| 
 SIGMA 18 (2022), 074, 18 pages       arXiv:2210.04454     
https://doi.org/10.3842/SIGMA.2022.074 
 
The Generalized Lipkin-Meshkov-Glick Model and the Modified Algebraic Bethe Ansatz
Taras Skrypnyk
 Bogolyubov Institute for Theoretical Physics, 14-b Metrolohichna Str., Kyiv, 03680, Ukraine
 
 
Received June 19, 2022, in final form September 16, 2022; Published online October 10, 2022
 Abstract 
We show that the Lipkin-Meshkov-Glick $2N$-fermion model is a particular case of one-spin Gaudin-type model in an external magnetic field corresponding to a limiting case of non-skew-symmetric elliptic $r$-matrix and to an external magnetic field directed along one axis. We propose an exactly-solvable generalization of the Lipkin-Meshkov-Glick fermion model based on the Gaudin-type model corresponding to the same $r$-matrix but arbitrary external magnetic field. This model coincides with the quantization of the classical Zhukovsky-Volterra gyrostat. We diagonalize the corresponding quantum Hamiltonian by means of the modified algebraic Bethe ansatz. We explicitly solve the corresponding Bethe-type equations for the case of small fermion number $N=1,2$.
 Key words: classical $r$-matrix; Gaudin-type model; algebraic Bethe ansatz. 
pdf (431 kb)  
tex (21 kb)  
 
 
References 
- Avan J., Talon M., Rational and trigonometric constant nonantisymmetric  $R$-matrices, Phys. Lett. B 241 (1990), 77-82.
 
- Babelon O., Viallet C.M., Hamiltonian structures and Lax equations,  Phys. Lett. B 237 (1990), 411-416.
 
- Claeys P.W., De Baerdemacker S., Van Neck D., Read-Green resonances in a  topological superconductor coupled to a bath, Phys. Rev. B  93 (2016), 220503, 5 pages, arXiv:1601.03990.
 
- Dimo C., Faribault A., Strong-coupling emergence of dark states in XX central  spin models, Phys. Rev. B 105 (2022), arXiv:2112.09557.
 
- Faribault A., Tschirhart H., Common framework and quadratic Bethe equations for  rational Gaudin magnets in arbitrarily oriented magnetic fields,  SciPost Phys. 3 (2017), arXiv:1704.01873.
 
- Freidel L., Maillet J.M., Quadratic algebras and integrable systems,  Phys. Lett. B 262 (1991), 278-284.
 
- Gaudin M., Diagonalisation d'une classe d'Hamiltoniens de spin,  J. Physique 37 (1976), 1089-1098.
 
- Lerma S., Dukelsky J., The Lipkin-Meshkov-Glick model as a particular  limit of the ${\rm SU}(1,1)$ Richardson-Gaudin integrable models,  Nuclear Phys. B 870 (2013), 421-443, arXiv:1212.3238.
 
- Lerma S., Dukelsky J., The Lipkin-Meshkov-Glick model from the  perspective of the ${\rm SU}(1,1)$ Richardson-Gaudin models,  J. Phys. Conf. Ser. 492 (2014), 012013, 6 pages.
 
- Lipkin H.J., Meshkov N., Glick A.J., Validity of many-body approximation  methods for a solvable model. I. Exact solutions and perturbation theory,  Nuclear Phys. 62 (1965), 188-198.
 
- Lukyanenko I., Isaac P.S., Links J., An integrable case of the $p+{\rm i}p$  pairing Hamiltonian interacting with its environment, J. Phys. A  49 (2016), 084001, 22 pages, arXiv:1507.04068.
 
- Ortiz G., Somma R., Dukelsky J., Rombouts S., Exactly-solvable models derived  from a generalized Gaudin algebra, Nuclear Phys. B 707  (2005), 421-457, arXiv:cond-mat/0407429.
 
- Pan F., Draayer J., Analytical solutions for the LMG model, Phys.  Lett. B 451 (1999), 1-10.
 
- Romano R., Roca-Maza X., Colò G., Shen S., Extended  Lipkin-Meshkov-Glick Hamiltonian, J. Phys. G 48  (2021), 05LT01, 9 pages, arXiv:2009.03593.
 
- Shen Y., Isaac P.S., Links J., Ground-state energy of a Richardson-Gaudin  integrable BCS model, SciPost Phys. 2 (2020), 001, 16 pages  arXiv:1912.05692.
 
- Sklyanin E., On the integrability of Landau-Lifshitz equation, Preprint  LOMI E-3-79, 1979.
 
- Skrypnik T., New integrable Gaudin-type systems, classical $r$-matrices and  quasigraded Lie algebras, Phys. Lett. A 334 (2005),  390-399, Erratum,  Phys. Lett. A  347 (2005), 266-267.
 
- Skrypnyk T., Generalized quantum Gaudin spin chains, involutive automorphisms  and ''twisted'' classical $r$-matrices, J. Math. Phys. 47  (2006), 033511, 10 pages.
 
- Skrypnyk T., Integrable quantum spin chains, non-skew symmetric $r$-matrices  and quasigraded Lie algebras, J. Geom. Phys. 57 (2006),  53-67.
 
- Skrypnyk T., Generalized Gaudin systems in a magnetic field and  non-skew-symmetric $r$-matrices, J. Phys. A 40 (2007),  13337-13352.
 
- Skrypnyk T., Quantum integrable systems, non-skew-symmetric $r$-matrices and  algebraic Bethe ansatz, J. Math. Phys. 48 (2007), 023506,  14 pages.
 
- Skrypnyk T., Non-skew-symmetric classical $r$-matrices, algebraic Bethe  ansatz, and Bardeen-Cooper-Schrieffer-type integrable systems,  J. Math. Phys. 50 (2009), 033504, 28 pages.
 
- Skrypnyk T., Generalized shift elements and classical $r$-matrices:  construction and applications, J. Geom. Phys. 80 (2014),  71-87.
 
- Skrypnyk T., Reductions in finite-dimensional integrable systems and special  points of classical $r$-matrices, J. Math. Phys. 57  (2016), 123504, 38 pages.
 
- Skrypnyk T., Classical $r$-matrices, ''elliptic'' BCS and Gaudin-type  Hamiltonians and spectral problem, Nuclear Phys. B 941  (2019), 225-248.
 
- Skrypnyk T., Anisotropic BCS-Richardson model and algebraic Bethe ansatz,  Nuclear Phys. B 975 (2022), 115679, 44 pages.
 
- Skrypnyk T., Manojlović N., Twisted rational $r$-matrices and algebraic  Bethe ansatz: application to generalized Gaudin and Richardson models,  Nuclear Phys. B 967 (2021), 115424, 29 pages.
 
- Volterra V., Sur la théorie des variations des latitudes, Acta Math.  22 (1899), 201-357.
 
 
 | 
 |