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Abstract. By specializing the parameters in the partition function of the 8VSOS model
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1 Introduction

In 1967, Lieb [15] solved the first special cases of the six-vertex (6V) model on a square lattice,
with periodic boundary conditions in both directions. Later the same year, Sutherland [25]
solved the general case. A bijection from the states of the 6V model to three-colorings of
a square lattice, where the color is fixed on one face and all adjacent faces have different colors,
was found by Lenard [15, (note added in proof)]. The three-color model, where each color is
given a weight, was introduced by Baxter [1].

Izergin [10, 11] obtained a determinant formula for the partition function of the 6V model
with domain wall boundary conditions (DWBC) [12]. By specializing the parameters in this
determinant formula, Kuperberg [13] gave an alternative proof of the alternating sign matrix
(ASM) conjecture of Mills, Robbins and Rumsey [17], which gives a formula for the number of
ASMs. This conjecture was originally proven a few months earlier by Zeilberger [28]. The eight-
vertex solid-on-solid (8VSOS) model [3] is a two parameter generalization of the 6V model.
Rosengren [22] specialized the parameters of the 8VSOS model with DWBC in Kuperberg’s
manner and obtained the three-color model.

Kuperberg [14] later used Tsuchiya’s [26] determinant formula for the partition function of
the 6V model with DWBC and one reflecting end to give a formula for the number of UASMs,
which are ASMs with U-turns on one side. A determinant formula for the partition function of
the 8VSOS model with DWBC and one reflecting end was given by Filali [7] in 2011.

Razumov and Stroganov [18] found connections between the supersymmetric XXZ spin chain
(i.e., where ∆ = −1/2 in the Hamiltonian, see, e.g., [8]) and ASMs. Similar problems for the
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supersymmetric XYZ spin chain were studied by Bazhanov and Mangazeev [4, 16] (see also [20]).
The ground state eigenvalues of Baxter’s Q-operator [2] for the eight-vertex (8V) model as well
as the components of the ground state eigenvectors of the supersymmetric XYZ-Hamiltonian
can be expressed in terms of certain polynomials which seem to have positive integer coefficients
[5, 16]. Further investigation has been done by Brasseur and Hagendorf [6].

In Rosengren’s study of the 8VSOS model, certain polynomials with positive coefficients
showed up and in [24], Rosengren generalized these polynomials. Zinn-Justin [29] introduced
equivalent polynomials and conjectured that Bazhanov’s and Mangazeev’s polynomials are spe-
cializations of these. This led to the suspicion that the combinatorial interpretation of the
polynomials of Bazhanov and Mangazeev could have to do with the three-color model.

In this article, as well as in a previous one [9], we assume Zinn-Justin’s conjecture, i.e., we use
Rosengren’s polynomials as the definition of Bazhanov’s and Mangazeev’s polynomials. In [9], we
studied the connection between the three-color model and the polynomials qn−1(z) of Bazhanov
and Mangazeev, appearing in the eigenvectors of the Hamiltonian of the supersymmetric XYZ
spin chain. By specializing the parameters in the partition function of the 8VSOS model with
DWBC and reflecting end in Kuperberg’s way, we found an explicit combinatorial expression
for qn−1(z), n ≥ 0, in terms of the partition function of the three-color model on a lattice of size
2n× n with the same boundary conditions.

In [9], we specialized all the spectral parameters in the same way. In the present article, we
specialize one of the parameters slightly differently to find a connection between the three-color
model on a lattice of size 2n×n, and another set of polynomials, which Bazhanov and Mangazeev
call pn−1(z), also appearing in the supersymmetric XYZ eigenvectors. Again we consider n ≥ 0.
The expressions that we encounter in this paper get a bit more complicated than in the qn−1(z)
case, as the expression includes a sum connected to certain rows of the lattice, which does not
appear for qn−1(z).

The paper is organized as follows. In Section 2, we introduce the 8VSOS model as well as the
three-color model. In Section 3 we specialize the parameters in Filali’s determinant formula and
write the partition function in terms of certain polynomials, equivalent to pn(z). In Section 4
we do the same specialization in the very definition of the partition function and get another
expression. In Sections 5 and 6, we combine the two expressions. Using three-colorings, we
finally find combinatorial formulas for pn(z) in terms of three-colorings.

2 Preliminaries

Let τ and η be fixed parameters with Im(τ) > 0 and η /∈ Z+ τZ. Define p = e2πiτ and q = e2πiη.
We then define the theta function

ϑ(x, p) =

∞∏
j=0

(
1− pjx

)(
1− pj+1/x

)
.

We will often suppress the p and write ϑ(x) := ϑ(x, p). We write out the second parameter only
when it is not just p. We will also use the short hand notation ϑ(bx±a) := ϑ(bxa)ϑ(bx−a). Then
we define

[x] = q−x/2ϑ
(
qx, p

)
.

The most important properties of the theta function are

ϑ(px) = ϑ(1/x) = −1

x
ϑ(x),

and the addition rule

ϑ(x1x3)ϑ(x1/x3)ϑ(x2x4)ϑ(x2/x4)− ϑ(x1x4)ϑ(x1/x4)ϑ(x2x3)ϑ(x2/x3)
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Figure 1. The 8VSOS model with DWBC and reflecting end in the case n = 3. The parameters µi

and λi are the spectral parameters.

=
x2
x3
ϑ(x1x2)ϑ(x1/x2)ϑ(x3x4)ϑ(x3/x4). (2.1)

Also define ω = e2πi/3. Later on we will specify to η = −2/3 (which corresponds to supersym-
metry [8]). In this case q = ω.

For any a ∈ Z and arbitrary x, we have [22]

ωa = ωa+3, 1 + ω + ω2 = 0,

ϑ
(
p1/2ω

)
= ϑ

(
p1/2ω2

)
, (2.2)

and

ϑ
(
xωa

)
ϑ
(
xωa+1

)
ϑ
(
xωa+2

)
= ϑ

(
x3, p3

)
. (2.3)

2.1 The 8VSOS model with DWBC and reflecting end

Now we will define the model that we are studying in this paper. Consider a square lattice with
2n×n lines, where the 2n horizontal lines are connected pairwise at the left edge as in Figure 1.
We equip each line with an orientation. The positive direction is upwards for the vertical lines.
For the horizontal double lines, the positive direction goes to the left for the lower part, then it
turns and goes to the right on the upper part of the double line. The left side, where the lines
turn, is called the reflecting end. To each edge and to each turn we assign a spin ±1. A lattice
with a spin assigned to each edge and each turn is called a state. Graphically we can describe
the orientation of a line with a big arrow at the end of the line, and the spins we describe with
arrows on the edges. A positive spin, +1, corresponds to an arrow pointing in the positive
direction of the line, and a negative spin, −1, corresponds to an arrow pointing in the opposite
direction.

The spins need to follow the so-called ice rule, which demands that at each vertex, two arrows
must be pointing inwards and two arrows must be pointing outwards. Because of the ice rule,
there can only be six types of different local configurations of the spins at the vertices. These
are the vertices in Figure 2. Because of the reflecting end, for every second row in the square
lattice, we need to read off the vertices 90 degrees counterclockwise. We assume two possibilities
for the turns, depicted in Figure 3. This corresponds to a diagonal reflection matrix [7], and
therefore we say that the model has a diagonal reflecting end.

To each vertical line we assign a spectral parameter µj , and to each horizontal double line
we assign a parameter with the value −λi on the lower part of the line, and the value λi on
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Figure 2. The nonzero vertex weights for the 8VSOS model. The spins are indicated with an arrow

halfway the edge, where right and up are positive spins, and left and down are negative spins. The vertex

weights depend on the spin configurations, the spectral parameters λ and µ, the height z in the upper

left face, as well as on the dynamical parameter ρ.
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Figure 3. The nonzero boundary weights for the diagonal reflecting end. The weights depend on the

spin configurations, the spectral parameter λ, the height z outside the turn, the dynamical parameter ρ,

as well as on the boundary parameter ζ.

the upper part of the line, see Figure 1. To each face of the lattice, we assign a height a ∈ Z.
Looking in the direction of each spin arrow, the height to the right of the edge must always
be 1 smaller than the height to the left. Fixing the height in one single face of a given state
determines the heights of the whole state. We fix the height in the upper left corner to be 0.
Finally, we fix a so-called dynamical parameter ρ ∈ C and a boundary parameter ζ ∈ C.

On the left side of the model we have the reflecting wall. On the remaining three sides, we
take DWBC, which means that the spin arrows on the top and the bottom are pointing inwards
and the spin arrows on the right boundary are pointing outwards, as in Figure 1. Fixing the
height in the upper left corner, all the heights of the faces at the boundaries are determined by
the boundary conditions, except for the heights of the faces inside the turns.

2.2 Weights and partition function of the 8VSOS model

To each vertex, we assign a weight which depends on the spins on the adjacent edges, on the
height in one of the corners, the dynamical parameter ρ, as well as on the spectral parameters λi
and µj on the lines going through the vertex. Each vertex weight is given by a function w, which
is one of the six functions a±, b± or c±, depending on the spin configuration as in Figure 2.
To a vertex on the upper part of a double line, with spectral parameters λi and µj , and height z
in the upper left corner, as in Figure 2, we assign the weight w(λi−µj , qρ+z). On the lower part of
the double line, we need to read off the weights 90 degrees counterclockwise and thus consider the
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height z in the lower left corner. The weight in this case is w
(
µj−(−λi), qρ+z

)
= w

(
λi+µj , q

ρ+z
)
.

Finally to each turn with spectral parameter λi and height z inside the turn, as in Figure 3, we
assign a weight w

(
λi, q

ρ+z, qζ
)
, where w is one of the two functions k± depending on the spins

on the turning edge. These local weights are given by

a+(λ, q
z) = a−(λ, q

z) =
[λ+ 1]

[1]
,

b+(λ, q
z) =

[λ][z − 1]

[z][1]
, b−(λ, q

z) =
[λ][z + 1]

[z][1]
,

c+(λ, q
z) =

[z + λ]

[z]
, c−(λ, q

z) =
[z − λ]

[z]
,

k+
(
λ, qz, qζ

)
=

[z + ζ − λ]

[z + ζ + λ]
, k−

(
λ, qz, qζ

)
=

[ζ − λ]

[ζ + λ]
,

and correspond to the different local spin configurations as in Figures 2 and 3. Sometimes when
it is the spin configurations around a vertex or at a turn that are of interest, we will refer to
an a±, b±, c± vertex or a k+ (positive) or k− (negative) turn, without mentioning the different
parameters.

The weight of a state is given by the product of all the local weights of the vertices and turns.
The partition function is defined as

Zn

(
qλ1 , . . . , qλn , qµ1 , . . . , qµn , qρ, qζ

)
=
∑
states

∏
vertices

w(vertex)
∏
turns

w(turn). (2.4)

The vertex weights in the partition function are either w(λi+µj , q
ρ+z) or w(λi−µj , qρ+z), where

w is one of a±, b± and c± defined above, and the weights of the turns are one of k±(λi, q
ρ+z, qζ).

It is easy to see that the weights as well as the partition function (2.4) are well-defined (see [9]).
Filali [7] used the Izergin–Korepin method to obtain a determinant formula for the partition
function of the 8VSOS model with DWBC and reflecting end, namely,

Zn

(
qλ1 , . . . , qλn , qµ1 , . . . , qµn , qρ, qζ

)
= [1]n−2n

2
n∏

i=1

[2λi][ζ − µi][ρ+ ζ + µi][ρ+ (2i− n− 2)]

[ζ + λi][ρ+ ζ + λi][ρ+ (n− i)]

×
∏n

i,j=1[λi + µj + 1][λi − µj + 1][λi + µj ][λi − µj ]∏
1≤i<j≤n[λi + λj + 1][λi − λj ][µj + µi][µj − µi]

det
1≤i,j≤n

K, (2.5)

where

Kij =
1

[λi + µj + 1][λi − µj + 1][λi + µj ][λi − µj ]
.

2.3 The three-color model and its partition function

Another model showing up in this paper is the three-color model. This is a model on a square
lattice, with the faces filled with three different colors, which we call color 0, 1, and 2, such that
adjacent faces have different colors. A weight ti is assigned to each face of color i. A state of
the three-color model is called a three-coloring.

We study the three-color model on the 2n×n lattice (i.e., a lattice with (2n+1)×(n+1) faces).
If we reduce the heights a of the faces in the 8VSOS model modulo 3, the states of the 8VSOS
model can be identified with the states of the three-color model, see Figure 4. The DWBC and
the reflecting end in the 8VSOS model correspond to the following rules for the colors in the



6 L. Hietala

1

2

1

0 1 2 0

2

1

0

2

1

0120

0

0

0

1

0

2

0

1

0

1

0

2

Figure 4. A state of the three-color model, for n = 3, with colors 0, 1 and 2. The arrows on the edges

show the corresponding state in the 8VSOS model. Here m = 1.

three-color model. In the upper left corner, we fix color 0. On three of the boundaries, the
colors alternate cyclically. Starting from the upper left corner, going to the right, the colors
increase in the order 0 < 1 < 2 < 0, to reach nmod3 in the upper right corner. From there,
going down, the colors decrease down to (−n)mod 3 in the lower right corner. Continuing to
the left, the colors increase again, up to 0 in the lower left corner. On the left hand side, at the
reflecting wall, every second face has color 0. Inside the turns, the colors differ depending on the
type of turn in the corresponding state of the 8VSOS model. A negative turn corresponds to
color 1, and a positive turn corresponds to color 2. We will henceforth assume these boundary
conditions, even if we do not mention them explicitly. The partition function of the three-color
model with DWBC and reflecting end, and with color 0 fixed in the upper left corner, is

Z3C
n (t0, t1, t2) =

∑
states

∏
faces

ti.

Let m be the number of positive turns in a state of the 8VSOS model with DWBC and
reflecting end. Specifying m means that we have specified the number of faces with color 2
on the left side. If we specify m = 0, the colors on the left side alternate between color 0
and 1. There is a bijection between the three-colorings with m = 0 and the vertically symmetric
alternating sign matrices of size (2n+ 1)× (2n+ 1) [14].

3 Connection to Rosengren’s polynomials

The goal in this paper is to express the partition function in terms of certain polynomials pn, see
further Section 6. To do this we specialize the variables in the partition function of the 8VSOS
model with DWBC and reflecting end.

First, introduce the variables [24]

ψ := ψ(τ) =
ω2ϑ(−1)ϑ

(
−p1/2ω

)
ϑ
(
−p1/2

)
ϑ(−ω)

, x(z) =
ϑ
(
−p1/2ω

)2
ϑ
(
ωe±2πiz

)
ϑ(−ω)2ϑ

(
p1/2ωe±2πiz

) ,
and define

T (x1, . . . , x2n) =

∏n
i,j=1G(xj , xn+i)

∆(x1, . . . , xn)∆(xn+1, . . . , x2n)
det

1≤i,j≤n

(
1

G(xj , xn+i)

)
, (3.1)

where ∆(x1, . . . , xn) =
∏

1≤i<j≤n(xj − xi) is the Vandermonde polynomial, and

G(x, y) = (ψ + 2)xy(x+ y) + ψ(2ψ + 1)(x+ y)− 2
(
ψ2 + 3ψ + 1

)
xy − ψ

(
x2 + y2

)
.
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T is a symmetric polynomial [23] as well. For ψ, the following identities hold [22, Lemma 9.1]:

2ψ + 1 =
ϑ
(
−p1/2ω

)2
ϑ(ω)2

ϑ(−ω)2ϑ
(
p1/2ω

)2 , (3.2)

ψ + 1 = −
ϑ
(
p1/2

)
ϑ
(
−p1/2ω

)
ϑ
(
−p1/2

)
ϑ
(
p1/2ω

) . (3.3)

Another identity we will need, which follows from the addition rules (2.1) and (2.2), is

x(z)− x(w) =
ϑ
(
−p1/2ω

)2
ϑ
(
p1/2ω

)
ϑ
(
p1/2

)
ω

ϑ(−ω)2
e−2πiwϑ

(
e2πi(w±z)

)
ϑ
(
p1/2ωe±2πiz

)
ϑ
(
p1/2ωe±2πiw

) . (3.4)

We also need the following lemma, which is Lemma 4.1 of [9], where it is proven.

Lemma 3.1. We have

ϑ
(
e2πi(w±z)

)
ϑ
(
e6πi(w±z), p3

) =
C̃e−4πiw

ϑ
(
p1/2ωe±2πiw

)2
ϑ
(
p1/2ωe±2πiz

)2 1

G(x(z), x(w))
,

with

C̃ =
ω2ϑ(−1)ϑ

(
p1/2

)3
ϑ
(
p1/2ω

)2
ϑ
(
−p1/2ω

)6
ϑ(−ω)4ϑ

(
−p1/2

) .

As in [9], we rewrite Filali’s determinant formula (2.5) and specialize to η = −2/3. Let
zn+i = −2(λi − 1)/3 and zj = −2µj/3 for all 0 ≤ i, j ≤ n. By using (2.3), (3.4) and Lemma 3.1
we can rewrite Filali’s determinant formula in terms of the polynomials T . Details can be found
in [9, Section 4]. The partition function becomes

Zn

(
qλ1 , . . . , qλn , qµ1 , . . . , qµn , ρ, ζ

)
= (−1)(

n
2)ω(

n+1
2 )ϑ(ω)n−2n

2
Cn2−nB̃

2n∏
i=1

ϑ
(
p1/2ωe±2πizi

)n−1
×

n∏
i=1

ϑ
(
ωe4πizn+i

)
ϑ
(
ζe−2πizi

)
ϑ
(
ρζe2πizi

)
ϑ
(
ζωe2πizn+i

)
ϑ
(
ρζωe2πizn+i

) T (x(z1), . . . , x(z2n)),

where

C =
ϑ(−ω)2ϑ

(
−p1/2

)
ωϑ(−1)ϑ

(
p1/2

)2
ϑ
(
p1/2ω

)
ϑ
(
−p1/2ω

)4
and

B̃ =


1, for n ≡ 0, 2 mod 3,

ϑ
(
ρω2

)
ϑ(ρ)

, for n ≡ 1 mod 3.

The goal is to express the partition function in terms of the polynomials pn which correspond
to T (2ψ + 1, . . . , 2ψ + 1, ψ), see further Section 6. To do this, specialize λi = 1 for all i, and
µj = 0 for 1 ≤ j ≤ n− 1, i.e., zi = 0 for all i except for i = n. Recall that x(0) = 2ψ + 1 (3.2).
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To get x(zn) = ψ, we must have zn = −1/6 and µn = 1/4, and hence qµn = −ω. Specializing
to µn = 1/4 yields

Zn(ω, . . . , ω︸ ︷︷ ︸
n times

, 1, . . . , 1︸ ︷︷ ︸
n−1 times

,−ω, ρ, ζ) = (−1)(
n+1
2 )ω(

n
2)
(

C

ϑ(ω)2

)n2−n

× B̃ϑ
(
p1/2ω

)2(n−1)(2n−1)(
ϑ
(
−p1/2ω2

)
ϑ
(
−p1/2

))n−1
×
(

ϑ(ζ)ϑ(ρζ)

ϑ(ζω)ϑ(ρζω)

)n−1ϑ
(
−ζω2

)
ϑ(−ρζω)

ϑ(ζω)ϑ(ρζω)
T (2ψ + 1, . . . , 2ψ + 1, ψ). (3.5)

Now we want to rewrite
( ϑ(ζ)ϑ(ρζ)
ϑ(ζω)ϑ(ρζω)

)n−1 ϑ(−ζω2)ϑ(−ρζω)
ϑ(ζω)ϑ(ρζω) in terms of ϑ(ρζω2)

ϑ(ρζω) and ϑ(ζω2)
ϑ(ζω) . As

in [9],

ϑ(ζ)ϑ(ρζ)

ϑ(ζω)ϑ(ρζω)
= −ωϑ(ρω)

ϑ(ρ)

ϑ
(
ρζω2

)
ϑ(ρζω)

−
ω2ϑ

(
ρω2

)
ϑ(ρ)

ϑ
(
ζω2

)
ϑ(ζω)

and

ϑ
(
−ζω2

)
ϑ(−ρζω)

ϑ(ζω)ϑ(ρζω)
= −

ωϑ(−1)ϑ
(
−ρω2

)
ϑ(ρ)ϑ(ω)

ϑ
(
ρζω2

)
ϑ(ρζω)

+
ϑ(−ω)ϑ(ρ)
ϑ(ρ)ϑ(ω)

ϑ
(
ζω2

)
ϑ(ζω)

,

because of the addition rule (2.1). Using the binomial theorem we conclude that(
ϑ(ζ)ϑ(ρζ)

ϑ(ζω)ϑ(ρζω)

)n−1ϑ
(
−ζω2

)
ϑ(−ρζω)

ϑ(ζω)ϑ(ρζω)

=
(−1)n

ϑ(ρ)nϑ(ω)

n∑
m=0

((
n− 1

m− 1

)
ω2n−mϑ(−1)ϑ

(
−ρω2

)
ϑ(ρω)m−1ϑ

(
ρω2

)n−m
−
(
n− 1

m

)
ω2n−m−2ϑ(−ω)ϑ(−ρ)ϑ(ρω)mϑ

(
ρω2

)n−m−1)
×
(
ϑ
(
ρζω2

)
ϑ(ρζω)

)m(ϑ(ζω2
)

ϑ(ζω)

)n−m
.

Inserting this into (3.5) yields

Zn(ω, . . . , ω, 1, . . . , 1,−ω, ρ, ζ)

= (−ω)(
n+1
2 )+n

(
C

ϑ(ω)2

)n2−n
T (2ψ + 1, . . . , 2ψ + 1, ψ)

×
B̃ϑ
(
p1/2ω

)2(n−1)(2n−1)
(ϑ
(
−p1/2ω2

)
ϑ
(
−p1/2)

)n−1
ϑ(ρ)nϑ(ω)

×
n∑

m=0

((
n− 1

m− 1

)
ω−mϑ(−1)ϑ

(
−ρω2

)
ϑ(ρω)m−1ϑ

(
ρω2

)n−m −
(
n− 1

m

)
ω−m−2

× ϑ(−ω)ϑ(−ρ)ϑ(ρω)mϑ
(
ρω2

)n−m−1)(ϑ(ρζω2
)

ϑ(ρζω)

)m(ϑ(ζω2
)

ϑ(ζω)

)n−m
. (3.6)

In Section 6, we will identify this expression for the partition function with another expression,
which we will derive in the next section.
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4 The partition function

In the previous section we were able to write Filali’s determinant formula of the partition function
in terms of the polynomials T . In this section we instead start with the partition function written
in the form∑

states

∏
vertices

w(vertex)
∏
turns

w(turn).

We specialize the variables in the same way as in the last section to get an expression in terms
of a special case of the three-color model. We follow the same steps as in [9, Section 3], but in
the present paper, we specialize one of the variables slightly differently, which forces us to treat
one of the columns separately through all computations.

Specialize λi = 1 and µj = 0 for all 1 ≤ i ≤ n and 1 ≤ j ≤ n − 1 in the partition function.
Everywhere, except at the vertices depending on µn, the weights are thus w(1, ρqa), where a is
the height of the face in the upper left or lower left corner as explained in Section 2.2. On the
rightmost column of vertices, each vertex weight is either w(1 + µn, ρq

a) or w(1− µn, ρq
a). The

weights of the turns are w(1, ρ, ζ). The partition function can hence be written

Zn(q, . . . , q, 1, . . . , 1, q
µn , ρ, ζ)

=
∑
states

( ∏
turns

w(1, ρ, ζ)
∏

vertices not in the
rightmost column

w(1, ρqa)
∏

vertices in the
rightmost column

w(1± µn, ρq
a)

)
.

We first focus on the weights not depending on µn. As in [9], we would like to factor things out
from the weights, so that we can write all weights with one single formula, depending only on
the heights of the adjacent faces of each vertex, as opposed to the original weights which have
different formulas depending on the spins around the vertex. The following lemma is similar to
[9, Proposition 3.2] or [21, Proposition 7.1].

Lemma 4.1. Let λi = 1 and µj = 0 for all i and 1 ≤ j ≤ n − 1. For each vertex, let a, b, c,
d denote the heights on the adjacent faces as in Figure 5, and for each turn, let a be the height
inside the turn. Let ν(w) be the number of vertices of type w in a state, and let νr(w) be the
number of vertices of type w in the rightmost vertex column. For each state,∏

vertices not in the
rightmost column

w(1, ρqa)
∏
turns

w(1, ρ, ζ) = P
∏

vertices not in the
rightmost column

ϑ
(
ρq

3
2
a−b+ 1

2
d
)

ϑ(ρqa)

∏
turns

ϑ
(
ρ(1−a)/2ζq−1

)
ϑ
(
ρ(1−a)/2ζq

) ,

where

P = q−n(n−1)+ν(b+)−νr(b+)+ν(c−)−νr(c−)+n

(
ϑ
(
q2
)

ϑ(q)

)2n(n−1)−ν(b+,b−,c+,c−)+νr(b+,b−,c+,c−)

.

Proof. We have

a+(1, ρq
a) = a−(1, ρq

a) =
q−1/2ϑ

(
q2
)

ϑ(q)
,

b+(1, ρq
a) =

q1/2ϑ
(
ρqa−1

)
ϑ(ρqa)

, b−(1, ρq
a) =

q−1/2ϑ
(
ρqa+1

)
ϑ(ρqa)

,

c+(1, ρq
a) =

q−1/2ϑ
(
ρqa+1

)
ϑ(ρqa)

, c−(1, ρq
a) =

q1/2ϑ
(
ρqa−1

)
ϑ(ρqa)

,

k+(1, ρ, ζ) =
qϑ
(
ρζq−1

)
ϑ(ρζq)

, k−(1, ρ, ζ) =
qϑ
(
ζq−1

)
ϑ(ζq)

.
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λi

µj

a b

c d

−λi

µj

b d

a c

Figure 5. Vertices with heights a, b, c and d on the adjacent faces.

From each vertex weight w(1, ρqa), factor out q−1/2, and put it in a prefactor P . Then factor

out ϑ(q2)
ϑ(q) from the weights of type a+ and a−, and factor out q from b+ and c−. From each

weight of a turn, factor out q. Then we get new vertex weights

ã+(1, ρq
a) = ã−(1, ρq

a) = 1,

b̃+(1, ρq
a) = c̃−(1, ρq

a) =
ϑ
(
ρqa−1

)
ϑ(ρqa)

, b̃−(1, ρq
a) = c̃+(1, ρq

a) =
ϑ
(
ρqa+1

)
ϑ(ρqa)

,

k̃+(1, ρ, ζ) =
ϑ
(
ρζq−1

)
ϑ(ρζq)

, k̃−(1, ρ, ζ) =
ϑ
(
ζq−1

)
ϑ(ζq)

,

and the prefactor is

P =
(
q−1/2

)2n(n−1)(ϑ(q2)
ϑ(q)

)2n(n−1)−ν(b+,b−,c+,c−)+νr(b+,b−,c+,c−)

qν(b+)−νr(b+)+ν(c−)−νr(c−)+n.

One can now verify that for each vertex of type ã±, b̃± or c̃±, we have

w̃(1, ρqa) =
ϑ
(
ρq

3
2
a−b+ 1

2
d
)

ϑ(ρqa)
,

where a, b, c and d are the heights on the adjacent faces as in Figure 5. Furthermore,

k̃±(1, ρ, ζ) =
ϑ
(
ρ(1−a)/2ζq−1

)
ϑ
(
ρ(1−a)/2ζq

) ,

where a is the height of the face inside the turn. ■

The following lemma is proven in [9].

Lemma 4.2. For any given state of the 8VSOS model with DWBC and reflecting end, let ν(w)
be the number of vertices or turns of type w. Then we have

ν(b+) = ν(b−) +

(
n+ 1

2

)
and ν(c+) + 2ν(k−) = ν(c−) + n.

Because of the boundary conditions, we have 2n outgoing arrows on the edges to the right,
and ingoing arrows on the edges on the top and the bottom. The ice rule thus forces the arrows
on the horizontal edges between the (n− 1)th and the nth column (counted from the left) to be
right arrows, except for in one place, where the arrow must be a left arrow, see Figure 6. Given
the placement of the left arrow in the second to last column, we know the vertex weights on the
entire rightmost column of vertices. We have the following lemma.

Lemma 4.3. For any given state of the 8VSOS model with DWBC and reflecting end, there is
exactly one left arrow on the edges between the (n−1)th and the nth column of vertices. Assume
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· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

−λ1

−λk

−λn

··
·

··
·

··
·

··
·

··
·

··
·

µ1 µn−1 µn

0 1 n− 2 n− 1 n

n− 1

n− 2

−n+ 2k

−n+ 2k − 1

−n+ 2k − 2

−n+ 2

−n+ 1

−n−n+ 1−n+ 2−10

0

0

0

0

0

n− 2

n− 3

−n+ 2k − 1

−n+ 2k − 2

−n+ 2k − 1

−n+ 3

−n+ 2
· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

−λ1

−λk

−λn

··
·

··
·

··
·

··
·

··
·

··
·

µ1 µn−1 µn

0 1 n− 2 n− 1 n

n− 1

n− 2

−n+ 2k

−n+ 2k − 1

−n+ 2k − 2

−n+ 2

−n+ 1

−n−n+ 1−n+ 2−10

0

0

0

0

0

n− 2

n− 3

−n+ 2k − 1

−n+ 2k

−n+ 2k − 1

−n+ 3

−n+ 2

Figure 6. On the edges between the (n−1)th and nth column of vertices, there is exactly one left arrow

in each state. The single left arrow is on row l = 2k− 1 in the left lattice, and on row l = 2k in the right

lattice, counted from below.

that the left-pointing arrow is in the lth row counted from below. In the case that l = 2k − 1 is
odd, the contribution to the partition function from the rightmost column of vertices, i.e., where
the weights are depending on µn, is∏

vertices in the
rightmost column

w(1± µn, ρq
a) =

k−1∏
i=1

[
b+
(
1 + µn, ρq

−n+2i−1)a+(1− µn, ρq
−n+2i+1

)]
× c+

(
1 + µn, ρq

−n+2k−1)b+(1− µn, ρq
−n+2k−1)

×
n∏

i=k+1

[
a−
(
1 + µn, ρq

−n+2i−3)b+(1− µn, ρq
−n+2i−1)].

In the case that l = 2k is even, the contribution is∏
vertices in the

rightmost column

w(1± µn, ρq
a) =

k−1∏
i=1

[
b+
(
1 + µn, ρq

−n+2i−1)a+(1− µn, ρq
−n+2i+1

)]
× b+

(
1 + µn, ρq

−n+2k−1)c−(1− µn, ρq
−n+2k−1)

×
n∏

i=k+1

[
a−
(
1 + µn, ρq

−n+2i−3)b+(1− µn, ρq
−n+2i−1)].

Because of Lemma 4.2, we know the difference between the number of b+ and b− vertices,
and the difference between the number of c+ and c− vertices. Because of Lemma 4.3, we know
the number of b± and c± in the rightmost vertex column, and they only depend on whether l is
even or odd.

Corollary 4.4. Let νr(w) be the number of vertices of type w in the rightmost vertex column,
and let l be the row where the single left arrow of the rightmost column sits. Then

νr(b+) = n, νr(b−) = 0,
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and

νr(c+) =

{
1, if l is odd,

0, if l is even,
νr(c−) =

{
0, if l is odd,

1, if l is even.

With η = −2/3, the prefactor from Lemma 4.1 thus becomes

P = (−1)(
n+1
2 )−1ω−(

n+1
2 )−2(n−m)+α,

where α = (−1)l and m is the number of k+ turns. As in [9, 21], specializing η = −2/3 yields
that the weights from Lemma 4.1 now become

w̃(1, ρqa) =
ϑ
(
ρq

3
2
a−b+ 1

2
d
)

ϑ(ρqa)
=
ϑ
(
ρq−b−d

)
ϑ(ρqa)

=
ϑ
(
ρ3, p3

)
ϑ(ρωa)ϑ(ρωb)ϑ(ρωd)

,

since b, d and −b − d are noncongruent modulo 3. Hence for each vertex in the lattice, except
for in the rightmost column of vertices, we just need to know the heights of three of the adjacent
faces. As in [9, 21], this means that we need to account for each face in the interior three
times, but in the present article we need to treat the nth column of faces differently. On the
boundary, the number of faces that we need to count differs, but here we know the heights, so
we can explicitly compute this contribution. Likewise it differs in the nth column, but given the
number l, we can compute this contribution explicitly as well. On the right boundary, we should
not count any faces at all, since these faces only have to do with the weights containing µn. The
faces of each turn should be accounted for only once.

The expression of Lemma 4.1 is now given by∏
vertices not in the
rightmost column

w(1, ρωa)
∏
turns

w(1, ρ, ζ)

= PCϑ
(
ρ3, p3

)2n(n−1) ∏
faces

1

ϑ(ρωa)3

∏
turns

ϑ(ρωa)2
ϑ
(
ρ(1−a)/2ζω2

)
ϑ
(
ρ(1−a)/2ζω

)
= PCϑ

(
ρ3, p3

)2n(n−1)
ϑ(ρω)2(n−m)ϑ

(
ρω2

)2m(ϑ(ρζω2
)

ϑ(ρζω)

)m(ϑ(ζω2
)

ϑ(ζω)

)n−m∏
faces

1

ϑ(ρωa)3
,

where m is the number of positive turns and C is the correction compensating for the faces that
are counted too many times. The correction C is given by

C = Rϑ(ρ)n+3ϑ
(
ρqn−1

)2
ϑ
(
ρq−n+1

)3 n−2∏
i=1

ϑ
(
ρqi
) n∏
i=−n

ϑ
(
ρqi
)3 n−2∏

i=1

ϑ
(
ρq−i

)2

= ϑ(ρ)nϑ
(
ρ3, p3

)3n
R×


ϑ(ρ)3ϑ(ρω)ϑ

(
ρω2

)
, n ≡ 0 mod 3,

ϑ(ρ)5, n ≡ 1 mod 3,

ϑ(ρω)2ϑ
(
ρω2

)3
, n ≡ 2 mod 3,

where R is the contribution to the correction from the second to last column of faces, which
depends on l. We have

R =
k−1∏
i=1

(
ϑ
(
ρq−n+2i

)
ϑ
(
ρq−n+2i+1

)2) n−1∏
i=k

(
ϑ
(
ρq−n+2i−1)2ϑ(ρq−n+2i

))
×

{
ϑ
(
ρq−n+2k−2), for l = 2k − 1 odd,

ϑ
(
ρq−n+2k

)
, for l = 2k even.
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The expression in Lemma 4.3 is∏
vertices in the

rightmost column

w(1± µn, ρq
a) =

ϑ
(
ρq−n

)
ϑ
(
ρq−n+2

)
· · ·ϑ

(
ρqn−4

)
ϑ
(
ρqn−2

)
ϑ
(
ρq−n+1

)
ϑ
(
ρq−n+3

)
· · ·ϑ

(
ρqn−3

)
ϑ
(
ρqn−1

)
×
(
ϑ
(
q1+µn

)
ϑ
(
q2−µn

))k−1(
ϑ
(
q2+µn

)
ϑ
(
q1−µn

))n−k
ϑ(q)2n−1ϑ

(
ρq−n+2k−1

)
×

{
ϑ
(
ρq−n+2k+µn

)
ϑ
(
q1−µn

)
, for l = 2k − 1 odd,

q1−µnϑ
(
ρq−n+2k−2+µn

)
ϑ
(
q1+µn

)
, for l = 2k even.

Putting all of the above together, we get the following proposition.

Proposition 4.5. Let η = −2/3, λi = 1 for all i, and µj = 0 for 1 ≤ j ≤ n − 1. Then the
partition function is

Zn

(
ω, . . . , ω, 1, . . . , 1, qµn , ρ, ζ

)
=
(
−ω2

)(n+1
2 )+1ϑ(ρ)

n+1ϑ
(
ρ3, p3

)2n(n+1)−1

ϑ(ω)2n−1
X̃

×
n∑

m=0

ϑ(ρω)2(n−m)ϑ
(
ρω2

)2m
ω2(n−m)

(
ϑ
(
ρζω2

)
ϑ(ρζω)

)m(ϑ(ζω2
)

ϑ(ζω)

)n−m

×
2n∑
l=0

(
ϑ
(
q1+µn

)
ϑ
(
q2−µn

))k−1(
ϑ
(
q2+µn

)
ϑ
(
q1−µn

))n−k
× ϑ

(
ρq−n+l

)
ϑ
(
ρq−n+l−1)ϑ(ρq−n+l+1+µn

)
Ỹ

∑
states with

m positive turns
and ← on lth row

∏
faces

1

ϑ(ρωa)3
,

where k is defined by l = 2k for even l, and by l = 2k − 1 for odd l,

X̃ =


ϑ(ρ)2, n ≡ 0 mod 3,

ϑ(ρ)ϑ
(
ρω2

)
, n ≡ 1 mod 3,

ϑ(ρω)ϑ
(
ρω2

)
, n ≡ 2 mod 3,

and

Ỹ =

{
ϑ
(
q1−µn

)
, for l = 2k − 1 odd,

q−µnϑ
(
q1+µn

)
, for l = 2k even.

In the partition function in Proposition 4.5, we now specify µn = 1/4. Then

Zn(ω, . . . , ω, 1, . . . , 1,−ω, ρ, ζ)

=
(
−ω2

)(n+1
2 )+1ϑ(ρ)

n+3ϑ(−1)2n−1ϑ
(
ρ3, p3

)2n(n+1)−1

ϑ(ω)2n−1
X

×
n∑

m=0

ϑ(ρω)2(n−m)ϑ
(
ρω2

)2m
ω2(n−m)

(
ϑ
(
ρζω2

)
ϑ(ρζω)

)m(ϑ(ζω2
)

ϑ(ζω)

)n−m

×
2n∑
l=0

(
(−1)l−1ωl−1

(
ϑ(−ω)
ϑ(−1)

)l−1
ϑ
(
ρω−n+l

)
ϑ
(
ρω−n+l−1)ϑ(−ρω−n+l+2

)
×

∑
states with

m positive turns
and ← on lth row

∏
faces

1

ϑ(ρωa)3

)
, (4.1)
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for

X =



1, n ≡ 0 mod 3,

ϑ
(
ρω2

)
ϑ(ρ)

, n ≡ 1 mod 3,

ϑ(ρω)ϑ
(
ρω2

)
ϑ(ρ)2

, n ≡ 2 mod 3.

The 6V model with DWBC and a reflecting end with the unique left arrow of the second
to last column fixed to a given edge l has earlier been studied, e.g., in the context of so-called
boundary correlation functions (see, e.g., [27]). These functions describe the probability that
the second to last column of a state has its unique left arrow on the lth row. It is also related
to refined enumerations of UASMs (see, e.g., [19]), where the objective is to count the number
of UASMs that have the unique 1 of the rightmost column on the lth row.

5 Identification of terms

In this section, we combine the two expressions (3.6) and (4.1) for the partition function and

identify the terms with the same m. This we can do since
(ϑ(ρζω2)

ϑ(ρζω)

)m(ϑ(ζω2)
ϑ(ζω)

)n−m
are linearly

independent as functions of ζ. Then

(−1)nEn2−nDn−1B′

ϑ(ρ)2n2+4n+3ϑ(ρω)2n2+4n−3mϑ
(
ρω2

)2n2+n+3m
T (2ψ + 1, . . . , 2ψ + 1, ψ)

×
((

n− 1

m− 1

)
ϑ(ρ)ϑ

(
ρω2

)
ϑ
(
−ρω2

)
−
(
n− 1

m

)
ω
ϑ(−ω)
ϑ(−1)

ϑ(ρ)ϑ(ρω)ϑ(−ρ)
)

=
2n∑
l=0

(
(−1)l

(
ω
ϑ(−ω)
ϑ(−1)

)l−1
ϑ
(
ρω−n+l

)
ϑ
(
ρω−n+l+2

)
ϑ
(
−ρω−n+l+2

)
×

∑
states with

m positive turns
and ← on lth row

∏
faces

1

ϑ(ρωa)3

)
, (5.1)

with

E =
ϑ(−ω)2ϑ

(
−p1/2

)
ϑ
(
p1/2ω

)3
ϑ(ω)2ϑ(−1)ϑ

(
p1/2

)2
ϑ
(
−p1/2ω

)4 , D =
ω2ϑ

(
−p1/2ω

)
ϑ
(
−p1/2

)
ϑ(ω)2

ϑ
(
p1/2ω

)2
ϑ(−1)2

,

and

B′ =


1, n ≡ 0, 1 mod 3,

ϑ(ρ)2

ϑ(ρω)ϑ
(
ρω2

) , n ≡ 2 mod 3.

Focus on the right hand side of (5.1). Let Nm,l(k0, k1, k2) be the number of states with m
positive turns, the left arrow between the (n− 1)th and nth column in the lth row from below,
and with ki faces of color i. Then∑

states with
m positive turns
and ← on lth row

∏
faces

1

ϑ(ρωa)3
=

∑
(k0,k1,k2)∈Z3

Nm,l(k0, k1, k2)
1

ϑ(ρ)3k0ϑ(ρω)3k1ϑ
(
ρω2

)3k2 .
This is the partition function for the three-color model with fixed values ofm and l. That a state
has its left arrow on the lth row from below means for the three-coloring that when starting
from below, the single edge where the color decreases by 1 mod 3 is the lth edge from below.
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5.1 Specialization of the dynamical parameter

At this point in the investigation of the polynomials qn in the previous article [9], we defined the
parameters ti = 1/ϑ(ρωi)3 to be able to study the partition function of the three-color model.
However, due to the summation over l in the present article, the same substitution in (5.1) leads
to an expression with sums, which seems hard to make use of to study the full three-color model
partition function. Therefore, we will not use these parameters. Instead, we will consider the
special cases ρ = −ωi, i = 0, 1, 2. This allows us to study cases of the three-color model where
two colors have equal weight.

Rewrite the sum on the right hand side of (5.1) as three separate sums for l ≡ n, n + 1,
n+ 2mod 3 respectively. Define

ξ = ω
ϑ(−ω)
ϑ(−1)

.

Then (5.1) becomes

(−1)nEn2−nDn−1B′

ϑ(ρ)2n2+4n+3ϑ(ρω)2n2+4n−3mϑ
(
ρω2

)2n2+n+3m
T (2ψ + 1, . . . , 2ψ + 1, ψ)

×
((

n− 1

m− 1

)
ϑ(ρ)ϑ

(
ρω2

)
ϑ
(
−ρω2

)
−
(
n− 1

m

)
ξϑ(ρ)ϑ(ρω)ϑ(−ρ)

)
=

∑
(k0,k1,k2)∈Z3

∑
l≡nmod 3

(
(−1)lξl−1ϑ(ρ)ϑ

(
ρω2

)
ϑ
(
−ρω2

)
Nm,l(k0, k1, k2)

+ (−1)lξlϑ(ρω)ϑ(ρ)ϑ(−ρ)Nm,l+1(k0, k1, k2)

+ (−1)l+1ξl+1ϑ
(
ρω2

)
ϑ(ρω)ϑ(−ρω)Nm,l+2(k0, k1, k2)

)
× 1

ϑ(ρ)3k0ϑ(ρω)3k1ϑ
(
ρω2

)3k2 . (5.2)

Now specify ρ = −1. Terms with ϑ(−ρ) will then vanish. Divide both sides by ϑ(ω)ϑ(−1)2.
Observe that k0+k1+k2 = (2n+1)(n+1) and multiply both sides by ϑ(−ω)3(2n+1)(n+1). Then
we get

En2−nDn−1ξ2n
2+4n+b

(
n− 1

m− 1

)
T (2ψ + 1, . . . , 2ψ + 1, ψ)

=
∑

(k0,k1,k2)∈Z3

∑
l≡nmod 3

(−1)n+lξl(Nm,l(k0, k1, k2) +Nm,l−1(k0, k1, k2))ξ
3k0 ,

where

b =

{
4, n ≡ 0, 1 mod 3,

2, n ≡ 2 mod 3.

We can thus rewrite the sum to depend only on k0, and not on k1 and k2. We write

En2−nDn−1ξ2n
2+4n+b

(
n− 1

m− 1

)
T (2ψ + 1, . . . , 2ψ + 1, ψ)

=
∑
k0∈Z

∑
l≡nmod 3

(−1)n+lξl(Nm,l(k0) +Nm,l−1(k0))ξ
3k0 , (5.3)

where Nm,l(ki) is the number of states withm positive turns, the left arrow between the (n−1)th
and nth column in the lth row from below, and with ki faces of color i.
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As in [9],(
ϑ(ω)2ϑ(−1)ϑ

(
p1/2

)2
ϑ
(
−p1/2ω

)4
ϑ(−ω)2ϑ

(
−p1/2

)
ϑ
(
p1/2ω

)3 )6

= 24ψ2(ψ + 1)8(2ψ + 1)6, (5.4)

1

ξ2

(
ϑ(ω)2ϑ(−1)ϑ

(
p1/2

)2
ϑ
(
−p1/2ω

)4
ϑ(−ω)2ϑ

(
−p1/2

)
ϑ
(
p1/2ω

)3 )2

= (2ψ(ψ + 1)(2ψ + 1))2, (5.5)

(
ω2ϑ

(
−p1/2ω

)
ϑ
(
−p1/2

)
ϑ(ω)2

ϑ
(
p1/2ω

)2
ϑ(−1)2

)3

=
(ψ + 1)(2ψ + 1)3

2ψ5
, (5.6)

1

ξ

ω2ϑ
(
−p1/2ω

)
ϑ
(
−p1/2

)
ϑ(ω)2

ϑ
(
p1/2ω

)2
ϑ(−1)2

=
2ψ + 1

ψ
, (5.7)

and

ξ3 =
ψ + 1

2ψ2
.

Insert (5.4)–(5.7) into (5.3). We need to separate the different cases for nmod3, since

2n2 + 4n+ b ≡

{
1 mod 3, for n ≡ 0, 1 mod 3,

0 mod 3, for n ≡ 2 mod 3,

and

n2 − n ≡

{
0 mod 6, for n ≡ 0, 1 mod 3,

2 mod 6, for n ≡ 2 mod 3.

Although the computations are slightly different,

En2−nDn−1 = ξ2n
2−n−1

(
ψ

2ψ + 1

)n2−2n+1

(ψ + 1)2n−2n
2
,

for all n, where we have used (3.2) and (3.3).

The equation then finally becomes(
n− 1

m− 1

)
T (2ψ + 1, . . . , 2ψ + 1, ψ) (5.8)

=

(
2ψ+1

ψ

)n2−2n+1

(ψ+1)2n
2−2n

∑
l≡nmod3

k0∈Z

(−1)n+l(Nm,l(k0)+Nm,l−1(k0))ξ
3k0−4n2−3n+l−c,

for

c =

{
3, n ≡ 0, 1 mod 3,

1, n ≡ 2 mod 3.

Likewise if we put ρ = −ω into (5.2) we get(
n− 1

m

)
T (2ψ + 1, . . . , 2ψ + 1, ψ) (5.9)
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=

(
2ψ+1

ψ

)n2−2n+1

(ψ+1)2n
2−2n

∑
l≡nmod3

k2∈Z

(−1)n+l(Nm,l+1(k2)+Nm,l+2(k2))ξ
3k2−4n2−3m+l−d,

and putting ρ = −ω2 into (5.2) yields(
n

m

)
T (2ψ + 1, . . . , 2ψ + 1, ψ) (5.10)

=

(
2ψ+1

ψ

)n2−2n+1

(ψ+1)2n
2−2n

∑
l≡nmod 3

k1∈Z

(−1)n+l(Nm,l(k1)+Nm,l+1(k1))ξ
3k1−4n2−3n+3m+l−d,

for

d =

{
0, n ≡ 0, 1 mod 3,

1, n ≡ 2 mod 3.

6 Formulas for pn(z)

Bazhanov and Mangazeev [4] introduced certain polynomials, describing the ground state eigen-
value of Baxter’s Q-operator [2] for the 8V model in the case with η = −2/3. These polynomials
are given by

Pn(x, z) =

n∑
k=0

r
(n)
k (z)xk,

normalized by r
(n)
n (0) = 1. Furthermore, they introduced sn(z) = r

(n)
n (z) and sn(z) = r

(n)
0 (z).

In a later paper [16], they connected these polynomials to the ground state eigenvectors of the
supersymmetric XYZ-Hamiltonian for spin chains of odd length 2n+1. Several conjectures about
the polynomials were stated, including that sn(z) factors into certain polynomials which seem
to have positive coefficients. Here, polynomials pn(z) and qn(z), with deg pn(z) = deg qn(z) =
n(n + 1) and pn(0) = qn(0) = 1, show up as factors of s2n

(
z2
)
. In further conjectures, they

suggest that certain components of the ground state eigenvectors for the supersymmetric XYZ
spin chain can be written in terms of sn(z), sn(z), pn(z) and qn(z). In [9], we investigated the
polynomials qn(z). In this paper, we turn the focus to the polynomials pn(z).

Zinn-Justin [29] investigated a family of polynomials equivalent to Rosengren’s polynomials T .
He realized that certain specializations of the parameters in his polynomials seem to yield the
polynomials of Bazhanov and Mangazeev. Let [24]

ξ0 = 2ψ + 1, ξ1 =
ψ

ψ + 2
, ξ2 =

ψ(2ψ + 1)

ψ + 2
, ξ3 = 1.

In the case where all parameters xi of Rosengren’s polynomials T (3.1) are one of the ξj ’s, the
only dependence on a variable is that the ξj ’s depend on ψ. Therefore we define

t(k0,k1,k2,k3)(ψ) := T (ξ0, . . . , ξ0︸ ︷︷ ︸
k0 times

, ξ1, . . . , ξ1︸ ︷︷ ︸
k1 times

, ξ2, . . . , ξ2︸ ︷︷ ︸
k2 times

, ξ3, . . . , ξ3︸ ︷︷ ︸
k3 times

),

with kj non-negative integers and k0 + k1 + k2 + k3 = 2n. In [24], this definition is extended to
negative values of ki. In terms of Rosengren’s polynomials, the polynomials pn are, up to a pre-
factor, equivalent to t(2n+1,0,0,−1)(ψ), which in turn corresponds to T (2ψ + 1, . . . , 2ψ + 1︸ ︷︷ ︸

2n+1 times

, ψ).
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The second correspondence can be seen by using [24, formulas (2.12) and (2.13)]. This together
with the expression in [24, Section 5.3] and the symmetries in [24, Proposition 2.2] yield

T (2ψ + 1, . . . , 2ψ + 1︸ ︷︷ ︸
2n−1 times

, ψ) =

(
ψ

2ψ + 1

)n−1(
(ψ + 1)(2ψ + 1)2

)n2−n
pn−1

(
− 1

2ψ + 1

)
. (6.1)

That these polynomials are equivalent to the polynomials of Mangazeev and Bazhanov is still
a conjecture, but here we take (6.1) as the definition of pn.

We insert (6.1) into (5.8) and get(
n− 1

m− 1

)
pn−1

(
− 1

2ψ + 1

)
=

(
ψ + 1

ψ(2ψ + 1)

)n2−n∑
l≡nmod3

k0∈Z

(−1)n+l(Nm,l(k0) +Nm,l−1(k0))ξ
3k0−4n2−3n+l−c,

where

c =

{
3, n ≡ 0, 1 mod 3,

1, n ≡ 2 mod 3.

We can do the same substitution in (5.9) and (5.10). Finally, changing to the variable z =
−1/(2ψ + 1) yields the following theorem.

Theorem 6.1. Let Nm,l(ki) be the number of states with m positive turns, ki faces of color i,
and where the left arrow of the second to last column is on the lth row from below. Formulas for
pn−1(z) are then given by(

n− 1

m− 1

)
pn−1(z) =

∑
l≡nmod3

k0∈Z

(−1)n+l(Nm,l(k0) +Nm,l−1(k0))
(z(z − 1))(3k0−n

2−6n+l−c)/3

(z + 1)(6k0−5n2−9n+2l−2c)/3 ,

where

c =

{
3, n ≡ 0, 1 mod 3,

1, n ≡ 2 mod 3,(
n

m

)
pn−1(z) =

∑
l≡nmod 3

k1∈Z

(−1)n+l(Nm,l(k1) +Nm,l+1(k1))
(z(z − 1))(3k1−n

2−6n+3m+l−d)/3

(z + 1)(6k1−5n2−9n+6m+2l−2d)/3 ,

and (
n−1

m

)
pn−1(z) =

∑
l≡nmod 3

k2∈Z

(−1)n+l(Nm,l+1(k2)+Nm,l+2(k2))
(z(z−1))(3k2−n

2−3n−3m+l−d)/3

(z+1)(6k2−5n2−3n−6m+2l−2d)/3 ,

where

d =

{
0, n ≡ 0, 1 mod 3,

1, n ≡ 2 mod 3.
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The polynomials pn(z) are known to have the symmetry [16]

pn(z) =

(
1 + 3z

2

)n(n+1)

pn

(
1− z

1 + 3z

)
,

and it is immediate that this holds for the expressions in Theorem 6.1.
Theorem 6.1 gives three expressions for pn−1(z) in terms of three-colorings. The func-

tions pn−1(z) are known to be polynomials, so this must of course hold for the right hand
sides of the expressions as well, even though the individual terms in the sums may be rational
functions, with possible poles in z = −1, 0, 1. Any terms with poles and nonzero coefficients
have to cancel. In the corresponding expression for qn−1(z), the individual terms can not contain
poles, and this let us, among other things, draw conclusions about the possible values for the
numbers ki [9]. Because of the factors (−1)n+l in the expressions for pn−1(z) in Theorem 6.1,
similar conclusions cannot be drawn in this case.

Although we have found combinatorial expressions for pn−1(z), we can not immediately see
from the formulas that the coefficients are positive. To draw conclusions about the coefficients,
one would need to know something more about the numbers Nm,l(ki).
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