding to the symmetric ordering can be found in [34]. From
Pu, Tv] = —igw(l,p), (2.1), it follows that the realization of NC coordinates &, can be written
as

i’u = xa@au(lap) + X,u(l?p)v (23)

and the inverse is given by

2 = (@ = xuLP) ()
and

Py = —iaiu. (2.4)

If Il =0, ¢(0,p) = nNu. All Jacobi relations for the class of deformed quantum phase
spaces/deformed Weyl-Heisenberg algebras (2.1) (obtained from (2.3)) are satisfied.

Realizations of the type given in equation (2.3), used in physical applications, were studied
for example for k-Minkowski spaces in [41, 42, 49, 77, 79, 84, 95, 97], for Snyder spaces in
[20, 21, 86], and for the extended Snyder model with tensorial coordinates in [91, 92, 93].

A special class of deformed quantum phase spaces/deformed Weyl-Heisenberg algebras for
which ¢, (I, p) is at most linear in p, is given by

&y =z, + IKguataps + xu(lsp), Kgua € R,
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where
Soa,u(lap) = Nau + lKBuap,B-
For x,(l,p) = 0, it holds
[i;;u ‘%V] = il(Kuya - Ky;wc)xa + il2(KB,uaKowa - KBVaKoaua)xapﬁ“

For example, the linear realization for the case of the x Snyder deformation was presented in [90].
The Lie algebra is closed in NC coordinates &, if

K,BMAK)\VQ - K,BVAK)\;LQ = (Km/)\ - Kl/,u)\)Kﬁ)\au
and the structure constants are
Cuuoc = Kw/a - Ku;wm

see for example [48, 63, 64, 78, 79, 100].

3 Star product from realizations

Let us define the > action

0f ()

—i .
Ox,,

x> f(x) =z, f(x), pud> flx) =

For the realization given in equation (2.3), using b, it follows
Py eldT — quequ, e1kaxa > 988 — elJa(k,l,q)xa+1h(k,l,q)7 ka; o € M’m

where 2, = £o@au(l,p) + xu(l,p) and M, denotes the Minkowski space, for some J, h [101]. If
ko = 0, Ju(0,1,q) = qu, h(0,1,q) = 0. If go = 0, Ju(k,1,0) = K, (k,1). It 1 =0, J,(k,0,q) =
ku+qu. Ju(k,1,q) and h(k,[, q) can be constructed perturbatively using [101, Theorems 1 and 2].

Compact results for J,,(tk, [, p) and h(tk,l,p), where p, is the momentum operator (2.4), are
given by

etO _
It ) = (€40) ), ek = (S5 ) (haalt)

where

O = kqOa, Ou = ad—imﬁgoga(l,p) :

Ju(tk,l, p) and h(tk,l,p) are unique solutions of the partial differential equations

0J,u(tk, 1, p)
ot

Oh(tk,l,p
L) ML SRR )Y (3.1)

with boundary conditions
J,u(0,1,p) = py, h(0,1,p) = 0.
From J,(k,l,q) and h(k,l,q) we can obtain the star product

elkT o oigr eiK_l(k):Efih(K_l(k),O) b eld” — eixD(k,l,q)Jrig(k:,l,q)’ (32)
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where

Dol ) = Iy (5 (60 1) = (0 (15 05 D) - ) ) a0 (33)

G(k,l,q) = h(K " (k,1),1,q) — h(K ' (k,1),1,0). (3.4)
K~ is the inverse map

KWK (k1) = Ky (K7 (k1)) = ky.

The star product, (3.2), and the method of calculation are a generalization of the method first
proposed in [88, 89]. The method from [88, 89] was applied in [21, 23, 78, 85, 86, 87, 90, 91,
92, 93, 99, 100]. The star product, (3.2), can be associative or nonassociative. For example, the
star product for the Snyder model is nonassociative [21, 39]. If NC coordinates Z,, (2.3), close
a Lie algebra, then the corresponding star product is associative [83].

According to the PBW theorem, if coordinates &, u = 0,1,...,n—1 generate a Lie algebra g
and v, =2, >1, p=0,1,...,n — 1 generate a commutative algebra g, then

i) enveloping algebras U(g) and U(g) are isomorphic,
i) if fol=f, U(g)>1=U(g), then we define the inverse map »

fel=f gri=g,
and the star product
frg=Ffarl,  (fxg)»1=f3,
where f,§ € U(g) and f,g € U(g). This star product is associative

fr(gxh)=(fxg)xh,  f,gheclU(g).

Namely

[x(gxh)» 1= f(gh) = fgh.  (fxg)*hw»1=(fo)h= fgh.
Generally, if the star product, (3.2), is associative, i.e.,
(e17 s oihav) y oiksw — g1 (oika  gikac)
then it holds
D, (D(k1,1,k2),1, k3) = Dy(k1,1,D(ka, 1, k3)), (3.5)
and
G(k1,1l, k) + G(D(k1,l, ko), 1, k3) = G(ka, 1, k3) + G(k1,1, D(ka, 1, k3)).
Addition of momenta is defined with
ku ® qu =Dk, l,q).

Note that D,(k,l,q) € R.
For example, let the NC coordinates Z;, i = 1,2, 3 close the su(2) algebra

[f)i, QAZ]] = Qileijki’k,
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and the realization of Z; is given by

& = xi/1— Pp? + legrape,  p° =Dt +p3+p3
Then

[, pj] = 1(i5V/1 — 12p? + leijupr)

and

ki @ qi = ’Di(ka Q) = ki\/l — l2q2 + \/1 — l2k‘2qi + leijkk:jqk.

This example of the su(2) NC space appeared in connection with the 3 dimensional quantum
gravity model [36], see also [58, 99].

Note that the universal formula for Lie algebra generators as formal power series of the
corresponding structure constants with coefficients in Bernoulli numbers was given in [34, 45].
The explicit star product of the cotangent bundle of a Lie group [45] corresponds to the star
product (3.2), where Z is expressed in terms of the universal formula, i.e., (I, p) is the generating
function for Bernoulli numbers, related to the symmetric ordering [34].

3.1 Snyder space and an extension with tensorial coordinates

Examples of non associative star products are related to the following realizations of coordi-
nates I,

By = 201 (1Pp?) + Pz  p)pu2 (1Pp7).
Then the commutation relations [, Z,] lead to a generalized Snyder algebra [86]

[, &) = 12 M (1Pp?),

where M, = x,p, — x,p, are Lorentz generators. Specially, for w(ﬂp?) = 1, it becomes the
Snyder algebra originally proposed in [116].

In the original Snyder model NC coordinates %, do not close a Lie algebra and the corre-
sponding star products are non associative. For example, the star product corresponding to the
realization

Ty =z, + l2(55 “P)Pu (3.6)
leads to

Ty ¥ Ty = Ty,
and

¥ (2 % 2p) = Tty — (M + Nupn),
l2
(T *xy) * ) = TYTHT, — E(nupac,, + Nupy + 20w x,).
Hence, the star product is non associative

l2

(xp *xy) xxp — )% (T %)) = 5(77Ww,, — Nupy)-
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Using the realization in equation (3.6), and equations (3.1), (3.3), the function D, (k,1, q),

defining the star product (3.2), was obtained in [21]

D,(k,l,q) = . <k: Lk

u\Fyt, q 1—l2(kq) 1% 1+ /1+l2k2“

for which equation (3.5) is not satisfied, implying that the star product is non associative. The
corresponding coproduct

(k-q)+V1+ l2k2qu> ;

1 I?
Apy =g (Pl — ————=
g 1—l2pa®pa<“ 1+ /1 + 2p?

is non coassociative.

Note that in the original Snyder space NC coordinates &, and Lorentz generators M, close
a Lie algebra, but M,, >1 = 0. Since NC coordinates #, do not close a Lie algebra between
themselves, additional tensorial coordinates &, are introduced [39, 91] instead of M, and they
satisfy

PuPa @ ¢ + /1 + 12p? ®pu>

Ty >l =1y,

where x,,, are commutative tensorial coordinates. Both the coordinates Z,, and z,, and the
canonical momenta p,,, transform as Lorentz generators M,,,. Consequently, the new star prod-
uct is associative and the coproduct is coassociative [39, 91, 94].
Using the above extended Snyder space, a unification with the x-Minkowski space is also
proposed in the form of associative realizations of the xk deformed extended Snyder model [92, 93].
A similar extension with additional commutative tensorial coordinates 6, was proposed in
the context of the DFR NC space, changing the constant 6, to tensorial coordinates 6,,, [1, 10].

4 Coproduct of momenta and twist from star product
and realizations

The relation between the star product and the twist operator is given by
(f % 9)(x) = mF (> 1)(f(2) ® g(2)),

where m is the multiplication map, A® B — AB.
Using the star product (3.2) and the above relation for f % g, a family of twist operators can
be writen as [85, 86, 87]

Fl=rexp((i(1 = u)ze @ 1 +ul ® 2,)(A — Ag)pa): exp(iG(p @ 1,1 @ p)), (4.1)

where :: denotes normal ordering, in which the xs are to the left of the p’s, u is a real parameter
and

Apoz:Da(p@l,l@p), AopaZPa®1+1®pa7

where Dy (I, k, q) is given in (3.3) and G in (3.4). Applying [101, Theorem 1], we can find the
twist in the form without normal ordering, see for example [100, Section 4].
It is important to note that Ap, is the coproduct of momenta and it holds

Ap, = ]-"Aopa]:fl.
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This can be proved using the identity

n kol

Y (-t 0, forn>2.
1!
k=0

Alternatively, we can obtain the twist in the following way. The coproduct Ap, is obtained
from Apy = Do(p® 1,1 ® p) and (3.3)

Apy, = <exp <K51(p) ® @aﬁ(p)ai(l)) (1®pu).

The coproduct is coassociative if and only if the star product is associative, i.e., if £, close a Lie
algebra.
We can define new momenta p/‘f/ corresponding to the Weyl realization

py =K. '(p),
with the property
pzv b oK (k) _ kueiK(k)-x

)
and
[pzv,eik'i’] _ k’ueik-i.
Hence, the coproduct of momenta is
Ap,, = e 'Pa Sa(] ®pu)eipﬁv'*v®iﬂ.
Then we obtain the relation between Ap, and Agp,,
Ap, = FAgp,F~' = efipgv®:f3aeip3®x5(Aopu)efipa(@maeipg/@i‘ﬁ'
If x,.(1,p) = 0, then the twist operator for the realization Z, = zopas(l, p) is given by

J—.'—l — e—ipa®xaeipgv®xytp»yg(lm). (42)

If x,.(I,p) # 0, then the twist 71 is

Fl = o iPa®3a lpy 820y5(Lp) (iG(p21,18P) (4.3)

and the consistency check is
Zp=mF >0 1) (2, ©1) = Zapau(l,p) + Xxu(l,p)-
Note that the following identity holds

:ei(1®ma)(A*AO)po¢: 7ipa®$aeipg/®z’y<p'yﬁ (lvp).

=e

The twists in this section, specially (4.1) and (4.3), are given in the Hopf algebroid approach
[47, 51, 63, 64] and generally do not satisfy the cocycle condition in the Hopf algebra sense [96].
However, in the Hopf algebroid approach, these twists satisfy a generalized cocycle condition if
and only if the star product is associative, i.e., &, close a Lie algebra [98]. In the next section we
give examples for the case when these twists can be transformed into Drinfeld twists satisfying
the cocycle condition in the Hopf algebra sense.

Note that another construction of the twist for the original Snyder model (2.2) was presented
in [76].
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5 Linear realizations
For a linear realization

i‘u =x,+ Kgﬂaxapg, (5.1)
the differential equation for J,(tk, q) is given by

dJ,(tk,q
#(dt) = ku + kaKﬁauJﬁ(tka Q)a Ju(oa Q) = qu-
The solution for J,,(tk, q) is then
oK) _
tk =ko| ————— o K(tk) 9
JM( 7Q) ( K:(k') +q (e )Oél“ (5 )
ap
where
IC,ul/(k) = Kuauka- (53)
Fort=1
Kk) _ n K
_ (k)
Jﬂ(kaQ) - ka ( K:(k? + Qa(e )a,u'
ap
For ¢, =0

K ) _

Ju(k,0) = ko <IC(k) > = K, (k). (5.4)
ap
The inverse of K, (k) is given by
KN (k) =k (5.5)

The expansion of k] in terms of k, was given in the appendix of [78]. Then

Dﬂ(kv q) = JH (K_l(k)v q) = k# + qa (eK(kW))a,u’ (5'6>
and the coproduct for p, is
Apy =pu @1+ (F0") @ pa. (5.7)

The twist in the Hopf algebroid approach corresponding to the linear realization &, = x,, +
KguaTapg is

F = exp (—ipEV ® ngxapﬁ) = exp (—inga (pW) ® a:apg) , (5.8)

where pEV = K;l(p). The coproduct for p,, Ap, = FAop,F ! is identical to the equation

above, (5.7). Note that

L) _ KM g
Kulp)=|—F5— Pa and Pup=\| 77 pXV-
.“( ) ( /C(p) o M ,C(pW) »

The expression for pEV was given in the appendix of [78].

For x-Minkowski and the corresponding linear realizations an explicit proof of the cocycle
codition is given in [48] and more generally in [78]. The conditions under which linear realiza-
tions (5.1) generate a Lie algebra are given in Section 2. Other examples of linear realizations
were presented in [63, 64, 79, 90, 100].
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5.1 Right covariant realization of k-Minkowski space time

The right covariant realization of k-Minkowski space is given by

~

T, =x, —au,x - p, [T, T) = 1(audy, — ayZy).

Ju(k, q) for the right covariant realization satisfies the following differential equation
dJu(tk, q)

dt

with initial condition J,(0,q) = gq,. Jﬁo) (tk,q) = tky + qu for a, = 0. The solution of the above
differential equation is

=k, —a-kJ,(tk,q),

_e—ta~k tak
Ju<tk,q) = k‘uT + qu€ an
Fort =1,
1 _eia.k —a-k
JH(]C,Q) :/{HT‘FQHG .
For k, =0, J,(0,q) = q,. For g, =0,
1—e @k
Ju(k,0)=k,— = K, (k).
(k) = by = K ()

From here it follows that
a-K=1—e"  a.k=-In(1—a-K(k)), e**=1-a K.

Hence, the inverse of K, (k) is given by

_ In(l1—a-k) W
1 —

K, (k) = —k, % =k, .
Furthermore,

D/L(kv Q) = Ju(Kil(k)v Q) = k,u + QM(]- —a- k))
Apy =pu @14 (1 —a-p)@py.
In the Hopf algebroid approach, the twist corresponding to the right covariant realization is

given by

F — o 1P ®%pgipa®@ra _ oAB
where

A=-ipV @zq+ia-pV @z p, B =ip, ® x4, [.A,B]:(a-pW@l)B.
Using a special case of the BCH formula, we get (see [48, Appendix C])

w
_ a-p¥ ®1
F =exp (A+B<1®1_ea_pw®1>>

Using the relation

In(l1—a-p)
W
Pu = =Pw—

we get
F=e0men®l D —u.py,  and  Ap,=p,@1+(1—a-p)@p,  (5.9)

We have shown that the twist in the Hopf algebroid approach corresponding to the right covariant
realization of k-Minkowski is identical to the Jordanian twist leading to the same right covariant
realization and satisfying the cocycle condition in the Hopf algebra sense.
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5.2 Left covariant realization of k-Minkowski space time
The left covariant realization of xk-Minkowski spacetime is given by
Ty =zu(1+a-p), [Ty, Ty) = (apdy — ap@y).
Ju(k, q) for the left covariant realization satisfies the following differential equation
dJ,(tk, q)
dt

with initial condition J,(0,q) = g,. J,SO) (tk,q) = tk, + qu for a, = 0. The solution of the above
differential equation is

=k,(1+a-J(tk,q)),

eta~k -1
For t =1,
etk 1
Ju(k,q) = ky . (1+a-q)+qu
For ¢, = 0,
ek 1
Ju(k,0)=k,— = K, (k).
H( ’ ) 1 a-k M( )
It follows that a - K = e%* — 1, a-k =In(1 + a- K(k)), and the inverse of K, (k) is given by
_ In(l+a-k)
1 _ _ W
Ko (k) = ke = kY
Furthermore,

Du(k,q) = Ju(K~'(k),q) = k(14 a-q) +qu  App=p,®(1+a-p)+1Qp,
The twist in the Hopf algebroid approach corresponding to the left covariant realization is
F — o 1P ®%pgipa®ra _ oAB
where
A= —ipy ®ap—ipy ®@xsa-p, B =ips ® a,
[A,B]=—-(In(l+a-p)®1)B=—(a V' ® 1)B.
Using a special case of the BCH formula we get F (see [48, Appendix C])

w
- —a-p”’ ®1
].'_exp <A+B<1®1_ea-pw®l>>'

Using

In(l14a-p
Y =pu(w)7 a-p" =n(l+a-p),
p
we get

Fme WOt emiteri Ohoe Lo = app, Apu=pu®(1+a-p)+18p,

We have shown that the twist in the Hopf algebroid approach corresponding to the left covariant
realization of the x-Minkowski spacetime is different from the Jordanian twist leading to the
same left covariant realization which satisfies the cocycle condition in the Hopf algebra sense,
F =exp(—iD ®In(1 + a - p)). Although these twists are different, they give the same deformed
Hopf algebra. Drinfeld twists F = exp(—iln(1—a-p)®D), (5.9), and F = exp(—iD®In(1+a-p))
belong to extended Jordanian twists for Lie algebras [56]. Interpolations between Jordanian
twists, right and left covariant realizations of the x-Minkowski spacetime were presented in refs.
[23, 80, 81, 82].
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5.3 Light like realization of k-Minkowski spacetime

The light like realization of the x-Minkowski space is defined with a? = 0 and
t,=z,1+a-p)—a-zp, =z, + aaMya,

satisfying the k-Minkowski algebra

[Ty, 2] = 1(auZy — apZy),
[ g 1')\] (ﬁj;ﬂr/l/)\ - j1/’7,u>\) - i(auMuA - aVM/J,)\)7

[ uwp)\] i(punu)\ - pun,u)\)-

Using (5.2),(5.3), (5.4), (5.5), (5.6), one obtains the following expression for D, (k, q)

kg 1 p?
Du(k,q) = ku(1+a-q)qu — L Jaula: Q)m,
and for the coproduct
pa+ aap
Apu = 'D#(p ®1,1 ®p) = Aopu + | PpGa — pm & Pa- (5'1(])

From the expression for the twist given in equation (5.8), it follows that the Drinfeld twist is
given by [48, 49, 50]

In (1—|—a p)

F =exp <1aapg ® Ma5> ,

which satisfies the cocycle condition in the Hopf algebra sense and the coproduct Ap, =
FAopuF 1 is coassociative and coincides with Ap,, above, (5.10).

Remark 5.1. If a? # 0, the above realization &, = z,(1+a-p) — a- zp, = z, +iaaM,q, leads
to the k-Snyder algebra [89, 90]

[, 20] = i(audy — aydy,) +ia* My,
The corresponding twist (4.2) does not satisfy the cocycle condition, the star product is non
associative and the coproduct is non coassociative.
6 Quadratic deformations of quantum phase space

n [117], deformed Heisenberg algebras were constructed as examples of NC structures and the

framework for higher dimensional NC spaces based on quantum groups was studied. Further-
more, quadratic deformations of the Minkowski space from twisted Poincaré symmetries were
constructed in [67]. The construction was based on the twist

F =exp <;@aﬁV§Ma5 A M75> ,

where M,g are Lorentz generators and the r-matrix is given with r = %@WMMW N M.
Quadratic deformations of the Galilei group and the Newton equation for classical space were
considered in [31].
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Generally, quadratic algebras, i.e., quadratic deformations, can be defined with the following
commutation relations

[, 2] = OM°% 25,

where all Jacobi relations have to be satisfied and multiplication in the enveloping algebra (%)
is associative. In this case the general realization of the NC coordinates is

Ty, = xa‘Pau(iLv6)7
where L.s = x,ps generate the gl(n) algebra
[Lyv, Lpo) = i(Nuo Ly — Npv Lyuor)-
In the lowest order in K5 we get
Ep = 2y + %0 Ly Kynpa + O(K?) = 2, + 1K1y gatazspy + O(K?),

with K5 — Kypuys = ®MV75'

We point out that Sections 3 and 4 cannot be applied to these quadratic deformations. The
construction of such quadratic algebras can be performed using twist operators that, besides
Lorentz generators, include dilatation operators D,, and D

D = Z D, = Z TPy, D, = z,p, (nosummation),
Iz Iz
and more generally L,,, = x,p, generating the gl(n) algebra. Here we consider a simple case.

6.1 Quadratic deformations of Minkowski space from dilatation

We consider the twist

F =exp <Z Ao Do ® D/3>, ABo = —0ag, (6.1)
a7ﬁ
where
[Dq, Dg] = 0, [Do,pg] = ipanap (no summation), [Dao,z8] = —ixanas,

and p, are momenta.
The action of D, in undeformed quantum phase space is defined as

of (x)
0zq

The deformed quantum phase space is defined with

Dy f(x) = —ix,

jaiﬁ - Qaﬁiﬂjaa dop = eXp(aaB - aﬁa) = exp(Zaag), [Dou i‘,@] = —iiﬁoﬂ]aﬁ,
pai’ﬂ - ea’gai’ﬂpa — _lnaﬂ eXp <Z iaﬂ,yDW), Caﬁ = eaaﬂ.
i
The realization for z, is given by

To = To €XP <Ziaa5D5) = Zaba, o = €xXp (Ziaang5>7

B B
P>l =1, Tall=1x,.
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Note that

TaPa = eXp(_aaaﬁbﬁl‘a)a $a¢,3 = eXp(_aBaCb,BfEa)a
xaf(iDa) = f(iDa - 1)$a, paf(iDa) = f(iDa + 1)pa-

The coproducts are given by

ADy = FAoDoF ' =Da® 1418 Do = AgDa, Ao = ¢po ® ¢ (00 summation),
Apoe = JTAOZ)@-F?1 =Pa & ¢o¢ + (Z;a @ Pas
gga = exp (Zia50D5>, Do = €Xp <Ziaa5D5>,
a B
Apo = ¢a ® Py Padp =e"igda,  [Pa, s = (" — 1)E36a.

The twist F given in equation (6.1) is abelian and satisfies the cocycle condition. The star
product is associative

Ta*xg = Talp> 1l =2Tqb>ag=ce"Pr 28,

rg* To = €"Pox,1p, To * T = qaBTB * Ta,

~ o —1 o

Ta=mF (>®1)(rq®1) =xzqexp (Zaa5D5>,
B

(f *9)(z) = mF (> @>)(f(2) ® g(2))-

For Apo = —AaB, Qap = eXp(Qaaﬁ> = (Caﬁ)27 Caa = Jaa = 17 (Zga = (‘ba)il-
The » action is defined with

fra="rfa.  tafrl=iaf, daf=(0a® f)ia,  fia=2a(05"» f),
Ou=0a(0a)”'s  Oawl=1 ¢apl=1  paw1=0, po»is=—ifas
Let us define
Jo =mF (> ®1)(2a ®1) = Zada = Fa(Pa) " Ga = a(0a) ",
where F = FOP, FoP = exp (Zaﬁ aapDp ® Dy),
Jabl=120,  Ja® f=fa.
For agy = —aap, Oa = (¢a)?.
[Za,9p] =0 Yo, B, Jalp = exp(—2aap)YsYa-
The special case where g,3 = ¢ for o >  and g5 = g~ ! for a < B was studied in [52, 53].
Remark 6.1. For ag, = aqg it follows that F = FP, 2, = g, [Z,,2,] = 0, qE# = ¢, and
(f*xg)(x) = (g* f)(x), but can # 1 and paig — eBLgpy, = —inas exp (Zw iag, D). For the

case of one dimension, n = 1, see [18, 117]. Applications to the Fock space representation and
the Calogero model in one dimension were considered in [18].
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7 Generalization of Yang and triply special relativity models

In Sections 2-5, we have considered quantum deformed phase spaces (for example the © canon-
ical space, Lie algebra type spaces, the Snyder space) in which defomation parameters are
proportional to the minimal length [. In Section 6, related to quadratic deformations of quan-
tum phase space, deformation parameters are dimensionless. There are also deformed quantum
phase spaces in which deformation parameters depend on two physical quantities, the minimal
length and the cosmological radius R. These models are generated with NC coordinates &, and
NC momenta p,. A large class of such deformed quantum phase spaces can be described with
algebras containing 2 Snyder algebras as subalgebras, with the same Lorentz algebra generated
with M,,,. They are defined as

[, 20] = 1B M, (7.1)
[Py D] = i0® My, (7.2)
(M, 23] = i@y — Madp), (7.3)
(M, PA) = i(0uaDy — NurPu), (7.4)
[Myus Mpo] = i(0upMuo — Muo Mup — MupMpuo + Mue M), (7.5)
[0, Dol = 19, (7.6)
[M/J,I/a gpo] = ‘(nuagpu — NvoGpp + NMupGve — Uupguo)a (7.7)
[90s B2] — (95w Z] = 1B%(nuwPr — M), (7.8)
[Gup: D2] = [9urs Pl = 102 (Mo — M) = =102 (Muvdix — Mawdp), (7.9)
(9> Gpo] = i([[guvvﬁv]vi’p] - ngwip]aﬁo])' (7.10)

These algebras are Born dual, &, < p,, My, < My, gu < —guu, o <> B.
Hermitian realizations of &, p,, M, and g,, can be written as

iy = (2 F + Flz, + p,G + G'p,),

Bu = 5 (pull + H'py + 2, K + K'ap),

My = xupy — Tupy,

Guv = uwho + Pxa,hy + b2z ,w, + B2pupyhe + BLE*pupy + aB(zupy + pya.)hs
+ hgaﬂ(:cupl, +poxy) + aB(xupy + puxy)ha + hlloaﬁ(a:l,pu + puy),

9w — Gou = 2M B (hs + hl — hy — h}),

where F, G, H, K, hg, h1, ho, h3, hs are Lorentz invariants depending on z2, x - p, p*. For the
Yang model, g,, = nuho.

Yang quantum phase spaces [44, 118] and tripy special relativity models [55, 105, 106] are
special cases of the above deformed quantum phase spaces. Realizations of these models are more
difficult to construct and will be presented elsewhere. Spinorial Snyder and Yang models from
super algebras and NC quantum super spaces have recently been constructed [68]. Similarly,
generalized spinorial models, super algebras and quantum super spaces can be constructed by
extending the above deformed quantum phase spaces (7.1)—(7.10).

Acknowledgement

SM thanks S. Mignemi for useful comments.



16 S. Meljanac and R. Strajn
References
[1] Abreu E.M.C., Mendes A.C.R., Oliveira W., Zangirolami A.O., The noncommutative Doplicher—
Fredenhagen—Roberts—Amorim space, SIGMA 6 (2010), 083, 37 pages, arXiv:1003.5322.
[2] Addazi A., Alvarez-Muniz J., Batista R.A. et al., Quantum gravity phenomenology at the dawn of the
multi-messenger era — a review, arXiv:2111.05659.
[3] Amelino-Camelia G., Testable scenario for Relativity with minimum-length, Phys. Lett B 510 (2001), 255—
263, arXiv:hep-th/0012238.
[4] Amelino-Camelia G., Relativity in spacetimes with short-distance structure governed by an observer-
independent (Planckian) length scale, Internat. J. Modern Phys. D 11 (2002), 35-59, arXiv:gr-qc/0012051.
[5] Amelino-Camelia G., Quantum-spacetime phenomenology, Living Rev. Relativ. 16 (2013), 5, 137 pages.
[6] Amelino-Camelia G., Arzano M., Coproduct and star product in field theories on Lie-algebra noncommuta-
tive space-times, Phys. Rev. D 65 (2002), 084044, 8 pages, arXiv:hep-th/0105120.
[7] Amelino-Camelia G., Lukierski J., Nowicki A., s-deformed covariant phase space and quantum-gravity
uncertainty relations, Phys. Atomic Nuclei 61 (1998), 1811-1815, arXiv:hep-th/9706031.
[8] Amelino-Camelia G., Majid S., Waves on noncommutative space-time and gamma-ray bursts, Internat. J.
Modern Phys. A 15 (2000), 4301-4323, arXiv:hep-th/9907110.
[9] Amelino-Camelia G., Smolin L., Starodubtsev A., Quantum symmetry, the cosmological constant and
Planck-scale phenomenology, Classical Quantum Gravity 21 (2004), 3095-3110, arXiv:hep-th/0306134.
[10] Amorim R., Tensor coordinates in noncommutative mechanics, J. Math. Phys. 50 (2009), 052103, 7 pages,
arXiv:0804.4405.
[11] Arzano M., Kowalski-Glikman J., Deformations of spacetime symmetries — gravity, group-valued momenta,
and non-commutative fields, Lecture Notes in Physics, Vol. 986, Springer-Verlag, Berlin, 2021.
[12] Aschieri P., Borowiec A., Pachot A., Observables and dispersion relations in k-Minkowski spacetime, J. High
Energy Phys. 2017 (2017), no. 10, 152, 27 pages, arXiv:1703.08726.
[13] Aschieri P., Borowiec A., Pachol A., Dispersion relations in k-noncommutative cosmology, J. Cosmol. As-
tropart. Phys. 2021 (2021), no. 4, 025, 19 pages, arXiv:2009.01051.
[14] Aschieri P., Dimitrijevi¢ M., Kulish P., Lizzi F., Wess J., Noncommutative spacetimes: symmetries in
noncommutative geometry and field theory, Lecture Notes in Phys., Vol. 774, Springer-Verlag, Berlin, 2009.
[15] Ballesteros A., Gubitosi G., Mercati F., Interplay between spacetime curvature, speed of light and quantum
deformations of relativistic symmetries, Symmetry 13 (2021), no. 11, 2099, 22 pages, arXiv:2110.04867.
[16] Banerjee R., Kulkarni S., Samanta S., Deformed symmetry in Snyder space and relativistic particle dynamics,
J. High Energy Phys. 2006 (2006), no. 5, 077, 22 pages, arXiv:hep-th/0602151.
[17] Banerjee R., Kumar K., Roychowdhury D., Symmetries of Snyder-de Sitter space and relativistic particle
dynamics, J. High Energy Phys. 2011 (2011), no. 3, 060, 14 pages, arXiv:1101.2021.
[18] Bardek V., Meljanac S., Deformed Heisenberg algebras, a Fock-space representation and the Calogero model,
Eur. Phys. J. C Part. Fields 17 (2000), 539-547, arXiv:hep-th/0009099.
[19] Batista E., Majid S., Noncommutative geometry of angular momentum space U (su(2)), J. Math. Phys. 44
(2003), 107-137, arXiv:hep-th/0205128.
[20] Battisti M.V., Meljanac S., Modification of Heisenberg uncertainty relations in noncommutative Snyder
space-time geometry, Phys. Rev. D 79 (2009), 067505, 4 pages, arXiv:0812.3755.
[21] Battisti M.V., Meljanac S., Scalar field theory on noncommutative Snyder spacetime, Phys. Rev. D 82
(2010), 024028, 9 pages, arXiv:1003.2108.
[22] Beckers J., Brihaye Y., Debergh N., On realizations of “nonlinear” Lie algebras by differential operators,
J. Phys. A: Math. Gen. 32 (1999), 2791-2803, arXiv:hep-th/9803253.
[23] Borowiec A., Meljanac D., Meljanac S., Pachol A., Interpolations between Jordanian twists induced by
coboundary twists, SIGMA 15 (2019), 054, 22 pages, arXiv:1812.05535.
[24] Carmona J.M., Cortés J.L., Relancio J.J., Relativistic deformed kinematics from momentum space geometry,
Phys. Rev. D 100 (2019), 104031, 10 pages, arXiv:1907.12298.
[25] Carmona J.M., Cortés J.L., Relancio J.J., Relativistic deformed kinematics from locality conditions in a

generalized spacetime, Phys. Rev. D 101 (2020), 044057, 15 pages, arXiv:1912.12885.


https://doi.org/10.3842/SIGMA.2010.083
https://arxiv.org/abs/1003.5322
https://arxiv.org/abs/2111.05659
https://doi.org/10.1016/S0370-2693(01)00506-8
https://arxiv.org/abs/hep-th/0012238
https://doi.org/10.1142/S0218271802001330
https://arxiv.org/abs/gr-qc/0012051
https://doi.org/10.12942/lrr-2013-5
https://doi.org/10.1103/PhysRevD.65.084044
https://arxiv.org/abs/hep-th/0105120
https://arxiv.org/abs/hep-th/9706031
https://doi.org/10.1142/S0217751X00002777
https://doi.org/10.1142/S0217751X00002777
https://arxiv.org/abs/hep-th/9907110
https://doi.org/10.1088/0264-9381/21/13/002
https://arxiv.org/abs/hep-th/0306134
https://doi.org/10.1063/1.3119005
https://arxiv.org/abs/0804.4405
https://doi.org/10.1007/978-3-662-63097-6
https://doi.org/10.1007/jhep10(2017)152
https://doi.org/10.1007/jhep10(2017)152
https://arxiv.org/abs/1703.08726
https://doi.org/10.1088/1475-7516/2021/04/025
https://doi.org/10.1088/1475-7516/2021/04/025
https://arxiv.org/abs/2009.01051
https://doi.org/10.1007/978-3-540-89793-4
https://doi.org/10.3390/sym13112099
https://arxiv.org/abs/2110.04867
https://doi.org/10.1088/1126-6708/2006/05/077
https://arxiv.org/abs/hep-th/0602151
https://doi.org/10.1007/JHEP03(2011)060
https://arxiv.org/abs/1101.2021
https://doi.org/10.1007/s100520000457
https://arxiv.org/abs/hep-th/0009099
https://doi.org/10.1063/1.1517395
https://arxiv.org/abs/hep-th/0205128
https://doi.org/10.1103/PhysRevD.79.067505
https://arxiv.org/abs/0812.3755
https://doi.org/10.1103/PhysRevD.82.024028
https://arxiv.org/abs/1003.2108
https://doi.org/10.1088/0305-4470/32/15/008
https://arxiv.org/abs/hep-th/9803253
https://doi.org/10.3842/SIGMA.2019.054
https://arxiv.org/abs/1812.05535
https://doi.org/10.1103/physrevd.100.104031
https://arxiv.org/abs/1907.12298
https://doi.org/10.1103/physrevd.101.044057
https://arxiv.org/abs/1912.12885

Deformed Quantum Phase Spaces, Realizations, Star Products and Twists 17

[26]
27]

(28]
29]

(30]
(31]
(32]

(33]

Carmona J.M., Cortés J.L., Relancio J.J., Curved momentum space, locality, and generalized space-time,
Universe 7 (2021), no. 4, 99, 17 pages, arXiv:2104.07336.

Carrisi M.C., Mignemi S., Snyder—de Sitter model from two-time physics, Phys. Rev. D 82 (2010), 105031,
5 pages, arXiv:1010.6258.

Chari V., Pressley A., A guide to quantum groups, Cambridge University Press, Cambridge, 1994.

Chryssomalakos C., Okon E., Star product and invariant integration for Lie type noncommutative space-
times, J. High Energy Phys. 2007 (2007), no. 8, 012, 22 pages, arXiv:0705.3780.

Daszkiewicz M., Lukierski J., Woronowicz M., Towards quantum noncommutative xk-deformed field theory,
Phys. Rev. D 77 (2008), 105007, 10 pages, arXiv:0708.1561.

Daszkiewicz M., Walczyk C.J., Newton equation for canonical, Lie-algebraic, and quadratic deformation of
classical space, Phys. Rev. D 77 (2008), 105008, 7 pages, arXiv:0802.3575.

Doplicher S., Fredenhagen K., Roberts J.E., Spacetime quantization induced by classical gravity, Phys.
Lett B 331 (1994), 39-44.

Doplicher S., Fredenhagen K., Roberts J.E., The quantum structure of spacetime at the Planck scale and
quantum fields, Comm. Math. Phys. 172 (1995), 187-220, arXiv:hep-th/0303037.

Durov N., Meljanac S., Samsarov A., Skoda Z., A universal formula for representing Lie algebra gen-
erators as formal power series with coefficients in the Weyl algebra, J. Algebra 309 (2007), 318-359,
arXiv:math.RT/0604096.

Freidel L., Kowalski-Glikman J., Nowak S., From noncommutative k-Minkowski to Minkowski space-time,
Phys. Lett. B 648 (2007), 70-75, arXiv:hep-th/0612170.

Freidel L., Livine E.R., 3D quantum gravity and effective noncommutative quantum field theory, Phys. Rev.
Lett. 96 (2006), 221301, 4 pages, arXiv:hep-th/0512113.

Garay L.J., Quantum gravity and minimum length, Internat. J. Modern Phys. A 10 (1995), 145-166,
arXiv:gr-qc,/9403008.

Giller S., Kosinski P., Majewski M., Maslanka P., Kunz J., More about the g-deformed Poincaré algebra,
Phys. Lett. B 286 (1992), 57-62.

Girelli F., Livine E.R., Scalar field theory in Snyder space-time: alternatives, J. High Energy Phys. 2011
(2011), no. 3, 132, 31 pages, arXiv:1004.0621.

Gnatenko K.P., Parameters of noncommutativity in Lie-algebraic noncommutative space, Phys. Rev. D 99
(2019), 026009, 9 pages, arXiv:1811.00419.

Govindarajan T.R., Gupta K.S., Harikumar E., Meljanac S., Meljanac D., Twisted statistics in x-Minkowski
spacetime, Phys. Rev. D 77 (2008), 105010, 6 pages, arXiv:0802.1576.

Govindarajan T.R., Gupta K.S., Harikumar E., Meljanac S., Meljanac D., Deformed oscillator algebras and
QFT in x-Minkowski spacetime, Phys. Rev. D 80 (2009), 025014, 11 pages, arXiv:0903.2355.

Gracia-Bondia J.M., Lizzi F., Marmo G., Vitale P., Infinitely many star products to play with, J. High
Energy Phys. 2002 (2002), no. 4, 026, 35 pages, arXiv:hep-th/0112092.

Guo H.-Y., Huang C.-G., Wu H.-T'.; Yang’s model as triply special relativity and the Snyder’s model — de
Sitter special relativity duality, Phys. Lett. B 663 (2008), 270-274, arXiv:0801.1146.

Gutt S., An explicit *-product on the cotangent bundle of a Lie group, Lett. Math. Phys. 7 (1983), 249-258.

Halliday S., Szabo R.J., Noncommutative field theory on homogeneous gravitational waves, J. Phys. A:
Math. Gen. 39 (2006), 5189-5225, arXiv:hep-th/0602036.

Juri¢ T., Kovacevi¢ D., Meljanac S., k-deformed phase space, Hopf algebroid and twisting, SIGMA 10
(2014), 106, 18 pages, arXiv:1402.0397.

Juri¢ T., Meljanac S., Pikuti¢ D., Realizations of k-Minkowski space, Drinfeld twists and related symmetry
algebras, FEur. Phys. J. C Part. Fields 75 (2015), 528, 16 pages, arXiv:1506.04955.

Jurié¢ T., Meljanac S., Pikuti¢ D., Strajn R., Toward the classification of differential calculi on k-Minkowski
space and related field theories, J. High Energy Phys. 2015 (2015), no. 7, 055, 33 pages, arXiv:1502.02972.

Juri¢ T., Meljanac S., Samsarov A., Light-like k-deformations and scalar field theory via Drinfeld twist,
J. Phys. Conf. Ser. 634 (2015), 012005, 11 pages, arXiv:1506.02475.

Jurié T., Meljanac S., Strajn R., k-Poincaré-Hopf algebra and Hopf algebroid structure of phase space from
twist, Phys. Lett. A 377 (2013), 2472-2476, arXiv:1303.0994.


https://doi.org/10.3390/universe7040099
https://arxiv.org/abs/2104.07336
https://doi.org/10.1103/PhysRevD.82.105031
https://arxiv.org/abs/1010.6258
https://doi.org/10.1088/1126-6708/2007/08/012
https://arxiv.org/abs/0705.3780
https://doi.org/10.1103/PhysRevD.77.105007
https://arxiv.org/abs/0708.1561
https://doi.org/10.1103/PhysRevD.77.105008
https://arxiv.org/abs/0802.3575
https://doi.org/10.1016/0370-2693(94)90940-7
https://doi.org/10.1016/0370-2693(94)90940-7
https://doi.org/10.1007/BF02104515
https://arxiv.org/abs/hep-th/0303037
https://doi.org/10.1016/j.jalgebra.2006.08.025
https://arxiv.org/abs/math.RT/0604096
https://doi.org/10.1016/j.physletb.2007.02.056
https://arxiv.org/abs/hep-th/0612170
https://doi.org/10.1103/PhysRevLett.96.221301
https://doi.org/10.1103/PhysRevLett.96.221301
https://arxiv.org/abs/hep-th/0512113
https://doi.org/10.1142/S0217751X95000085
https://arxiv.org/abs/gr-qc/9403008
https://doi.org/10.1016/0370-2693(92)90158-Z
https://doi.org/10.1007/JHEP03(2011)132
https://arxiv.org/abs/1004.0621
https://doi.org/10.1103/physrevd.99.026009
https://arxiv.org/abs/1811.00419
https://doi.org/10.1103/PhysRevD.77.105010
https://arxiv.org/abs/0802.1576
https://doi.org/10.1103/PhysRevD.80.025014
https://arxiv.org/abs/0903.2355
https://doi.org/10.1088/1126-6708/2002/04/026
https://doi.org/10.1088/1126-6708/2002/04/026
https://arxiv.org/abs/hep-th/0112092
https://doi.org/10.1016/j.physletb.2008.04.012
https://arxiv.org/abs/0801.1146
https://doi.org/10.1007/BF00400441
https://doi.org/10.1088/0305-4470/39/18/030
https://doi.org/10.1088/0305-4470/39/18/030
https://arxiv.org/abs/hep-th/0602036
https://doi.org/10.3842/sigma.2014.106
https://arxiv.org/abs/1402.0397
https://doi.org/10.1140/epjc/s10052-015-3760-7
https://arxiv.org/abs/1506.04955
https://doi.org/10.1007/JHEP07(2015)055
https://arxiv.org/abs/1502.02972
https://doi.org/10.1088/1742-6596/634/1/012005
https://arxiv.org/abs/1506.02475
https://doi.org/10.1016/j.physleta.2013.07.021
https://arxiv.org/abs/1303.0994

18 S. Meljanac and R. Strajn

[62] Koornwinder T.H., Special functions and ¢g-commuting variables, in Special Functions, ¢-Series and Related
Topics (Toronto, ON, 1995), Fields Inst. Commun., Vol. 14, Amer. Math. Soc., Providence, RI, 1997,
131-166, arXiv:q-alg/9608008.

[63] Koornwinder T.H., Swarttouw R.F., On g-analogues of the Fourier and Hankel transforms, arXiv:1208.2521.

[64] Kowalski-Glikman J., Nowak S., Non-commutative space-time of doubly special relativity theories, Inter-
nat. J. Modern Phys. D 12 (2003), 299-315, arXiv:hep-th/0204245.

[65] Kowalski-Glikman J., Smolin L., Triply special relativity, Phys. Rev. D 70 (2004), 065020, 6 pages,
arXiv:hep-th/0406276.

[66] Kulish P.P., Lyakhovsky V.D., Mudrov A.L., Extended Jordanian twists for Lie algebras, J. Math. Phys. 40
(1999), 45694586, arXiv:math.QA /9806014.

[67] Kupriyanov V.G., Kurkov M., Vitale P., x-Minkowski-deformation of U(1) gauge theory, J. High Energy
Phys. 2021 (2021), no. 1, 102, 17 pages, arXiv:2010.09863.

[58] Kupriyanov V.G., Vitale P., Noncommutative R? via closed star product, J. High Energy Phys. 2015 (2015),
no. 8, 024, 25 pages, arXiv:1502.06544.

[69] Kupriyanov V.G., Vitale P., A novel approach to non-commutative gauge theory, J. High Energy Phys.
2020 (2020), no. 8, 041, 14 pages, arXiv:2004.14901.

[60] Lizzi F., Vitale P., Time discretization from noncommutativity, Phys. Lett. B 818 (2021), 136372, 6 pages,
arXiv:2101.06633.

[61] Lu L., Stern A., Particle dynamics on Snyder space, Nuclear Phys. B 860 (2012), 186-205, arXiv:1110.4112.

[62] Lu L., Stern A., Snyder space revisited, Nuclear Phys. B 854 (2012), 894-912, arXiv:1108.1832.

[63] Lukierski J., Meljanac D., Meljanac S., Pikuti¢ D., Woronowicz M., Lie-deformed quantum Minkowski
spaces from twists: Hopf-algebraic versus Hopf-algebroid approach, Phys. Lett. B 777 (2018), 1-7,
arXiv:1710.09772.

[64] Lukierski J., Meljanac S., Woronowicz M., Quantum twist-deformed D = 4 phase spaces with spin sector
and Hopf algebroid structures, Phys. Lett. B 789 (2019), 8287, arXiv:1811.07365.

[65] Lukierski J., Nowicki A., Ruegg H., New quantum Poincaré algebra and x-deformed field theory, Phys.
Lett. B 293 (1992), 344-352.

[66] Lukierski J., Ruegg H., Nowicki A., Tolstoy V.N., ¢g-deformation of Poincaré algebra, Phys. Lett. B 264
(1991), 331-338.

[67] Lukierski J., Woronowicz M., New Lie-algebraic and quadratic deformations of Minkowski space from twisted
Poincaré symmetries, Phys. Lett. B 633 (2006), 116-124, arXiv:hep-th/0508083.

[68] Lukierski J., Woronowicz M., Spinorial Snyder and Yang models from superalgebras and noncommutative
quantum superspaces, Phys. Lett. B 824 (2022), 136783, 6 pages, arXiv:2110.13697.

[69] Madore J., An introduction to noncommutative differential geometry and its physical applications, London
Mathematical Society Lecture Note Series, Vol. 206, Cambridge University Press, Cambridge, 1995.

[70] Magueijo J., Smolin L., Lorentz invariance with an invariant energy scale, Phys. Rev. Lett. 88 (2002), 190403,
4 pages, arXiv:hep-th/0112090.

[71] Majid S., Foundations of quantum group theory, Cambridge University Press, Cambridge, 1995.

[72] Majid S., Ruegg H., Bicrossproduct structure of k-Poincaré group and non-commutative geometry, Phys.
Lett. B 334 (1994), 348-354, arXiv:hep-th/9405107.

[73] Maslanka P., The n-dimensional x-Poincaré algebra and group, J. Phys. A: Math. Gen. 26 (1993), L1251—
L1253.

[74] Mathieu P., Wallet J.-C., Gauge theories on k-Minkowski spaces: twist and modular operators, J. High
Energy Phys. 2020 (2020), no. 5, 112, 30 pages, arXiv:2002.023009.

[75] Mathieu P., Wallet J.-C., Single extra dimension from x-Poincaré and gauge invariance, J. High Energy
Phys. 2021 (2021), no. 3, 209, 25 pages, arXiv:2007.14187.

[76] Meljanac D., Meljanac S., Mignemi S., Pikuti¢ D., Strajn R., Twist for Snyder space, Eur. Phys. J. C Part.
Fields 78 (2018), 194, 9 pages, arXiv:1711.02941.

[77] Meljanac D., Meljanac S., Mignemi S., Strajn R., k-deformed phase spaces, Jordanian twists, Lorentz—Weyl
algebra, and dispersion relations, Phys. Rev. D 99 (2019), 126012, 12 pages, arXiv:1903.08679.

[78] Meljanac D., Meljanac S., Pikuti¢ D., Families of vector-like deformations of relativistic quantum phase

spaces, twists and symmetries, Fur. Phys. J. C' Part. Fields 77 (2017), 830, 12 pages, arXiv:1709.04745.


https://doi.org/10.1016/s0898-1221(96)90020-6
https://arxiv.org/abs/q-alg/9608008
https://arxiv.org/abs/1208.2521
https://doi.org/10.1142/S0218271803003050
https://doi.org/10.1142/S0218271803003050
https://arxiv.org/abs/hep-th/0204245
https://doi.org/10.1103/PhysRevD.70.065020
https://arxiv.org/abs/hep-th/0406276
https://doi.org/10.1063/1.532987
https://arxiv.org/abs/math.QA/9806014
https://doi.org/10.1007/jhep01(2021)102
https://doi.org/10.1007/jhep01(2021)102
https://arxiv.org/abs/2010.09863
https://doi.org/10.1007/JHEP08(2015)024
https://arxiv.org/abs/1502.06544
https://doi.org/10.1007/jhep08(2020)041
https://arxiv.org/abs/2004.14901
https://doi.org/10.1016/j.physletb.2021.136372
https://arxiv.org/abs/2101.06633
https://doi.org/10.1016/j.nuclphysb.2012.02.012
https://arxiv.org/abs/1110.4112
https://doi.org/10.1016/j.nuclphysb.2011.09.022
https://arxiv.org/abs/1108.1832
https://doi.org/10.1016/j.physletb.2017.12.007
https://arxiv.org/abs/1710.09772
https://doi.org/10.1016/j.physletb.2018.11.055
https://arxiv.org/abs/1811.07365
https://doi.org/10.1016/0370-2693(92)90894-A
https://doi.org/10.1016/0370-2693(92)90894-A
https://doi.org/10.1016/0370-2693(91)90358-W
https://doi.org/10.1016/j.physletb.2005.11.052
https://arxiv.org/abs/hep-th/0508083
https://doi.org/10.1016/j.physletb.2021.136783
https://arxiv.org/abs/2110.13697
https://doi.org/10.1103/PhysRevLett.88.190403
https://arxiv.org/abs/hep-th/0112090
https://doi.org/10.1017/CBO9780511613104
https://doi.org/10.1016/0370-2693(94)90699-8
https://doi.org/10.1016/0370-2693(94)90699-8
https://arxiv.org/abs/hep-th/9405107
http://stacks.iop.org/0305-4470/26/L1251
https://doi.org/10.1007/jhep05(2020)112
https://doi.org/10.1007/jhep05(2020)112
https://arxiv.org/abs/2002.02309
https://doi.org/10.1007/jhep03(2021)209
https://doi.org/10.1007/jhep03(2021)209
https://arxiv.org/abs/2007.14187
https://doi.org/10.1140/epjc/s10052-018-5657-8
https://doi.org/10.1140/epjc/s10052-018-5657-8
https://arxiv.org/abs/1711.02941
https://doi.org/10.1103/physrevd.99.126012
https://arxiv.org/abs/1903.08679
https://doi.org/10.1140/epjc/s10052-017-5373-9
https://arxiv.org/abs/1709.04745

Deformed Quantum Phase Spaces, Realizations, Star Products and Twists 19

[79]
(80]

(81]

(82]
(83]
(84]
(85]
(86]
(87]
(88]
(89]
[90]
(91]
(92]
(93]
(94]
(95]
(96]
(97]
(98]
(99]
[100]
[101]
[102]

[103]

Meljanac D., Meljanac S., Pikuti¢ D., Gupta K.S., Twisted statistics and the structure of Lie-deformed
Minkowski spaces, Phys. Rev. D 96 (2017), 105008, 6 pages, arXiv:1703.09511.

Meljanac D., Meljanac S., Skoda Z., Strajn R., One parameter family of Jordanian twists, SIGMA 15 (2019),
082, 16 pages, arXiv:1904.03993.

Meljanac D., Meljanac S., Skoda Z., Strajn R., Interpolations between Jordanian twists, the Poincaré—
Weyl algebra and dispersion relations, Internat. J. Modern Phys. A 35 (2020), 2050034, 15 pages,
arXiv:1911.03967.

Meljanac D., Meljanac S., Skoda Z., Strajn R., On interpolations between Jordanian twists, Internat. J.
Modern Phys. A 35 (2020), 2050160, 13 pages, arXiv:2003.01036.

Meljanac S., Kresi¢-Juri¢ S., Generalized kappa-deformed spaces, star products and their realizations,
J. Phys. A: Math. Theor. 41 (2008), 235203, 24 pages, arXiv:0804.3072.

Meljanac S., Kresi¢-Juri¢ S., Stoji¢ M., Covariant realizations of kappa-deformed space, Eur. Phys. J. C
Part. Fields 51 (2007), 229-240, arXiv:hep-th/0702215.

Meljanac S., Meljanac D., Mercati F., Pikuti¢ D., Noncommutative spaces and Poincaré symmetry, Phys.
Lett. B 766 (2017), 181-185, arXiv:1610.06716.

Meljanac S., Meljanac D., Mignemi S., Strajn R., Snyder-type space-times, twisted Poincaré algebra and
addition of momenta, Internat. J. Modern Phys. A 32 (2017), 1750172, 15 pages, arXiv:1608.06207.

Meljanac S., Meljanac D., Pachot A., Pikuti¢ D., Remarks on simple interpolation between Jordanian twists,
J. Phys. A: Math. Theor. 50 (2017), 265201, 11 pages, arXiv:1612.07984.

Meljanac S., Meljanac D., Samsarov A., Stoji¢ M., Lie algebraic deformations of Minkowski space with
Poincaré algebra, arXiv:0909.1706.

Meljanac S., Meljanac D., Samsarov A., Stoji¢ M., k-deformed Snyder spacetime, Modern Phys. Lett. A 25
(2010), 579-590, arXiv:0912.5087.

Meljanac S., Meljanac D., Samsarov A., Stoji¢ M., k Snyder deformations of Minkowski spacetime, realiza-
tions, and Hopf algebra, Phys. Rev. D 83 (2011), 065009, 16 pages, arXiv:1102.1655.

Meljanac S., Mignemi S., Associative realizations of the extended Snyder model, Phys. Rev. D 102 (2020),
126011, 9 pages, arXiv:2007.13498.

Meljanac S., Mignemi S., Associative realizations of k-deformed extended Snyder model, Phys. Rev. D 104
(2021), 086006, 9 pages, arXiv:2106.08131.

Meljanac S., Mignemi S., Unification of k-Minkowski and extended Snyder spaces, Phys. Lett. B 814 (2021),
136117, 5 pages, arXiv:2101.05275.

Meljanac S., Pachot A., Heisenberg doubles for :Snyder-type models, Symmetry 13 (2021), no. 6, 1055,
13 pages, arXiv:2101.02512.

Meljanac S., Samsarov A., Stoji¢ M., Gupta K.S., k-Minkowski spacetime and the star product realizations,
Eur. Phys. J. C Part. Fields 53 (2008), 295-309, arXiv:0705.2471.

Meljanac S., Samsarov A., Strajn R., k-deformation of phase space; generalized Poincaré algebras and
R-matrix, J. High Energy Phys. 2012 (2012), no. 8, 127, 16 pages, arXiv:1204.4324.

Meljanac S., Stoji¢é M., New realizations of Lie algebra kappa-deformed Euclidean space, Eur. Phys. J. C
Part. Fields 47 (2006), 531-539, arXiv:hep-th/0605133.

Meljanac S., Skoda Z., Hopf algebroid twists for deformation quantization of linear Poisson structures,
SIGMA 14 (2018), 026, 23 pages, arXiv:1605.01376.

Meljanac S., Skoda Z., Svrtan D., Exponential formulas and Lie algebra type star products, SIGMA 8
(2012), 013, 15 pages, arXiv:1006.0478.

Meljanac S., Skoda Z., Strajn R., Generalized Heisenberg algebra, realizations of the gl(n) algebra and
applications, Rep. Math. Phys. 89 (2022), 131-140, arXiv:2107.03111.

Meljanac S., Strajn R., Exponential formulas, normal ordering and the Weyl-Heisenberg algebra, SIGMA
17 (2021), 084, 7 pages, arXiv:2105.12593.

Miao Y.-G., Wang X.-D., Yu S.-J., Classical mechanics on noncommutative space with Lie-algebraic struc-
ture, Ann. Physics 326 (2011), 2091-2107, arXiv:0911.5227.

Mignemi S., Doubly special relativity and translation invariance, Phys. Lett. B 672 (2009), 186-189,
arXiv:0808.1628.


https://doi.org/10.1103/physrevd.96.105008
https://arxiv.org/abs/1703.09511
https://doi.org/10.3842/SIGMA.2019.082
https://arxiv.org/abs/1904.03993
https://doi.org/10.1142/s0217751x20500347
https://arxiv.org/abs/1911.03967
https://doi.org/10.1142/S0217751X20501602
https://doi.org/10.1142/S0217751X20501602
https://arxiv.org/abs/2003.01036
https://doi.org/10.1088/1751-8113/41/23/235203
https://arxiv.org/abs/0804.3072
https://doi.org/10.1140/epjc/s10052-007-0285-8
https://doi.org/10.1140/epjc/s10052-007-0285-8
https://arxiv.org/abs/hep-th/0702215
https://doi.org/10.1016/j.physletb.2017.01.006
https://doi.org/10.1016/j.physletb.2017.01.006
https://arxiv.org/abs/1610.06716
https://doi.org/10.1142/S0217751X1750172X
https://arxiv.org/abs/1608.06207
https://doi.org/10.1088/1751-8121/aa72d7
https://arxiv.org/abs/1612.07984
https://arxiv.org/abs/0909.1706
https://doi.org/10.1142/S0217732310032652
https://arxiv.org/abs/0912.5087
https://doi.org/10.1103/physrevd.83.065009
https://arxiv.org/abs/1102.1655
https://doi.org/10.1103/physrevd.102.126011
https://arxiv.org/abs/2007.13498
https://doi.org/10.1103/physrevd.104.086006
https://arxiv.org/abs/2106.08131
https://doi.org/10.1016/j.physletb.2021.136117
https://arxiv.org/abs/2101.05275
https://doi.org/10.3390/sym13061055
https://arxiv.org/abs/2101.02512
https://doi.org/10.1140/epjc/s10052-007-0450-0
https://arxiv.org/abs/0705.2471
https://doi.org/10.1007/JHEP08(2012)127
https://arxiv.org/abs/1204.4324
https://doi.org/10.1140/epjc/s2006-02584-8
https://doi.org/10.1140/epjc/s2006-02584-8
https://arxiv.org/abs/hep-th/0605133
https://doi.org/10.3842/SIGMA.2018.026
https://arxiv.org/abs/1605.01376
https://doi.org/10.3842/SIGMA.2012.013
https://arxiv.org/abs/1006.0478
https://doi.org/10.1016/S0034-4877(22)00013-1
https://arxiv.org/abs/2107.03111
https://doi.org/10.3842/SIGMA.2021.084
https://arxiv.org/abs/2105.12593
https://doi.org/10.1016/j.aop.2011.04.009
https://arxiv.org/abs/0911.5227
https://doi.org/10.1016/j.physletb.2009.01.023
https://arxiv.org/abs/0808.1628

20 S. Meljanac and R. Strajn

[104] Mignemi S., The Snyder—de Sitter model from six dimensions, Classical Quantum Gravity 26 (2009), 245020,
9 pages.

[105] Mignemi S., Doubly special relativity in de Sitter spacetime, Ann. Phys. 522 (2010), 924-940,
arXiv:0802.1129.

[106] Mignemi S., Classical and quantum mechanics of the nonrelativistic Snyder model, Phys. Rev. D 84 (2011),
025021, 11 pages, arXiv:1104.0490.

[107] Mignemi S., Classical and quantum mechanics of the nonrelativistic Snyder model in curved space, Classical
Quantum Gravity 29 (2012), 215019, 19 pages, arXiv:1110.0201.

[108] Mignemi S., Strajn R., Snyder dynamics in a Schwarzschild spacetime, Phys. Rev. D 90 (2014), 044019,
5 pages, arXiv:1404.6396.

[109] Mignemi S., Strajn R., Quantum mechanics on a curved Snyder space, Adv. High Energy Phys. 2016 (2016),
1328284, 6 pages, arXiv:1501.01447.

[110] Nair V.P., Polychronakos A.P., Quantum mechanics on the noncommutative plane and sphere, Phys. Lett. B
505 (2001), 267-274, arXiv:hep-th/0011172.

[111] Relancio J.J., Geometry of multiparticle systems with a relativistic deformed kinematics and the relative
locality principle, Phys. Rev. D 104 (2021), 024017, 13 pages, arXiv:2105.12573.

[112] Relancio J.J., Liberati S., Towards a geometrical interpretation of rainbow geometries, Classical Quantum
Gravity 38 (2021), 135028, 28 pages, arXiv:2010.15734.

[113] Romero J.M., Zamora A., Snyder noncommutative space-time from two-time physics, Phys. Rev. D 70
(2004), 105006, 5 pages, arXiv:hep-th/0408193.

[114] Romero J.M., Zamora A., The area quantum and Snyder space, Phys. Lett. B 661 (2008), 11-13,
arXiv:0802.1250.

[115] Ruan D., Jia Y., Ruan W., Boson and differential realizations of polynomial angular momentum algebra,
J. Math. Phys. 42 (2001), 2718-2724.

[116] Snyder H.S., Quantized space-time, Phys. Rev. 71 (1947), 38—41.

[117] Wess J., g-deformed Heisenberg algebras, arXiv:math-ph/9910013.
[118] Yang C.N., On quantized space-time, Phys. Rev. 72 (1947), 874.
(119]

119] Zakrzewski S., Quantum Poincaré group related to the k-Poincaré algebra, J. Phys. A: Math. Gen. 27

(1994), 2075-2082.


https://doi.org/10.1088/0264-9381/26/24/245020
https://doi.org/10.1002/andp.201000105
https://arxiv.org/abs/0802.1129
https://doi.org/10.1103/physrevd.84.025021
https://arxiv.org/abs/1104.0490
https://doi.org/10.1088/0264-9381/29/21/215019
https://doi.org/10.1088/0264-9381/29/21/215019
https://arxiv.org/abs/1110.0201
https://doi.org/10.1103/physrevd.90.044019
https://arxiv.org/abs/1404.6396
https://doi.org/10.1155/2016/1328284
https://arxiv.org/abs/1501.01447
https://doi.org/10.1016/S0370-2693(01)00339-2
https://arxiv.org/abs/hep-th/0011172
https://doi.org/10.1103/physrevd.104.024017
https://arxiv.org/abs/2105.12573
https://doi.org/10.1088/1361-6382/ac05d7
https://doi.org/10.1088/1361-6382/ac05d7
https://arxiv.org/abs/2010.15734
https://doi.org/10.1103/PhysRevD.70.105006
https://arxiv.org/abs/hep-th/0408193
https://doi.org/10.1016/j.physletb.2008.02.001
https://arxiv.org/abs/0802.1250
https://doi.org/10.1063/1.1369656
https://doi.org/10.1103/PhysRev.71.38
https://arxiv.org/abs/math-ph/9910013
https://doi.org/10.1103/PhysRev.72.874
https://doi.org/10.1088/0305-4470/27/6/030

	1 Introduction
	2 Lie deformed quantum phase space and realizations
	3 Star product from realizations
	3.1 Snyder space and an extension with tensorial coordinates

	4 Coproduct of momenta and twist from star product and realizations
	5 Linear realizations
	5.1 Right covariant realization of kappa-Minkowski space time
	5.2 Left covariant realization of kappa-Minkowski space time
	5.3 Light like realization of kappa-Minkowski spacetime

	6 Quadratic deformations of quantum phase space
	6.1 Quadratic deformations of Minkowski space from dilatation

	7 Generalization of Yang and triply special relativity models
	References

