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Abstract. Bessel processes associated with the root systems AN−1 and BN describe inter-
acting particle systems with N particles on R; they form dynamic versions of the classical
β-Hermite and Laguerre ensembles. In this paper we study corresponding Cauchy processes
constructed via some subordination. This leads to β-Cauchy ensembles in both cases with
explicit distributions. For these distributions we derive central limit theorems for fixed N
in the freezing regime, i.e., when the parameters tend to infinity. The results are closely
related to corresponding known freezing results for β-Hermite and Laguerre ensembles and
for Bessel processes.
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1 Introduction

By a classical result in probability (see, e.g., [12, 31]), a subordination of Brownian motions
on RN by inverse Gaussian Lévy processes on [0,∞[ leads to classical Cauchy processes on RN .
In the one-dimensional case and for a start in the origin, these Cauchy processses (Xt)t≥0 are
Cauchy-distributed with the densities

ft(x) =
1

π

t

t2 + x2
, x ∈ R, t > 0.

Motivated by the theory of Bessel processes associated with root systems on Weyl chambers
CN ⊂ RN and the distributions of the classical β-Hermite and Laguerre ensembles, one can
transfer this subordination principle from Brownian motions to these Bessel processes and obtain
some kinds of Cauchy–Bessel processes on CN . This construction in particular leads to Lebesgue
densities of the form

C(k,N) · 1

(1 + ∥y∥2)γk+(N+1)/2
wk(y) (1.1)

with some constant γk ≥ 0, a norming constant C(k,N) > 0, and some weight functions wk

where k is some positive, possibly multivariate multiplicity constant; see [28]. For the most
relevant root systems of types AN−1 and BN , these weights are given by

wA
k (x) :=

∏
i,j : i<j

(xi − xj)
2k, wB

k (x) :=
∏

i,j : i<j

(
x2i − x2j

)2k2 N∏
i=1

x2k1i

with k, k1, k2 ≥ 0 respectively. Due to the analogous construction and shape to the classical
setting, we call the distributions with the densities (1.1) Cauchy–Bessel distributions of types A
or B respectively.
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We shall prove explicit central limit theorems (CLTs) for these distributions for fixed dimen-
sions N when the parameters k or (k1, k2) tend to infinity. The limit distributions here are
non-Gaussian and live on certain halfspaces in RN where the limit distributions are composed
in some way of a (N−1)-dimensional normal distribution and some distribution on [0,∞[ which
is related to inverse Gaussian distributions. For the details for the types A or B we refer to
Theorems 3.8 and 4.4 below. We point out that the identification of the (N − 1)-dimensional
subspaces as well as of the covariance matrices of the (N − 1)-dimensional normal distribu-
tions are expressed in terms of the ordered zeroes of the classical Hermite polynomal HN and

some Laguerre polynomial L
(α)
N respectively. We shall present two different proofs for the cen-

tral limit Theorems 3.8 and 4.4, where both are closely related to the corresponding CLTs
for the Bessel processes of types A and B as well for β-Hermite and Laguerre ensembles in
[2, 3, 4, 6, 7, 19, 20, 21, 35, 36]. The first approach, which is carried out for the central limit
Theorem 3.8, consists in some way of a copy of the corresponding proof of the CLT for β-Hermite
ensembles in [35] and will be based on the explicit densities (1.1). The second approach, which
is carried out for the central limit Theorem 3.8, and which also works for β-Hermite ensembles,
uses the construction of the Cauchy–Bessel processes via subordination and the known CLTs
for Bessel processes from [35]. From a structural point of view, this second proof seems to be
more natural; however, the complexity of both proofs is about the same.

The Bessel processes of types A and B describe Calogero–Moser–Sutherland particle systems
where the parameters k or (k1, k2) correspond to inverse temperatures; see, e.g., [33]. Therefore
our limits correspond to freezing limits. Clearly, this interpretation is also available for the
Cauchy–Bessel processes and distributions in this paper.

This paper is organized as follows. Section 2 contains some background information on
Bessel and Cauchy–Bessel processes associated with root systems from [8, 14, 26, 27, 28, 29, 33].
Sections 3 and 4 then are devoted to the limit results for the root systems of types A and B
respectively. We point out that besides the central limit Theorems 3.8 and 4.4 we also present
a further asymptotic result in Theorem 3.3 where another norming of the given Cauchy–Bessel
distributions of type A is used and no weak convergence is available. Furthermore, we briefly
study the root systems of type D in Section 5; this will be applied to some singular case for the
root systems of type B there.

We finally point out that the Cauchy–Bessel ensembles in this paper are different from the
Hua–Pickrell ensembles, which are studied, e.g., in [9, 10, 11, 13, 22, 24, 25], and which are also
called Cauchy ensembles in some papers. However, we expect that these Hua–Pickrell ensembles
can be partially handled in a similar way as the Cauchy–Bessel ensembles in Section 3 of this
paper.

2 Cauchy–Bessel processes

Bessel processes associated with root systems can be used to describe several integrable inter-
acting particle systems of Calogero–Moser–Sutherland type on the real line R or [0,∞[ with N
particles; see for instance [8, 14, 26, 27, 28, 29, 33] and references there for the background in
analysis, probability, and mathematical physics. We here mainly restrict our attention to the
two most relevant classes, namely the root systems AN−1 and BN . The root systems DN will
be discussed briefly in Section 5.

In the cases AN−1 andBN , these processes are time-homogeneous diffusion processes (Xt,k)t≥0

living on the closed Weyl chambers

CA
N :=

{
x ∈ RN : x1 ≥ x2 ≥ · · · ≥ xN

}
, CB

N :=
{
x ∈ RN : x1 ≥ x2 ≥ · · · ≥ xN ≥ 0

}
of types A and B. Here, k is a parameter with k ⊂ [0,∞[ and k = (k1, k2) ⊂ [0,∞[2 for the root
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systems of types A and B respectively. The generators of the transition semigroups are given by

LAf :=
1

2
∆f + k

N∑
i=1

( ∑
j : j ̸=i

1

xi − xj

)
∂

∂xi
f and (2.1)

LBf :=
1

2
∆f + k2

N∑
i=1

∑
j : j ̸=i

(
1

xi − xj
+

1

xi + xj

)
∂

∂xi
f + k1

N∑
i=1

1

xi

∂

∂xi
f,

where in both cases reflecting boundaries are assumed, i.e., the generators are applied to C2-
functions which are invariant under the corresponding Weyl groups.

In both cases, the transition probabilities of the Bessel processes are given as follows; see
[26, 27, 28, 29]. For t > 0, x ∈ CN , A ⊂ CN a Borel set,

Kt(x,A) = ck

∫
A

1

tγk+N/2
e−(∥x∥2+∥y∥2)/(2t)Jk

(
x√
t
,
y√
t

)
wk(y) dy (2.2)

with the weights

wA
k (x) :=

∏
i,j : i<j

(xi − xj)
2k, wB

k (x) :=
∏

i,j : i<j

(
x2i − x2j

)2k2 N∏
i=1

x2k1i ,

the exponents

γAk (k) = kN(N − 1)/2, γBk (k1, k2) = k2N(N − 1) + k1N, (2.3)

and the Selberg norming constants

cAk :=

(∫
CA

N

e−∥y∥2/2wA
k (y) dy

)−1

=
N !

(2π)N/2

N∏
j=1

Γ(1 + k)

Γ(1 + jk)
(2.4)

and

cBk :=

(∫
CB

N

e−∥y∥2/2wB
k (y) dy

)−1

=
N !

2N(k1+(N−1)k2−1/2)

N∏
j=1

Γ(1 + k2)

Γ(1 + jk2)Γ
(
1
2 + k1 + (j − 1)k2

) , (2.5)

respectively. Notice that wk is homogeneous of degree 2γk. Furthermore, Jk is a multivariate
Bessel function of type AN−1 or BN with multiplicities k or (k1, k2) respectively; see, e.g.,
[26, 27, 28, 29]. We do not need much information about Jk. We only notice that Jk is analytic
on CN ×CN with Jk(x, y) > 0 for x, y ∈ RN . Moreover, Jk(x, y) = Jk(y, x) and Jk(0, y) = 1 for
x, y ∈ CN . In particular, for the starting point x = 0 ∈ CN , (2.2) leads to the distributions

ck
1

tγk+N/2
e−∥y∥2/(2t)wk(y) dy, (2.6)

which are just the distributions of the β-Hermite and Laguerre ensembles from random matrix
theory; see, e.g., [1, 16, 18]. In the last decade, several freezing limit theorems were derived for
the distributions in (2.6) and also in (2.2) for general starting points for fixed N and k → ∞;
see Dumitriu and Edelman [18] for an approach via their tridiagonal random matrix models for
x = 0 and [2, 3, 4, 6, 7, 21, 35, 36] for further limit results in this context.
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In this paper we transfer some of these limit results to Cauchy-type distributions. To mo-
tivate these distributions we recapitulate the subordination procedure which leads from the
Bessel processes (Xt,k)t≥0 above and the classical convolution semigroup of inverse Gaussian
distributions to Cauchy-type processes on the Weyl chambers from [28]. For this we consider
the classical convolution semigroup (µt)t≥0 of inverse Gaussian measures on (R,+) with µ0 = δ0
and, for t > 0,

dµt(s) =
1]0,∞[(s)√

4π
ts−3/2 exp

(
−t2/(4s)

)
ds, (2.7)

see, e.g., [12, Section 9]. Moreover, let (Tt)t≥0 be an associated Lévy process starting in 0 with
càdlàg paths. Then the process (Yt)t≥0 with Yt := XTt for t ≥ 0 is a Feller process on CN whose
transition probabilities are given by

Qt(x,A) =

∫ ∞

0
Ks(x,A) dµt(s), t ≥ 0, x ∈ CN , A ⊂ CN . (2.8)

As this construction is analogous to the classical construction of Cauchy processes from Brownian
motions, we call the processes (Yt)t≥0 Cauchy–Bessel processes of type A or B, respectively. It
seems to be difficult to compute the densities of these distributions explicitly for general starting
points x ∈ CN like in (2.2) in terms of Bessel functions. On the other hand, for x = 0 and t > 0
one obtains that the probability measures Qt(0, ·) have the explicit Lebesgue densities

cktΓ(γk + (N + 1)/2)√
4π

(
4

t2 + 2∥y∥2

)γk+(N+1)/2

wk(y) (2.9)

with ck, γk, wk as above depending on k and the root system by some elementary calculus;
see also [28, Section 5] with a slightly different t-scaling. In the next sections we study limits
of these distributions for k → ∞. Due to the homogeneity property of these Cauchy–Bessel
distributions w.r.t. the scaling parameter t, we there restrict our attention to the case t =

√
2

w.l.o.g.
We point out that for the root system AN−1 and k = 1/2, 1, 2, the densities (2.6) admit

the well-known interpretation as the distributions of the ordered eigenvalues of Gaussian or-
thogonal, unitary, and symplectic ensembles (GOE, GUE, GSE) respectively. Therefore, the
subordination above leading to the densities (2.9) corresponds to an analogous subordination of
normal distributions on the vector spaces associated with GOE, GUE, GSE, and the correspond-
ing time normalizations. Therefore, the densities (2.9) belong in these cases to Cauchy–Bessel
distributions on these vector spaces where the entries of these matrices are no longer indepen-
dent. A similar interpretation exists for the root systems BN via subordinations of Laguerre
ensembles.

3 Limit theorems for the root system AN−1

In this section we study the Cauchy–Bessel distributions with the densities (2.9) of type A with
parameters t =

√
2 and k ≥ 0. Taking the constants in (2.3), (2.4) into account, we thus study

the distributions with the density

fk(y) := C(k,N)
1

(1 + ∥y∥2)kN(N−1)/2+(N+1)/2

∏
i,j : i<j

(yi − yj)
2k (3.1)

on CA
N with the norming constant

C(k,N) =
2kN(N−1)/2N !Γ(kN(N − 1)/2 + (N + 1)/2)

π(N+1)/2

N∏
j=1

Γ(1 + k)

Γ(1 + jk)
. (3.2)
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We first determine the maxima of fk. In fact, as fk is equal to 0 on the boundary ∂CA
N with

lim∥y∥→∞ fk(y) = 0, fk has at least one maximum, and all maxima are in the interior of CA
N .

To determine these maxima, we need the classical Hermite polynomials (HN )N≥0 which are

orthogonal w.r.t. the density e−x2
on R. We normalize the HN as usual as, e.g., in [32] with the

three-term-recurrence

H0 = 1, H1(x) = x, Hn+1(x) = 2xHn(x)− 2nHn−1(x), n ≥ 1.

Consider the vector

z = (z1, . . . , zN ) ∈ CA
N

whose entries are the ordered zeros of HN . We need the following known facts:

Lemma 3.1. For N ≥ 2 and y ∈ CA
N , the following statements are equivalent:

(1) The function
∑

i,j : i<j ln(xi − xj)− ∥x∥2/2 is maximal at y ∈ CA
N ;

(2) For i = 1, . . . , N : yi =
∑

j : j ̸=i
1

yi−yj
;

(3) y = z.

Furthermore,

N∑
i=1

z2i =
N(N − 1)

2
(3.3)

and

2
∑
i<j

ln(zi − zj) = −N(N − 1)

2
ln 2 +

N∑
j=1

j ln j. (3.4)

Proof. For the equivalence of (1)–(3) see [32, Section 6.7]; see also [3, 35]. For (3.3) and (3.4)
we refer to [3, Appendix D]; see in particular (D.22) and (D.30) there. ■

Now let x ∈ CA
N be a maximum of fk. This implies that ∇l(x) = 0 for

l(y) := ln

 1

(1 + ∥y∥2)kN(N−1)/2+(N+1)/2

∏
i<j

(yi − yj)
2k

 .

Therefore, for i = 1, . . . , N ,∑
j : j ̸=i

1

xi − xj
=

kN(N − 1) +N + 1

2k

1

1 + ∥x∥2
xi,

i.e., c1xi =
∑

j : j ̸=i
1

xi−xj
for i = 1, . . . , N with some constant c1 > 0. A short computation now

shows that for some constant c2 > 0, the vector y := c2x satisfies the condition in Lemma 3.1(2)
and hence, by Lemma 3.1, z = c2x. In summary, with (3.3) and a short computation, we obtain:

Lemma 3.2. The density fk has a unique maximum on CA
N . This maximum is located in√

2k
N+1z.

This elementary observation together with the following known CLT for the densities (2.6)
of Bessel processes will be the motivation to study the densities fk around these maxima for
k → ∞.
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Theorem 3.3. Let XBessel,k,N be random variables with the densities (2.6) for the root sys-
tem AN−1 for N ≥ 2. Then the random variables XBessel,k,N −

√
2kz converge in distribution

for k → ∞ to the N -dimensional centered normal distribution N (0,Σ) where the covariance
matrix Σ is regular and has the following properties:

(1) Σ−1 = (si,j)i,j=1,...,N satisfies

si,j :=


1 +

∑
l ̸=i

(zi,N − zl,N )−2 for i = j,

−(zi,N − zj,N )−2 for i ̸= j.

(3.5)

(2) Σ−1 has the eigenvalues 1, 2, 3, 4, . . . , N , and consequently detΣ−1 = N !.

(3) Σ = (σi,j)i,j=1,...,N satisfies

σi,j = (−1)i+j

∑N−1
k=0

Hk(zi,N )Hk(zj,N )

2kk!(N−k)√∑N−1
k=0

(Hk(zi,N ))2

2kk!

∑N−1
l=0

(Hl(zj,N ))2

2ll!

. (3.6)

Theorem 3.3 without parts (1) and (2) was obtained first by Dumitriu and Edelman [19] via
their tridiagonal random matrices in [18] with different formulas for the entries of Σ. It was
then reproved in a direct way in [35] with the entries of Σ−1 in (1). Furthermore, in [6] the
eigenvalues and eigenvectors of Σ−1 were determined, and in [2] the theory of dual orthogonal
polynomials in the sense of De Boor and Saff (see [15, 23, 34]) was used to obtain part (3). This
CLT with part (3) was also obtained in a different way by Gorin and Kleptsyn [21]. We notice
that it seems to be difficult to verify that the formulas in [19] and those in part (3) are identical,
as both formulas contain complicated expressions regarding the zeros of HN .

We now return to our Cauchy–Bessel distributions and try to copy the proof of the central
limit Theorem 3.3 from [35]. It turns out that here a centering with the maxima from Lemma 3.2
does not lead to a full central limit theorem, but to the following weaker asymptotic limit result
only:

Theorem 3.4. For k > 0 and N ≥ 2 let Xk be a CA
N -valued random variable with density fk.

Moreover, let f̃k be the density of Xk −
√

2k
N+1z. Then there is a unique centered normal dis-

tribution N (0,ΣCauchy) on RN with some regular covariance matrix ΣCauchy and density f such
that

lim
k→∞

f̃k(x)

f(x)
k1/2(N + 1)N/2

√
N(N − 1)e(N+1)/2 = 1 (3.7)

holds locally uniformly for x ∈ RN . The matrix ΣCauchy has the following properties:

(1) Σ−1
Cauchy = (si,j)i,j=1,...,N satisfies

si,j := (N + 1) ·


1 +

∑
l : l ̸=i

(zi − zl)
−2 +

4z2i
N(N − 1)

for i = j,

−(zi − zj)
−2 +

4zizj
N(N − 1)

for i ̸= j.

(3.8)

(2) (N + 1)−1Σ−1
Cauchy has the eigenvalues 1, 4, 3, 4, 5, . . . , N , i.e., detΣ−1

Cauchy = 2(N + 1)NN !.
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(3) ΣCauchy = (σi,j)i,j=1,...,N satisfies

σi,j =
(−1)i+j

N + 1

 ∑N−1
k=0

Hk(zi,N )Hk(zj,N )

2kk!(N−k)√∑N−1
k=0

(Hk(zi,N ))2

2kk!

∑N−1
l=0

(Hl(zj,N ))2

2ll!

− zizj
2N(N − 1)

 .

The proof of Theorem 3.4 is divided into two steps. In a first step we show that (3.7) holds
with Σ−1

Cauchy as part (1) up to a positive multiplicative constant in the limit. In the second
step of the proof we then use Theorem 3.3 and show that parts (2) and (3) hold, and that the
constant in (3.7) is the correct one.

Proof. Equation (3.1) shows that the random variable Xk −
√

2k
N+1z has a density which can

be written as

f̃k(y) = fk

(
y +

√
2k

N + 1
z

)
= c̃ke

hk(y)

with the exponent

hk(y) := 2k
∑

i,j : i<j

ln

(
1 +

(yi − yj)
√
N + 1√

2k(zi − zj)

)

− kN(N − 1) +N + 1

2
ln

(
1 +

(1 + ∥y∥2)(N + 1)

2k∥z∥2
+ 2

√
N + 1

2k

⟨y, z⟩
∥z∥2

)
(3.9)

and the constant

c̃k := C(k,N) exp

(
2k

∑
i,j : i<j

ln

(√
2k

N + 1
(zi − zj)

))

× exp

(
−kN(N − 1) +N + 1

2
ln

(
2k

N + 1
∥z∥2

))
= C(k,N)

(
2k

N + 1

)kN(N−1)/2

exp

(
2k

∑
i,j : i<j

ln(zi − zj)

)

×
(

2k

N + 1
∥z∥2

)−(kN(N−1)+N+1)/2

(3.10)

on the shifted cone CA
N −

√
2kz with f̃k(y) = 0 otherwise on RN .

We now study the exponent hk(y). The power series of ln(1 + x) shows that for k → ∞,

ln

(
1 +

√
N + 1(yi − yj)√
2k(zi − zj)

)
=

√
N + 1(yi − yj)√
2k(zi − zj)

− (N + 1)(yi − yj)
2

4k(zi − zj)2
+O

(
k−3/2

)
(3.11)

and

ln

(
1 +

(1 + ∥y∥2)(N + 1)

2k∥z∥2
+ 2

√
N + 1

2k

⟨y, z⟩
∥z∥2

)
= 2

√
N + 1

2k

⟨y, z⟩
∥z∥2

+
(1 + ∥y∥2)(N + 1)

2k∥z∥2
− N + 1

k

⟨y, z⟩2

∥z∥4
+O

(
k−3/2

)
. (3.12)
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Moreover, by Lemma 3.1(2),

∑
i,j : i<j

yi − yj
zi − zj

− ⟨y, z⟩ =
N∑
i=1

yi

( ∑
j : j ̸=i

1

zi − zj
− zi

)
= 0. (3.13)

Therefore, by (3.9), (3.11)–(3.13), and (3.3),

hk(y) = −N + 1

2

( ∑
i,j : i<j

(yi − yj)
2

(zi − zj)2
+
(
1 + ∥y∥2

)
+

4

N(N − 1)
⟨y, z⟩2

)
+O

(
k−1/2

)
.

Therefore,

ehk(y) ∼ e−(N+1)/2 exp
(
−yTΣ−1

Cauchyy/2
)

(3.14)

with the matrix Σ−1
Cauchy defined in (3.8).

We next turn to the constants c̃k in (3.10). Here (3.4) and (3.3) imply that

c̃k = C(k,N)

(
2k

N + 1

)kN(N−1)/2

exp

(
k

(
−N(N − 1)

2
ln 2 +

N∑
j=1

j ln j

))

×
(

N + 1

kN(N − 1)

)kN(N−1)/2+(N+1)/2

= C(k,N)

(
N + 1

k

)(N+1)/2( 1

N(N − 1)

)kN(N−1)/2+(N+1)/2 N∏
j=1

jkj .

If we use (3.2) and Stirling’s formula Γ(k + 1) ∼
√
2πk(k/e)k for k → ∞, an elementary, but

tedious calculation leads to

c̃k ∼ k−1/2

√
2
√
N !

(2π)N/2
√

N(N − 1)
, k → ∞, (3.15)

and thus with (3.14) to

f̃k(y) ∼ k−1/2

√
2
√
N !

(2π)N/2
√
N(N − 1)e(N+1)/2

exp
(
−yTΣ−1

Cauchyy/2
)
. (3.16)

An inspection of the preceding computations shows that (3.16) holds locally uniformly for
y ∈ RN . On the other hand, N (0,ΣCauchy) has the density

f(y) =
1

(2π)N/2
√

detΣCauchy

exp
(
−yTΣ−1

Cauchyy/2
)
. (3.17)

In order to determine detΣCauchy, we compare (3.5) and (3.8) and use (3.3). We obtain that

Σ−1
Cauchy = (N + 1)

(
Σ−1 +

2

∥z∥2
zzT

)
, (3.18)

where, by Theorem 3.3, Σ−1 has the eigenvalues 1, 2, 3, . . . , N . Moreover, by [6], z is an eigen-
vector of Σ−1 for the eigenvalue 2. As the eigenvectors of a symmetric matrix are orthogonal,
we conclude that (N + 1)−1Σ−1

Cauchy has the eigenvalues 1, 2 + 2 = 4, 3, 4, 5, . . . , N where the

eigenvectors are the same as for Σ−1. This proves part (2) of Theorem 3.4 and yields that

detΣCauchy =
1

2(N + 1)NN !
.

This, (3.16), and (3.17) now lead to (3.7).
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We finally turn to part (3) of Theorem 3.4. Using (3.18) and the fact that Σ−1
Cauchy and Σ−1

have the same orthogonal transformation matrices T , we write these matrices as

Σ−1
Cauchy = (N + 1)TT diag(1, 4, 3, 4, . . . , N)T, Σ−1 = TT diag(1, 2, 3, 4, . . . , N)T.

Thus

ΣCauchy =
1

N + 1
TT diag(1, 1/4, 1/3, 1/4, . . . , 1/N)T

=
1

N + 1

(
Σ− TT diag(0, 1/4, 0, 0, . . . , 0)T

)
=

1

N + 1

(
Σ− 1

4∥z∥2
zzT

)
.

This and (3.6) now lead to part (3). ■

Theorem 3.4 shows that we need a stronger scaling of our Cauchy–Bessel distributions (3.1)
than in this theorem in order to obtain a weak limit result with a probability measure as
limit. We now study some suitable scaling where we use different scales on two complementary
subspaces of RN . To understand the idea, we first consider the case N = 2.

Example 3.5. For N = 2 we consider the densities fk(y) from (3.1) with the new orthogonal
coordinates

x1 := (y1 + y2)/
√
2, x2 := (y1 − y2)/

√
2,

i.e., x1 ∈ R describes the center of gravity and x2 > 0 the distance between the two particles up
to the precise scaling. By a short computation, in the new rotated coordinates, we then have
the densities

22k+1Γ(k + 3/2)Γ(k + 1)

π3/2Γ(2k + 1)

x2k2(
1 + x21 + x22

)k+3/2

for x2 > 0 with the value 0 otherwise. If we rescale the distance coordinate by 1/
√
k, i.e., if we

define a new coordinate x̃2 := x2/
√
k, we obtain a density which we write as

f̃k(x1, x̃2) :=
22k+1Γ(k + 3/2)Γ(k + 1)

kπ3/2Γ(2k + 1)

(
1− 1

k

1 + x21

x̃22 +
1+x2

1
k

)k (
x̃22 +

1 + x21
k

)−3/2

for x1 ∈ R and x̃2 > 0. By Stirling’s formula Γ(k + 1) ∼
√
2πk(k/e)k, these densities tend to

f(x1, x̃2) :=
2

π
e−(1+x2

1)/x̃
2
2
1

x̃32
(3.19)

for x1 ∈ R and x̃2 > 0 for k → ∞. It can be easily checked that f is in fact the density of
a probability measure which has in the coordinate x̃2 > 0 the image of the inverse Gaussian
distribution µ2 from (2.7) with parameter t = 2 under the mapping x̃2 7→ x̃22 on [0,∞[ as
marginal distribution. If this is shown, it can be derived from (3.19) that in the coordinate x1
a classical one-dimensional Cauchy distribution appears as marginal distribution.

In particular, the classical Cauchy distribution as marginal distribution for the center-of-
gravity-part is no accident, and appears for all N ≥ 2. To explain this, we consider a diffusion
process (Xt := (Xt,1, . . . , Xt,N ))t≥0 on CA

N associated with the generator (2.1) with start in 0
for k > 0 and N ≥ 2. Moreover, for the vector 1 := (1, . . . , 1) ∈ RN we denote the orthogonal
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projections from RN onto R · 1 and its orthogonal complement 1⊥ by p1 and p1⊥ respectively.
We now consider the center-of-gravity-process(

Xcg
t := (Xt,1 + · · ·+Xt,N )/N

)
t≥0

,

which may be regarded as (p1(Xt))t≥0 by identifying x ∈ R with x · 1. It can be easily seen
from (2.1) (see for instance [30, Lemma 3.2] or [6, Section 2]) that this process is a usual one-
dimensional Brownian motion (up to some scaling factor) which is stochastically independent
from the orthogonal projection(

Xdiff
t := p1⊥(Xt) = Xt −Xcg

t · 1
)
t≥0

onto 1⊥. Notice that the N − 1 coordinates of the diffusion
(
Xdiff

t

)
t≥0

describe the sucessive

distances of the neighbored particles, and that the center-of-gravity-part
(
Xcg

t

)
t≥0

is independent

from k. Using our subordination procedure in (2.7), (2.8), and (2.9) we thus obtain readily that
the center-of-gravity marginal distributions of the Cauchy–Bessel distributions with densities fk
on RN are a classical standard Cauchy distribution on R independent from k. In summary we
obtain in this way:

Lemma 3.6. Let (X1, . . . , XN ) be a CA
N -valued random variable with the Lebesgue density fk

from (3.1) with N ≥ 2 and k > 0. Then (X1 + · · · +XN )/
√
N is standard Cauchy distributed

on R with the density 1
π

1
1+x2 .

Therefore, also in the limit k → ∞, a standard Cauchy distribution on R appears for the
center-of-gravity part.

Motivated by this result and Example 3.5 for N = 2, we now turn to some weak limit
theorem for N ≥ 2. We consider CA

N -valued random variables Xk with the densities fk as above.
Motivated by Example 3.5, we now use different scalings on two complementary subspaces of RN ,
namely the one-dimensional subspace R·z and its orthogonal complement z⊥. Let pz : RN → R·z
be the orthogonal projection onto R · z which satisfies

pz(y) =
⟨y, z⟩
∥z∥2

z =
2⟨y, z⟩

N(N − 1)
z.

Moreover, the orthogonal projection onto z⊥ is given by

pz⊥(y) = y − ⟨y, z⟩
∥z∥2

z = y − 2⟨y, z⟩
N(N − 1)

z.

We now define the rescaled random variables

X̃k := ϕk(Xk) (3.20)

with the linear mappings

ϕk : RN → RN , ϕk(y) :=
1√
k
pz(y) + pz⊥(y) = y +

(
1√
k
− 1

)
pz(y)

for k ≥ 1. The random variables X̃k then have values in the sets CA
N,k := ϕk

(
CA
N

)
. These sets

have the following properties:

Lemma 3.7. The closure of
⋃

k≥1C
A
N,k is the closed half space

BN :=
{
y ∈ RN : ⟨y, z⟩ ≥ 0

}
.

Moreover, for 1 ≤ k1 ≤ k2, C
A
N,k1

⊂ CA
N,k2

.
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Proof. For y ∈ CA
N,k we have

⟨ϕk(y), z⟩ = ⟨y, z⟩+
(

1√
k
− 1

)
⟨y, z⟩ = 1√

k
⟨y, z⟩ ≥ 0

and thus
⋃

k≥1C
A
N,k ⊂ BN . For the converse statement we first consider some w in the interior

of BN , i.e., with ⟨w, z⟩ > 0. We now choose some t > 0 sufficiently large with y := w+ tz ∈ CA
N .

Notice that this is possible for any vector w, as z is in the interior of CA
N . Then we obtain for

all k ≥ 1 that

ϕk(y) = w +

(
t√
k
+

(
1√
k
− 1

)
⟨w, z⟩

)
z.

Therefore, if we take the unique k = k(t) ≥ 1 with t =
(√

k− 1
) ⟨w,z⟩
∥z∥2 > 0, we obtain ϕk(y) = w.

We thus conclude that the interior of BN is contained in
⋃

k≥1C
A
N,k. This completes the proof

of the first statement of the lemma. The second statement can be checked in a similar way. ■

With the first statement of Lemma 3.7 on the ranges of the random variables Xk in mind,
we now turn to the following limit theorem.

Theorem 3.8. For k > 0 and N ≥ 2 let Xk be a CA
N -valued random variable with density fk.

Then the RN -valued rescaled random variables X̃k from (3.20) converge in distribution for
k → ∞ to some probability measure µ ∈ M1

(
RN
)
with BN as support. µ has the Lebesgue

density

f(y) :=

√
N !(N(N − 1))N/2eN(N−1)

πN/22(N−1)/2
exp

(
− ∥z∥2

∥pz(y)∥2

( ∑
i,j : i<j

(yi − yj)
2

(zi − zj)2
+ ∥y∥2

))

× exp

(
−N(N − 1)

2∥pz(y)∥2

)
1

∥pz(y)∥N+1
(3.21)

for y in the interior of the half space BN .

A short calculation shows that for N = 2, the measure µ with density (3.21) is in fact equal
to the limit in Example 3.5 where one has to take the rotation in the coordinates there into
account.

The proof of Theorem 3.8 will be decomposed into two parts. In the first part we show that
distributions of the random variables Xk converge vaguely to the measure µ on RN with the
density f from (3.21) on the interior of BN . In a second step we then check that the density f
from (3.21) is in fact the density of a probability measure, which then implies weak convergence.

First part of the proof of Theorem 3.8. Let k ≥ 1. By using our rescaling on the one-
dimensional subspace R · z together with the transformation formula for the densities of trans-
formed random variables, the random variable X̃k has the density

f̃k(y) :=
√
kfk(ỹ) with ỹ :=

√
kpz(y) + pz⊥(y) = y +

(√
k − 1

)
pz(y)

on the interior of CN,k. Using (3.1) we write this density as

f̃k(y) =
√
kC(k,N)

( ∏
i,j : i<j

(ỹi − ỹj)
2

∥ỹ∥2

)k(
∥ỹ∥2

1 + ∥ỹ∥2

)kN(N−1)/2(
1

1 + ∥ỹ∥2

)(N+1)/2

. (3.22)
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We next notice that

∥ỹ∥2 = k∥pz(y)∥2 + ∥pz⊥(y)∥2 = ∥y∥2 + (k − 1)∥pz(y)∥2.

Hence, for k → ∞,(
∥ỹ∥2

1 + ∥ỹ∥2

)kN(N−1)/2

=

(
1− 1

k(∥pz(y)∥2 + (1 + ∥pz⊥(y)∥2)/k)

)kN(N−1)/2

→ exp

(
−∥z∥2

∥pz(y)∥2

)
(3.23)

and (
1

1 + ∥ỹ∥2

)(N+1)/2

∼ 1

k(N+1)/2∥pz(y)∥N+1
. (3.24)

Furthermore, we write the remaining term in (3.22) as( ∏
i,j : i<j

(ỹi − ỹj)
2

∥ỹ∥2

)k

= ehk(y) (3.25)

with

hk(y) := 2k
∑

i,j : i<j

ln(ỹi − ỹj)−
kN(N − 1)

2
ln
(
∥ỹ∥2

)
= 2k

∑
i,j : i<j

ln

(
(
√
k − 1)⟨y, z⟩
∥z∥2

(zi − zj) + yi − yj

)

− kN(N − 1)

2
ln
(
∥y∥2 + (k − 1)∥pz(y)∥2

)
.

We now use ⟨y, z⟩ > 0 and write hk(y) as

hk(y) = 2k
∑

i,j : i<j

ln

(
1 +

∥z∥2(yi − yj)√
k⟨y, z⟩(zi − zj)

− 1√
k

)

− kN(N − 1)

2
ln

(
1 +

1

k

(
∥y∥2

∥pz(y)∥2
− 1

))
+Rk (3.26)

with

Rk := 2k
∑

i,j : i<j

ln

(√
k⟨y, z⟩(zi − zj)

∥z∥2

)
− kN(N − 1)

2
ln

(
k⟨y, z⟩2

∥z∥2

)

= 2k
∑

i,j : i<j

ln

(√
k(zi − zj)

∥z∥2

)
− kN(N − 1)

2
ln

(
k

∥z∥2

)
.

This, (3.4), (3.3), and elementary calculus now lead to

eRk = (N(N − 1))−kN(N−1)/2
N∏
j=1

jkj . (3.27)
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Moreover, the power series of ln(1 + x) for the logarithms in (3.26) shows for k → ∞ that

ln

(
1 +

∥z∥2(yi − yj)√
k⟨y, z⟩(zi − zj)

− 1√
k

)
=

1√
k

(
∥z∥2(yi − yj)

⟨y, z⟩(zi − zj)
− 1

)
− 1

2k

(
∥z∥2(yi − yj)

⟨y, z⟩(zi − zj)
− 1

)2

+O
(
k−3/2

)
(3.28)

and

ln

(
1 +

1

k

(
∥y∥2

∥pz(y)∥2
− 1

))
=

1

k

(
∥y∥2

∥pz(y)∥2
− 1

)
+O

(
k−2

)
. (3.29)

We next use (3.13) and (3.3) and observe that∑
i,j : i<j

(
∥z∥2(yi − yj)

⟨y, z⟩(zi − zj)
− 1

)
= 0. (3.30)

In summary, we conclude from (3.26), (3.28), (3.29), and (3.30) that

hk(y) = −
∑

i,j : i<j

(
∥z∥2(yi − yj)

⟨y, z⟩(zi − zj)
− 1

)2

− N(N − 1)

2

(
∥y∥2

∥pz(y)∥2
− 1

)
+Rk +O

(
k−1/2

)
= −

∑
i,j : i<j

∥z∥4(yi − yj)
2

⟨y, z⟩2(zi − zj)2
− N(N − 1)

2
+ 2

∑
i,j : i<j

∥z∥2(yi − yj)

⟨y, z⟩(zi − zj)

− ∥z∥2
(
∥y∥2∥z∥2

∥⟨y, z⟩2
− 1

)
+Rk +O

(
k−1/2

)
= −

∑
i,j : i<j

∥z∥4(yi − yj)
2

⟨y, z⟩2(zi − zj)2
+

N(N − 1)

2
− ∥z∥4∥y∥2

⟨y, z⟩2
+ ∥z∥2 +Rk +O

(
k−1/2

)
.(3.31)

We next consider the constant C(k,N) from (3.2). Stirling’s formula Γ(k + 1) ∼
√
2πk(k/e)k

for k → ∞, and an elementary, but tedious calculation as in (3.15) leads to

C(k,N) ∼
√
N !kN/2(N(N − 1))kN(N−1)/2+N/2

πN/22(N−1)/2
∏N

j=1 j
kj

, k → ∞.

This, (3.22), (3.23), (3.24), (3.25), (3.27), and (3.31) now show that

lim
k→∞

f̃k(y) = f(y)

for the density f from (3.21) and for y with ⟨y, z⟩ > 0, i.e., for y in the interior of the half
space BN . We also observe by inspection of the preceding arguments that the convergence
above holds locally uniformly in y in the interior of the half space BN . We thus conclude that
the distributions of the random variables X̃k tend vaguely to the measure µ with density f in
the interior of BN . ■

Second part of the proof of Theorem 3.8. In order to complete the proof of Theorem 3.8
we now check that the density f with f(y) := 0 for y on the boundary of BN , i.e., for y with
⟨y, z⟩ = 0 is in fact the density of a probability measure. If this is shown, a standard argument
in probability applied to the interior of BN then implies weak convergence as claimed.

In order to compute
∫
BN

f(y) dy, we first observe that

exp

(
− ∥z∥2

∥pz(y)∥2

( ∑
i,j : i<j

(yi − yj)
2

(zi − zj)2
+ ∥y∥2

))
= exp

(
− ∥z∥2

∥pz(y)∥2
yTΣ−1y

)
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with the matrix Σ−1 = (si,j)i,j=1,...,N defined in (3.5) where Σ−1 has the eigenvalues 1, 2, 3, 4,
. . . , N by Theorem 3.3. We also recapitulate that the vectors 1, z are eigenvectors of Σ−1

for the eigenvalues 1, 2 respectively. We now choose an orthonormal basis of RN consisting of
eigenvectors of Σ−1 associated with the eigenvalues 1, 3, 4, 5, . . . , N and 2 respectively where we
choose the vector z/∥z∥ as “the” eigenvector associated with the eigenvalue 2. Moreover, for
y = (y1, . . . , yN−1) ∈ RN−1 and t ∈ R let (y, t) := (y1, . . . , yN−1, t) ∈ RN . With this notation
and the constant

D(N) :=

√
N !(N(N − 1))N/2eN(N−1)

πN/22(N−1)/2

from the density in (3.21), we obtain by elementary calculations with a orthogonal transforma-
tion and with the norming of the inverse Gaussian density in (2.7) that∫

BN

f(y) dy = D(N)

∫ ∞

0

(∫
RN−1

exp

(
−∥z∥2

t2
(y, t)T diag(1, 3, 4, 5, . . . , N, 2)(y, t)

)
dy

)

× exp

(
−N(N − 1)

2t2

)
1

tN+1
dt

= D(N)e−N(N−1)

∫ ∞

0

(∫
RN−1

exp

(
−∥z∥2

t2
yT diag(1, 3, 4, 5, . . . , N)y

)
dy

)

× exp

(
−N(N − 1)

2t2

)
1

tN+1
dt

= D(N)e−N(N−1) (2π)N−1)/2
√
2

(N(N − 1))(N−1)/2
√
N !

∫ ∞

0
exp

(
−N(N − 1)

2t2

)
1

t2
dt = 1

as claimed. This completes the proof. ■

Remark 3.9.

(1) Let X be a random variable with values in the half space BN and density (3.21) as in
Theorem 3.8. Then (X1 + · · · + XN )/

√
N is standard Cauchy distributed on R. This

follows immediately from Lemma 3.6 and the fact that the maps ϕk leave x1 + · · · + xN
invariant for each x ∈ RN because of ⟨1, z⟩ = 0.

(2) There is a second, more structural proof of Theorem 3.8 which explains the limit den-
sity (3.21) in terms of subordination; see Remark 4.5(1) below.

4 Limit theorems for the root system BN

We now study the Cauchy–Bessel distributions with the densities (2.9) of type B with the
parameters t =

√
2 and k = (k1, k2) with k1, k2 ≥ 0. Following [4, 6, 7, 35] we write k as

(k1, k2) = (νβ, β) where we fix ν > 0 and investigate limits for β → ∞. Taking these new
parameters and the constants in (2.3) and (2.5) into account, we thus study the distributions τν,β
with the density

fν,β(y) := CB(ν, β,N)
1(

1 + ∥y∥2
)βN(N+ν−1)+(N+1)/2

∏
i,j : i<j

(
y2i − y2j

)2β N∏
i=1

y2νβi

on the Weyl chambers CB
N with the norming constants

CB(ν, β,N) =
N !2NΓ(βN(N + ν − 1) + (N + 1)/2)√

π
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×
N∏
j=1

Γ(1 + β)

Γ(1 + jβ)Γ(12 + β(j + ν − 1))
. (4.1)

We now proceed as in Section 3 and use the Laguerre polynomials L
(ν−1)
N instead of the Hermite

polynomials. Recapitulate that the L
(ν−1)
N are orthogonal w.r.t. the density e−xxν−1 on ]0,∞[

for ν > 0 as defined in [32]. We recapitulate the following facts about the zeros of L
(ν−1)
N .

Lemma 4.1. Let ν > 0. For r = (r1, . . . , rN ) ∈ CB
N , the following statements are equivalent:

(1) The function

WB(y) := 2
∑
i<j

ln
(
y2i − y2j

)
+ 2ν

∑
i

ln yi − ∥y∥2/2

is maximal at r ∈ CB
N ;

(2) For i = 1, . . . , N , 1
2ri =

∑
j : j ̸=i

2ri
r2i−r2j

+ ν
ri

=
∑

j:j ̸=i

(
1

ri−rj
+ 1

ri+rj

)
+ ν

ri
;

(3) If z
(ν−1)
1 ≥ · · · ≥ z

(ν−1)
N are the ordered zeros of L

(ν−1)
N , then

2
(
z
(ν−1)
1 , . . . , z

(ν−1)
N

)
=
(
r21, . . . , r

2
N

)
.

The vector r of (1)–(3) satisfies

∥r∥2 = N(N + ν − 1) (4.2)

and

− 1

2
∥r∥2 + ν

N∑
j=1

ln r2j + 2
∑
i<j

ln
(
r2i − r2j

)
= N(N + ν − 1)(−1 + ln 2) +

N∑
j=1

j ln j +

N∑
j=1

(ν + j − 1) ln(ν + j − 1). (4.3)

Proof. See [4] or [35]. Parts are also in [32, Section 6.3]. ■

This result leads to the following CLT in the Bessel case; see [35, Theorem 3.3].

Theorem 4.2. Let ν > 0, N ≥ 1 an integer, and (Xt,β)t≥0 a Bessel process of type BN on CB
N

starting in 0 ∈ CB
N with parameter k = (νβ, β). Then, for the vector r ∈ CB

N from Lemma 4.1,

Xt,β√
t

−
√
βr

converges for β → ∞ to the centered N -dimensional distribution N (0,Σ) with the regular co-
variance matrix Σ with Σ−1 = (si,j)i,j=1,...,N with

si,j :=


1 +

2ν

r2i
+ 2

∑
l ̸=i

(ri − rl)
−2 + 2

∑
l ̸=i

(ri + rl)
−2 for i = j,

2(ri + rj)
−2 − 2(ri − rj)

−2 for i ̸= j.

The matrix Σ−1 has the eigenvalues 2, 4, . . . , 2N .
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We now derive an associated weak limit law for the Cauchy–Bessel distributions τν,β analogous
to Theorem 3.8. We here again use different scalings on two complementary subspaces of RN ,
namely on R · r and its orthogonal complement r⊥. Let pr : RN → R · r be the orthogonal
projection onto R·r, and pr⊥ the orthogonal projection onto r⊥. Now letXβ be a τν,β-distributed
random variable. We again define the rescaled random variables X̃β := ϕβ(Xβ) with the linear
mappings

ϕβ : RN → RN , ϕβ(y) :=
1√
β
pr(y) + pr⊥(y) = y +

(
1√
β
− 1

)
pr(y). (4.4)

The random variables X̃β then have values in the sets CB
N,β := ϕβ

(
CB
N

)
. These sets have the

following property analogous to Lemma 3.7.

Lemma 4.3. The closure of
⋃

β≥1C
B
N,β is the closed half space

BN :=
{
y ∈ RN : ⟨y, r⟩ ≥ 0

}
.

Moreover, for 1 ≤ β1 ≤ β2, C
B
N,β1

⊂ CB
N,β2

.

The following limit theorem is analogous to Theorem 3.8.

Theorem 4.4. For β > 0 and N ≥ 1 let Xβ be a CA
N -valued, τν,β-distributed random variable.

Then the rescaled random variables X̃β converge in distribution for β → ∞ to some probability
measure µ on RN with the half space BN as support. This measure µ is given by

µ :=
1√
2π

∫ ∞

0
N
(√

sr, sAΣA
)
s−3/2 exp(−1/(2s)) ds (4.5)

with the matrix Σ from Theorem 4.2 where A is the matrix belonging to the orthogonal projec-
tion pr⊥ in the standard coordinates on RN . Moreover, µ has the Lebesgue density

f(y) := D(N) exp

(
−N(N + ν − 1)

2∥pr(y)∥2
yTΣ−1y

)
exp

(
−N(N + ν − 1)

2∥pr(y)∥2

)
1

∥pr(y)∥N+1
(4.6)

with

D(N) :=

√
2
√
N !(N(N + ν − 1))N/2eN(N+ν−1)

πN/2

for y in the interior of BN .

Please notice that the normal distributions in the mixing formula (4.5) are singular, and that
the existence of the density (4.6) on the half space BN is a consequence of the integration w.r.t.
the mean vectors of the normal distributions which compensate the singular direction.

Theorem 4.4 with the limit with density (4.6) can be derived in the same way as Theorem 3.8
by using Lemmas 4.1 and 4.3. We skip this direct approach and present a second, Fourier-
analytic proof which is based on the central limits Theorem 4.2 and the very construction of the
Cauchy–Bessel distributions τν,β via the subordination (2.8). We point out that this approach
also works for Theorem 3.8.

Proof. Fix ν > 0, and consider the inverse Gaussian convolution semigroup (µt)t≥0 on (R,+)
as in (2.7). For s ≥ 0 and β > 0 let ρs,β ∈ M1

(
CB
N

)
be the distributions of a Bessel process

(Xs,β)s≥0 of type BN starting in 0 with parameter k = (νβ, β) as in Theorem 4.2. Hence, by
Theorem 4.2, X1,β −

√
βr tends in distribution to N (0,Σ) with the covariance matrix Σ from

Theorem 4.2. Therefore, in terms of the classical convolution ∗ of measures on (Rn,+),

ρ1,β ∗ δ−√
βr −→ N (0,Σ), β → ∞,
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weakly. Hence, using the classical Fourier transform µ̂(w) :=
∫
RN e−i⟨w,x⟩ dµ(x) of measures µ

on RN and Levy’s continuity theorem, we get

ei
√
β⟨w,r⟩ρ̂1,β(w) −→ e−wTΣw/2, β → ∞, (4.7)

locally uniformly for w ∈ RN . Moreover, by the scaling properties of the ρs,β we have ρ̂s,β(w) =
ρ̂1,β

(√
sw
)
for s ≥ 0 and w ∈ RN .

We now consider the Cauchy–Bessel distributions τν,β which are related to the ρs,β via the
subordination (2.8) by

τν,β =

∫ ∞

0
ρs,β dµ√

2(s)

in the sense of concatenation of a Markov kernel with a measure. Using the definition (2.7)
of µ√

2, we obtain

τ̂ν,β(w) =
1√
2π

∫ ∞

0
ρ̂s,β(w)s

−3/2 exp(−1/(2s)) ds

=
1√
2π

∫ ∞

0
ρ̂1,β

(√
sw
)
s−3/2 exp(−1/(2s)) ds.

Now consider the linear mappings (4.4) which transform the given random variables Xβ with the
distributions τν,β into the rescaled random variables X̃β := ϕβ(Xβ). As the ϕβ are symmetric
linear operators, we conclude that the Fourier transforms τ̂ν,β,ϕ of the distributions τν,β,ϕ of
the X̃β satisfy

τ̂ν,β,ϕ(w) = τ̂ν,β(ϕβ(w)).

Using (4.7) and dominated convergence, we hence obtain that for w ∈ RN ,

lim
β→∞

τ̂ν,β,ϕ(w) = lim
β→∞

τ̂ν,β(ϕβ(w))

=
1√
2π

∫ ∞

0
lim
β→∞

ρ̂1,β
(√

sϕβ(w)
)
s−3/2 exp(−1/(2s)) ds

=
1√
2π

∫ ∞

0
lim
β→∞

(
e−sϕβ(w)TΣϕβ(w)/2e−i

√
sβ⟨ϕβ(w),r⟩)s−3/2 exp(−1/(2s)) ds.

We next observe from the definition of ϕβ that√
β⟨ϕβ(w), r⟩ = ⟨pr(w), r⟩ = ⟨w, r⟩

and

lim
β→∞

ϕβ(w)
TΣϕβ(w) = pr⊥(w)

TΣpr⊥(w).

Therefore,

lim
β→∞

τ̂ν,β,ϕ(w) =
1√
2π

∫ ∞

0
e−sp

r⊥ (w)TΣp
r⊥ (w)/2e−i

√
s⟨w,r⟩s−3/2 exp(−1/(2s)) ds.

Clearly, the r.h.s. is just the Fourier transform of the probability measure

µ :=
1√
2π

∫ ∞

0
N (0, sAΣA) ∗ δ√srs

−3/2 exp(−1/(2s)) ds =

∫ ∞

0
N
(√

sr, sAΣA
)
dµ√

2(s)

from (4.5). Hence, by Levy’s continuity theorem, we have weak convergence to this µ.
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We finally check that µ has the density (4.6). Clearly we may restrict our attention to the
interior of the half space BN . Moreover, by standard arguments from measure theory it suf-
fices to check this by comparing µ with the measure with density (4.6) for sets of the form
T ([c1, d1] × R) ⊂ BN for 0 ≤ c1 ≤ d1, a Borel set R ⊂ Rn−1, and T the map belonging to the
change of coordinates from the given standard coordinates e1, . . . , eN into the orthogonal coordi-
nates belonging to the normalized eigenvectors v1, . . . , vN of Σ−1 associated with the eigenvalues
2, 4, . . . , N . We recapitulate that by [6, Theorem 4.3] and by (4.2), v1 = r/

√
N(N + ν − 1)

holds. With these notations and the substitution t =
√
s∥r∥ we obtain for the probability

measure µ from (4.5) that

µ(T ([c1, d1]×R))

=
1√
2π

∫ ∞

0
N
(√

s∥r∥e1, sdiag
(
0,

1

4
,
1

6
, . . . ,

1

2N

))
([c1, d1]×R)

exp(−1/(2s))

s3/2
ds

=
2∥r∥√
2π

∫ ∞

0
N
(
te1,

t2

∥r∥2
diag

(
0,

1

4
,
1

6
, . . . ,

1

2N

))
([c1, d1]×R)

e−∥r∥2/(2t2)

t2
dt

=
2∥r∥√
2π

∫ d1

c1

NN−1

(
0,

t2

∥r∥2
diag

(
1

4
,
1

6
, . . . ,

1

2N

))
(R)

e−∥r∥2/(2t2)

t2
dt, (4.8)

where NN−1 is an (N − 1)-dimensional normal distribution. On the other hand, with the same
change of coordinates, (4.6) and (4.2) lead to∫

T ([c1,d1]×R)
f(y) dy

= D(N)

∫ d1

c1

(∫
R
exp

(
−∥r∥2

2t2
(t, y)T diag(2, 4, 6, . . . , 2N)(t, y)

)
dy

)

× exp

(
−∥r∥2

2t2

)
1

tN+1
dt

D(N)e−∥r∥2
∫ d1

c1

(∫
R
exp

(
−∥r∥2

2t2
yT diag(4, 6, . . . , 2N)y

)
dy

)

× exp

(
−∥r∥2

2t2

)
1

tN+1
dt. (4.9)

Using the definition of D(N) and the constants of multivariate normal distributions, we see that
the expressions in the end of (4.8) and (4.9) are equal. This completes the proof. ■

Remark 4.5.

(1) Clearly, the central limits Theorem 3.8 can be also proved in the same way as Theorem 4.4.
Moreover the limit measure with density (3.21) there can be also expressed in a form which
corresponds to (4.5).

On the other hand, the methods of the proof of Theorem 3.8 can be also applied in the
situations of Theorems 3.8 and 4.4 in order to derive corresponding limits for distributions
of the form

c(k, t)

(
4

t2 + 2∥y∥2

)rk

wk(y)

with more general exponents rk than in (2.9) and suitable norming constants c(k, t) > 0.

(2) The asymptotic Theorem 3.4 in the Hermite case can be also transfered to the Laguerre
case. We skip the details.
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(3) The assertion of Theorem 4.4 remains valid for all Cauchy–Bessel distributions of type BN

as defined in (2.8) via subordination for all fixed starting points x ∈ CB
N and not only for

x = 0.

This can be seen as follows. Lemma 5 of [4] implies that for all x, y ∈ CB
N and ν > 0, the

corresponding Bessel functions satisfy

lim
β→∞

JB
(νβ,β)

(√
βx, y

)
= exp

(
∥x∥2∥y∥2

4N(ν +N − 1)

)
. (4.10)

This implies that Theorem 4.2 is available also for arbitrary starting points x ∈ CB
N ; see

[35, Theorem 3.3]. This shows that the proof of Theorem 4.4 also works for arbitrary
starting points x ∈ CB

N .

(4) The preceding result can be also stated for the root systems AN−1 and arbitrary starting
points x ∈ CA

N . However, the details of the proof and of the result are slightly more
complicated, as the root system is not longer reduced, and as the center-of-gravity-part of
the limit has a slightly different behavior. In fact, the analogue of (4.10) for the Bessel
functions of type A is more complicated; see of [5, Corollary 8] as well as [6, Lemma 2.4
and Theorem 2.5]. This limit for the Bessel functions implies that the limit distribution of
the CLT for Bessel processes in [6, Theorem 2.3] contains an additional drift in the center-
of-gravity-direction. Having this in mind, one can also restate central limits Theorem 3.8
in this way for arbitrary starting points x ∈ CA

N by taking this drift into account.

(5) In [36], freezing limits are studied for Bessel processes with parameter k → ∞ where the
starting points have the form

√
kx with points x in the interior of the Weyl chamber. We

do not know whether the CLTs there can be transfered to Cauchy–Bessel processes.

(6) We expect that the methods of the proof of Theorem 4.4 can be used to study freezing
limits for further classes of distributions which appear form the Bessel processes by different
subordinations like general analogues of stable distributions.

(7) In the singular case ν = 0 there exists an analogue of Theorem 4.4 where the details are
slightly different. We discuss this singular case in the next section as a consequence of the
corresponding results for the root systems DN .

5 Freezing limits for the root system DN

and an extremal BN -case

We here briefly study Bessel processes and related Cauchy–Bessel distributions for the root
system DN and an extremal BN -case. We recapitulate that the root system DN is given by

DN = {±ei ± ej : 1 ≤ i < j ≤ N}

with the Weyl chamber

CD
N =

{
x ∈ RN : x1 ≥ · · · ≥ xN−1 ≥ |xN |

}
,

which may be seen as a doubling of CB
N w.r.t. the last coordinate. We have a multiplicity

k ∈ ]0,∞[. The generator of the transition semigroup of the Bessel process (Xt,k)t≥0 of type D is

Lf :=
1

2
∆f + k

N∑
i=1

∑
j ̸=i

(
1

xi − xj
+

1

xi + xj

)
∂

∂xi
f.
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The transition probabilities are

Kt,k(x,A) = cDk

∫
A

1

tγD+N/2
e−(∥x∥2+∥y∥2)/(2t)JD

k

(
x√
t
,
y√
t

)
wD
k (y) dy

with

wD
k (x) :=

∏
i<j

(
x2i − x2j

)2k
, γD := kN(N − 1) (5.1)

and

cDk =
N !

2N(N−1)k−N/2+1

N∏
j=1

Γ(1 + k)

Γ(1 + jk)Γ(12 + (j − 1)k)
; (5.2)

see Demni [17] and [7, 35] for the details.

We next recapitulate some fact on Laguerre polynomials. Using the representation

L
(α)
N (x) :=

N∑
k=0

(
N + α

N − k

)
(−x)k

k!

(see [32, equation (5.1.6)]), we can form the polynomial L
(−1)
N of order N ≥ 1 where, by [32,

equation (5.2.1)],

L
(−1)
N (x) = − x

N
L
(1)
N−1(x). (5.3)

Using the N − 1 ordered zeros z
(1)
1 > · · · > z

(1)
N−1 > 0 of L

(1)
N−1, we define the vector r =

(r1, . . . , rN ) ∈ [0,∞[N with

2
(
z
(1)
1 , . . . , z

(1)
N−1, 0

)
=
(
r21, . . . , r

2
N

)
(5.4)

similar to Section 4. Notice that r is in the interior of CD
N , and that (4.2) and (5.3) imply

∥r∥2 = N(N − 1).

Most parts of the following CLT for the Bessel processes (Xt,k)t≥0 of type DN on CD
N with

multiplicity k > 0 with start in 0 were proved in [35]:

Theorem 5.1. For each t > 0, the random variables
Xt,k√

t
−

√
kr converge for k → ∞ to

the centered N -dimensional distribution N (0,ΣD) with the regular covariance matrix ΣD with
Σ−1
D = (si,j)i,j=1,...,N with

si,j :=


1 + 2

∑
l ̸=i

(ri − rl)
−2 + 2

∑
l ̸=i

(ri + rl)
−2 for i = j,

2(ri + rj)
−2 − 2(ri − rj)

−2 for i ̸= j.

(5.5)

The entries si,j satisfy si,N = sN,i = 0 for i = 1, . . . , N − 1 and sN,N = N . The block
(si,j)i,j=1,...,N−1 is the inverse covariance matrix in Theorem 4.4 for the dimension N − 1 with
ν = 2.
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Proof. By the proof of Theorem 5.2 in [35], the densities of the
Xt,k√

t
−
√
kr may be written as

fD
k (y) = cDk exp

(
2k
∑
i<j

ln

(
1 +

yi − yj√
k(ri − rj)

)
+ 2k

∑
i<j

ln

(
1 +

yi + yj√
k(ri + rj)

))

× e−∥y∥2/2e−k∥r∥2/2e−
√
k⟨y,r⟩ exp

(
2k
∑
i<j

(
ln
(√

k(ri − rj)
)
+ ln

(√
k(ri + rj)

)))

on the shifted cone CD
N −

√
kr, with fD

k (y) = 0 elsewhere on RN . We write this as

fD
k (y) = c̃Dk hk(y)

with

hk(y) := exp

(
−∥y∥2/2−

√
k⟨y, r⟩+ 2k

∑
i<j

(
ln

(
1 +

yi − yj√
k(ri − rj)

)

+ ln

(
1 +

yi + yj√
k(ri + rj)

)))

and

c̃Dk := cDk e
−k∥r∥2/2 exp

(
2k
∑
i<j

(
ln
(√

k(ri − rj)
)
+ ln

(√
k(ri + rj)

)))
,

where, by [35, equation (5.7)],

lim
k→∞

hk(y) = exp

(
−∥y∥2

2
−
∑
i<j

(yi − yj)
2

(ri − rj)2
−
∑
i<j

(yi + yj)
2

(ri + rj)2

)
.

This implies by the arguments in the proofs of Theorem 5.2 in [35] (more precisely, by the
arguments in the proofs of Theorems 2.2 and 3.3 there) that the probability measures with the
densities fD

k tend weakly to N (0,ΣD) with Σ−1
D as in the theorem above. Moreover, except for

the statement sN,N = N , all additional facts about the entries of Σ−1
D in the theorem are clear

by (5.3).
In order to prove sN,N = N , we use (5.3) and (4.3) for ν = 2 (i.e., α = 1) and N − 1 (instead

of N), and we observe that in our situation rN = 0 holds. These facts lead readily to

2 ln

(∏
i<j

(
r2i − r2j

))
= N(N − 1)(−1/2 + ln 2) +

N∑
j=1

j ln j +
N−1∑
j=1

j ln j.

This, (5.2), and Stirling’s formula applied to the Gamma functions in (5.2) now imply that

lim
k→∞

c̃Dk =
2(N−1)/2

√
N !

(2π)N/2
.

If we compare this with the normalization constants of N (0,ΣD) and use

det
(
Σ−1
D

)
= det((si,j)i,j=1,...,N−1)sN,N = 2N−1(N − 1)!sN,N ,

we obtain sN,N = N as claimed. ■



22 M. Voit

Remark 5.2. If we combine sN,N = N with the (N,N)-entry in (5.5), we obtain that the zeros

z
(1)
1 > · · · > z

(1)
N−1 > 0 of L

(1)
N−1 satisfy

∑N−1
l=1

1

z
(1)
l

= N−1
2 . It was pointed out by one of the

referees that such sums over the inverses of the zeros can be computed easily for all classical
orthogonal polynomials. For this use the elementary symmetric polynomials e0, . . . , eN in N
variables, and write such a polynomial PN of order N with zeros z1, . . . , zN as

PN (z) = cN

N∏
j=1

(z − zj) = cN

N∑
j=0

(−1)N−jeN−j(z1, . . . , zN )zj . (5.6)

As

N∑
l=1

1

zl
=

eN−1(z1, . . . , zN )

eN (z1, . . . , zN )
,

we can derive this sum from (5.6) and the well-known formulas for the coefficients of the classical

orthognal polynomials in [32]. For instance, equation (5.1.6) of [32] yields for L
(α)
N with the zeros

z
(α)
1 , . . . , z

(α)
N that

N∑
l=1

1

z
(α)
l

=
N

α+ 1
.

This in particular leads to an alternative proof of the statement sN,N = N in the preceding
theorem.

We next turn to Cauchy–Bessel distributions of type DN which are constructed from the
associated Bessel processes via subordination. More precisely, we use the inverse Gaussian
distribution µt with density (2.7) for t =

√
2 as in the preceding sections, and obtain from the

densities (2.6) together with (2.9), (5.1), and (5.2) that the associated Cauchy–Bessel ensembles
have the densities

fk,D(y) := CD(k,N)
1

(1 + ∥y∥2)kN(N−1)+(N+1)/2

∏
i,j : i<j

(
y2i − y2j

)2k
(5.7)

on the Weyl chambers CD
N with the norming constants

CD(k,N) =
2N−1N !Γ(kN(N − 1) + (N + 1)/2)√

π

N∏
j=1

Γ(1 + k)

Γ(1 + jk)Γ(12 + k(j − 1))
.

The Fourier-analytic proof of Theorem 4.4 leads to the following CLT where, similar to Section 4,
we use the normalization mappings

ϕk : RN → RN , ϕk(y) :=
1√
k
pr(y) + pr⊥(y) = y +

(
1√
k
− 1

)
pr(y). (5.8)

Theorem 5.3. For k > 0 and N ≥ 2 let Xk be CD
N -valued random variables with the Lebesgue

densities (5.7). Then the rescaled random variables X̃k := ϕk(Xk) converge in distribution for
k → ∞ to some µ ∈ M1

(
RN
)
with the half space BN :=

{
y ∈ RN : ⟨y, r⟩ ≥ 0

}
as support. µ is

given by

µ :=
1√
2π

∫ ∞

0
N
(√

sr, sAΣDA
)
s−3/2 exp(−1/(2s)) ds,
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where A is the matrix of the orthogonal projection pr⊥. The measure µ has the Lebesgue density

f(y) := D(N) exp

(
−N(N − 1)

2∥pr(y)∥2
yTΣ−1

D y

)
exp

(
−N(N − 1)

∥pr(y)∥2

)
1

∥pr(y)∥N+1

for y in the interior of BN with

D(N) :=

√
N !(N(N − 1))N/2eN(N−1)

πN/2
.

The central limit Theorems 5.1 and 5.3 for Bessel and Cauchy–Bessel processes of type D lead
immediately to CLTs for the Bessel and Cauchy–Bessel processes of type B with the multiplicities
(k1, k2) := (0, β) for β → ∞, i.e., the case ν = 0 in Section 4.

For this we recapitulate the following fact from [7]. If
(
XD

t,k

)
t≥0

is a Bessel process of type D

with multiplicity k ≥ 0 on the chamber CD
N starting in 0, then the process

(
XB

t,k

)
t≥0

with

XB,i
t,k := XD,i

t,k , i = 1, . . . , N − 1, XB,N
t,k :=

∣∣XD,N
t,k

∣∣
is a Bessel process of type B with (k1, k2) := (0, k). This follows easily from a comparison of the
corresponding generators. The central limit Theorem 5.1 for

(
XD

t,k

)
t≥0

thus leads to the following

central limit Theorem 5.4 for Bessel processes of type B with the multiplicities (0, k) for k → ∞
with one-sided normal distribution as limit; see [35, Corollary 5.3]. By [35, Theorem 6.2], this
CLT also holds for the multiplicities (k1, k2) form any fixed k1 ≥ 0 and k2 → ∞.

To state the result we denote the image of a N -dimensional normal distribution N (0,Σ) with
covariance matrix Σ under the map

RN −→ HN :=
{
x ∈ RN : xN ≥ 0

}
, (x1, . . . , xN ) 7→ (x1, . . . , xN−1, |xN |)

by |N (0,Σ)|, i.e., the support of |N (0,Σ)| is contained in the half space HN .

Theorem 5.4. Consider the Bessel processes (Xt,(k1,k2))t≥0 of type BN on CB
N with multiplicities

(k1, k2) with start in 0 and k1 ≥ 0. Then, for the vector r from (5.4) on the boundary of CB
N ,

Xt,(k1,k2)√
t

−
√

k2r

converges for k2 → ∞ in distribution to |N (0,ΣD)| with ΣD as in Theorem 5.1.

This one-sided CLT leads to the following corresponding result for Cauchy–Bessel distribu-
tions.

Corollary 5.5. For k1, k2 ≥ 0 and integer N ≥ 2 let Xk1,k2 be CB
N -valued random variables with

the Cauchy–Bessel densities

fk1,k2(y) := CB(k1, k2, N)
1(

1 + ∥y∥2
)k2N(N−1)+k1N+(N+1)/2

∏
i,j : i<j

(
y2i − y2j

)2k2 N∏
i=1

y2k1i

with the norming constants as in (4.1). Then the rescaled random variables X̃k1,k2 := ϕk(Xk1,k2)
with ϕk as in (5.8) converge in distribution for k2 → ∞ to some µ ∈ M1

(
RN
)
with the quarter

space

BN,0 :=
{
y ∈ RN : yN ≥ 0, ⟨y, r⟩ ≥ 0

}
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as support. µ is given by

µ :=
1√
2π

∫ ∞

0

∣∣N (√sr, sAΣDA
)∣∣s−3/2 exp(−1/(2s)) ds,

where A is the matrix of the orthogonal projection pr⊥. The measure µ has the Lebesgue density

f(y) := 2D(N) exp

(
−N(N − 1)

2∥pr(y)∥2
yTΣ−1

D y

)
exp

(
−N(N − 1)

∥pr(y)∥2

)
1

∥pr(y)∥N+1

for y in the interior of BN,0 with D(N) as in Theorem 5.3.
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