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Abstract. We revisit the free field construction of the deformed W -algebra by Frenkel and
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quadratic relations and duality, which allows us to define deformed W -algebra Wx,r

(
A

(2)
2N

)

using generators and relations.

Key words: deformed W -algebra; twisted affine algebra; quadratic relation; free field con-
struction; exactly solvable model

2020 Mathematics Subject Classification: 81R10; 81R12; 81R50; 81T40; 81U15

This paper is dedicated to Professor Michio Jimbo
on the occasion of his 70th anniversary

1 Introduction

The deformed W -algebra Wx,r(g) is a two-parameter deformation of the classical W -alge-
bra W(g). The deformation theory of the W -algebra has been studied in papers [2, 3, 4, 5,
6, 8, 10, 12, 13, 14, 16, 17]. For instance, free field constructions of the basic W -current T1(z)
of Wx,r(g) were suggested in the case when the underlying Lie algebra is of classical type.
However, in comparison with the conformal case, the deformation theory of W -algebras is still
not fully developed and understood. Moreover, finding quadratic relations of the deformed
W -algebra Wx,r(g) is still an unresolved problem.

In this paper, we generalize the study for Wx,r

(
A

(2)
2

)
1 by Brazhnikov and Lukyanov [3]. They

obtained a quadratic relation for the W -current T1(z) of the deformed W -algebra Wx,r

(
A

(2)
2

)

f

(
z2
z1

)
T1(z1)T1(z2)− f

(
z1
z2

)
T1(z2)T1(z1)

= δ

(
x−2z2
z1

)
T1(x

−1z2)− δ

(
x2z2
z1

)
T1(xz2) + c

(
δ

(
x−3z2
z1

)
− δ

(
x3z2
z1

))

with an appropriate constant c and a function f(z). This study aims to generalize the result for

the cases A
(2)
2 to A

(2)
2N . We introduce higher W -currents Ti(z), 1 ≤ i ≤ 2N , by fusion of the free

field construction of the basic W -current T1(z) of Wx,r

(
A

(2)
2N

)
[8] (see formula (3.2)). We obtain

a closed set of quadratic relations for the W -currents Ti(z), which is completely different from

1We use two types of symbols, Wx,r(g) and Wx,r(X
(r)
n ), for the deformed W -algebra associated with the affine

Lie algebra g of type X
(r)
n .
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those in the case of deformed W -algebras associated with affine Lie algebras of types A
(1)
N and

A(M,N)(1) (see formula (3.4)). We refer the reader to references [18, 19] for the affine Lie
superalgebra notation. We obtain the duality T2N+1−i(z) = ciTi(z) with 1 ≤ i ≤ N , which
is a new phenomenon that does not occur in the case of deformed W -algebras associated with

affine Lie algebras of types A
(2)
2 , A

(1)
N , and A(M,N)(1) (see formula (3.3)). This allows us to

define Wx,r

(
A

(2)
2N

)
using generators and relations. We believe that this paper presents a key step

toward extending our construction for general affine Lie algebras g, because the structures of
the free field construction of the basic W -current T1(z) for the affine algebras other than that

of type A
(1)
N are quite similar to those of type A

(2)
2N , not A

(1)
N . We have checked that there are

similar quadratic relations as those for type A
(2)
2N in the case of type B

(1)
N with small rank N .

The remainder of this paper is organized as follows. In Section 2, we review the free field

construction of the basic W -current T1(z) of the deformed W -algebra Wx,r

(
A

(2)
2N

)
[8]. In Sec-

tion 3, we introduce higher W -currents Ti(z) and present a closed set of quadratic relations and
duality. We also obtain the q-Poisson algebra in the classical limit. In Section 4, we establish
proofs of Proposition 3.1 and Theorem 3.2. Section 5 is devoted to discussion. In Appendices A
and B, we summarize normal ordering rules.

2 Free field construction

In this section, we define notation and review the free field construction of the basic W -current

T1(z) of Wx,r

(
A

(2)
2N

)
. Throughout this paper, we fix a natural number N = 1, 2, 3, . . . , a real

number r > 1, and a complex number x with 0 < |x| < 1.

2.1 Notation

In this section, we use complex numbers a, w, q, and p with w ̸= 0, q ̸= 0,±1, and |p| < 1. For
any integer n, we define q-integers

[n]q =
qn − q−n

q − q−1
.

We use symbols for infinite products,

(a; p)∞ =
∞∏

k=0

(1− apk), (a1, a2, . . . , aN ; p)∞ =
N∏

i=1

(ai; p)∞

for complex numbers a1, a2, . . . , aN . The following standard formulas are used,

exp

(
−
∞∑

m=1

1

m
am

)
= 1− a, exp

(
−
∞∑

m=1

1

m

am

1− pm

)
= (a; p)∞.

We use the elliptic theta function Θp(w) and the compact notation Θp(w1, w2, . . . , wN ),

Θp(w) =
(
p, w, pw−1; p

)
∞, Θp(w1, w2, . . . , wN ) =

N∏

i=1

Θp(wi)

for complex numbers w1, w2, . . . , wN ̸= 0. Define δ(z) by the formal series

δ(z) =
∑

m∈Z
zm.
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2.2 Twisted affine Lie algebra of type A
(2)
2N

In this section we recall the definition of the twisted affine Lie algebra of type A
(2)
2N , N =

1, 2, 3, . . . , in [11]. The Dynkin diagram of type A
(2)
2N is given by

Quadratic relations of the deformed W -algebra Wx,r

(
A

(2)
2N

)
3

2.2 Twisted affine Lie algebra of type A
(2)
2N

In this section we recall the definition of the twisted affine Lie algebra of type A
(2)
2N , N = 1, 2, 3, . . . ,

in Ref.[16]. The Dynkin diagram of type A
(2)
2N is given by

· · · · · ·
α0 α1 αN−2 αN−1 αN

α1

A
(2)
2

α0

A
(2)
2N with N ≥ 2

The corresponding Cartan matrix A = (Ai,j)
N
i,j=0 of type A

(2)
2N is given by

A =




2 −2 0 · · · · · · · · · 0

−1 2 −1
. . .

...

0 −1 2
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . .

...
...

. . .
. . . 2 −1 0

...
. . . −1 2 −2

0 · · · · · · · · · 0 −1 2




with N ≥ 2, and

A =

(
2 −4

−1 2

)

with N = 1. We set the labels ai = 2, 0 ≤ i ≤ N − 1, aN = 1, and the co-labels a∨0 = 1, a∨i = 2,
1 ≤ i ≤ N . We set D = diag(a0a

∨
0
−1, a1a

∨
1
−1, . . . , aNa∨N

−1). We obtain A = DB, where B is a
symmetric matrix. Thus, the Cartan matrix A is symmetrizable. Let h be an N +2-dimensional
vector space over C. Let {h0, h1, . . . , hN , d} be a basis of h, and {α0, α1, . . . , αN , Λ0} a basis of
h∗ = HomC(h,C) such that we have with respect to pairing ⟨·, ·⟩ : h × h∗ → C

⟨hi, αj⟩ = Ai,j , 0 ≤ i, j ≤ N, ⟨d, αi⟩ = δ0,i, ⟨hi, Λ0⟩ = δi,0, 0 ≤ i ≤ N, ⟨d, Λ0⟩ = 0.

Let g(A) be the affine Lie algebra associated with the Cartan matrix A. Since A is symmetriz-
able, it is defined as the Lie algebra generated by ei, fi, 0 ≤ i ≤ N , and h with the following
relations:

[ei, fj ] = δi,jhi, 0 ≤ i, j ≤ N, [h, h′] = 0, h, h′ ∈ h,

[h, ei] = ⟨h, αi⟩ei, [h, fi] = −⟨h, αi⟩fi, h ∈ h, 0 ≤ i ≤ N,

(ad ei)
−Ai,j+1ej = 0, (ad fi)

−Ai,j+1fj = 0, 0 ≤ i, j ≤ N, i ̸= j.

Here we used the adjoint action (ad x)y = [x, y].

The corresponding Cartan matrix A = (Ai,j)
N
i,j=0 of type A

(2)
2N is given by

A =




2 −2 0 · · · · · · · · · 0

−1 2 −1
. . .

...

0 −1 2
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . .

...
...

. . .
. . . 2 −1 0

...
. . . −1 2 −2

0 · · · · · · · · · 0 −1 2




with N ≥ 2, and

A =

(
2 −4

−1 2

)

with N = 1. We set the labels ai = 2, 0 ≤ i ≤ N − 1, aN = 1, and the co-labels a∨0 = 1, a∨i = 2,
1 ≤ i ≤ N . We set D = diag

(
a0a
∨
0
−1, a1a∨1

−1, . . . , aNa∨N
−1). We obtain A = DB, where B

is a symmetric matrix. Thus, the Cartan matrix A is symmetrizable. Let h be an (N + 2)-
dimensional vector space overC. Let {h0, h1, . . . , hN , d} be a basis of h, and {α0, α1, . . . , αN ,Λ0}
a basis of h∗ = HomC(h,C) such that we have with respect to pairing ⟨·, ·⟩ : h× h∗ → C

⟨hi, αj⟩ = Ai,j , 0 ≤ i, j ≤ N, ⟨d, αi⟩ = δ0,i,

⟨hi,Λ0⟩ = δi,0, 0 ≤ i ≤ N, ⟨d,Λ0⟩ = 0.

Let g(A) be the affine Lie algebra associated with the Cartan matrix A. Since A is sym-
metrizable, it is defined as the Lie algebra generated by ei, fi, 0 ≤ i ≤ N , and h with the
following relations:

[ei, fj ] = δi,jhi, 0 ≤ i, j ≤ N, [h, h′] = 0, h, h′ ∈ h, [h, ei] = ⟨h, αi⟩ei,
[h, fi] = −⟨h, αi⟩fi, h ∈ h, 0 ≤ i ≤ N,

(ad ei)
−Ai,j+1ej = 0, (ad fi)

−Ai,j+1fj = 0, 0 ≤ i, j ≤ N, i ̸= j.

Here we used the adjoint action (adx)y = [x, y].
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2.3 Free field construction

In this section, we recall the free field construction of the basic W -current T1(z) and of the

screening operators Si of the deformed W -algebra Wx,r

(
A

(2)
2N

)
introduced by Frenkel and Reshe-

tikhin [8].
First, we define the N × N symmetric matrix B(m) = (Bi,j(m))Ni,j=1, m ∈ Z, associated

with A
(2)
2N , N = 1, 2, 3, . . . , as follows:

Bi,j(m) =





[2m]x
[m]x

, 1 ≤ i, j ≤ N − 1, i = j,

[2m]x − [m]x
[m]x

, i = j = N,

−1, |i− j| = 1,

0, |i− j| ≥ 2,

Bi,j(0) =





2, 1 ≤ i, j ≤ N − 1, i = j,

1, i = j = N,

−1, |i− j| = 1,

0, |i− j| ≥ 2.

We introduce the Heisenberg algebra Hx,r with generators ai(m), Qi, m ∈ Z, 1 ≤ i ≤ N ,
satisfying

[ai(m), aj(n)] =
1

m
[rm]x[(r − 1)m]xBi,j(m)

(
x− x−1

)2
δm+n,0, m, n ̸= 0, 1 ≤ i, j ≤ N,

[ai(0), Qj ] = Bi,j(0), 1 ≤ i, j ≤ N.

The remaining commutators vanish. The generators ai(m), Qi are “root” type generators ofHx,r.
There is a unique set of “fundamental weight” type generators yi(m), Qy

i , m ∈ Z, 1 ≤ i ≤ N ,
which satisfy the following relations

[yi(m), aj(n)] =
1

m
[rm]x[(r − 1)m]x

(
x− x−1

)2
δi,jδm+n,0, m, n ̸= 0, 1 ≤ i, j ≤ N,

[yi(0), Qj ] = δi,j , [ai(0), Q
y
j ] = δi,j , [yi(0), aj(m)] = 0, m ∈ Z, 1 ≤ i, j ≤ N.

The explicit formulas for yi(m) and Qy
j are given in (A.7). We use the normal ordering : :

on Hx,r that satisfies

:ai(m)aj(n): =

{
ai(m)aj(n), m < 0,

aj(n)ai(m), m ≥ 0,
m, n ∈ Z, 1 ≤ i, j ≤ N.

Let |0⟩ ̸= 0 be the Fock vacuum of the Fock space of Hx,r such that ai(m)|0⟩ = 0, m ≥ 0,

1 ≤ i ≤ N . Let πλ be the Fock space of Hx,r generated by |λ⟩ = eλ|0⟩, λ =
∑N

j=1 λjQ
y
j . We

obtain

ai(0)|λ⟩ = λi|λ⟩, ai(m)|λ⟩ = 0, m > 0, 1 ≤ i ≤ N. (2.1)

We work in the Fock space πλ of the Heisenberg algebra Hx,r. Let the vertex operators Ai(z),
Yi(z), and Si(z), 1 ≤ i ≤ N , be

Ai(z) = xrai(0): exp

(∑

m ̸=0

ai(m)z−m
)
:, (2.2)
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Yi(z) = xryi(0): exp

(∑

m ̸=0

yi(m)z−m
)
:, (2.3)

Si(z) = z
r−1
2r

Bi,i(0)e
−
√

r−1
r

Qiz
−
√

r−1
r

ai(0): exp

(∑

m ̸=0

ai(m)

xrm − x−rm
z−m

)
:. (2.4)

The main parts of (2.2), (2.3), and (2.4) are the same as those of [8]. We corrected the misprints
in the formulas for Ai(z), Yi(z), and Si(z) in [8] by multiplying (2.2) and (2.3) by constants and

multiplying (2.4) by z
r−1
2r

Bi,i(0). With our fine-tuning, both (3.3) and (3.5) hold.
Let JN = {1, 2, . . . , N, 0, N, . . . , 2, 1}. Here, the indices are ordered as

1 ≺ 2 ≺ · · · ≺ N ≺ 0 ≺ N ≺ · · · ≺ 2 ≺ 1.

Let k = k, k = 1, 2, . . . , N , and 0 = 0. The indices i, j ∈ JN satisfy i ≺ j if and only if
j ≺ i. We define I = {i1, i2, . . . , ik} for a subset I ⊂ JN , I = {i1, i2, . . . , ik}. Let T1(z) be the
generating series with operator valued coefficients acting on the Fock space πλ,

T1(z) =
∑

i∈JN
Λi(z),

where

Λ1(z) = Y1(z), Λk(z) = :Λk−1(z)Ak−1
(
x−k+1z

)−1
:, 2 ≤ k ≤ N,

Λ0(z) =
[r − 1

2 ]x

[12 ]x
:ΛN (z)AN

(
x−Nz

)−1
:,

ΛN (z) =
[12 ]x

[r − 1
2 ]x

:Λ0(z)AN

(
x−N−1z

)−1
:,

Λk(z) = :Λk+1(z)Ak

(
x−2N+k−1z

)−1
:, 1 ≤ k ≤ N − 1. (2.5)

We call T1(z) the basic W -current of the deformed W -algebra Wx,r

(
A

(2)
2N

)
.

Let πµ be the Fock space of Hx,r generated by |µ⟩ = eµ|0⟩ with µ =
∑N

i=1 µiQ
y
i , where we

choose µi ∈ 1
2

√
r−1
r Bi,i(0) +

√
r

r−1Z, 1 ≤ i ≤ N . From (2.1) and (2.4) the power of w in Si(w),

w
r−1
2r

Bi,i(0)w
−
√

r−1
r

ai(0), takes values in integers on πµ. Hence, Si is well-defined on πµ. We define
the screening operators Si, 1 ≤ i ≤ N , acting on the Fock space πµ as

Si =

∮
dw

2π
√
−1w

Si(w). (2.6)

The integral in formula (2.6) means the residue at zero.

3 Quadratic relations

In this section, we introduce the higher W -currents Ti(z) and present a set of quadratic relations

between Ti(z) for the deformed W -algebra Wx,r

(
A

(2)
2N

)
.

3.1 Quadratic relations

We define the formal series ∆(z) ∈ C[[z]] and the constant c(x, r) as

∆(z) =

(
1− x2r−1z

)(
1− x−2r+1z

)

(1− xz)
(
1− x−1z

) , c(x, r) = [r]x[r − 1]x
(
x− x−1

)
.
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The formal series ∆(z) satisfies

∆(z)−∆
(
z−1
)
= c(x, r)

(
δ
(
x−1z

)
− δ(xz)

)
,

∆(z)∆(xsz)−∆
(
z−1
)
∆
(
x−sz−1

)

= c(x, r)
{
∆
(
xs+1

)(
δ
(
x−1z

)
− δ(xs+1z)

)
+∆

(
xs−1

)
(δ
(
xs−1z

)
− δ(xz))

}
, s ̸= 0,±2.

We define the structure functions fi,j(z), i, j = 0, 1, 2, . . . , as

fi,j(z) = exp

(
−
∞∑

m=1

1

m
[(r − 1)m]x[rm]x

(
x− x−1

)2

× [Min(i, j)m]x
(
[(N + 1−Max(i, j))m]x − [(N −Max(i, j))m]x

)

[m]x
(
[(N + 1)m]x − [Nm]x

) zm

)
. (3.1)

The ratio of the structure functions f1,1(z) is

f1,1(z
−1)

f1,1(z)
= −z

Θx4N+2

(
x2z, x2N−1z, x4N+2−2rz, x4N+2rz, x2N+1+2rz, x2N−2r+3z

)

Θx4N+2

(
x2/z, x2N−1/z, x4N+2−2r/z, x4N+2r/z, x2N+1+2r/z, x2N−2r+3/z

) .

We introduce higher W -currents Ti(z) as follows:

T0(z) = 1, T1(z) =
∑

i∈JN
Λi(z),

Ti(z) =
∑

Ωi⊂JN
|Ωi|=i

dΩi(x, r)
−→
ΛΩi(z), 2 ≤ i ≤ 2N + 1. (3.2)

Here, for a subset Ωi = {s1, s2, . . . , si} ⊂ JN with s1 ≺ s2 ≺ · · · ≺ si, we set

dΩi(x, r) =
∏

1≤p<q≤i
sq=sp

∆
(
x2(q−p+sp−N−1)), d∅(x, r) = 1,

−→
ΛΩi(z) = :Λs1

(
x−i+1z

)
Λs2

(
x−i+3z

)
· · ·Λsi

(
xi−1z

)
:,

−→
Λ∅(z) = 1.

Proposition 3.1. The W -currents Ti(z) satisfy the duality

T2N+1−i(z) =

[
r − 1

2

]
x[

1
2

]
x

N−i∏

k=1

∆
(
x2k
)
Ti(z), 0 ≤ i ≤ N. (3.3)

Theorem 3.2. The W -currents Ti(z) satisfy the set of quadratic relations

fi,j

(
z2
z1

)
Ti(z1)Tj(z2)− fj,i

(
z1
z2

)
Tj(z2)Ti(z1)

= c(x, r)
i∑

k=1

k−1∏

l=1

∆
(
x2l+1

)(
δ

(
x−j+i−2kz2

z1

)
fi−k,j+k

(
xj−i

)
Ti−k

(
xkz1

)
Tj+k

(
x−kz2

)

− δ

(
xj−i+2kz2

z1

)
fi−k,j+k

(
x−j+i

)
Ti−k

(
x−kz1

)
Tj+k

(
xkz2

))

+ c(x, r)

i−1∏

l=1

∆
(
x2l+1

) N+i−j∏

l=N+1−j
∆
(
x2l
)(

δ

(
x−2N+j−i−1z2

z1

)
Tj−i

(
x−iz2

)

− δ

(
x2N−j+i+1z2

z1

)
Tj−i

(
xiz2

))
, 1 ≤ i ≤ j ≤ N. (3.4)

Here, we use fi,j(z) introduced in (3.1).
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In view of Proposition 3.1 and Theorem 3.2, we obtain the following definition.

Definition 3.3. Let W be the free complex associative algebra generated by elements T i[m],
m ∈ Z, 1 ≤ i ≤ 2N , IK the left ideal generated by elements T i[m], m ≥ K ∈ N, 1 ≤ i ≤ 2N ,
and

Ŵ = lim
←

W/IK .

The deformed W -algebra Wx,r

(
A

(2)
2N

)
is the quotient of Ŵ by the two-sided ideal generated by

the coefficients of the generating series which are the differences of the right hand sides and of
the left hand sides of the relations (3.3) and (3.4), where the generating series Ti(z) are replaced
with T i(z) =

∑
m∈Z T i[m]z−m, 1 ≤ i ≤ 2N , and T 0(z) = 1.

The justification of this definition is presented later. We compare this definition of the
deformed W -algebra with other definitions in Section 5.

Lemma 3.4. The W -currents Ti(z) commute with the screening operators Sj,

[Ti(z), Sj ] = 0, 1 ≤ i ≤ 2N, 1 ≤ j ≤ N. (3.5)

We present the proofs of Proposition 3.1, Theorem 3.2, and Lemma 3.4 in Section 4.

3.2 Classical limit

The deformed W -algebra Wx,r

(
g
)
yields a q-Poisson W -algebra [7, 8, 9, 15] in the classical limit.

As an application of the quadratic relations (3.4), we obtain a q-Poisson W -algebra of type A
(2)
2N .

We set parameters q = x2r and β = (r − 1)/r. We define the q-Poisson bracket {·, ·} by taking
the classical limit β → 0 with q fixed as

{
TPB
i [m], TPB

j [n]
}
= lim

β→0

1

2β log q
[Ti[m], Tj [n]].

Here, we introduce TPB
i [m] by

Ti(z) =
∑

m∈Z
Ti[m]z−m −→ TPB

i (z) =
∑

m∈Z
TPB
i [m]z−m, β → 0, q fixed.

The β-expansions of the structure functions are given as

fi,j(z) = 1− 2β log q
(
q − q−1

) ∞∑

m=1

[Min(i, j)m]q

× [(N + 1−Max(i, j))m]q − [(N −Max(i, j))m]q
[(N + 1)m]q − [Nm]q

zm +O
(
β2
)
, i, j ≥ 1,

c(x, r) = 2β log q +O
(
β2
)
.

As corollaries of Proposition 3.1 and Theorem 3.2 we obtain the following.

Corollary 3.5. For the q-Poisson W -algebra associated with affine Lie algebra of type A
(2)
2N , the

currents TPB
i (z) satisfy

{
TPB
i (z1), T

PB
j (z2)

}

=
(
q − q−1

)
Ci,j

(
z2
z1

)
TPB
i (z1)T

PB
j (z2) +

i∑

k=1

(
δ

(
q−j+i−2kz2

z1

)
TPB
i−k
(
qkz1

)
TPB
j+k

(
q−kz2

)
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− δ

(
qj−i+2kz2

z1

)
TPB
i−k
(
q−kz1

)
TPB
j+k

(
qkz2

))
+ δ

(
q−2N+j−i−1z2

z1

)
TPB
j−i
(
q−iz2

)

− δ

(
q2N−j+i+1z2

z1

)
TPB
j−i
(
qiz2

)
, 1 ≤ i ≤ j ≤ N. (3.6)

Here, the structure functions Ci,j(z) are given by

Ci,j(z) =
∑

m∈Z

[Min(i, j)m]q
(
[(N + 1−Max(i, j))m]q − [(N−Max(i, j))m]q

)

[(N + 1)m]q − [Nm]q
zm,

1 ≤ i, j ≤ N.

Corollary 3.6. The currents TPB
i (z) satisfy the duality relations

TPB
2N+1−i(z) = TPB

i (z), 0 ≤ i ≤ N. (3.7)

4 Proof of Theorem 3.2

In this section, we prove Proposition 3.1, Theorem 3.2, and Lemma 3.4.

4.1 Proof of Proposition 3.1

Lemma 4.1. The Λi(z), i ∈ JN , satisfy

f1,1

(
z2
z1

)
Λi(z1)Λj(z2) = ∆

(
x−1z2
z1

)
:Λi(z1)Λj(z2):, i, j ∈ JN , i ≺ j, j ̸= ī,

f1,1

(
z2
z1

)
Λj(z1)Λi(z2) = ∆

(
xz2
z1

)
:Λj(z1)Λi(z2):, i, j ∈ JN , i ≺ j, j ̸= ī,

f1,1

(
z2
z1

)
Λ0(z1)Λ0(z2) = ∆

(
z2
z1

)
:Λ0(z1)Λ0(z2):,

f1,1

(
z2
z1

)
Λi(z1)Λi(z2) = :Λi(z1)Λi(z2):, i ∈ JN \ {0}, (4.1)

f1,1

(
z2
z1

)
Λk(z1)Λk̄(z2) = ∆

(
x−1z2
z1

)
∆

(
x−2N−2+2kz2

z1

)
:Λk(z1)Λk̄(z2):, 1 ≤ k ≤ N,

f1,1

(
z2
z1

)
Λk̄(z1)Λk(z2) = ∆

(
xz2
z1

)
∆

(
x2N+2−2kz2

z1

)
:Λk̄(z1)Λk(z2):, 1 ≤ k ≤ N.

Proof. Using (A.2) and (A.8), we obtain the normal ordering rules (4.1). ■

Lemma 4.2. The Λi(z), i ∈ JN , satisfy

:Λ0(z)Λ0(xz): = ∆(1):ΛN (z)ΛN̄ (xz):, (4.2)

:Λ1(z)Λ1̄

(
x2N+1z

)
: = 1, (4.3)

:Λk(z)Λk̄(x
2N−2k+3z): = :Λk−1(z)Λk−1

(
x2N−2k+3z

)
:, 2 ≤ k ≤ N. (4.4)

Proof. From (2.5), we obtain (4.2) and (4.4). From (2.2), (2.3) and (2.5), we obtain (4.3). ■

Lemma 4.3. The ∆(z) and fi,j(z) satisfy the following fusion relations:

fi,j(z) = fj,i(z) =

i∏

k=1

f1,j
(
z−i−1+2kz

)
, 1 ≤ i ≤ j, (4.5)
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f1,i(z) =

(
i−1∏

k=1

∆
(
x−i+2kz

)
)−1 i∏

k=1

f1,1
(
x−i−1+2kz

)
, i ≥ 2, (4.6)

fi,2N+1(z) =
i∏

k=1

∆
(
x−i−1+2kz

)
, i ≥ 1, (4.7)

fi,j(z) = fi,2N+1−j(z) = f2N+1−j,i(z) = fj,i(z), i ≥ 1, 1 ≤ j ≤ N, (4.8)

f1,j(z)f1,j
(
x2N+1z

)
= ∆

(
xjz
)
∆
(
x2N+1−jz

)
, j ≥ 1, (4.9)

f1,i(z)fj,i
(
x±(j+1)z

)
=

{
fj+1,i

(
x±jz

)
∆
(
x±iz

)
, 1 ≤ i ≤ j,

fj+1,i

(
x±jz

)
, 1 ≤ j < i,

(4.10)

f1,i(z)f1,j
(
x±(i+j)z

)
= f1,i+j

(
x±jz

)
∆
(
x±iz

)
, i, j ≥ 1, (4.11)

f1,i(z)f1,j
(
x±(i−j−2k)z

)
= f1,i−k

(
x∓kz

)
f1,j+k

(
x±(i−j−k)z

)
, i, j, i− k, j + k ≥ 1. (4.12)

Proof. We show (4.6) here. From the definitions, we have

(
i−1∏

k=1

∆1

(
x−i+2kz

)
)−1 i∏

k=1

f1,1
(
x−i−1+2kz

)

= exp

(
−
∞∑

m=1

1

m

[rm]x[(r − 1)m]x
[(N + 1)m]x − [Nm]x

(
x− x−1

)2
{
([Nm]x − [(N − 1)m]x)

×
i∑

k=1

x(−i+2k−1)m − ([(N + 1)m]x − [Nm]x)
i−1∑

k=1

x(−i+2k)m

}
zm

)
.

Using the relation

[(a− 1)m]x

i∑

k=1

x(−i+2k−1)m − [am]x

i−1∑

k=1

x(−i+2k)m = [(a− i)m]x, a = N,N + 1,

we obtain f1,i(z) in the right hand side of the previous formula. We obtain (4.5), (4.7), (4.8),
and (4.9) by straightforward calculation from the definitions. Using (4.5) and (4.6), we obtain
the relations (4.10), (4.11), and (4.12). ■

Lemma 4.4. The following relation holds for A ⊂ JN :

−→
Λ

JN\A(z) =
−→
ΛA(z)×





[
r − 1

2

]
x[

1
2

]
x

, 0 /∈ A,

[
1
2

]
x[

r − 1
2

]
x

, 0 ∈ A.

(4.13)

Proof. First, we consider the case A = ∅ and JN \A = JN . In this case, (4.13) can be
rewritten as

:Λ1

(
x−2Nz

)
· · ·ΛN

(
x−2z

)
Λ0(z)ΛN

(
x2z
)
· · ·Λ1

(
x2Nz

)
: =

[
r − 1

2

]
x[

1
2

]
x

. (4.14)

Using (2.2), (2.3), and (2.5), the left side of (4.14) can be written as

[
r − 1

2

]
x[

1
2

]
x

: exp

(∑

m ̸=0

(
[(2N + 1)m]x

[m]x
y1(m)−

N∑

j=1

[(2N + 1− j)m]x + [jm]x
[m]x

aj(m)

)
z−m

)
:.
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Using the relation [(2N+1−j)m]x+[jm]x
[(2N+1)m]x

= [(N+1−j)m]x−[(N−j)m]x
[(N+1)m]x−[Nm]x

, the generators y1(m) in (A.7) are

rewritten as y1(m) =
∑N

j=1
[(2N+1−j)m]x+[jm]x

[(2N+1)m]x
aj(m). Hence, we obtain (4.14).

Next, we show (4.13) for A ⊂ JN . Cases (i), 0 ∈ A and (ii), 0 /∈ A are proved separately.
First, we study case (i), 0 ∈ A. Let

A = {k1, . . . , kK , 0, lL, . . . , l1 | k1 ≺ · · · ≺ kK ≺ 0 ≺ lL ≺ · · · ≺ l1, 1 ≤ K,L ≤ N}.

Multiplying (4.14) by
−→
ΛA

(
xL−K+1z

)
on the left, and using (4.1) and (4.7) yields

:
−→
Λ JN (z)

−→
ΛA

(
xL−K+1z

)
: =

[
r − 1

2

]
x[

1
2

]
x

−→
ΛA

(
xL−K+1z

)
. (4.15)

Using (4.2), (4.3) and (4.4) yields

:
−→
Λ JN (z)Λ0(xz): = ∆(1)

−→
Λ JN\{0}(xz),

:
−→
Λ JN\{0}(z)ΛlL

(
x2z
)
: =

−→
Λ JN\{lL,0}(xz),

:
−→
Λ JN\{lL−s+1,...,lL,0}(z)ΛlL−s

(
x2+sz

)
: =

−→
Λ JN\{lL−s,...,lL,0}(xz), 1 ≤ s ≤ L− 1,

:
−→
Λ JN\{l1,...,lL,0}(z)ΛkK

(
x−L−2z

)
: =

−→
Λ JN\{l1,...,lL,0,kK}

(
x−1z

)
,

:
−→
Λ JN\{l1,...,lL,0,kK ,...,kK−s+1}(z)ΛkK−s

(
x−L−2−sz

)
: =

−→
Λ JN\{l1,...,lL,0,kK ,...,kK−s}

(
x−1z

)
,

1 ≤ s ≤ K − 1.

Using the above five relations yields

:
−→
Λ JN (z)

−→
ΛA

(
xL−K+1z

)
: = ∆(1)

−→
Λ

JN\A
(
xL−K+1z

)
.

From (4.15) we obtain (4.13) for 0 ∈ A.
Next, we study case (ii), 0 /∈ A. The proof for this case is similar to that of case (i). Let

A =
{
k1, . . . , kK , lL, . . . , l1 | k1 ≺ · · · ≺ kK ≺ lL ≺ · · · ≺ l1, 1 ≤ K,L ≤ N

}
.

Multiplying (4.14) by
−→
ΛA

(
xL−Kz

)
on the left, and using (4.1) and (4.7) yields

:
−→
Λ JN (z)

−→
ΛA

(
xL−Kz

)
: =

[
r − 1

2

]
x[

1
2

]
x

−→
ΛA

(
xL−Kz

)
. (4.16)

Using (4.2), (4.3), and (4.4) yields

:
−→
Λ JN (z)ΛlL

(xz): =
−→
Λ JN\{lL}(xz),

:
−→
Λ JN\{lL−s+1,...,lL}(z)ΛlL−s

(
x1+sz

)
: =

−→
Λ JN\{lL−s,...,lL}(xz), 1 ≤ s ≤ L− 1,

:
−→
Λ JN\{l1,...,lL}(z)ΛkK

(
x−L−1z

)
: =

−→
Λ JN\{l1,...,lL,kK}

(
x−1z

)
,

:
−→
Λ JN\{l1,...,lL,kK ,...,kK−s+1}(z)ΛkK−s

(x−L−1−sz): =
−→
Λ JN\{l1,...,lL,kK ,...,kK−s}

(
x−1z

)
,

1 ≤ s ≤ K − 1.

Using the above five relations yields

:
−→
Λ JN (z)

−→
ΛA

(
xL−Kz

)
: =

−→
Λ

JN\A
(
xL−Kz

)
.

From (4.16) we obtain (4.13) for 0 /∈ A. ■
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Lemma 4.5. The following relation holds for A ⊂ JN with |A| ≤ N :

dJN\A(x, r)

dA(x, r)
=

N−|A|∏

k=1

∆
(
x2k
)
×
{
∆(1), 0 ∈ A,

1, 0 /∈ A.
(4.17)

Proof. We define the map σ : JN → JN+1 by

σ(j) =





k + 1, j = k, 1 ≤ k ≤ N,

0, j = 0,

k + 1, j = k, 1 ≤ k ≤ N.

For T ⊂ JN with |T | ≤ N , relation (4.17) is rewritten as

dσ(JN\T )(x, r)

dσ(T )(x, r)
=

N−|T |∏

k=1

∆
(
x2k
)
×
{
∆(1), 0 ∈ T,

1, 0 /∈ T.

Hence, the relation

d(JN\B)∩σ(JN )(x, r)

dB∩σ(JN )(x, r)
=

N−|B∩σ(JN )|∏

k=1

∆
(
x2k
)
×
{
∆(1), 0 ∈ B,

1, 0 /∈ B,
(4.18)

for B ⊂ JN+1 with |B∩σ(JN )| ≤ N holds if relation (4.17) for A ⊂ JN with |A| ≤ N is assumed.
Here, we used |B ∩ σ(JN )| = |σ−1(B ∩ σ(JN ))|.

We prove (4.17) by induction on N . First, we establish the base N = 1 using case-by-case
analysis. For A = ∅, we obtain dA(x, r) = 1 and dJN\A(x, r) = ∆

(
x2
)
. For A = {1}, we obtain

dA(x, r) = 1 and dJN\A(x, r) = 1. For A = {0}, we obtain dA(x, r) = 1 and dJN\A(x, r) = ∆(1).
For A = {1}, we obtain dA(x, r) = 1 and dJN\A(x, r) = 1. This implies that (4.17) holds for
N = 1.

Next, we assume that relation (4.17) holds for some N , and show (4.17) for N replaced by
N + 1. Let A ⊂ JN+1. From the definition of dA(x, r), we obtain

dJN\A(x, r)

dA(x, r)
=

d(JN\A)∩σ(JN )(x, r)

dA∩σ(JN )(x, r)

×





1, 1 ∈ A, 1 /∈ A or 1 /∈ A, 1 ∈ A,

∆
(
x2(N−|JN\A|+1)

)−1
, 1, 1 ∈ A,

∆
(
x2(N−|A|+1)

)
, 1, 1 /∈ A.

(4.19)

Cases (i), 1 ∈ A, 1 /∈ A (or 1 /∈ A, 1 ∈ A), (ii), 1, 1 ∈ A, and (iii), 1, 1 /∈ A are proved
separately.

First, we study case (i), 1 ∈ A, 1 /∈ A (or 1 /∈ A, 1 ∈ A). In this case, we obtain |A∩σ(JN )| =
|A| − 1 ≤ N . Hence, (4.18) holds with B = A. Using (4.18), (4.19) and |A ∩ σ(JN )| = |A| − 1
yields (4.17) with N replaced by N + 1.

Next, we study case (ii), 1, 1 ∈ A. In this case, we obtain |A∩σ(JN )| = |A|−2 ≤ N−1. Hence,
(4.18) holds with B = A. Using (4.18) and (4.19), |A∩σ(JN )| = |A|−2 and |JN\A| = 2N+3−|A|
yields (4.17) with N replaced by N + 1.

Finally, we examine case (iii), 1, 1 /∈ A. Case (iii) is further subdivided into (iii.1), |A| ≤ N ,
1, 1 /∈ A and (iii.2), |A| = N + 1, 1, 1 /∈ A.

For the condition (iii.1), we obtain |A∩ σ(JN )| = |A| ≤ N . Hence, (4.18) holds with B = A.
Using (4.18), (4.19), and |A ∩ σ(JN )| = |A| yields (4.17) with N replaced by N + 1.

For condition (iii.2), we obtain |(JN \A)∩σ(JN )| = N . Hence, (4.18) holds with B = JN \A.
Using (4.18) and (4.19), |A| = N + 1 and |(JN \A)∩ σ(JN )| = N yields (4.17) with N replaced
by N + 1. ■
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Proof. Here we will show Proposition 3.1. Using (4.13), (4.17), and d
JN\Ωi

(x, r) = dJN\Ωi
(x, r)

yields

d
JN\Ωi

(x, r)
−→
Λ

JN\Ωi
(z) =

[
r − 1

2

]
x[

1
2

]
x

N−|Ωi|∏

k=1

∆
(
x2k
)
dΩi(x, r)

−→
ΛΩi(z). (4.20)

Adding relations (4.20) over all Ωi ⊂ JN for each fixed i, 0 ≤ i ≤ N , yields (3.3). ■

4.2 Proof of Theorem 3.2

Lemma 4.6. The W -currents Tj(z), 1 ≤ j ≤ N , satisfy the set of quadratic relations

f1,j

(
z2
z1

)
T1(z1)Tj(z2)− fj,1

(
z1
z2

)
Tj(z2)T1(z1)

= c(x, r)

(
δ

(
x−j−1z2

z1

)
Tj+1(x

−1z2)− δ

(
xj+1z2
z1

)
Tj+1(xz2)

)
+ c(x, r)∆

(
x2N+2−2j)

×
(
δ

(
x−2N+j−2z2

z1

)
Tj−1

(
x−1z2

)
− δ

(
x2N−j+2z2

z1

)
Tj−1(xz2)

)
, 1 ≤ j ≤ N. (4.21)

Here, we use fi,j(z) introduced in (3.1).

Proof. In this proof, we frequently use exchange relations (B.1)–(B.7) in Appendix B. We start
from

LHS1,j =f1,j(z2/z1)T1(z1)Tj(z2)− fj,1(z1/z2)Tj(z2)T1(z1), 1 ≤ j ≤ N.

From the definition of Tj(z) introduced in (3.2), LHS1,j can be written as the sum of

f1,j(z2/z1)Λs(z1)
−→
ΛΩj (z2)− fj,1(z1/z2)

−→
ΛΩj (z2)Λs(z1) over s ∈ JN , Ωj ⊂ JN , |Ωj | = j,

summarized in Appendix B. Adding exchange relations (B.1)–(B.7) over s ∈ JN , Ωj ⊂ JN ,
|Ωj | = j yields

LHS1,j = c(x, r)

{ [ j
2
]∑

m=0

(
δ

(
x−j−1+2m z2

z1

)
Gj+1−2m(z2)− δ

(
xj+1−2m z2

z1

)
Gj+1−2m(z2)

)

+

N−[ j−1
2

]∑

m=0

(
δ

(
x−2N+j−2+2m z2

z1

)
H2N−j+2−2m(z2)

− δ

(
x2N−j+2−2m z2

z1

)
H2N−j+2−2m(z2)

)}
. (4.22)

Formulas for Gj+1(z), Gj+1(z), H2N−j+2(z), H2N−j+2(z), Gj+1−2m(z), Gj+1−2m(z),
H2N−j+2−2m(z), and H2N−j+2−2m(z) will be given below. In (4.38) we define H0(z) = 0
to avoid ambiguity of H0(z) and H0(z). In the case when j is even, we have LHS1,j =
c(x, r)H0(z2)−H0(z2)δ(z2/z1) +H2(z2)δ

(
x−2z2/z1

)
−H2(z2)δ

(
x2z2/z1

)
+ · · · .

First, we define Gj+1(z), 1 ≤ j ≤ N , as the coefficient of δ(x−j−1z2/z1) in (4.22). In what
follows, for a subset Ωj ⊂ JN with |Ωj | = j, we write its elements as s1, s2, . . . , sj , s1 ≺ s2 ≺
· · · ≺ sj . Adding the first term in (B.1) and the first term in (B.6) yields

Gj+1(z) =
∑

Ωj⊂JN

∑

s∈JN
s≺s1, s/∈Ωj

dΩj (x, r):Λs

(
x−j−1z

)−→
ΛΩj (z):

+
∑

Ωj⊂JN

N∑

n=1
n≺s1

j∑

l=1
sl=n

∆
(
x2(N+1−l−n))dΩj (x, r):Λn

(
x−j−1z

)−→
ΛΩj (z):.
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Using :Λn

(
x−j−1z

)−→
ΛΩj (z): =

−→
ΛΩj∪{n}

(
x−1z

)
and

dΩj∪{n}(x, r) = dΩj (x, r)×
{
1, n /∈ Ωj ,

∆(x2(N+1−l−n)), n = sl
with n ≺ s1, 1 ≤ n ≤ N,

yields

Gj+1(z) =
∑

Ωj⊂JN

∑

s∈JN
s≺s1

dΩj∪{s}(x, r)
−→
ΛΩj∪{s}

(
x−1z

)
.

Hence, we obtain Gj+1(z) = Tj+1

(
x−1z

)
, 1 ≤ j ≤ N .

Next, we define Gj+1(z), 1 ≤ j ≤ N , as the coefficient of δ
(
xj+1z2/z1

)
in (4.22). Adding the

second term in (B.1) and the third term in (B.7) yields

Gj+1(z) =
∑

Ωj⊂JN

∑

s∈JN
sj≺s,s/∈Ωj

dΩj (x, r):
−→
ΛΩj (z)Λs

(
xj+1z

)
:

+
∑

Ωj⊂JN

N∑

n=1
sj≺n

j∑

k=1
sk=n

∆
(
x2(N+k−j−n))dΩj (x, r):

−→
ΛΩj (z)Λn

(
xj+1z

)
:.

Using :
−→
ΛΩj (z)Λn

(
xj+1z

)
: =

−→
ΛΩj∪{n}(xz) and

dΩj∪{n}(x, r) = dΩj (x, r)×
{
1, n /∈ Ωj ,

∆
(
x2(N+k−j−n)), n = sk

with sj ≺ n, 1 ≤ n ≤ N,

yields

Gj+1(z) =
∑

Ωj⊂JN

∑

s∈JN
sj≺s

dΩj∪{s}(x, r)
−→
ΛΩj∪{s}(xz).

Hence, we obtain Gj+1(z) = Tj+1(z), 1 ≤ j ≤ N .
We define H2N−j+2(z), 1 ≤ j ≤ N , as the coefficient of δ

(
x−2N+j−2z2/z1

)
in (4.22). Adding

the first term in (B.3), the second term in (B.3), the second term in (B.6), and the fourth term
in (B.6) yields

H2N−j+2(z) =

j−1∑

n=1

j−n∑

k=1

∑

Ωj⊂JN
sk=n

sl=n, l=j−n+1

dΩj (x, r):Λn

(
x−2N+j−2z

)−→
ΛΩj (z):

−
j−2∑

n=1

j−n−1∑

k=1

∑

Ωj⊂JN
sk=n

sl=n, l=j−n

dΩj (x, r):Λn

(
x−2N+j−2z

)−→
ΛΩj (z):

+

j∑

n=1

j−n+1∑

k=1

∑

Ωj⊂JN
sk−1≺n≺sk

sl=n, l=j+1−n

∆
(
x2(N−j+k)

)
dΩj (x, r):Λn

(
x−2N+j−2z

)−→
ΛΩj (z):

−
j−1∑

n=1

j−n∑

k=1

∑

Ωj⊂JN
sk−1≺n≺sk
sl=n, l=j−n

∆
(
x2(N−j+k)

)
dΩj (x, r):Λn

(
x−2N+j−2z

)−→
ΛΩj (z):. (4.23)
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The second term in (4.23) vanishes, because there doesn’t exist sj ∈ JN , if Ωj ⊂ JN , sk = n,
1 ≤ k ≤ j + 1− n, sl = n, l = j − n, and 1 ≤ n ≤ j − 2 are satisfied. The fourth term in (4.23)
vanishes, because there doesn’t exist sj ∈ JN , if Ωj ⊂ JN , sk−1 ≺ n ≺ sk, 1 ≤ k ≤ j−n, sl = n,
l = j−n, and 1 ≤ n ≤ j−1 are satisfied. Rewriting the sum of the first and the third terms yields

H2N−j+2(z) =

j−1∑

n=1

Min(j−n,n)∑

k=1

∑

Ωj⊂JN , sk=n
(sj−n+1,...,sj−1,sj)

=(n,...,2,1)

dΩj (x, r):Λn

(
x−2N+j−2z

)−→
ΛΩj (z):

+

j∑

n=1

Min(j+1−n,n)∑

k=1

∑

Ωj⊂JN , sk−1≺n≺sk
(sj−n+1,...,sj−1,sj)

=(n,...,2,1)

∆
(
x2(N−j+k)

)
dΩj (x, r):Λn

(
x−2N+j−2z

)−→
ΛΩj (z):.

The relation dΩj (x, r) = ∆
(
x2(N+1−j))dΩj\{n}(x, r) holds, if sk = n, sl = n, 1 ≤ n ≤ j − 1, and

1≤k<l=j+1−n are satisfied. The relation dΩj (x, r)∆
(
x2(N−j+k)

)
= ∆

(
x2(N+1−j))dΩj\{n}(x, r)

holds, if sk−1 ≺ n ≺ sk, sl = n, 1 ≤ n ≤ j, and 1 ≤ k ≤ l = j + 1 − n are satisfied. Using the
above two relations and

:Λn

(
x−2N+j−2z

)−→
ΛΩj (z): =

−→
ΛΩj\{n}

(
x−1z

)
,

(sj+1−n, . . . , sj−1, sj) = (n, . . . , 2, 1), 1 ≤ n ≤ j,

obtained from (4.3) and (4.4), yields

H2N−j+2(z) = ∆
(
x2(N−j+1)

)
(

j−1∑

n=1

Max(j−n,n)∑

k=1

∑

Ωj⊂JN
sk=n, sl=n, l=j+1−n

dΩj\{sl}(x, r)
−→
ΛΩj\{sl}

(
x−1z

)

+

j∑

n=1

Max(j+1−n,n)∑

k=1

∑

Ωj⊂JN
sk−1≺n≺sk

sl=n, l=j+1−n

dΩj\{sl}(x, r)
−→
ΛΩj\{sl}

(
x−1z

)
)
.

Hence, we obtain H2N−j+2(z) = ∆
(
x2(N−j+1)

)
Tj−1

(
x−1z

)
, 1 ≤ j ≤ N .

We define H2N−j+2(z), 1 ≤ j ≤ N , as the coefficient of δ(x2N−j+2z2/z1) in (4.22). Adding
the first term in (B.4), the second term in (B.4), the second term in (B.7), and the fourth term
in (B.7) yields

H2N−j+2(z) = −
j−2∑

n=1

j∑

l=n+2

∑

Ωj⊂JN
sk=n, k=n+1

sl=n

dΩj (x, r):
−→
ΛΩj (z)Λn

(
x2N−j+2

)
:

+

j−1∑

n=1

j∑

l=n+1

∑

Ωj⊂JN
sk=n, k=n

sl=n

dΩj (x, r):
−→
ΛΩj (z)Λn

(
x2N−j+2z

)
:

+

j∑

n=1

j∑

l=n

∑

Ωj⊂JN
sk=n, k=n
sl≺n≺sl+1

∆
(
x2(N+1−l))dΩj (x, r):

−→
ΛΩj (z)Λn

(
x2N−j+2z

)
:

−
j−1∑

n=1

j∑

l=n+1

∑

Ωj⊂JN
sk=n, k=n+1
sl≺n≺sl+1

∆
(
x2(N+1−l))dΩj (x, r):

−→
ΛΩj (z)Λn

(
x2N−j+2z

)
:. (4.24)
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The first term in (4.24) vanishes, because there doesn’t exist s1 ∈ JN , if Ωj ⊂ JN , sk = n,
k = n+1, sl = n, n+2 ≤ l ≤ j, and 1 ≤ n ≤ j−2 are satisfied. The fourth term in (4.24) vanishes,
because there doesn’t exist s1 ∈ JN , if Ωj ⊂ JN , sk = n, k = n+1, sl ≺ n ≺ sl+1, n+1 ≤ l ≤ j,
and 1 ≤ n ≤ j − 1 are satisfied. Rewriting the sum of the second and the third terms yields

H2N−j+2(z) =

j−1∑

n=1

j∑

l=Max(n+1,j+1−n)

∑

Ωj⊂JN
(s1,s2,...,sn)
=(1,2,...,n)

sl=n

dΩj (x, r):
−→
ΛΩj (z)Λn

(
x2N−j+2z

)
:

+

j∑

n=1

j∑

l=Max(n,j+1−n)

∑

Ωj⊂JN
(s1,s2,...,sn)
=(1,2,...,n)
sl≺n≺sl+1

∆
(
x2(N+1−l)dΩj (x, r):

−→
ΛΩj (z)Λn

(
x2N−j+2z

)
:.

The relation dΩj (x, r) = ∆
(
x2(N+1−j))dΩj\{n}(x, r) holds, if sk = n, sl = n, 1 ≤ n ≤ j − 1,

and k = n, and n+1 ≤ l ≤ j are satisfied. The relation dΩj (x, r)∆
(
x2(N+1−l)) = ∆

(
x2(N+1−j))×

dΩj\{n}(x, r) holds, if sk = n, sl ≺ n ≺ sl+1, 1 ≤ n ≤ j, k = n, and n + 1 ≤ l ≤ j are satisfied.
Using the above two relations and

:
−→
ΛΩj (z)Λn

(
x2N−j+2z

)
: =

−→
ΛΩj\{n}(xz), (s1, s2, . . . , sn) = (1, 2, . . . , n), 1 ≤ n ≤ j,

obtained from (4.3) and (4.4), yields

H2N−j+2(z) = ∆
(
x2(N−j+1)

)
(

j−1∑

n=1

j∑

l=Max(n+1,j+1−n)

∑

Ωj⊂JN
sk=n, k=n

sl=n

dΩj\{sk}(x, r)
−→
ΛΩj\{sk}(xz)

+

j∑

n=1

j∑

l=Max(n,j+1−n)

∑

Ωj⊂JN
sk=n, k=n
sl≺n≺sl+1

dΩj\{sk}(x, r)
−→
ΛΩj\{sk}(xz)

)
.

Hence, we obtain H2N−j+2(z) = ∆
(
x2(N−j+1)

)
Tj−1(xz), 1 ≤ j ≤ N .

We define Gj+1−2m(z), 1 ≤ m ≤ [ j2 ], 1 ≤ j ≤ N , as the coefficient of δ(x−j−1+2mz2/z1)
in (4.22). Adding the first term in (B.1), the second term in (B.1), the first term in (B.6), the
third term in (B.6), the first term in (B.7), and the third term in (B.7) yields

Gj+1−2m(z) =
∑

Ωj⊂JN

∑

s∈JN
sm≺s≺sm+1

s/∈Ωj

dΩj (x, r):Λs

(
x−j−1+2mz

)−→
ΛΩj (z):

−
∑

Ωj⊂JN

∑

s∈JN
sm−1≺s≺sm

s/∈Ωj

dΩj (x, r):Λs

(
x−j−1+2mz

)−→
ΛΩj (z):

+
∑

Ωj⊂JN

N∑

n=1

j∑

l=m+1
sm≺s≺sm+1
sl=s, s=n

∆
(
x2(l−m+n−N−1))dΩj (x, r):Λs

(
x−j−1+2mz

)−→
ΛΩj (z):

−
∑

Ωj⊂JN

N∑

n=1

j∑

l=m
sm−1≺s≺sm
sl=s, s=n

∆
(
x2(l−m+n−N−1))dΩj (x, r):Λs

(
x−j−1+2mz

)−→
ΛΩj (z):
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+
∑

Ωj⊂JN

N∑

n=1

m∑

k=1
sk=s, s=n

sm≺s≺sm+1

∆
(
x2(m−k+n−N−1))dΩj (x, r):Λs

(
x−j−1+2mz

)−→
ΛΩj (z):

−
∑

Ωj⊂JN

N∑

n=1

m−1∑

k=1
sk=s, s=n

sm−1≺s≺sm

∆
(
x2(m−k+n−N−1))dΩj (x, r):Λs

(
x−j−1+2mz

)−→
ΛΩj (z):.

For a subset Ωj = {s1, s2, . . . , sj} ⊂ JN and an element s /∈ Ωj , s ∈ JN , we write elements
of Ωj ∪ {s} as t1, t2, . . . , tj+1, t1 ≺ t2 ≺ · · · ≺ tj+1. In what follows, we use the abbreviation
Ωj+1 = {t1, t2, . . . , tj+1}. Rewriting the sum yields

Gj+1−2m(z) =
∑

Ωj+1⊂JN
tm+1 /∈Ωj+1\{tm+1}

d{t1,...,tm}(x, r) d{tm+2,...,tj+1}(x, r)

×
m∏

p=1

j+1∏

q=m+2
tq=tp

∆
(
x2(q−p+tp−N−2)):Λtm+1

(
x−j−1+2mz

)−→
ΛΩj+1\{tm+1}(z):

−
∑

Ωj+1⊂JN
tm /∈Ωj+1\{tm}

d{t1,...,tm−1}(x, r)d{tm+1,...,tj+1}(x, r)

×
m−1∏

p=1

j+1∏

q=m+1
tq=tp

∆
(
x2(q−p+tp−N−2)):Λtm

(
x−j−1+2mz

)−→
ΛΩj+1\{tm}(z):

+
∑

Ωj+1⊂JN

N∑

n=1
tm+1=n

j+1∑

l=m+2
tl=tm+1

d{t1,...,tm}(x, r)d{tm+2,...,tj+1}(x, r)

×
m∏

p=1

j+1∏

q=m+2
tq=tp

∆
(
x2(q−p+tp−N−2))∆

(
x2(l−m+tm+1−N−2))

× :Λtm+1

(
x−j−1+2mz

)−→
ΛΩj+1\{tm+1}(z):

−
∑

Ωj+1⊂JN

N∑

n=1
tm=n

j+1∑

l=m+1
tl=tm

d{t1,...,tm−1}(x, r)d{tm+1,...,tj+1}(x, r)

×
m−1∏

p=1

j+1∏

q=m+1
tq=tp

∆
(
x2(q−p+tp−N−2))∆

(
x2(l−m+tm−N−2))

× :Λtm

(
x−j−1+2mz

)−→
ΛΩj+1\{tm}(z):

+
∑

Ωj+1⊂JN

N∑

n=1
tm+1=n

m∑

k=1
tm+1=tk

d{t1,...,tm}(x, r)d{tm+2,...,tj+1}(x, r)

×
m∏

p=1

j+1∏

q=m+2
tq=tp

∆
(
x2(q−p+tp−N−2))∆

(
x2(m−k+tk−N−1))
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× :Λtm+1

(
x−j−1+2mz

)−→
ΛΩj+1\{tm+1}(z):

−
∑

Ωj+1⊂JN

N∑

n=1
tm=n

m−1∑

k=1
tm=tk

d{t1,...,tm−1}(x, r)d{tm+1,...,tj+1}(x, r)

×
m−1∏

p=1

j+1∏

q=m+1
tq=tp

∆
(
x2(q−p+tp−N−2))∆

(
x2(m−k+tk−N−1))

× :Λtm

(
x−j−1+2mz

)−→
ΛΩj+1\{tm}(z):.

Rewriting the sum yields

Gj+1−2m(z) =
∑

Ωj+1⊂JN
d{t1,...,tm}(x, r)d{tm+2,...,tj+1}(x, r)

m∏

p=1

j+1∏

q=m+2
tq=tp

∆
(
x2(q−p+tp−N−2))

×
m∏

p=1
tm+1=tp

∆
(
x2(m−p+tp−N−1))

j+1∏

q=m+2
tq=tm+1

∆
(
x2(q−m+tm+1−N−2))

× :Λtm+1

(
x−j−1+2mz

)−→
ΛΩj+1\{tm+1}(z):

−
∑

Ωj+1⊂JN
d{t1,...,tm−1}(x, r)d{tm+1,...,tj+1}(x, r)

m−1∏

p=1

j+1∏

q=m+1
tq=tp

∆
(
x2(q−p+tp−N−2))

×
m∏

p=1
tm=tp

∆
(
x2(m−p+tp−N−1))

j+1∏

q=m+1
tq=tm

∆
(
x2(q−m+tm−N−2))

× :Λtm

(
x−j−1+2mz

)−→
ΛΩj+1\{tm}(z):.

Using

d{t1,...,tm}(x, r)d{tm+2,...,tj+1}(x, r)
m∏

p=1

j+1∏

q=m+2
tq=tp

∆
(
x2(q−p+tp−N−2))

m∏

p=1
tm+1=tp

∆
(
x2(m−p+tp−N−1))

×
j+1∏

q=m+2
tq=tm+1

∆
(
x2(q−m+tm+1−N−2)) = d{t1,...,tm−1}(x, r)d{tm+1,...,tj+1}(x, r)

×
m−1∏

p=1

j+1∏

q=m+1
tq=tp

∆
(
x2(q−p+tp−N−2))

m∏

p=1
tm=tp

∆
(
x2(m−p+tp−N−1))

j+1∏

q=m+1
tq=tm

∆
(
x2(q−m+tm−N−2))

and

:Λtm+1

(
x−j−1+2mz

)−→
ΛΩj+1\{tm+1}(z): = :Λtm

(
x−j−1+2mz

)−→
ΛΩj+1\{tm}(z):

yields Gj+1−2m(z) = 0, 1 ≤ m ≤ [ j2 ], 1 ≤ j ≤ N .

We define Gj+1−2m(z), 1 ≤ m ≤
[ j
2

]
, 1 ≤ j ≤ N , as the coefficient of δ

(
xj+1−2mz2/z1

)

in (4.22). Adding the first term in (B.1), the second term in (B.1), the first term in (B.6), the
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third term in (B.6), the first term in (B.7), and the third term in (B.7) yields

Gj+1−2m(z) =
∑

Ωj⊂JN

∑

s∈JN
sj+1−m≺s≺sj+2−m

s/∈Ωj

dΩj (x, r):
−→
ΛΩj (z)Λs

(
xj+1−2mz

)
:

−
∑

Ωj⊂JN

∑

s∈JN
sj−m≺s≺sj−m+1

s/∈Ωj

dΩj (x, r):
−→
ΛΩj (z)Λs

(
xj+1−2mz

)
:

+
∑

Ωj⊂JN

N∑

n=1

j∑

l=j+2−m
sj−m+1≺s
≺sj−m+2
sl=s, s=n

∆
(
x2(l+m+n−j−N−2))dΩj (x, r):

−→
ΛΩj (z)Λs

(
xj+1−2mz

)
:

−
∑

Ωj⊂JN

N∑

n=1

j∑

l=j+1−m
sj−m≺s
≺sj−m+1
sl=s, s=n

∆
(
x2(l+m+n−j−N−2))dΩj (x, r):

−→
ΛΩj (z)Λs

(
xj+1−2mz

)
:

+
∑

Ωj⊂JN

N∑

n=1

j+1−m∑

k=1
sk=s, s=n
sj+1−m≺s
≺sj+2−m

∆
(
x2(j−m−k+n−N)

)
dΩj (x, r):

−→
ΛΩj (z)Λs

(
xj+1−2mz

)
:

−
∑

Ωj⊂JN

N∑

n=1

j−m∑

k=1
sk=s, s=n
sj−m≺s
≺sj−m+1

∆
(
x2(j−m−k+n−N)

)
dΩj (x, r):

−→
ΛΩj (z)Λs

(
xj+1−2mz

)
:.

Rewriting the sum, in the same way as the case of Gj+1−2m(z), yields

Gj+1−2m(z) =
∑

Ωj+1⊂JN
tj+2−m /∈Ωj+1\{tj+2−m}

d{t1,...,tj+1−m}(x, r)d{tj+3−m,...,tj+1}(x, r)

×
j+1−m∏

p=1

j+1∏

q=m+j+3−m
tq=tp

∆
(
x2(q−p+tp−N−2)):−→ΛΩj+1\{tj+2−m}(z)Λtj+2−m

(
xj+1−2mz

)
:

−
∑

Ωj+1⊂JN
tj+1−m /∈Ωj+1\{tj+1−m}

d{t1,...,tj−m}(x, r)d{tj+2−m,...,tj+1}(x, r)

×
j−m∏

p=1

j+1∏

q=j+2−m
tq=tp

∆
(
x2(q−p+tp−N−2)):−→ΛΩj+1\{tj+1−m}(z)Λtj+1−m

(
xj+1−2mz

)
:

+
∑

Ωj+1⊂JN

N∑

n=1
tj−m+2=n

j+1∑

l=j+2−m
tl=n

d{t1,...,tj+1−m}(x, r)d{tj+3−m,...,tj+1}(x, r)

×
j+1−m∏

p=1

j+1∏

q=j+3−m
tq=tp

∆
(
x2(q−p+tp−N−2))∆

(
x2(l+m+n−j−N−2))
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× :
−→
ΛΩj+1\{tj+2−m}(z)Λtj+2−m

(
xj+1−2mz

)
:

−
∑

Ωj+1⊂JN

N∑

n=1
tj+1−m=n

j∑

l=j+1−m
tl=n

d{t1,...,tj−m}(x, r)d{tj+2−m,...,tj+1}(x, r)

×
j−m∏

p=1

j+1∏

q=j+2−m
tq=tp

∆
(
x2(q−p+tp−N−2))∆

(
x2(l+m+n−j−N−2))

× :
−→
ΛΩj+1\{tj+1−m}(z)Λtj+1−m

(
xj+1−2mz

)
:

+
∑

Ωj+1⊂JN

N∑

n=1
tj+2−m=n

j+1−m∑

k=1
tk=n

d{t1,...,tj+1−m}(x, r)d{tj+3−m,...,tj+1}(x, r)

×
j+1−m∏

p=1

j+1∏

q=j+3−m
tq=tp

∆
(
x2(q−p+tp−N−2))∆

(
x2(j+n−m−k−N)

)

× :
−→
ΛΩj+1\{tj+2−m}(z)Λtj+2−m

(
xj+1−2mz

)
:

−
∑

Ωj+1⊂JN

N∑

n=1
tj+1−m=n

j−m∑

k=1
tk=n

d{t1,...,tj−m}(x, r)d{tj−m+1,...,tj+1}(x, r)

×
j−m∏

p=1

j+1∏

q=j+2−m
tq=tp

∆
(
x2(q−p+tp−N−2))∆

(
x2(j+n−m−k−N)

)

× :
−→
ΛΩj+1\{tj+1−m}(z)Λtj+1−m

(
xj+1−2mz

)
:.

Rewriting the sum yields

Gj+1−2m(z) =
∑

Ωj+1⊂JN
d{t1,...,tj+1−m}(x, r)d{tj+3−m,...,tj+1}(x, r)

×
j+1−m∏

p=1

j+1∏

q=j+3−m
tq=tp

∆
(
x2(q−p+tp−N−2))

j+1−m∏

p=1
tj+2−m=tp

∆
(
x2(j+tp−m−p−N)

)

×
j+1∏

q=j+3−m
tq=tj+2−m

∆
(
x2(q+m+tj+2−m−j−N−2)):−→ΛΩj+1\{tj+2−m}(z)Λtj+2−m

(
xj+1−2mz

)
:

−
∑

Ωj+1⊂JN
d{t1,...,tj−m}(x, r)d{tj+2−m,...,tj+1}(x, r)

×
j−m∏

p=1

j+1∏

q=j+2−m
tq=tp

∆
(
x2(q−p+tp−N−2))

j−m∏

p=1
tj+1−m=tp

∆
(
x2(j+tp−m−N−p))

×
j+1∏

q=j+2−m
tq=tj+1−m

∆
(
x2(q+m+tj+1−m−j−N−3)):−→ΛΩj+1\{tj+1−m}(z)Λtj+1−m

(
xj+1−2mz

)
:.
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Using

d{t1,...,tj+1−m}(x, r)d{tj+3−m,...,tj+1}(x, r)
j+1−m∏

p=1

j+1∏

q=j+3−m
tq=tp

∆
(
x2(q−p+tp−N−2))

×
j+1−m∏

p=1
tj+2−m=tp

∆
(
x2(j+tp−m−p−N)

) j+1∏

q=j+3−m
tq=tj+2−m

∆
(
x2(q+m+tj+2−m−j−N−3))

= d{t1,...,tj−m}(x, r)d{tj−m+2,...,tj+1}(x, r)
j−m∏

p=1

j+1∏

q=j+2−m
tq=tp

∆
(
x2(q−p+tp−N−2))

×
j−m∏

p=1
tj+1−m=tp

∆
(
x2(j+tp−m−p−N)

) j+1∏

q=j+2−m
tq=tj+1−m

∆
(
x2(q+m+tj+1−m−j−N−3))

and

:
−→
ΛΩj+1\{tj+2−m}(z)Λtj+2−m

(
xj+1−2mz

)
: = :

−→
ΛΩj+1\{tj+1−m}(z)Λtj+1−m

(
xj+1−2mz

)
:

yields Gj+1−2m(z) = 0, 1 ≤ m ≤
[ j
2

]
, 1 ≤ j ≤ N .

We define H2N−j+2−2m(z), 1 ≤ j ≤ N , 1 ≤ m ≤ N −
[ j−1

2

]
, as the coefficient of

δ
(
x−2N+j−2+2mz2/z1

)
in (4.22). We set

H2N−j+2−2m(z) =
∑

ε=±
ε
(
βε(z) + γε(z) + δε(z)

)
,

where we give β+(z), β−(z), γ+(z), γ−(z), δ+(z), and δ−(z) in (4.25), (4.26), (4.27), (4.28),
(4.29), and (4.30), respectively. Adding the first term in (B.3) and the fourth term in (B.6) yields

β+(z) =
∑

Ωj⊂JN

Min(N,j+m−1)∑

n=m+1

j+m−n∑

k=1
sk=n

sl=n, l=m+j+1−n

dΩj (x, r):Λn

(
x−2N+j+2m−2z

)−→
ΛΩj (z):

+
∑

Ωj⊂JN

Min(N,j+m)∑

n=m+1

j+m+1−n∑

k=1
sk−1≺n≺sk

sl=n, l=j+m+1−n

dΩj (x, r)∆
(
x2(m+j−N−k))

× :Λn

(
x−2N+j+2m−2z

)−→
ΛΩj (z):. (4.25)

Adding the second term in (B.3) and the second term in (B.6) yields

β−(z) =
∑

Ωj⊂JN

Min(N,j+m−2)∑

n=m

j+m−n−1∑

k=1
sk=n

l=n, l=j+m−n

dΩj (x, r):Λn

(
x−2N+j+2m−2z

)−→
ΛΩj (z):

+
∑

Ωj⊂JN

Min(N,j+m−1)∑

n=m

j+m−n∑

k=1
sk−1≺n≺sk

sl=n, l=j+m−n

dΩj (x, r)∆
(
x2(m+j−N−k))

× :Λn

(
x−2N+j+2m−2z

)−→
ΛΩj (z):. (4.26)
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Adding the first term in (B.5) yields

γ+(z) =
∑

Ωj⊂JN
sk=0, k=j+m−N

dΩj (x, r):Λ0

(
x−2N+j−2+2mz

)−→
ΛΩj (z):. (4.27)

Adding the second term in (B.5) yields

γ−(z) =
∑

Ωj⊂JN
sk=0, k=j+m−N−1

dΩj (x, r):Λ0

(
x−2N+j−2+2mz

)−→
ΛΩj (z):. (4.28)

Adding the first term in (B.4) and the fourth term in (B.7) yields

δ+(z) =
∑

Ωj⊂JN

N∑

n=2N+2−j−m

j∑

l=m+j+n−2N
sk=n, k=j+m+n−2N−1

sl=n

dΩj (x, r):
−→
ΛΩj (z)Λn

(
x−2N+j+2m−2z

)
:

+
∑

Ωj⊂JN

N∑

n=2N+2−j−m

j∑

l=m+j+n−2N−1
sk=n, k=j+m+n−2N−1

sl≺n≺sl+1

dΩj (x, r)∆
(
x2(N+l+1−m−j))

× :
−→
ΛΩj (z)Λn

(
x−2N+j+2m−2z

)
:. (4.29)

Adding the second term in (B.4) and the second term in (B.7) yields

δ−(z) =
∑

Ωj⊂JN

N∑

n=2N+3−j−m

j∑

l=j+m+n−2N−1
sk=n, k=j+m+n−2N−2

sl=n

dΩj (x, r):
−→
ΛΩj (z)Λn

(
x−2N+j+2m−2z

)
:

+
∑

Ωj⊂JN

N∑

n=2N+3−j−m

j∑

l=j+m+n−2N−2
sk=n, k=j+m+n−2N−2

sl≺n≺sl+1

dΩj (x, r)∆
(
x2(N+l+1−m−j))

× :
−→
ΛΩj (z)Λn

(
x−2N+j+2m−2z

)
:. (4.30)

We show H2N−j+2−2m(z) = 0, 1 ≤ j ≤ N , 1 ≤ m ≤ N −
[ j−1

2

]
. In this proof we frequently

use relation (4.4). The proof is divided into three cases: (i), 1 ≤ m ≤ N−j, (ii), m = N+1−j,
and (iii), N + 2− j ≤ m ≤ N −

[ j−1
2

]
.

First, we study the case (i), j +m ≤ N . In the case (i), γ±(z) and δ±(z) vanish. Hence, we
have H2N−j+2−2m(z) = β+(z)− β−(z). We start from β+(z). Rewriting the sum yields

β+(z) =

(
Min(N,j+m−1)∑

n=m+1

j+m−n∑

k=1

∑

Ωj⊂JN
sk=n

n−m−1∑

r=0
(sl,sl+1,...,sl+r)=(n,n−1,...,n−r)
n−r−1≺sl+r+1, l=m+j+1−n

∆
(
x2(m+j−N−k))

+

Min(N,j+m)∑

n=m+1

j+m−n−1∑

k=1

∑

Ωj⊂JN
sk−1≺n≺sk

n−m−1∑

r=0
(sl,sl+1,...,sl+r)=(n,n−1,...,n−r)
n−r−1≺sl+r+1, l=m+j+1−n

∆
(
x2(m+j−N−k))

)
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×
k−1∏

a=1

r∏

b=1
sa=n−b

∆
(
x2(m+j−N−a))

k−1∏

p=1

j∏

q=l+r+1
sq=sp

∆
(
x2(q−p+sp−N−1))

×
∏

k+1≤p<q≤l−1
sq=sp

∆
(
x2(q−p+sp−N−1)):Λn

(
x−2N+j+2m−2z

)−→
ΛΩj (z):. (4.31)

Using

:Λn

(
x−2N+j+2m−2z

)−→
Λ {s1,s2,...,sl−1,n,n−1,...,n−r,sl+r+1,sl+r+2,...,sj}(z):

= :Λn−r−1
(
x−2N+j+2m−2z

)−→
Λ {s1,s2,...,sl−1,n−1,n−2,...,n−r−1,sl+r+1,sl+r+2,...,sj}(z):,

0 ≤ r ≤ n−m− 1, l = m+ j + 1− n, (4.32)

obtained from (4.4), and replacing n by n + 1 yields β+(z) = β−(z). Hence, we obtain
H2N−j+2−2m(z) = β+(z)− β−(z) = 0 for 1 ≤ m ≤ N − j.

Next, we examine the case (ii), m = N + 1 − j. In the case (ii), δ±(z) and γ−(z) van-
ish. Hence, we have H2N−j+2−2m(z) = β+(z) + γ+(z) − β−(z). We start from β+(z) + γ+(z).
Using (4.4) yields

γ+(z) = ∆(1)

j∑

k=1

∑

Ωj⊂JN
N+1−k≺sk+1≺···≺sj

:ΛN+1−k
(
x−jz

)−→
Λ {N,N−1,...,N+1−k,sk+1,sk+2,...,sj}(z):. (4.33)

Using (4.31), (4.32), and (4.33) yields β+(z)+γ+(z) = β−(z). Hence, we obtain H2N−j+2−2m(z)
= β+(z) + γ+(z)− β−(z) = 0 for m = N − j + 1.

Next, we examine the case (iii), N + 2− j ≤ m ≤ N − [ j−12 ]. Rewriting the sum yields

δ+(z) =

(
N∑

n=2N+2−j−m

j∑

l=j+m+n−2N

∑

Ωj⊂JN
sl=n

j+m+n−2N−2∑

r=0
(sk−r,sk−r+1,...,sk)
=(n−r,n−r+1,...,n)
sk−r−1≺n−r−1

k=m+j+n−2N−1

∆
(
x2(l−j−m+N)

)

+

N∑

n=2N+2−j−m

j∑

l=m+j+n−2N−1

∑

Ωj⊂JN
sl=n

j+m+n−2N−2∑

r=0
(sk−r,sk−r+1,...,sk)
=(n−r,n−r+1,...,n)
sk−r−1≺n−r−1

k=m+j+n−2N−1

∆
(
x2(l−j−m+N+1)

)
)

×
r∏

a=1

j∏

b=l+1
sb=n−a

∆
(
x2(N+b−j−m)

) n−r−1∏

p=1

j∏

q=l+1
sq=sp

∆
(
x2(q−p+sp−N−1))

×
∏

k+1≤p<q≤l−1
sq=sp

∆
(
x2(q−p+sp−N−1)):−→ΛΩj (z)Λn

(
x−2N+j+2m−2z

)
: (4.34)

and

γ+(z) =
∑

Ωj⊂JN
sk=0, k=j+m−N

N≺sk+1

k−1∏

p=1

j∏

q=k+1
sq=sp

∆
(
x2(q−p+sp−N−1)):−→ΩΛj (z)Λ0

(
x−2N+j−2+2m

)
:
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+
∑

Ωj⊂JN
sk=0, k=j+m−N

N≺sk+1

j−1∑

r=0
(sk+1,sk+2,...,sk+r+1)

=(N,N−1,...,N−r)
N−r−1≺sk+r+2

k−1∏

a=1

r∏

b=0

∆
(
x2(j+m−N−a))

×
k−1∏

p=1

j∏

q=k+r+2
sq=sp

∆
(
x2(q−p+sp−N−1)):−→ΩΛj (z)Λ0

(
x−2N+j−2+2m

)
:. (4.35)

Using (4.2) and (4.4) yields

:
−→
Λ {s1,s2,...,sk−r−1,n−r,n−r+1,...,n,sk+1,sk+2,...,sj}(z)Λn

(
x−2N+j+2m−2z

)
:

= :
−→
Λ {s1,s2,...,sk−r−1,n−r−1,n−r,...,n−1,sk+1,sk+2,...,sj}(z)Λn−r−1

(
x−2N+j+2m−2z

)
:,

0 ≤ r ≤ k − 1, k = j +m+ n− 2N − 1, (4.36)

and

:
−→
Λ {s1,s2,...,sk−1,0,N,N−1,...,N−r,sk+r+2,sk+r+3,...,sj}(z)Λ0

(
x−2N+j+2m−2z

)
:

= ∆(1):
−→
Λ {s1,s2,...,sk−1,N,N−1,...,N−r−1,sk+r+2,sk+r+3,...,sj}(z)ΛN−r−1

(
x−2N+j+2m−2z

)
:,

0 ≤ r ≤ 2N + l + 1− j −m, k = j +m+ n− 2N − 1. (4.37)

Using (4.31), (4.32), (4.34), (4.35), (4.36), and (4.37) and replacing n by n + 1 yield β+(z) +
γ+(z) + δ+(z) = β−(z) + γ−(z) + δ−(z). Hence, we obtain H2N−j+2−2m(z) =

∑
ε=± ε

(
βε(z) +

γε(z) + δε(z)
)
= 0 for N + 2− j ≤ m ≤ N − [ j−12 ]. Finally, we obtain H2N−j+2−2m(z) = 0 for

1 ≤ m ≤ N −
[ j−1

2

]
.

We define H2N−j+2−2m(z), 1 ≤ j ≤ N , 1 ≤ m ≤ N − [ j−12 ], as the coefficient of
δ(x−2N+j−2+2mz2/z1) in (4.22). We set

H2N−j+2−2m(z) =





∑

ε=±
ε(βε(z) + γε(z) + δε(z)) otherwise,

0 if j is even, m = N −
[ j−1

2

]
,
(4.38)

where we give β+(z), β−(z), γ+(z), γ−(z), δ+(z), and δ−(z) in (4.39), (4.40), (4.41), (4.42),
(4.43), and (4.44), respectively. In (4.38) we define H0(z) = 0 to avoid ambiguity of H0(z)
and H0(z). In the case when j is even, we have LHS1,j = c(x, r)

(
H0(z2) − H0(z2))δ(z2/z1) +

H2(z2)δ(x
−2z2/z1) − H2(z2)δ(x

2z2/z1) + · · ·
)
. Adding the first term in (B.4) and the fourth

term in (B.7) yields

β+(z) =
∑

Ωj⊂JN

Min(N,j+m−2)∑

n=m

j∑

l=n+2−m
sk=n, k=n+1−m

l=n

dΩj (x, r):
−→
ΛΩj (z)Λn

(
x2N+2−j−2mz

)
:

+
∑

Ωj⊂JN

Min(N,j+m−1)∑

n=m

j∑

l=n+1−m
sk=n, k=n+1−m

sl≺n≺sl+1

dΩj (x, r)∆
(
x2(l+m−N−1))

× :
−→
ΛΩj (z)Λn

(
x2N+2−j−2mz

)
:. (4.39)
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Adding the second term in (B.4) and the second term in (B.7) yields

β−(z) =
∑

Ωj⊂JN

Min(N,j+m−1)∑

n=m+1

j∑

l=n+1−m
sk=n, k=n−m

sl=n

dΩj (x, r):
−→
ΛΩj (z)Λn

(
x2N+2−j−2mz

)
:

+
∑

Ωj⊂JN

Min(N,j+m)∑

n=m+1

j∑

l=n−m
sk=n, k=n−m
sl≺n≺sl+1

dΩj (x, r)∆
(
x2(l+m−N−1))

× :
−→
ΛΩj (z)Λn

(
x2N+2−j−2mz

)
:. (4.40)

Adding the first term in (B.5) yields

γ+(z) =
∑

Ωj⊂JN
sk=0, k=N+2−m

dΩj (x, r):Λ0

(
x2N+2−j−2mz

)−→
ΛΩj (z):. (4.41)

Adding the second term in (B.5) yields

γ−(z) =
∑

Ωj⊂JN
sk=0, k=N+1−m

dΩj (x, r):Λ0

(
x2N+2−j−2mz

)−→
ΛΩj (z):. (4.42)

Adding the first term in (B.3) and the fourth term in (B.6) yields

δ+(z) =
∑

Ωj⊂JN

N∑

n=2N+3−j−m

2N+2−m−n∑

k=1
sk=n

sl=n, l=2N+3−m−n

dΩj (x, r):Λn

(
x2N+2−j−2mz

)−→
ΛΩj (z):

+
∑

Ωj⊂JN

N∑

n=2N+3−j−m

2N+3−m−n∑

k=1
sk−1≺n≺sk

sl=n, l=2N+3−m−n

dΩj (x, r)∆
(
x2(N+2−m−k))

× :Λn

(
x2N+2−j−2mz

)−→
ΛΩj (z):. (4.43)

Adding the second term in (B.3) and the second term in (B.6) yields

δ−(z) =
∑

Ωj⊂JN

N∑

n=2N+2−j−m

2N+1−m−n∑

k=1
sk=n

sl=n, l=2N+2−m−n

dΩj (x, r):Λn

(
x2N+2−j−2mz

)−→
ΛΩj (z):

+
∑

Ωj⊂JN

N∑

n=2N+2−j−m

2N+2−m−n∑

k=1
sk−1≺n≺sk

sl=n, l=2N+2−m−n

dΩj (x, r)∆
(
x2(N+2−m−k))

× :Λn

(
x2N+2−j−2mz

)−→
ΛΩj (z):. (4.44)

The relation H2N+2−j−2m(z) = 0 is shown in the same way as H2N+2−j−2m(z) = 0. ■

Lemma 4.7. The currents Ti(z) satisfy the following fusion relation

lim
z1→x±(i+j)z2

(
1− x±(i+j)z2

z1

)
fi,j

(
z2
z1

)
Ti(z1)Tj(z2)

= ∓c(x, r)

Min(i,j)−1∏

l=1

∆
(
x2l+1

)
Ti+j

(
x±iz2

)
, 1 ≤ i, j ≤ N. (4.45)
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Proof. For Ω
(1)
i = {s1, s2, . . . , si} ⊂ JN with s1 ≺ s2 ≺ · · · ≺ si and Ω

(2)
j = {t1, t2, . . . , tj}

⊂ JN with t1 ≺ t2 ≺ · · · ≺ tj , we set Ωi+j = Ω
(1)
i ∪ Ω

(2)
j . From (4.1), the necessary and

sufficient condition that fi,j(z2/z1)
−→
Λ

Ω
(1)
i

(z1)
−→
Λ

Ω
(2)
j

(z2) has a pole at z1 = x−(i+j)z2 (respectively

z1 = xi+jz2) is si ≺ t1 (respectively tj ≺ s1). In the case when si ≺ t1 or tj ≺ s1, we obtain

fi,j

(
z2
z1

)−→
Λ

Ω
(1)
i

(z1)
−→
Λ

Ω
(2)
j

(z2) =

Min(i,j)−1∏

k=0

∆

(
x±(2k+1−i−j)z2

z1

)

×
i∏

p=1

j∏

q=1
tq=sp

∆

(
x±{2(q−p+sp−N−1+i)−i−j}z2

z1

)
:
−→
Λ

Ω
(1)
i

(z1)
−→
Λ

Ω
(2)
j

(z2):.

The signs ± in the products in the above expression of fi,j(z2/z1)
−→
Λ

Ω
(1)
i

(z1)
−→
Λ

Ω
(2)
j

(z2) are in the

same order. The upper sign is for si ≺ t1, and the lower sign is for tj ≺ s1. Taking the limit yields

lim
z1→x±(i+j)z2

(
1− x±(i+j)z2

z1

)
fi,j

(
z2
z1

)−→
Λ

Ω
(1)
i

(z1)
−→
Λ

Ω
(2)
j

(z2) = ∓c(x, r)

Min(i,j)−1∏

l=1

∆
(
x2l+1

)

×
i∏

p=1

j∏

q=1
tq=sp

∆

(
x2(q−p+sp−N−1+i)

)−→
ΛΩi+j

(
x±iz2

)
, 1 ≤ i, j ≤ N. (4.46)

Here, we use :
−→
Λ

Ω
(1)
i

(
x±(i+j)z

)−→
Λ

Ω
(2)
j

(z): =
−→
ΛΩi+j

(
x±iz

)
. Adding (4.46) over all Ω

(1)
i and Ω

(2)
j

yields (4.45). ■

Lemma 4.8. The currents Ti(z) satisfy the following fusion relations:

lim
z1→x±(2N+1+i−j)z2

(
1− x±(2N+1+i−j)z2

z1

)
fi,j

(
z2
z1

)
Ti(z1)Tj(z2)

= ∓c(x, r)

i−1∏

l=1

∆
(
x2l+1

) N+i−j∏

l=N+1−j
∆(x2l)Tj−i

(
x±iz2

)
, 1 ≤ i ≤ j ≤ N, (4.47)

lim
z1→x±(2N+1−i+j)z2

(
1− x±(2N+1−i+j)z2

z1

)
fi,j

(
z2
z1

)
Ti(z1)Tj(z2)

= ∓c(x, r)

j−1∏

l=1

∆
(
x2l+1

) N+j−i∏

l=N+1−i
∆
(
x2l
)
Ti−j

(
x±(2N+1−i)z2

)
, 1 ≤ j ≤ i ≤ N. (4.48)

Proof. Using (3.3), (4.8), (4.9), and (4.45) yields (4.47) and (4.48). ■

Proof. Here we will give a proof of Theorem 3.2. We prove Theorem 3.2 by induction. Lem-
ma 4.6 is the base for induction. We define LHSi,j , RHS1i,j and RHS2i,j(k) with 1 ≤ k ≤ i ≤
j ≤ N as

LHSi,j = fi,j

(
z2
z1

)
Ti(z1)Tj(z2)− fj,i

(
z1
z2

)
Tj(z2)Ti(z1),

RHS1i,j = c(x, r)

i−1∏

l=1

∆
(
x2l+1

) N+i−j∏

l=N+1−j
∆
(
x2l
)

×
(
δ

(
x−2N+j−i−1z2

z1

)
Tj−i

(
x−iz2

)
− δ

(
x2N−j+i+1z2

z1

)
Tj−i

(
xiz2

))
,
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RHS2i,j(k) = c(x, r)
k−1∏

l=1

∆
(
x2l+1

)(
δ

(
x−j+i−2kz2

z1

)
fi−k,j+k

(
xj−i

)
Ti−k

(
xkz1

)
Tj+k

(
x−kz2

)

− δ

(
xj−i+2kz2

z1

)
fi−k,j+k

(
x−j+i

)
Ti−k(x

−kz1)Tj+k

(
xkz2

))
, 1 ≤ k ≤ i− 1,

RHS2i,j(i) = c(x, r)
i−1∏

l=1

∆
(
x2l+1

)(
δ

(
x−j−iz2

z1

)
Tj+i

(
x−iz2

)
− δ

(
xj+iz2
z1

)
Tj+i

(
xiz2

))
.

We prove the following relation by induction on i, 1 ≤ i ≤ j ≤ N .

LHSi,j = RHS1i,j +
i∑

k=1

RHS2i,j(k). (4.49)

The base, i = 1 ≤ j ≤ N was proved previously in Lemma 4.6.

We assume that the relation (4.49) holds for some i, 1 ≤ i < j ≤ N , and show that LHSi+1,j =
RHS1i+1,j+

∑i+1
k=1RHS2i+1,j(k) from this assumption. First, we summarize some relations. The

assumption (4.49) yields

lim
w1→x2N−i−jw2

(
1− x2N−i−j

w2

w1

)
fj−1,i

(
w2

w1

)
Tj−1(w1)Ti(w2) = 0, (4.50)

lim
w1→x2N−i−jw2

(
1− x2N−i−j

w2

w1

)
f1,j−i

(
w2

w1

)
T1(w1)Tj−i(w2) = 0, (4.51)

fi,j

(
w2

w1

)
Ti(w1)Tj(w2) = fj,i

(
w1

w2

)
Tj(w2)Ti(w1) (4.52)

for w2
w1

̸= x±(2N−j+i+1), x±(j−i+2k), 1 ≤ k ≤ i. Direct calculation yields

lim
w2→x−i−1w1

(
1− x−i−1

w1

w2

)
∆

(
x−i

w1

w2

)
= c(x, r). (4.53)

Multiplying LHSi,j by f1,i(z1/z3)f1,j(z2/z3)T1(z3) on the left and using the quadratic rela-
tion (4.49) with i = 1, along with the fusion relation (4.10) yields

f1,i

(
z1
z3

)
f1,j

(
z2
z3

)
T1(z3)× LHSi,j

= f1,j

(
z2
z3

)
fi,j

(
z2
z1

)
f1,i

(
z1
z3

)
T1(z3)Ti(z1)Tj(z2)

− fj,1

(
z3
z2

)
fj,i

(
z1
z2

)
Tj(z2)f1,i

(
z1
z3

)
T1(z3)Ti(z1)

− c(x, r)∆
(
x2(N+1−j))δ

(
x−2N+j−2z2

z3

)
∆

(
x−iz1
z3

)
fj−1,i

(
x−2N+j−1z1

z3

)

× Tj−1
(
x2N−j+1z3

)
Ti(z1) + c(x, r)∆

(
x2(N+1−j))

× δ

(
x2N−j+2z2

z3

)
∆

(
xiz1
z3

)
fj−1,i

(
x2N−j+1z1

z3

)
Tj−1

(
x−2N+j−1z3

)
Ti(z1)

− c(x, r)δ

(
x−j−1z2

z3

)
∆

(
x−iz1
z3

)
fj+1,i

(
x−jz1
z3

)
Tj+1

(
xjz3

)
Ti(z1)

+ c(x, r)δ

(
xj+1z2
z3

)
∆

(
xiz1
z3

)
fj+1,i

(
xjz1
z3

)
Tj+1

(
x−jz3

)
Ti(z1). (4.54)
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Taking the limit z3 → x−i−1z1 of (4.54) multiplied by c(x, r)−1
(
1 − x−i−1z1/z3

)
and using the

relations (4.45) and (4.48), (4.50), (4.52), and (4.53) yields

lim
z3→x−i−1z1

1

c(x, r)

(
1− x−i−1

z1
z3

)
f1,i

(
z1
z3

)
f1,j

(
z2
z3

)
T1(z3)× LHSi,j

= fi+1,j

(
xz2
z1

)
Ti+1

(
x−1z1

)
Tj(z2)− fj,i+1

(
x−1z1
z2

)
Tj(z2)Ti+1

(
x−1z1

)

+ c(x, r)

i∏

l=1

∆
(
x2l+1

)N+i+1−j∏

l=N−j+1

∆
(
x2l
)
δ

(
x2N−j+i+3z2

z1

)
Tj−i−1

(
xi+1z2

)

− c(x, r)δ

(
xi−jz2
z1

)
fi,j+1

(
x−i+j+1

)
Ti(z1)Tj+1

(
x−1z2

)

+ c(x, r)δ

(
xi+j+2z2

z1

) i∏

l=1

∆
(
x2l+1

)
Ti+j+1

(
xi+1z2

)
. (4.55)

Multiplying RHS1i,j by f1,i(z1/z3)f1,j(z2/z3)T1(z3) from the left and using fusion rela-
tions (4.9) and (4.10) yields

f1,i

(
z1
z3

)
f1,j

(
z2
z3

)
T1(z3)× RHS1i,j = c(x, r)

i−1∏

l=1

∆(x2l+1)

N+i−j∏

l=N+1−j
∆
(
x2l
)

×
{
δ

(
x−2N+j−i−1z2

z1

)
∆

(
xiz1
z3

)
f1,j−i

(
x−iz2
z3

)
T1(z3)Tj−i

(
x−iz2

)

− δ

(
x2N−j+i+1z2

z1

)
∆

(
x−iz1
z3

)
f1,j−i

(
xiz2
z3

)
T1(z3)Tj−i

(
xiz2

)}
. (4.56)

Taking the limit z3 → x−i−1z1 of (4.56) multiplied by c(x, r)−1(1 − x−i−1z1/z3) and using the
relations (4.47) and (4.51) yields

lim
z3→x−i−1z1

1

c(x, r)

(
1− x−i−1

z1
z3

)
f1,i

(
z1
z3

)
f1,j

(
z2
z3

)
T1(z3)× RHS1i,j

= c(x, r)
i∏

l=1

∆
(
x2l+1

)N+i+1−j∏

l=N+1−j
∆
(
x2l
)
δ

(
x−2N+j−i−1z2

z1

)
Tj−i−1

(
x−i−1z2

)
. (4.57)

Multiplying RHS2i,j(i) by f1,i(z1/z3)f1,j(z2/z3)T1(z3) from the left and using the fusion re-
lation (4.11) yields

f1,i

(
z1
z3

)
f1,j

(
z2
z3

)
T1(z3)× RHS2i,j(i)

= c(x, r)

i−1∏

l=1

∆1(x
2l+1)

(
δ

(
x−i−jz2

z1

)
f1,i+1

(
xjz1
z3

)
∆

(
xiz1
z3

)
T1(z3)Ti+j

(
xjz1

)

− δ

(
xi+jz2
z1

)
f1,i+1

(
x−jz1
z3

)
∆

(
x−iz1
z3

)
T1(z3)Ti+j

(
x−jz1

))
. (4.58)

Taking the limit z3 → x−i−1z1 of (4.58) multiplied by c(x, r)−1
(
1 − x−i−1z1/z3

)
and using the

relations (4.45) and (4.53) yields

lim
z3→x−i−1z1

1

c(x, r)

(
1− x−i−1

z1
z3

)
f1,i

(
z1
z3

)
f1,j

(
z2
z3

)
T1(z3)× RHS2i,j(i)
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= c(x, r)δ

(
x−i−jz2

z1

) i∏

l=1

∆
(
x2l+1

)
Ti+j+1

(
x−i−1z2

)

− c(x, r)δ

(
xi+jz2
z1

) i−1∏

l=1

∆
(
x2l+1

)
f1,i+j

(
xi−j+1

)
T1

(
x−i−1z1

)
Ti+j

(
xiz2

)
. (4.59)

Multiplying RHS2i,j(k), 1 ≤ k ≤ i − 1, by f1,i(z1/z3)f1,j(z2/z3)T1(z3) from the left and using
relations (4.12) and (4.52) yields

f1,i

(
z1
z3

)
f1,j

(
z2
z3

)
T1(z3)× RHS2i,j(k) (4.60)

= c(x, r)

k−1∏

l=1

∆
(
x2l+1

)(
δ

(
x−j+i−2kz2

z1

)
f1,i−k

(
xkz1
z3

)
fj+k,i−k

(
xi−j

)
f1,j+k

×
(
x−i+j+kz1

z3

)
T1(z3)Tj+k

(
xj−i+kz1

)
Ti−k

(
xkz1

)
− δ

(
xj−i+2kz2

z1

)
f1,i−k

(
x−kz1
z3

)

× fi−k,j+k

(
xi−j

)
f1,j+k

(
xi−j−kz1

z3

)
T1(z3)Ti−k

(
x−kz1

)
Tj+k

(
xkz2

))
, 1 ≤ k ≤ i− 1.

Taking the limit z3 → x−i−1z1 of (4.60) multiplied by c(x, r)−1
(
1− x−i−1z1/z3

)
, and using the

fusion relations (4.7), (4.45), and (4.52) yields

lim
z3→x−i−1z1

1

c(x, r)

(
1− x−i−1

z1
z3

)
f1,i

(
z1
z3

)
f1,j

(
z2
z3

)
T1(z3)× RHS2i,j(k)

= c(x, r)

k∏

l=1

∆
(
x2l+1

)
δ

(
x−j+i−2kz2

z1

)
fj+k−1,i−k

(
xi−j+1

)
Ti−k(x

kz1)Tj+k+1

(
x−k−1z2

)

− c(x, r)

k−1∏

l=1

∆
(
x2l+1

)
δ

(
xj−i+2kz2

z1

)
fi−k+1,j+k

(
xi−j+1

)
Ti−k+1

(
x−k−1z1

)

× Tj+k

(
xkz2

)
, 1 ≤ k ≤ i− 1. (4.61)

Adding (4.55), (4.57), (4.59), and (4.61) for 1 ≤ k ≤ i − 1, and replacing z1 by xz1 yields
LHSi+1,j = RHS1i+1,j +

∑i+1
k=1RHS2i+1,j(k). By induction on i, we proved quadratic rela-

tion (3.4). ■

4.3 Proof of Lemma 3.4

Lemma 4.9. The current T1(z) commutes with the screening currents Sk(w) as follows.

[T1(z), Sk(w)] = Ck(z)(Dxrδ)

(
xkw

z

)
+ Ck(z)(Dxrδ)

(
x2N+1−kw

z

)
, 1 ≤ k ≤ N. (4.62)

Here we set q-difference

(Dqδ)(z) = δ(qz)− δ
(
q−1z

)
,

the currents Ck(z) and Ck(z), 1 ≤ k ≤ N , are given by

Ck(z) = x−r+1
(
xr−1 − x−r+1

)
:Λk(z)Sk

(
xr−kz

)
:,

Ck(z) = xr−1
(
xr−1 − x−r+1

)
:Λk(z)Sk

(
x−2N−1+k−rz

)
:.
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Proof. Adding (B.9) yields

[T1(z), Sk(w)] =
(
xr−1 − x−r+1

)(
−x−r+1:Λk(z)Sk(w):δ

(
xk−r

w

z

)

+ xr−1:Λk+1(z)Sk(w)δ

(
xk+rw

z

)
+ xr−1:Λk(z)Sk(w)δ

(
x2N+1−k+rw

z

)

− x−r+1:Λk+1(z)Sk(w):δ

(
x2N+1−k−rw

z

))
, 1 ≤ k ≤ N − 1,

and

[T1(z), SN (w)] =
(
x−r+1 − xr−1

)(
x−r+1:ΛN (z)SN (w):δ

(
xN−r

w

z

)

− xr−1:ΛN (z)SN (w):δ

(
xN+1+rw

z

))

+
[r − 1]x[

1
2 ]x

[r − 1
2 ]x

(
x− x−1

)(
δ

(
xN+rw

z

)
− δ

(
xN+1−rw

z

))
:Λ0(z)SN (w):.

Using the relations

x−r+1:Λk(z)Sk

(
xr−kz

)
: = xr−1:Λk+1(z)Sk

(
x−r−kz

)
:, 1 ≤ k ≤ N − 1,

x−r+1:ΛN (z)SN

(
xr−Nz

)
: =

[
1
2

]
x[

r − 1
2

]
x

:Λ0(z)SN

(
x−r−Nz

)
:,

xr−1:Λk(z)Sk

(
x−2N−1+k−rz

)
: = x−r+1:Λk+1(z)Sk

(
x−2N−1+k+rz

)
:, 1 ≤ k ≤ N − 1,

xr−1:ΛN (z)SN

(
x−r−N−1z

)
: =

[
1
2

]
x[

r − 1
2

]
x

:Λ0(z)SN

(
xr−N−1z

)
:.

yields (4.62). ■

Corollary 4.10. The current T1(z) commutes with the screening operators Sk

[T1(z), Sk] = 0, 1 ≤ k ≤ N. (4.63)

Proof. From (4.62), we obtain

[T1(z), Sk] =

∮
dw

2π
√
−1w

(
Ck(z)(Dxrδ)

(
xkw

z

)
+ Ck(z)(Dxrδ)

(
x2N+1−kw

z

))
.

Using
∮

dw
2π
√−1w (Dxrδ)

(
xsw
z

)
= 0 with s = k, 2N + 1− k yields [T1(z), Sk] = 0. ■

Proof. Here we will give a proof of Lemma 3.4. Set Tj(z) =
∑

m∈Z Tj [m]z−m, 1 ≤ j ≤ 2N and
fi,j(z) =

∑∞
l=0 f

l
i,jz

l. From (4.21), we obtain

(
x−(j+1)k+m − x(j+1)k−m)Tj+1[m]

= ∆
(
x2N+2−2j)(x(2N−j+2)k−m − x(−2N+j−2)k+m

)
Tj−1[m]

+ c(x, r)−1
∞∑

l=0

(
f l
1,jT1[k − l]Tj [l − k +m]− f l

j,1Tj [k − l −m]T1[l − k]
)
,

m, k ∈ Z, 1 ≤ j ≤ N.

Hence, Tj+1[m], m ∈ Z, 1 ≤ j ≤ N , are expressed in terms of Tj [n], Tj−1[n], and T1[n], n ∈ Z,
1 ≤ j ≤ N . From duality (3.3), Tj [m], m ∈ Z, N + 2 ≤ j ≤ 2N are expressed in terms of
T2N+1−j [n], n ∈ Z, N + 2 ≤ j ≤ 2N . Finally, Tj [m], m ∈ Z, 1 ≤ j ≤ 2N are expressed in terms
of T1[n], n ∈ Z. Hence, we obtain (3.5) from (4.63). ■
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5 Conclusion and discussion

In this paper, we obtained the free field construction of higher W -currents Ti(z), i ≥ 2, of the

deformed W -algebra Wx,r

(
A

(2)
2N

)
. We obtained a closed set of quadratic relations for the W -

currents Ti(z), which are completely different from those in types A
(1)
N and A(M,N)(1). The

quadratic relations of Wx,r

(
A

(2)
2N

)
do not preserve “parity”, though those of Wx,r

(
A

(1)
N

)
and

Wx,r

(
A(M,N)(1)

)
do. Here we define “parity” of Ti(z)Tj(w) as i+ j. We obtained the duality

T2N+1−i(z) = ciTi(z), 1 ≤ i ≤ N , which is a new structure that does not occur in types A
(2)
2 , A

(1)
N ,

and A(M,N)(1). This allowed us to define the deformed W -algebra Wx,r

(
A

(2)
2N

)
using generators

and relations similarly to the definition of the twisted affine Lie algebra of type A
(2)
2N given in

Section 2.
We also justified our definition of the deformed W -algebra of type A

(2)
2N . We compare Defini-

tion 3.3 with other definitions. In [8], the deformed W -algebras of types A
(1)
N , B

(1)
N , C

(1)
N , D

(1)
N ,

and A
(2)
2N were proposed as the intersection of the kernels of the screening operators. We recall

the definition based on the screening operators for A
(2)
2N . Let Hx,r be the vector space spanned

by the formal power series currents of the form

:∂n1
z Yi1

(
xrj1+k1z

)ε1 · · · ∂nl
z Yil

(
xrjl+klz

)εl :,

where εi = ±1 2. We define Wx,r as the vector subspace of Hx,r consisting of all currents that
commute with the screening operators Si, 1≤ i ≤N , in (2.6). Let

{
Fa(z)=

∑
m∈Z Fa[m]z−m

}
a∈A

be a basis of the vector space Wx,r. Let WFR be the associative algebra generated by ele-
ments Fa[m], m ∈ Z, a ∈ A. Let JK be the left ideal of WFR generated by elements Fa[m],
m ≥ K ∈ N, a ∈ A. We define the deformed W -algebra

WFR
x,r

(
A

(2)
2N

)
= lim
←

WFR/JK .

We propose another definition of the deformed W -algebra. From (3.5), the W -currents
Ti(z) =

∑
m∈Z Ti[m]z−m, 1 ≤ i ≤ 2N , commute with the screening operators. Let WAKOS

be the associative algebra generated by elements Ti[m], m ∈ Z, 1 ≤ i ≤ 2N . Let LK be the left
ideal of WAKOS generated by elements Ti[m], m ≥ K ∈ N, 1 ≤ i ≤ 2N . We define the deformed
W -algebra

WAKOS
x,r

(
A

(2)
2N

)
= lim
←

WAKOS/LK .

In this study, our definitions Wx,r

(
A

(2)
2N

)
were based on generators and relations. We have

introduced three definitions of the deformed W -algebra for the twisted algebra of the type A
(2)
2N .

Conjecture 5.1. Wx,r

(
A

(2)
2N

)
, WAKOS

x,r

(
A

(2)
2N

)
, and WFR

x,r

(
A

(2)
2N

)
are isomorphic as associative

algebras

Wx,r

(
A

(2)
2N

) ∼= WAKOS
x,r

(
A

(2)
2N

) ∼= WFR
x,r

(
A

(2)
2N

)
. (5.1)

The author believes that this conjecture can be extended to arbitrary affine Lie algebras.
Some necessary conditions of isomorphism (5.1) in Conjecture 5.1 can be indicated immediately.
From (3.5), we obtain the following inclusion:

WAKOS
x,r

(
A

(2)
2N

)
⊆ WFR

x,r

(
A

(2)
2N

)
.

2We define Yi(z)
−1 as the inverse element of Yi(z), that is, Yi(z)Yi(z)

−1 = Yi(z)
−1Yi(z) = 1. Specifically, we

obtain Yi(z)
−1 = x−ryi(0)⟨Yi(z)Yi(z)⟩: exp

(
−
∑

m ̸=0 yi(m)z−m
)
:, where we used the symbol ⟨ ⟩ defined in (A.1).
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We establish a homomorphism of associative algebras φ ∈ HomC

(
Wx,r

(
A

(2)
2N

)
,WAKOS

x,r

(
A

(2)
2N

))

using φ(T i[m]) = Ti[m]. φ is surjective,

φ
(
Wx,r

(
A

(2)
2N

))
= WAKOS

x,r

(
A

(2)
2N

)
.

If we assume that φ is injective, the isomorphism on the left side in (5.1) is obtained. In other

words, no independent relations other than (3.3) and (3.4) exist in Wx,r

(
A

(2)
2N

)
. We propose two

results to support this claim. In the classical limit the second Hamiltonian structure {·, ·} of the
q-Poisson algebra [7, 8, 9, 15] was obtained from the quadratic relations (see (3.6) and (3.7)).

In the conformal limit all defining relations of the W -algebra Wβ

(
A

(1)
N

)
, N = 1, 2, are obtained

from the quadratic relations of Wx,r

(
A

(1)
N

)
upon the assumption that the currents Ti(z) have

the form of expansion for small parameter ℏ (see [1, Appendix]).
The definition of the deformed W -algebra Wx,r(g) for non-twisted affine Lie algebra g was

formulated in terms of the quantum Drinfeld–Sokolov reduction in [16]. Formulating the defini-
tion of the deformed W -algebras Wx,r(g) in terms of the quantum Drinfeld–Sokolov reduction
for twisted affine Lie algebra or affine Lie superalgebra [4, 6, 10, 12, 13] is still a problem that
needs to be solved.

It remains an open challenge to identify quadratic relations of the deformed W -algebras

Wx,r(g) for the affine Lie algebras g except for types A
(1)
N and A

(2)
2N . We believe that this paper

presents a key step towards extending our construction for general affine Lie algebras g. In [8]
and [6] the free field construction of the basic W -current T1(z) of Wx,r

(
g
)
was suggested in the

case when the underlying simple finite-dimensional Lie algebra
◦
g is of classical type,

T1(z) =





Λ1(z) + · · ·ΛN+1(z) for g of type A
(1)
N ,

Λ1(z) + · · ·+ ΛN (z) + Λ0(z)

+ ΛN (z) + · · ·+ Λ1(z) for g of types B
(1)
N , A

(2)
2N , D

(2)
N+1,

Λ1(z) + · · ·+ ΛN (z) + ΛN (z) + · · ·+ Λ1(z) for g of types C
(1)
N , D

(1)
N , A

(2)
2N−1.

Here we omit details of free field constructions of Λi(z). The free field construction of T1(z)

has similar form to that for g of type A
(2)
2N except for the case of A

(1)
N . Therefore, we expect

that a similar duality as (3.3) and similar quadratic relation (3.4) hold in all cases in types

B
(1)
N , C

(1)
N , D

(1)
N , A

(2)
2N−1, and D

(2)
N+1. We would like to draw your attention to the following

analogy. Let g be an affine Lie algebras of one of the types B
(1)
N , C

(1)
N , D

(1)
N , A

(2)
2N−1, or D

(2)
N+1.

Let
◦
g be the underlying simple finite-dimensional Lie algebra. Let

◦
h be a Cartan subalgebra

of
◦
g. Let Λ1,Λ2, . . . ,Λl be the fundamental weights of

◦
g, where l is the dimension of

◦
h. Let VΛ1

be the integrable highest weight representation of Uq(
◦
g) with the highest weight Λ1. Let V be

the evaluation representation corresponding to VΛ1
of the quantum affine algebra Uq(g) with

a spectral parameter z ∈ C×. Let n be the dimension of VΛ1
. We have

n−i∧ V ≃
( i∧ V

)∗ ≃ i∧ V ∗,

because
n∧ V ≃ C. The evaluation representation V of Uq

(
g
)
is self-dual except for g of type A

(1)
N .

Hence, we obtain the duality of the representations of Uq

(
g
)
,

n−i∧ V ≃ i∧ V if g is not of type A
(1)
N ,

which is similar as that in (3.3). As an analogy, we expect the duality of the W -currents,

Tn−i(z) = ciTi(z) if g is not of type A
(1)
N ,

for the deformed W algebras Wx,r(g). Here ci, 0 ≤ i ≤ n, are constants.
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It remains an open challenge to identify quadratic relations of the deformed W -algebras
Wx,r(g) for affine superalgebra g except for those of type A(M,N)(1). Recently the deformed
W -superalgebra Wx,r(g) has appeared in the study of D-branes and physical interest is growing
to this subject, see, e.g., [10]. As revealed in [10, 12, 13], it is expected that, in cases of
superalgebras g, infinite number of higher W -currents Ti(z), i = 1, 2, 3, . . . , satisfy a closed set
of infinite number of quadratic relations. It is interesting to understand how duality will be
extended to the case of superalgebras. We expect to report on quadratic relations and duality
for more general deformed W -algebras Wx,r(g) associated with affine Lie algebras and affine Lie
superalgebras in the near future.

A Normal ordering rules

We list the normal ordering rules. For operators V (z) and W (w) we use the notation

V (z)W (w) = ⟨V (z)W (w)⟩:V (z)W (w): (A.1)

and write down only the part ⟨V (z)W (w)⟩ in the formulas below. Using the standard formula

eAeB = e[A,B]eBeA, [[A,B], A] = 0 and [[A,B], B] = 0,

we obtain the normal ordering rules.

A.1 Ai(z) and Si(z)

⟨Ai(z1)Ai(z2)⟩ =
(
∆

(
xz2
z1

)
∆

(
x−1z2
z1

))−1
, 1 ≤ i ≤ N − 1,

⟨AN (z1)AN (z2)⟩ = ∆

(
z2
z1

)(
∆

(
xz2
z1

)
∆

(
x−1z2
z1

))−1
,

⟨Ai(z1)Aj(z2)⟩ = ∆

(
z2
z1

)
, |i− j| = 1, 1 ≤ i, j ≤ N,

⟨Ai(z1)Aj(z2)⟩ = 1, |i− j| ≥ 2, 1 ≤ i, j ≤ N, (A.2)

⟨Si(z1)Si(z2)⟩ = z
2(r−1)

r
1

(
1− z2

z1

) (
x2z2/z1;x

2r
)
∞(

x2r−2z2/z1;x2r
)
∞
, 1 ≤ i ≤ N − 1,

⟨SN (z1)SN (z2)⟩ = z
r−1
r

1

(
1− z2

z1

)
(x2z2/z1;x

2r)∞
(
x2r−2z2/z1;x2r

)
∞(

xz2/z1;x2r
)
∞
(
x2r−1z2/z1;x2r

)
∞

,

⟨Si(z1)Sj(z2)⟩ = z
− r−1

r
1

(
x2r−1z2/z1;x2r

)
∞(

xz2/z1;x2r
)
∞

, |i− j| = 1, 1 ≤ i, j ≤ N,

⟨Si(z1)Sj(z2)⟩ = 1, |i− j| ≥ 2, 1 ≤ i, j ≤ N, (A.3)

⟨Ai(z1)Si(z2)⟩ = x−4(r−1)
(
1− xr z2z1

)(
1− xr−2 z2z1

)
(
1− x−r z2z1

)(
1− x2−r z2z1

) , 1 ≤ i ≤ N − 1,

⟨AN (z1)SN (z2)⟩ = x−2(r−1)
(
1− xr z2z1

)(
1− xr−2 z2z1

)(
1− x1−r z2z1

)
(
1− x−r z2z1

)(
1− x2−r z2z1

)(
1− xr−1 z2z1

) , (A.4)

⟨Ai(z1)Sj(z2)⟩ = x2(r−1)
(
1− x1−r z2z1

)
(
1− xr−1 z2z1

) , |i− j| = 1, 1 ≤ i, j ≤ N,

⟨Ai(z1)Sj(z2)⟩ = 1, |i− j| ≥ 2, 1 ≤ i, j ≤ N, (A.5)
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⟨Si(z1)Ai(z2)⟩ =
(
1− x2−r z2z1

)
(
1− xr z2z1

)(
1− xr−2 z2z1

) , 1 ≤ i ≤ N − 1,

⟨SN (z1)AN (z2)⟩ =
(
1− x−r z2z1

)(
1− x2−r z2z1

)(
1− xr−1 z2z1

)
(
1− xr z2z1

)(
1− xr−2 z2z1

)(
1− x1−r z2z1

) ,

⟨Sj(z1)Ai(z2)⟩ =
(
1− xr−1 z2z1

)
(
1− x1−r z2z1

) , |i− j| = 1, 1 ≤ i, j ≤ N,

⟨Sj(z1)Ai(z2)⟩ = 1, |i− j| ≥ 2, 1 ≤ i, j ≤ N. (A.6)

A.2 Yi(z), Ai(z) and Si(z)

The symmetric matrix I(m) = (Ii,j(m))Ni,j=1 is the inverse matrix of B(m). The elements
Ii,j(m) = Ij,i(m), 1 ≤ i ≤ j ≤ N , are written as

Ii,j(m) =
1

[(N+1)m]x − [Nm]x
×





[(N + 1− j)m]x − [(N − j)m]x, i = 1, 1 ≤ j ≤ N,

(−1)N−j+i

N−j+i∑

k=i−1
(−1)k[km]x, 2 ≤ i ≤ j ≤ N − 1,

[im]x, 1 ≤ i ≤ N, j = N.

The generators yi(m), 1 ≤ i ≤ N , are written as

yi(m) =
N∑

j=1

Ii,j(m)aj(m), Qy
i =

N∑

j=1

Ii,j(0)Qj . (A.7)

From (2.2), (2.3) and (A.2) we obtain

⟨Y1(z1)Y1(z2)⟩ = f1,1

(
z2
z1

)−1
,

⟨Y1(z1)A1(z2)⟩ = ∆

(
z2
z1

)−1
, ⟨Y1(z1)Ai(z2)⟩ = 1, 2 ≤ i ≤ N,

⟨A1(z1)Y1(z2)⟩ = ∆

(
z2
z1

)−1
, ⟨Ai(z1)Y1(z2)⟩ = 1, 2 ≤ i ≤ N,

⟨Y1(z1)S1(z2)⟩ = x−2(r−1)
(
1− xr−1 z2z1

)
(
1− x1−r z2z1

) , ⟨Y1(z1)Si(z2)⟩ = 1, 2 ≤ i ≤ N,

⟨S1(z1)Y1(z2)⟩ =
(
1− x1−r z2z1

)
(
1− xr−1 z2z1

) , ⟨Si(z1)Y1(z2)⟩ = 1, 2 ≤ i ≤ N. (A.8)

B Exchange relations

In this appendix we list the exchange relations.

B.1 Λi(z)

We give the exchange relations of Λj(z) and
−→
ΛΩi(z), which are obtained from (4.1). We set s ∈

JN = {1, 2, . . . , N, 0, N, . . . , 2, 1}. For an element s ∈ JN and a subset Ωi = {s1, s2, . . . , si} ⊂ JN
with s1 ≺ s2 ≺ · · · ≺ si, we calculate

XΩi,s(z1, z2) = f1,i

(
z2
z1

)
Λs(z1)

−→
ΛΩi(z2)− fi,1

(
z1
z2

)−→
ΛΩi(z2)Λs(z1).
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• In the case of s, s /∈ Ωi, we obtain

XΩi,s(z1, z2) = c(x, r):Λs(z1)
−→
ΛΩi(z2):

(
δ

(
x−i−3+2kz2

z1

)
− δ

(
x−i−1+2kz2

z1

))
. (B.1)

Here we set k, 1 ≤ k ≤ i+ 1, by k =





1 if s ≺ s1,

q if sq−1 ≺ s ≺ sq, 2 ≤ q ≤ i,

i+ 1 if si ≺ s.

• In the case of s ∈ Ωi and s /∈ Ωi, we obtain

f1,i

(
z2
z1

)
Λs(z1)

−→
ΛΩi(z2)− fi,1

(
z1
z2

)−→
ΛΩi(z2)Λs(z1) = 0. (B.2)

• In the case of s, s ∈ Ωi and s = n, 1 ≤ n ≤ N , we obtain

XΩi,s(z1, z2) = c(x, r):Λn(z1)
−→
ΛΩi(z2):

×
(
δ

(
x−2N−i+2n+2l−4z2

z1

)
− δ

(
x−2N−i+2n+2l−2z2

z1

))
. (B.3)

Here we set k, l, 1 ≤ k < l ≤ i, by s = n = sk and s = n = sl.
• In the case of s, s ∈ Ωi and s = n, 1 ≤ n ≤ N , we obtain

XΩi,s(z1, z2) = c(x, r):Λn(z1)
−→
ΛΩi(z2):

×
(
δ

(
x2N−i−2n+2kz2

z1

)
− δ

(
x2N−i−2n+2k+2z2

z1

))
. (B.4)

Here we set k, l, 1 ≤ k < l ≤ i, by s = n = sk and s = n = sl.
• In the case of s = 0 ∈ Ωi, we obtain

XΩi,s(z1, z2) = c(x, r):Λ0(z1)
−→
ΛΩi(z2):

(
δ

(
x−i−2+2kz2

z1

)
− δ

(
x−i+2kz2

z1

))
. (B.5)

Here we set k, 1 ≤ k ≤ i, by sk = 0.
• In the case of s /∈ Ωi and s ∈ Ωi and s = n, 1 ≤ n ≤ N , we obtain

XΩi,s(z1, z2) = c(x, r)∆
(
x2(l−k+n−N)

)
:Λn(z1)

−→
ΛΩi(z2):

×
(
δ

(
x−i+2k−3z2

z1

)
− δ

(
x−2N+2n+2l−i−2z2

z1

))

+ c(x, r)∆
(
x2(l−k+n−N−1)):Λn(z1)

−→
ΛΩi(z2):

×
(
−δ

(
x−i+2k−1z2

z1

)
+ δ

(
x−2N+2n+2l−i−4z2

z1

))
. (B.6)

Here we set k, l, 1 ≤ k ≤ l ≤ i, by sl = s = n and k =

{
1 if s = n ≺ s1,

q if sq−1 ≺ s = n ≺ sq, 2 ≤ q ≤ i.

• In the case of s /∈ Ωi and s ∈ Ωi and s = n, 1 ≤ n ≤ N , we obtain

XΩi,s(z1, z2) = c(x, r)∆
(
x2(l−k+n−N−1)):Λn(z1)

−→
ΛΩi(z2):

×
(
δ

(
x−i+2l−1z2

z1

)
− δ

(
x2N−2n−i+2k+2z2

z1

))

+ c(x, r)∆
(
x2(l−k+n−N)

)
:Λn(z1)

−→
ΛΩi(z2):

×
(
−δ

(
x−i+2l+1z2

z1

)
+ δ

(
x2N−2n−i+2kz2

z1

))
. (B.7)

Here we set k, l, 1 ≤ k ≤ l ≤ i, by sk = s = n and l =

{
q if sq ≺ s = n ≺ sq+1, 1 ≤ q ≤ i− 1,

i if si ≺ s = n.
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B.2 Si(z)

From (A.3) we obtain

Si(z1)Si(z2) = − [u2 − u1 + 1]

[u1 − u2 + 1]
Si(z2)Si(z1), 1 ≤ i ≤ N − 1,

SN (z1)SN (z2) = − [u1 − u2 +
1
2 ][u2 − u1 + 1]

[u2 − u1 +
1
2 ][u1 − u2 + 1]

SN (z2)SN (z1),

Si(z1)Sj(z2) =
[u1 − u2 +

1
2 ]

[u2 − u1 +
1
2 ]
Sj(z2)Si(z1), |i− j| = 1, 1 ≤ i, j ≤ N,

Si(z1)Sj(z2) = Sj(z2)Si(z1), |i− j| ≥ 2, 1 ≤ i, j ≤ N. (B.8)

Here we set zi = x2ui , i = 1, 2 and [u] = x
u2

r
−2uΘx2r(z).

B.3 Λi(z) and Si(z)

From (A.5), (A.6) and (A.8) we obtain

[Λk(z1), Sk(z2)] =
(
x−2r+2 − 1

)
:Λk(z1)Sk(z2):δ

(
xk−rz2

z1

)
, 1 ≤ k ≤ N,

[Λk+1(z1), Sk(z2)] =
(
x2r−2 − 1

)
:Λk+1(z1)Sk(z2):δ

(
xk+rz2

z1

)
, 1 ≤ k ≤ N − 1,

[Λk(z1), Sk(z2)] =
(
x2r−2 − 1

)
:Λk(z1)Sk(z2):δ

(
x2N+1−k+rz2

z1

)
, 1 ≤ k ≤ N,

[Λk+1(z1), Sk(z2)] =
(
x−2r+2 − 1

)
:Λk+1(z1)Sk(z2):δ

(
x2N+1−k−rz2

z1

)
, 1 ≤ k ≤ N − 1,

[Λ0(z1), SN (z2)] =
(
x− x−1

) [r − 1]x
[
1
2

]
x[

r − 1
2

]
x

(
δ

(
xr+Nz2

z1

)
− δ

(
x−r+N+1z2

z1

))

× :Λ0(z1)SN (z2):. (B.9)

Other commutators on the type [Λi(z1), Sk(z2)] that are used in the proof of Lemma 4.9 are
zeroes.
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