| 
 SIGMA 18 (2022), 072, 36 pages       arXiv:2108.13883     
https://doi.org/10.3842/SIGMA.2022.072 
 
Quadratic Relations of the Deformed $W$-Algebra for the Twisted Affine Lie Algebra of Type $A_{2N}^{(2)}$
Takeo Kojima
 Department of Mathematics and Physics, Faculty of Engineering, Yamagata University, Jonan 4-3-16, Yonezawa 992-8510, Japan
 
 
Received December 15, 2021, in final form September 09, 2022; Published online October 04, 2022
 Abstract 
We revisit the free field construction of the deformed $W$-algebra by Frenkel and Reshetikhin [Comm. Math. Phys. 197 (1998), 1-32], where the basic $W$-current has been identified. Herein, we establish a free field construction of higher $W$-currents of the deformed $W$-algebra associated with the twisted affine Lie algebra $A_{2N}^{(2)}$. We obtain a closed set of quadratic relations and duality, which allows us to define deformed $W$-algebra ${\mathcal W}_{x,r}\big(A_{2N}^{(2)}\big)$ using generators and relations.
 Key words: deformed $W$-algebra; twisted affine algebra; quadratic relation; free field construction; exactly solvable model. 
pdf (892 kb)  
tex (93 kb)  
 
 
References 
- Awata H., Kubo H., Odake S., Shiraishi J., Quantum deformation of the  ${\mathcal W}_N$ algebras, arXiv:q-alg/9612001.
 
- Awata H., Kubo H., Odake S., Shiraishi J., Quantum ${\mathcal W}_N$ algebras  and Macdonald polynomials, Comm. Math. Phys. 179 (1996),  401-416, arXiv:q-alg/9508011.
 
- Brazhnikov V., Lukyanov S., Angular quantization and form factors in massive  integrable models, Nuclear Phys. B 512 (1998), 616-636,  arXiv:hep-th/9707091.
 
- Ding J., Feigin B., Quantized $W$-algebra of $\mathfrak{sl}(2,1)$: a  construction from the quantization of screening operators, in Recent  Developments in Quantum Affine Algebras and Related Topics (Raleigh, NC,  1998), Contemp. Math., Vol. 248, Amer. Math. Soc., Providence, RI,  1999, 83-108, arXiv:math.QA/9801084.
 
- Feigin B., Frenkel E., Quantum $\mathcal W$-algebras and elliptic algebras,  Comm. Math. Phys. 178 (1996), 653-678,  arXiv:q-alg/9508009.
 
- Feigin B., Jimbo M., Mukhin E., Vilkoviskiy I., Deformations of $\mathcal  {W}$ algebras via quantum toroidal algebras, Selecta Math. (N.S.)  27 (2021), 52, 62 pages, arXiv:2003.04234.
 
- Frenkel E., Reshetikhin N., Quantum affine algebras and deformations of the  Virasoro and ${\mathcal W}$-algebras, Comm. Math. Phys.  178 (1996), 237-264, arXiv:q-alg/9505025.
 
- Frenkel E., Reshetikhin N., Deformations of $\mathcal W$-algebras associated  to simple Lie algebras, Comm. Math. Phys. 197 (1998),  1-32, arXiv:q-alg/9708006.
 
- Frenkel E., Reshetikhin N., Semenov-Tian-Shansky M.A., Drinfeld-Sokolov  reduction for difference operators and deformations of ${\mathcal  W}$-algebras. I. The case of Virasoro algebra, Comm. Math.  Phys. 192 (1998), 605-629, arXiv:q-alg/9704011.
 
- Harada K., Matsuo Y., Noshita G., Watanabe A., $q$-Deformation of corner vertex  operator algebras by Miura transformation, J. High Energy Phys.  2021 (2021), no. 4, 202, 49 pages, arXiv:2101.03953.
 
- Kac V.G., Infinite-dimensional Lie algebras, 3rd ed., Cambridge University  Press, Cambridge, 1990.
 
- Kojima T., Quadratic relations of the deformed $W$-superalgebra $\mathcal  W_{q,t} (A(M,N))$, J. Phys. A 54 (2021), 335201, 37 pages,  arXiv:2101.01110.
 
- Kojima T., Quadratic relations of the deformed $W$-superalgebra  $\mathcal{W}_{q,t}(\mathfrak{sl}(2|1))$, J. Math. Phys.  62 (2021), 051702, 19 pages, arXiv:1912.03096.
 
- Odake S., Comments on the deformed $W_N$ algebra, Internat. J. Modern  Phys. B 16 (2002), 2055-2064, arXiv:math.QA/0111230.
 
- Semenov-Tian-Shansky M.A., Sevostyanov A.V., Drinfeld-Sokolov reduction for  difference operators and deformations of ${\mathcal W}$-algebras. II.  The general semisimple case, Comm. Math. Phys. 192  (1998), 631-647, arXiv:q-alg/9702016.
 
- Sevostyanov A., Drinfeld-Sokolov reduction for quantum groups and  deformations of $W$-algebras, Selecta Math. (N.S.) 8  (2002), 637-703, arXiv:math.QA/0107215.
 
- Shiraishi J., Kubo H., Awata H., Odake S., A quantum deformation of the  Virasoro algebra and the Macdonald symmetric functions, Lett.  Math. Phys. 38 (1996), 33-51, arXiv:q-alg/9507034.
 
- van de Leur J.W., Contragredient Lie superalgebras of finite growth, Ph.D. Thesis, Utrecht University, 1986.
 
- van de Leur J.W., A classification of contragredient Lie superalgebras of  finite growth, Comm. Algebra 17 (1989), 1815-1841.
 
 
 | 
 |