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Abstract. We study the difference analog of the quotient differential operator from [Tara-
sov V., Uvarov F., Lett. Math. Phys. 110 (2020), 3375–3400, arXiv:1907.02117]. Start-
ing with a space of quasi-exponentials W = ⟨αx

i pij(x), i = 1, . . . , n, j = 1, . . . , ni⟩, where
αi ∈ C∗ and pij(x) are polynomials, we consider the formal conjugate Š†

W of the quotient

difference operator ŠW satisfying Ŝ = ŠWSW . Here, SW is a linear difference operator
of order dimW annihilating W , and Ŝ is a linear difference operator with constant coef-
ficients depending on αi and deg pij(x) only. We construct a space of quasi-exponentials

of dimension ord Š†
W , which is annihilated by Š†

W and describe its basis and discrete ex-
ponents. We also consider a similar construction for differential operators associated with
spaces of quasi-polynomials, which are linear combinations of functions of the form xzq(x),
where z ∈ C and q(x) is a polynomial. Combining our results with the results on the bis-
pectral duality obtained in [Mukhin E., Tarasov V., Varchenko A., Adv. Math. 218 (2008),
216–265, arXiv:math.QA/0605172], we relate the construction of the quotient difference op-
erator to the (glk, gln)-duality of the trigonometric Gaudin Hamiltonians and trigonometric
dynamical Hamiltonians acting on the space of polynomials in kn anticommuting variables.
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1 Introduction

1.1. Consider an operator T acting on functions of a variable x by the rule (Tf)(x) = f(x+1).
An operator S of the form S =

∑N
i=0 ai(x)T

N−i, where a0(x), . . . , aN (x) are complex valued
functions of x and a0(x) ̸= 0, is called a linear difference operator of order N . Say that the
operator S is monic if a0(x) = 1. Let us write ord(S) for the order of S.

Let us fix a branch of lnx and write αx for ex lnα for any non-zero complex number α. A quasi-
exponential is a function of the form αxp(x) for some non-zero α and polynomial p(x). We will
say that a complex vector space W is a space of quasi-exponentials if W has a basis consisting
of quasi-exponentials. Let W be a space of quasi-exponentials with a basis {αx

i pij(x), i = 1,
. . . , n, j = 1, . . . , ni}, where the numbers α1, . . . , αn are distinct, and pij are some polynomials.
Set di = maxj

(
deg pij(x)

)
. It can be shown that there exists a unique monic linear difference

operator SW of order dimW annihilating W and a monic linear difference operator ŠW such
that

n∏
i=1

(T − αi)
di+1 = ŠWSW ,

see Sections 2.1–2.4 for details. We will call ŠW the quotient difference operator.
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Write ŠW =
∑m

i=1 ǎi(x)T
m−i and denote T− = T−1. The formal conjugate Š†

W of ŠW is
a linear difference operator acting on a function f(x) as follows:

(
Š†
W f
)
(x) =

m∑
i=1

Tm−i
− (ǎi(x)f(x)).

In Section 2.4, we construct a vector space of functions Q(W ) of dimension ord
(
Š†
W

)
= m

such that Š†
W annihilates Q(W ). We prove that Q(W ) has a basis of the form

{α−x
i qij(x), i = 1, . . . , n, j = 1, . . . , li}, qij ∈ C[x],

and describe the degrees of the polynomials qij(x).
For a space of quasi-exponentials W and a point z ∈ C, we define the discrete exponents

of W at z associated with the operator T and the T−-discrete exponents of W at z associated
with the operator T−. In Sections 2.5 and 2.6, we compute the T−-discrete exponents of the
space Q(W ) at the point z − 1 using the discrete exponents of W at the point z.

1.2. In Section 2.7, we introduce spaces of quasi-exponentials with difference data
(
ᾱ, µ̄; z̄, λ̄

)
,

where ᾱ = (α1, . . . , αn), z̄ = (z1, . . . , zk) are sequences of distinct complex numbers, and µ̄ =(
µ(1), . . . , µ(n)

)
, λ̄ =

(
λ(1), . . . , λ(k)

)
are sequences of partitions. A space W with the difference

data
(
ᾱ, µ̄; z̄, λ̄

)
has a basis of the form {αx

i pij(x)}, and for each i = 1, . . . , n, the partition µ(i)

describes the degrees of the polynomials pij(x) with given i. The numbers z1, . . . , zk are singular
points (not all) ofW , and for each a = 1, . . . , k, the partition λ(a) describes the discrete exponents
of W at the point za. We denote the set of all spaces of quasi-exponentials with the fixed
difference data as E

(
ᾱ, µ̄; z̄, λ̄

)
.

Applying the results of Sections 2.4–2.6, we define a map

T1 : E
(
ᾱ, µ̄; z̄, λ̄

)
→ E

(
ᾱ, µ̄′; 1− z̄, λ̄′

)
by sending the space W ∈ E

(
ᾱ, µ̄; z̄, λ̄

)
to the image of the space Q(W ) under the map f(x) 7→

f(−x). Here, the sequences µ̄′, λ̄′ are obtained from µ̄, λ̄ by replacing all partitions µ(i), λ(a) by
their conjugate,

(
µ(i)
)′
,
(
λ(a)

)′
, and 1− z̄ = (1− z1, . . . , 1− zk), see details in Section 2.7.

1.3. Besides quasi-exponentials, we consider quasi-polynomials, which are functions of the
form xzp(x), where z ∈ C and p(x) is a polynomial. We introduce the notion of a space of
quasi-polynomials with data

(
z̄, λ̄; ᾱ, µ̄

)
, which is analogous to the notion of a space of quasi-

exponentials with difference data. Denote the set of all spaces of quasi-polynomials with the
fixed data

(
z̄, λ̄; ᾱ, µ̄

)
as P

(
z̄, λ̄; ᾱ, µ̄

)
. We introduce an analog of the map T1 for the spaces of

quasi-polynomials:

T2 : P
(
z̄, λ̄; ᾱ, µ̄

)
→ P

(
1− z̄ − λ̄′1 − λ̄1, λ̄

′; ᾱ, µ̄′
)
,

where 1 − z̄ − λ̄1 − λ̄′1 =
(
1 − z1 − λ

(1)
1 −

(
λ(1)

)′
1
, . . . , 1 − zk − λ

(k)
1 −

(
λ(k)

)′
1

)
and λ

(i)
1 ,
(
λ(i)
)′
1

are the first components of the partitions λ(i),
(
λ(i)
)′
. The map T2 provides a space of quasi-

polynomials, which is annihilated by the formal conjugate of the quotient differential operator,
an analog of the quotient difference operator introduced above.

The map T2 is constructed as the counterpart of the map T1 under the bispectral duality
introduced and studied in paper [6], see also Section 4. More precisely, the bispectral duality
establishes a bijection

T3 : P
(
z̄, λ̄; ᾱ, µ̄

)
→ E

(
ᾱ, µ̄; , z̄ + λ̄′1, λ̄

)
,

where z̄ + λ̄′1 =
(
z1 +

(
λ(1)

)′
1
, . . . , zk +

(
λ(k)

)′
1

)
. We define T2 = T−1

3 T1T3 and prove that for

a space of quasi-polynomials V , the space T2(V ) is annihilated by the formal conjugate Ď†
V

quotient differential operator ĎV (see Theorem 3.5).
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1.4. To study relations between the quotient difference operator and the quotient differential
operator, we use the notion of pseudo-differnce operators, see Section 5. Let V be a space
of quasi-polynomials with the data

(
z̄, λ̄; ᾱ, µ̄

)
, and denote W = T1(T3(V )). To the spaces V

andW , one can associate pseudo-difference operators SV and SW called the fundamental pseudo-
difference operators of V and W , respectively. Then W = T1(T3(V )) implies

SV = S−1
W ,

see Theorem 5.2.
For convenience of a reader, we depict the relations between T1, T2, and T3 on the following

commutative diagram:

P
(
z̄, λ̄; ᾱ, µ̄

)
E
(
ᾱ, µ̄; , z̄ + λ̄′1, λ̄

)

P
(
1− z̄ − λ̄′1 − λ̄1, λ̄

′; ᾱ, µ̄′
)

E
(
ᾱ, µ̄′; 1− z̄ − λ̄′1, λ̄

′).SV S−1
V

T3

T3T2

T1

1.5. Our study of the map T1 is motivated by the (glk, gln)-duality between the trigonometric
Gaudin Hamiltonians H1, . . . ,Hn ∈ U(glk)

⊗n and the trigonometric dynamical Hamiltonians
G1, . . . , Gn ∈ U(gln)

⊗k, see [1, 14], and Section 6.1. Both U(glk)
⊗n and U(gln)

⊗k act on the
space Pkn of polynomials in k times n anticommuting variables ξai, a = 1, . . . , k, i = 1, . . . , n.
Let ρ(H1), . . . , ρ(Hn) be the images of the trigonometric Gaudin Hamiltonians in End(Pkn), and
let ρ(G1), . . . , ρ(Gn) be the images of the trigonometric dynamical Hamiltonians in End(Pkn).
It is known that

ρ(Hi) = −ρ(Gi), i = 1, . . . , n, (1.1)

see [12] and Proposition 6.2. In particular, any common eigenvector of H1, . . . ,Hn in Pkn is
a common eigenvector of G1, . . . , Gn, and vice versa.

Common eigenvectors of the Hamiltonians can be found using the Bethe ansatz method. For
an “admissible” space of quasi-polynomials V ∈ P

(
z̄, λ̄; ᾱ, µ̄

)
, the Bethe ansatz associates an

eigenvector vW of H1, . . . ,Hn acting in Pkn, see [8] and Sections 6.2, 6.3 for details. Denote
the corresponding eigenvalues as hV1 , . . . , h

V
n . Similarly, for an “admissible” space of quasi-

exponentials W ∈ E
(
ᾱ, µ̄′; 1 − z̄ − λ̄′1, λ̄

′), the Bethe ansatz associates an eigenvector vW of
G1, . . . , Gn acting in Pkn, see [8] and Sections 6.4, 6.5 for details. Denote the corresponding
eigenvalues as gW1 , . . . , gWn . We will show that if W = T1(T3(V )), then

hVi = −gWi ,

see Theorems 6.12 and 6.17. This “matches” the (glk, gln)-duality (1.1), so, using that for
generic z̄, ᾱ, the common eigenspaces of the Hamiltonians are one-dimensional, we conclude
that for such z̄, ᾱ, the vector vV is proportional to vW , see Sections 6.6, 6.7. Here and below,
when we say “for generic z̄, ᾱ”, we mean “for all z̄, ᾱ, except, maybe, solutions of some algebraic
equation”.

The exchange of the trigonometric Gaudin and dynamical Hamiltonians under the (glk, gln)-
duality is expected to be a part of the duality between the Bethe algebras of the trigonometric
Gaudin model and the XXX-type spin chain model. The Bethe algebra of the trigonometric
Gaudin model is a commutative subalgebra of the universal enveloping algebra U

(
g̃lk
)
of the loop
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algebra g̃lk, see [3], and the Bethe algebra of the XXX-type spin chain model is a commutative

subalgebra of the Yangian Y (gln), see [4]. Both U
(
g̃lk
)
and Y (gln) act on the space Pkn. The

images of the trigonometric Gaudin Hamiltonians in End(Pkn) belong to the image of the Bethe
algebra of the trigonometric Gaudin model, and the images of the trigonometric dynamical
Hamiltonians in End(Pkn) belong to the image of the Bethe algebra of the XXX-type spin chain
model. It is expected that the equality of the images of the Hamiltonians extends to the equality
of the images of the Bethe algebras. The corresponding result for the rational Gaudin model was
established in [11], where we developed and used the differential analogs of the results for the
quotient difference operator studied here. Therefore, the results of this paper can be considered
as the first steps in establishing the duality between the Bethe algebras of the trigonometric
Gaudin model and the XXX-type spin chain model.

The results of this work and our previous works [11, 12] are devoted to the (glk, gln)-duality
in quantum integrable models on the space Pkn of polynomials in anticommuting variables. The
parallel results for the space Pkn of polynomials in commuting variables were obtained earlier,
see works [5, 6, 7, 13]. In particular, our map T1◦T3 is the Pkn-analog of the map T3 introduced
in [6].

1.6. Summary of the results.

1. For a space of quasi-exponentials W and the formal conjugate of the quotient difference
operator Š†

W , we construct a space of quasi-exponentials Q(W ) of dimension ord Š†
W anni-

hilated by Š†
W . We describe quasi-exponential basis ofQ(W ) and its T−-discrete exponents.

Our findings allow us to define the map T1 between sets of spaces of quasi-exponentials
with difference data.

2. We prove that if W = T1(T3(v)), where T3 is the bispectral duality studied earlier in [6],
then for the fundamental pseudo-difference operators SV and SW of V andW , respectively,
we have SV = S−1

W (Theorem 5.2).

3. We prove that T2 = T−1
3 T1T3 provides the space of quasi-polynomials annihilated by the

quotient differential operator.

4. For the eigenvalues hV1 , . . . , h
V
n of the trigonometric Gaudin Hamiltonians given by an

admissible space of quasi-polynomials V with the data
(
z̄, λ̄; ᾱ, µ̄

)
and the eigenvalues

gW1 , . . . , gWn of the trigonometric dynamical Hamiltonians given by an admissible space
of quasi-exponentials W with the difference data

(
ᾱ, µ̄′; 1 − z̄ − λ̄′1, λ̄

′), we show that if
W = T1(T3(v)), then h

V
i = −gWi (Theorems 6.12 and 6.17).

1.7. Plan of the paper. The paper is organized as follows. In Section 2, we construct and
study the quotient difference operator, and define the map T1. In Section 3, we introduce the
spaces of quasi-polynomials with the data

(
z̄, λ̄; ᾱ, µ̄

)
and announce the existence of the map T2.

We recall the bispectral duality map T3 in Section 4. In Section 5, we study relations between
quotient differential and quotient difference operators using pseudo-difference operators and use
these relations to construct and study the map T2. In Section 6, we consider the (glk, gln)-duality
for the trigonometric Gaudin and dynamical Hamiltonians and relate it to the composition map
T1 ◦ T3. Identities for discrete Wronskian used in the paper are collected in Appendix A.

2 Quotient difference operator

The results of Sections 2.1–2.4 for difference operators are analogous to that of [11, Sections 6.1–
6.4] for differential operators.
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2.1 Factorization of a difference operator

For any functions g1, . . . , gn, let

Wr(g1, . . . , gn) = det
((
T j−1gi

)n
i,j=1

)
be their discrete Wronskian. Let Wri(g1, . . . , gn) be the determinant of the n× n matrix whose
j-th row is gj , T gj , . . . , T

n−i−1gj , T
n−i+1gj , . . . , T

ngj .

Fix functions f1, . . . , fn such that Wr(fi1 , . . . , fim) ̸= 0 for any 1 ≤ i1 < · · · < im ≤ n. In
particular, the functions f1, . . . , fn are linearly independent.

Lemma 2.1. There exists a unique monic linear difference operator S = Tn +
∑n

i=1 aiT
n−i of

order n such that Sfi = 0, i = 1, . . . , n. Moreover, the coefficients a1, . . . , an of the difference
operator S are given by the formula

ai = (−1)i
Wri(f1, . . . , fn)

Wr(f1, . . . , fn)
, i = 1, . . . , n, (2.1)

and for any function g, we have

Sg =
Wr(f1, . . . , fn, g)

Wr(f1, . . . , fn)
. (2.2)

Proof. Solvingf1 Tf1 . . . Tn−1f1
...

...
...

fn Tfn . . . Tn−1fn


an...
a1

 =

T
nf1
...

Tnfn


for a1, . . . , an by Cramer’s rule yields formula (2.1), and this solution is unique. Formula (2.2)
follows from the last row expansion of the determinant in the numerator. ■

Proposition 2.2. The difference operator S can be written in the following form:

S =

(
T − g1(x+ 1)

g1(x)

)(
T − g2(x+ 1)

g2(x)

)
· · ·
(
T − gn(x+ 1)

gn(x)

)
, (2.3)

where gn = fn, and

gi =
Wr(fn, fn−1, . . . , fi)

Wr(fn, fn−1, . . . , fi+1)
, i = 1, . . . , n− 1. (2.4)

Proof. Denote by S1 the difference operator in the right-hand side of (2.3). By uniqueness of
the operator S stated in Lemma 2.1, it is sufficient to prove that S1fi = 0 for all i = 1, . . . , n.
We will prove it by induction on n.

If n = 1, then g1 = f1, and S1f1 = (T −f1(x+1)/f1(x))f1(x) = 0. Let S2 be the monic linear
difference operator of order n− 1 such that S2fi = 0, i = 2, . . . , n. By induction assumption,

S2 =

(
T − g2(x+ 1)

g2(x)

)(
T − g3(x+ 1)

g3(x)

)
· · ·
(
T − gn(x+ 1)

gn(x)

)
.

Since S1 = (T − g1(x+1)/g1(x))S2, we have S1fi = 0, i = 2, . . . , n. Formulas (2.2) and (2.4)
yeild S2f1 = g1, thus S1f1 = 0 as well. ■
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2.2 Formal conjugate difference operator

Denote T− = T−1. Then (T−f)(x) = f(x − 1). Let f1, . . . , fn, and S be like in the previous
section. Define the formal conjugate of S by the formula:

S†h(x) = (T−)
nh(x) +

n∑
i=1

(T−)
n−i
(
ai(x)h(x)

)
.

By Proposition 2.2, we have

S† =

(
T− − gn(x+ 1)

gn(x)

)(
T− − gn−1(x+ 1)

gn−1(x)

)
· · ·
(
T− − g1(x+ 1)

g1(x)

)
. (2.5)

Define

hi = T

(
Wr(f1, . . . , fi−1, fi+1, . . . , fn)

Wr(f1, . . . , fn)

)
.

Proposition 2.3. We have S†hi = 0 for all i = 1, . . . , n.

Proof. Since h1 = (−1)n−1/g1(x + 1), formula (2.5) immediately gives S†h1 = 0. To prove
that S† annihilates h2, . . . , hn, one can consider factorization (2.3) of S, where functions g1, . . . ,
gn are defined using a different order of functions f1, . . . , fn, see the proof of Proposition 6.3
in [11] for a differential analog of this argument. ■

2.3 Quotient difference operator

Consider functions f1, f2, . . . , fn, h1, . . . , hk such that Wr(g1, . . . , gm) ̸= 0 for any subset {g1,
. . . , gm} of {f1, f2, . . . , fn, h1, . . . , hk}. Let S and Ŝ be the monic linear difference operators of
order n and n + k annihilating f1, f2, . . . , fn and f1, f2, . . . , fn, h1, . . . , hk, respectively. Then
there is a unique difference operator Š such that Ŝ = ŠS. Indeed, the existence of Š can be
seen from the factorization formula (2.3), and the uniqueness follows from the long division
algorithm. We will call Š the quotient difference operator.

Define functions ϕ1, . . . , ϕk by the formula

ϕa = T

(
Wr(f1, . . . , fn, h1, . . . , ha−1, ha+1, . . . , hk)

Wr(f1, . . . , fn, h1, . . . , hk)

)
. (2.6)

Proposition 2.4. We have Š†ϕa = 0 for all a = 1, . . . , k.

Proof. Set h̃a = Sha, a = 1, . . . , k. Formula (2.2) yields h̃i = Wr(f1, . . . , fn, hi)/Wr(f1, . . . ,
fn). Using this and the Wronskian identities (A.1) and (A.4), it is easy to check that

Wr
(
h̃i1 , , . . . , h̃im

)
=

Wr(f1, . . . , fn, hi1 , . . . , him)

Wr(f1, . . . , fn)
(2.7)

for any 1 ≤ i1 < · · · < im≤ k. In particular, Wr
(
h̃i1 , , . . . , h̃im

)
̸= 0 for any 1 ≤ i1 < · · · < im≤ k.

By Proposition 2.3, the functions

ϕ̃a = T

(
Wr
(
h̃1, . . . , h̃a−1, h̃a+1, . . . , h̃k

)
Wr
(
h̃1, . . . , h̃k

) )
, a = 1, . . . , k,

vanish under the action of Š†.
Taking {i1, . . . , im} = {1, . . . , a−1, a+1, . . . , k} and {i1, . . . , im} = {1, . . . , k} in formula (2.7),

it is easy to see that ϕa = ϕ̃a, a = 1, . . . , k. The proposition is proved. ■

Let W and Ŵ be the vector spaces with the bases f1, . . . , fn and f1, . . . , fn, h1, . . . , hk, re-
spectively. We will call the span of ϕ1, . . . , ϕk the quotient conjugate space for the pair

(
W, Ŵ

)
.



Difference Operators and Duality for Trigonometric Gaudin and Dynamical Hamiltonians 7

2.4 Quotient difference operator and spaces of quasi-exponentials

Recall that a quasi-exponential is a function of the form αxp(x) for some non-zero α and a poly-
nomial p(x), and a space of quasi-exponentials is a vector space with a basis consisting of
quasi-exponentials. It is straightforward to check that if g1, . . . , gm are quasi-exponentials, then
Wr(g1, . . . , gm) = 0 if and only if g1, . . . , gm are linearly dependent. Therefore, by Lemma 2.1,
for any space of quasi-exponentialsW , there exists a unique monic linear difference operator SW
of order dimW annihilatingW . We will call SW the fundamental difference operator ofW . The
following lemma will be useful for us later.

Lemma 2.5. If for two spaces of quasi-exponentials W1 and W2, we have SW1 = SW2, then
W1 =W2.

Proof. Let f1, . . . , fn and h1, . . . , hn be the quasi-exponential bases ofW1 andW2, respectively.
Using formula (2.2), for each i = 1, . . . , n, we haveWr(f1, . . . , fn, hi) = Wr(f1, . . . , fn)SW1hi = 0.
Therefore, f1, . . . , fn, hi are linearly dependent for each i = 1, . . . , n, and W2 ⊂ W1. Similarly,
one proves that W1 ⊂W2. ■

In this paper, a partition µ = (µ1, µ2, . . . ) is an infinite nonincreasing sequence of nonnegative
integers stabilizing at zero. Let µ′ = (µ′1, µ

′
2, . . . ) denote the conjugated partition, that is,

µ′i = #{j |µj ≥ i}. In particular, µ′1 equals the number of nonzero entries in µ.
Fix nonzero complex numbers α1, . . . , αn and nonzero partitions µ(1), . . . , µ(n). Assume that

αi ̸= αj for i ̸= j. For each i = 1, . . . , n, denote ni =
(
µ(i)
)′
1
. Let W be a space of quasi-

exponentials with a basis

{αx
i qij(x), i = 1, . . . , n, j = 1, . . . , ni},

where qij(x) are polynomials such that deg qij = ni + µ
(i)
j − j.

Denote pi = µ
(i)
1 +ni = maxj deg qij+1, and take Ŵ to be the span the functions αx

i x
p, i = 1,

. . . , n, p = 0, . . . , pi − 1. Let Q(W ) denote the quotient conjugate space for the pair
(
W, Ŵ

)
.

Let SW be the monic linear difference operator of order dimW annihilating W . We will
say that SW is the fundamental difference operator of W . On the other hand, the difference
operator Ŝ =

∏n
i=1(T−αi)

pi annihilates Ŵ . Then there exists a difference operator ŠW such that

Ŝ = ŠWSW , see Section 2.3. By Proposition 2.4, the difference operator Š†
W annihilates Q(W ).

Proposition 2.6. The space Q(W ) has a basis of the form{
α−x
i q̌ij(x) | i = 1, . . . , n, j = 1, . . . , µ

(i)
1

}
,

where deg q̌ij = µ
(i)
1 +

(
µ(i)
)′
j
− j, i = 1, . . . , n, j = 1, . . . , µ

(i)
1 .

Proof. Denote

Wr
(
Ŵ
)
= Wr

(
αx
1 , α

x
1x, . . . , α

x
1x

p1−1, . . . , αx
n, α

x
nx, . . . , α

x
nx

pn−1
)
,

Wrij
(
Ŵ
)
= Wr

(
. . . , α̂x

i x
j , . . .

)
.

The functions in the second line are the same except the function αx
i x

j is omitted.
For each i = 1, . . . , n, set

di =
{
ni + µ

(i)
j − j, j = 1, . . . , ni

}
, dc

i = {0, 1, 2, . . . , pi − 1} \ di.

Notice that the functions αx
i x

l, i = 1, . . . , n, l ∈ dc
i , complement the basis {αx

i qij(x), i = 1, . . . , n,

j = 1, . . . , ni} of W to a basis of Ŵ . Therefore, from the construction of the space Q(W ), in
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particular, from formula (2.6), it follows that Q(W ) is spanned by functions fij , i = 1, . . . , n,
j ∈ dc

i of the form

fij = T
Wrij

(
Ŵ
)

W
(
Ŵ
) + T

pi−1∑
s=j+1

Cils
Wris

(
Ŵ
)

Wr
(
Ŵ
) ,

where Cils are complex numbers.

Using an induction similar to what we used in the proof of Lemma 6.5 in [11], we obtain the
following formulas:

Wr
(
Ŵ
)
=

n∏
i=1

(
αpix
i

pi−1∏
s=1

αs
i s!

) ∏
1≤i<j≤n

(αj − αi)
pipj , (2.8)

Wrij
(
Ŵ
)
= rij(x)

n∏
l=1

(
α
(pl−δil)x
l

pl−1∏
s=1

(l,s)̸=(i,j)

αs
l s!

) ∏
1≤l<l′≤n

(αl′ − αl)
(pl−δli)(pl′−δl′i),

where rij(x) is a monic polynomial in x and deg rij = pi − j − 1. Then for the functions fij , we
have fij = α−x

i r̃ij(x), where deg r̃ij = pi − j − 1.

Notice that dc
i =

{
ni−

(
µ(i)
)′
l
+ l−1 | l = 1, . . . , µ

(i)
1

}
. This can be illustrated by enumerating,

starting from 0, the sides of boxes in the Young diagram for µ(i) that form the bottom-right
boundary, see the example with µ(i) = (7, 4, 2, 0, . . . ) on the picture below:

9

6 7 8
5

3 4
2

0 1

Then the set
{
ni + µ

(i)
j − j, j = 1, . . . , ni

}
corresponds to the right-most sides of the rows,

which are the vertical bonds of the boundary, and the set
{
ni −

(
µ(i)
)′
j
+ j − 1, j = 1, . . . ,

µ
(i)
1

}
corresponds to the bottom sides of the columns, which are the horizontal bonds of the

boundary. For instance, in the given example,
{
ni + µ

(i)
j − j, j = 1, 2, 3

}
= {2, 5, 9} and{

ni −
(
µ(i)
)′
j
+ j − 1, j = 1, . . . , 7

}
= {0, 1, 3, 4, 6, 7, 8}. Since the horizontal bonds of the

boundary complement the vertical bonds, we have dc
i = {0, 1, 2, . . . , pi−1}\

{
ni+µ

(i)
j −j, j = 1,

. . . , ni
}
=
{
ni −

(
µ(i)
)′
j
+ j − 1, j = 1, . . . , µ

(i)
1

}
.

Denote jl = ni −
(
µ(i)
)′
l
+ l − 1, l = 1, . . . , µ

(i)
1 , so that dc

i =
{
jl, l = 1, . . . , µ

(i)
1

}
. Denote

q̌il = r̃ijl , l = 1, . . . , µ
(i)
1 . Then{

α−x
i q̌il(x) | i = 1, . . . , n, l = 1, . . . , µ

(i)
1

}
is a basis of Q(W ), and

deg q̌il = pi − jl − 1 = µ
(i)
1 + ni −

(
ni −

(
µ(i)
)′
l
+ l − 1

)
− 1 = µ

(i)
1 +

(
µ(i)
)′
l
− l. ■

2.5 Transform of discrete exponents

Denote M ′ =
∑n

i=1

(
µ(i)
)′
1
= dimW and M =

∑n
i=1 µ

(i)
1 = dimQ(W ). For z ∈ C, define the

sequence of discrete exponents of W at z as a unique sequence of integers (e1 > · · · > eM ′)
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with the property: there exists a basis ψ1, . . . , ψM ′ of W such that for each i = 1, . . . ,M ′,(
T jψi

)
(z) = 0 for j = 0, . . . , ei − 1 and

(
T eiψi

)
(z) ̸= 0.

The sequence of discrete exponents of W at z differs from the sequence (M ′ − 1,M ′ − 2, . . . ,
0) if and only if z is a root of Wr(g1, . . . , gM ′), where g1, . . . , gM ′ is any basis of W . If z is such
a root, we will call it a discrete singular point of W .

Define the sequence of T−-discrete exponents of W at z by replacing the operator T in the
definition of the sequence of discrete exponents by the operator T− = T−1.

Proposition 2.7. Let (e1, . . . , eM ′) be the sequence of discrete exponents of W at some point
z ∈ C. Define a partition λ = (λ1, λ2, . . . ) by ei = M ′ + λi − i, i = 1, . . . ,M ′ and λM ′+1 = 0
for i > M ′. Let (ě1, . . . , ěM ) be the sequence of T−-discrete exponents of Q(W ) at z− 1. Define
a partition η = (η1, η2, . . . ) by ěa = M + ηa − a, a = 1, . . . ,M , and ηM+1 = 0. Then ηa ≥ λ′a
for all a = 1, 2, . . . .

Proof. Let {ψ1, . . . , ψM ′} be a basis of W such that for each i = 1, . . . ,M ′, j = 0, . . . , ei − 1,
we have

(
T jψi

)
(z) = 0 and

(
T eiψi

)
(z) ̸= 0.

By formula (2.8), the Wronskian Wr
(
Ŵ
)
has no zeros, thus z is not a discrete singular point

of Ŵ . Therefore, there is a basis {f1, f2, . . . , fM+M ′} of Ŵ such that it contains the set {ψ1, . . . ,
ψM ′} and for each i = 0, . . . ,M+M ′−1, j = 0, . . . , i, we have fi+1(z+j) = 0 and fi+1(z+i) ̸= 0.

Consider a matrix-valued function

Fa(x) =
(
T jfi

)
i=1,...,M+M ′, i̸=a
j=0,...,M+M ′−2

,

and denote

Wra
(
Ŵ
)
= detFa(x) = Wr(f1, . . . , fa−1, fa+1, . . . , fM+M ′).

Notice that since {ψ1, . . . , ψM ′} ⊂ {f1, . . . , fM+M ′}, we have {e1, . . . , eM ′} ⊂ {0, 1, 2, . . . ,
M +M ′ − 1}, in particular, λ1 ≤ M . Denote ec = {0, 1, 2, . . . ,M +M ′ − 1} \ {e1, . . . , eM ′}.
Then by the construction of the space Q(W ), the functions

χa := T

(
Wra+1

(
Ŵ
)

Wr
(
Ŵ
) )

, a ∈ ec,

span Q(W ). Let us prove that

(T−)
bχa(z − 1) = 0, b = 0, . . . ,M +M ′ − a− 2. (2.9)

The matrix Fa(z) is upper-triangular, and the diagonal of Fa(z) is of the form {d1, d2, . . . ,
da−1, 0, 0 . . . }, where db ̸= 0, b = 1, . . . , a − 1. An example with M +M ′ = 6, a = 4 is shown
below:

F4(z) =


d1 ⋆ ⋆ ⋆ ⋆
0 d2 ⋆ ⋆ ⋆
0 0 d3 ⋆ ⋆
0 0 0 0 d4
0 0 0 0 0

 .

For every b = 0, . . . ,M +M ′−2, let Fab be an (M +M ′−b−1)× (M +M ′−b−1) submatrix
of Fa(z) located in the upper-left corner. We have

det
[
((T−)

bFa)(z)
]
= Cab · det(Fab), b = 0, . . . ,M +M ′ − 2, (2.10)

where Cab are some functions of z.
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The relations (2.10) are illustrated by the example with M +M ′ = 6, a = 4, b = 1, 2 below:

((T−)F4)(z) =

⋆ d1 ⋆ ⋆ ⋆

⋆ 0 d2 ⋆ ⋆

⋆ 0 0 d3 ⋆

⋆ 0 0 0 0

⋆ 0 0 0 0




,

(
(T−)

2F4

)
(z) =

⋆ ⋆ d1 ⋆ ⋆

⋆ ⋆ 0 d2 ⋆

⋆ ⋆ 0 0 d3

⋆ ⋆ 0 0 0

⋆ ⋆ 0 0 0




.

In each matrix above, we boxed two minors, whose product gives the determinant of the
corresponding matrix up to a sign. The lower-left boxed minor in each case corresponds to the
factor Cab in formula (2.10). The upper-right boxed minor of ((T−)F4)(z) is the determinant
of F41 and the upper-right boxed minor of

(
(T−)

2F4

)
(z) is the determinant of F42.

Since det(Fab) = 0 for all b = 0, . . . ,M +M ′ − a− 1, formula (2.10) implies (2.9).

Notice that ec = {M ′ − λ′a + a − 1, a = 1, . . . ,M}. This can be illustrated by a similar
picture to what we used for the set dc

i in the proof of Proposition 2.6, except now we should
enumerate the path which contains M horizontal intervals and M ′ vertical intervals, where M
and M ′ might be greater then the number of columns and the number of rows in the diagram
for λ, respectively, see the example with λ = (7, 4, 2, 0, 0, . . . ), M = 10, and M ′ = 5 below:

11
12 13 14

8 9 10
7

5 6
4

2 3
1

0

Denote eca =M ′ − λ′a + a− 1, a = 1, . . . ,M , so that ec = {eca, a = 1, . . . ,M}.
Notice that M +M ′ − eca − 2 =M + λ′a − a− 1. Therefore, formula (2.9) yields

(T−)
bχeca+1(z − 1) = 0, b = 0, . . . ,M + λ′a − a− 1. (2.11)

Let (ě1, . . . , ěM ) be the sequence of T−-discrete exponents of Q(W ) at z − 1, and let η =
(η1, η2, . . . ) be a partition such that ěa =M + ηa − a, a = 1, . . . ,M , and ηM+1 = 0. Denote by
ϕ̃1, . . . , ϕ̃M the basis of Q(W ) such that for every a = 1, . . . ,M , we have (T−)

bϕ̃a(z − 1) = 0,
b = 0, . . . , ěa − 1, and (T−)

ěa ϕ̃a(z − 1) ̸= 0.

For each a = 1, . . . ,M , consider the subspace Va of all functions f in Q(W ) such that
(T−)

bf(z − 1) = 0, b = 0, . . . , ěa. Then the set {ϕ̃1, . . . , ϕ̃a−1} is a basis of Va, in particular,
dimVa = a− 1.

Suppose that ηa < λ′a for some a = 1, . . . ,M . Then formula (2.11) implies that the span Ṽa
of χ1, . . . , χa is a subspace of Va. But this is impossible since dim Ṽa = a > dimVa. Therefore,
ηa ≥ λ′a for all a = 1, . . . ,M .

As we mentioned above, λ1 ≤M . Therefore, λ
′
M+1 = 0, and the inequality ηa ≥ λ′a holds for

all a = 1, 2, . . . .

The proposition is proved. ■

Remark 2.8. In the next section, we will prove that in Proposition 2.7, we actually have η = λ′,
see Corollary 2.13.
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2.6 Quotient for a difference operator with left shifts

For any functions g1, . . . , gn, denote

Wr−(g1, . . . , gm) = det
((
T j−1
− gi

)m
i,j=1

)
.

Let f1, f2, . . . , fn, h1, . . . , hk be functions such that Wr−(g1, . . . , gm) ̸= 0 for any subset {g1, . . . ,
gm} of {f1, f2, . . . , fn, h1, . . . , hk}. Denote the span of f1, . . . , fn as W− and the span of f1, f2,

. . . , fn, h1, . . . , hk as Ŵ−. Then define the quotient conjugate space with left shifts for the pair(
W−, Ŵ−

)
to be the span of

T−

(
Wr−(f1, . . . , fn, h1, . . . , ha−1, ha+1, . . . , hk)

Wr−(f1, . . . , fn, h1, . . . , hk)

)
, a = 1, . . . , k.

Let W− be a vector space with a basis of the form{
α−x
i qij(x) | i = 1, . . . , n, j = 1, . . . , µ

(i)
1

}
,

where qij(x) are polynomials and deg qij = µ
(i)
1 +

(
µ(i)
)′
j
− j, i = 1, . . . , n, j = 1, . . . , µ

(i)
1 . Also,

take Ŵ− to be the vector space with a basis α−x
i xp, p = 0, . . . , pi − 1. Denote by Q−(W−) the

quotient conjugate space with left shifts for the pair
(
W−, Ŵ−

)
.

We have dimW− =
∑n

i=1 µ
(i)
1 =M . Similarly to the case of right shifts, it can be shown that

there exists a difference operator S−
W−

of the form

S−
W−

= (T−)
M +

M∑
i=1

bi(x)(T−)
M−i

annihilating W−, and that the difference operator Ŝ− =
∏n

i=1(T− − αi)
pi annihilating Ŵ− is

divisible by SW− from the right. Write Š−
W−

for the difference operator such that Ŝ− = Š−
W−

S−
W−

.

For a difference operator S =
∑l

i=1 ai(x)(T−)
l−i, define its formal conjugate S† by the formula

S†h(x) =

l∑
i=1

T l−i(ai(x)h(x)).

Proposition 2.9. The difference operator
(
Š−
W−

)†
annihilates the space Q−(W−).

Proposition 2.9 is proved similarly to Proposition 2.4.

Proposition 2.10. The space Q−(W−) has a basis of the form{
αx
i q̌ij(x), i = 1, . . . , n, j = 1, . . . , ni

}
,

where q̌ij(x) are polynomials such that deg q̌ij =
(
µ(i)
)′
1
+ µ

(i)
j − j.

Proposition 2.10 is proved similarly to Proposition 2.6.
Denote the sequences (α1, . . . , αn) and

(
µ(1), . . . , µ(n)

)
as ᾱ and µ̄, respectively. Let E(ᾱ, µ̄)

be the set of all spaces of quasi-exponentials with a basis of the form{
αx
i qij(x) | i = 1, . . . , n, j = 1, . . . , ni

}
,

where qij(x) are polynomials such that deg qij =
(
µ(i)
)′
1
+ µ

(i)
j − j.

Let us write ᾱ−1 for the sequence
(
α−1
1 , . . . , α−1

n

)
and µ̄′ for the sequence

((
µ(1)

)′
, . . . ,(

µ(n)
)′)

. By Propositions 2.6 and 2.10, we have maps Q : E(ᾱ, µ̄) → E
(
ᾱ−1, µ̄′

)
, W 7→ Q(W )

and Q− : E
(
ᾱ−1, µ̄′

)
→ E(ᾱ, µ̄), W− 7→ Q−(W−). Let us prove that Q− is the inverse for Q.
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Proposition 2.11. For any W ∈ E(ᾱ, µ̄) and W− ∈ E
(
ᾱ−1, µ̄′

)
, the following holds:

Q−(Q(W )) =W, Q(Q−(W−)) =W−.

Proof. For any W ∈ E(ᾱ, µ̄), define Q(SW ) to be the difference operator Š†
W . Similarly, for

any W− ∈ E
(
ᾱ−1, µ̄′

)
, define Q−(S

−
W−

) to be the difference operator
(
Š−
W−

)†
.

Recall that Ŝ =
∏n

i=1(T − αi)
pi =

(
Ŝ−
)†

and Ŝ = (Q(SW ))†SW . We have

Ŝ− =
(
Ŝ
)†

= (SW )†Q(SW ). (2.12)

In the relation Ŝ− = (Q−(SW−))
†SW− , take W− = Q(W ). This yields

Ŝ− = (Q−(Q(SW )))†Q(SW ). (2.13)

Comparing formulas (2.12) and (2.13), we have Q−(Q(SW )) = SW . Therefore, the funda-
mental difference operators of W and Q−(Q(W )) coincide, and the relation Q−(Q(W )) = W
follows from Lemma 2.5.

The relation Q(Q−(W−)) =W− is proved in a similar way. ■

Proposition 2.12. Fix z ∈ C. Let (e1, . . . , eM ) be the sequence of T−-discrete exponents of
W− ∈ E

(
ᾱ−1, µ̄′

)
at z − 1. Define a partition λ = (λ1, λ2, . . . ) by ei =M + λi − i, i = 1, . . . ,M

and λM+1 = 0. Let (ě1, . . . , ěM ′) be the sequence of discrete exponents of Q−(W−) at z. Define
a partition η = (η1, η2, . . . ) by ěa = M ′ + ηa − a, a = 1, . . . ,M ′, and ηM ′+1 = 0. Then ηa ≥ λ′a
for all a = 1, 2, . . . .

Proposition 2.12 is proved similarly to Proposition 2.7.

Corollary 2.13. In both Propositions 2.7 and 2.12, we have η = λ′.

Proof. Consider a space W ∈ E(ᾱ, µ̄), and let partitions λ and η be like in Proposition 2.7, in
particular ηa ≥ λ′a for all a = 1, 2, . . . . But by Proposition 2.11 and 2.12, we have λi ≥ η′i for all
i = 1, 2, . . . , which is the same as λ′a ≥ ηa for all a = 1, 2, . . . . Therefore, we have η = λ′.

The equality η = λ′ for Proposition 2.12 is proved in a similar way. ■

2.7 Spaces of quasi-exponentials with the difference data
(
ᾱ, µ̄; z̄, λ̄

)
LetW be a space from the set E(ᾱ, µ̄). Assume that there exists a sequence of complex numbers
z̄ = (z1, . . . , zk) and a sequence of partitions λ̄ =

(
λ(1), . . . , λ(k)

)
such that z1, . . . , zk are discrete

singular points ofW , za−zb /∈ Z for a ̸= b, sequence
(
e
(a)
1 , . . . , e

(a)
M ′
)
of discrete exponents at za is

given by e
(a)
i =M ′+λ

(a)
i −i for i = 1, . . . ,M ′, λ

(a)
i = 0 for i > M ′, and

∑k
a=1

∣∣λ(a)∣∣ =∑n
i=1

∣∣µ(i)∣∣.
Here |λ| denotes the number of boxes in the Young diagram corresponding to the partition λ.
We will say that W is a space of quasi-exponentials with the difference data

(
ᾱ, µ̄; z̄, λ̄

)
.

Example 2.14. Let W be the span of the functions x−2/3, x2, and 2xx. This space belongs to
the set E(ᾱ, µ̄), where n = 2, α1 = 1, α2 = 2, µ(1) = (1, 1, 0, . . . ), µ(2) = (1, 0, . . . ). Since Wr(x−
2/3, x2, 2xx) = 2xx(x− 1)(x+ 8/3), the discrete singular points of W are 0, 1, and −8/3. The
sequence of discrete exponents of W at x = 0 and x = −8/3 is (3, 1, 0), and the corresponding
partition is λ1 = (1, 0, . . . ). The sequence of discrete exponents of W at x = 1 is (3, 2, 0),
and the corresponding partition is λ2 = (1, 1, 0, . . . ). Therefore, the space W is a space of
quasi-exponentials with the data

(
ᾱ, µ̄; z̄, λ̄

)
, where z̄ = (−8/3, 1) and λ̄ = (λ1, λ2).
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Example 2.15. Let W be the span of the functions x, x2, and (−1/2)xx. This space belongs
to the set E(ᾱ, µ̄), where n = 2, α1 = 1, α2 = −1/2, µ(1) = (1, 1, 0, . . . ), µ(2) = (1, 0, . . . ). Since
Wr
(
x, x2, (−1/2)xx

)
= (−1/2)xx(x + 1)(x + 2), the discrete singular points of W are 0, −1,

and −2. The sequence of discrete exponents of W at x = 0 is (3, 2, 1), and the corresponding
partition is λ1 = (1, 1, 1, 0, . . . ). The sequence of discrete exponents of W at x = −1 is (4, 2, 0),
and the corresponding partition is λ2 = (2, 1, 0, . . . ). The sequence of discrete exponents of W
at x = −2 is (3, 1, 0), and the corresponding partition is λ3 = (1, 0, . . . ). Therefore, the space
W is a space of quasi-exponentials with the data

(
ᾱ, µ̄; z̄, λ̄

)
, where either z̄ = (0) and λ̄ = (λ1),

or z̄ = (−1) and λ̄ = (λ2).

Define the map refl: E
(
ᾱ−1, µ̄′

)
→ E(ᾱ, µ̄′) by refl(W ) = {f(−x) | f(x) ∈ W}. Denote

T1 = refl ◦Q. If for a space W ∈ E(ᾱ, µ̄), the difference operator Q(SW ) is written as Q(SW ) =
(T−)

M +
∑M

i=1 bi(x)(T−)
M−i, then

Q→(SW ) = TM +

M∑
i=1

bi(−x)TM−i (2.14)

is the fundamental difference operator of T1(W ).

For a sequence z̄ = (z1, . . . , zk), denote 1 − z̄ = (1 − z1, . . . , 1 − zk). Recall that for a
sequence of partitions η̄ =

(
η(1), . . . , η(s)

)
, η̄′ denotes the sequence of the conjugated partitions:

η̄′ =
((
η(1)
)′
, . . . ,

(
η(s)
)′)

. The next theorem is the main result of Section 2, and it is an easy
consequence of Propositions 2.6, 2.7, and Corollary 2.13.

Theorem 2.16. Let W be a space of quasi-exponentials with the data
(
ᾱ, µ̄; z̄, λ̄

)
. Then T1(W )

is a space of quasi-exponentials with the data
(
ᾱ, µ̄′; 1− z̄, λ̄′

)
.

Let us write E
(
ᾱ, µ̄; z̄, λ̄

)
for the set of all spaces of quasi-exponentials with the difference

data
(
ᾱ, µ̄; z̄, λ̄

)
. We constructed a map

T1 : E
(
ᾱ, µ̄; z̄, λ̄

)
→ E

(
ᾱ, µ̄′; 1− z̄, λ̄′

)
,

W 7→ T1(W ).
(2.15)

In Section 6.6, we will show that this map is closely related to the (gln, glk)-duality of the
trigonometric Gaudin and dynamical Hamiltonians.

3 Quotient differential operator

3.1 Spaces of quasi-polynomials

By quasi-polynomial we mean a function of the form xzp(x), where z ∈ C and p(x) is a polyno-
mial.

Fix complex numbers z1, . . . , zk and nonzero partitions λ(1), . . . , λ(k). Assume that za−zb /∈ Z
for a ̸= b. Let V be a vector space of functions in one variable with a basis {xzaqab(x) | a = 1,

. . . , k, b = 1, . . . ,
(
λ(a)

)′
1
}, where qab(x) are polynomials and deg qab =

(
λ(a)

)′
1
+λ

(a)
b −b. Assume

that the space V satisfies the following property, which we will call the non-degeneracy at 0: for
each a = 1, . . . , k and any b = 1, . . . ,

(
λ(a)

)′
1
, there exists a linear combination of polynomials

qa1, qa2, . . . , qa(λ(a))′1
which has a root at x = 0 of multiplicity b− 1.

Denote L′ =
∑k

a=1

(
λ(a)

)′
1
= dimV . For α ∈ C∗, define the sequence of exponents of V at α

as a unique sequence of integers (e1 > · · · > eL′), with the property: there exists a basis f1, . . . ,
fL′ of V such that for each a = 1, . . . , L′, we have fa(x) = (x− α)ea(1 + o(1)) as x→ α.
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For any sufficiently differentiable functions g1, . . . , gs, let

Wr(g1, . . . , gs) = det
((
(d/dx)j−1gi(x)

)s
i,j=1

)
be their Wronskian. The sequence of exponents of V at α differs from the sequence (L′−1, L′−2,
. . . , 0) if and only if α is a root of Wr(g1, . . . , gL′), where g1, . . . , gL′ is any basis of V . If α is
such a root, we will call it a singular point of V .

Let α1, . . . , αn be the singular points of V and for each i = 1, . . . , n, let
(
e
(i)
1 , . . . , e

(i)
L′
)
be the

sequence of exponents of V at αi. For each i = 1, . . . , n, define a partition µ(i) =
(
µ
(i)
1 , µ

(i)
2 , . . .

)
as follows: e

(i)
a = L′ + µ

(i)
a − a for a = 1, . . . , L′, and µ

(i)
a = 0 for a > L′. Clearly, all partitions

µ(1), . . . , µ(n) are nonzero.

Denote the sequences (z1, . . . , zk),
(
λ(1), . . . , λ(k)

)
,
(
α1, . . . , αn

)
, and

(
µ(1), . . . , µ(n)

)
as z̄,

λ̄, ᾱ, and µ̄, respectively. We will say that V is a space of quasi-polynomials with the data(
z̄, λ̄; ᾱ, µ̄

)
.

Lemma 3.1. Let V be a space of quasi-polynomials with the data
(
z̄, λ̄; ᾱ, µ̄

)
. Then

k∑
a=1

∣∣λ(a)∣∣ = n∑
i=1

∣∣µ(i)∣∣. (3.1)

Here |λ| denotes the number of boxes in the Young diagram corresponding to the partition λ.

Proof. Let g1, . . . , gL′ be some basis of the space V . Denote Na =
(
λ(a)

)′
1
. Then

Wr(g1, . . . , gL′) = x
∑k

a=1 Naza−
∑k

a,b=1 NaNbp(x),

where p(x) is a polynomial of degree
∑k

a=1

∣∣λ(a)∣∣. On the other hand, the numbers α1, . . . , αn are

zeros of p(x) with multiplicities |µ(1)
∣∣, . . . , |µ(n)∣∣, respectively, and p(x) has no other zeros. ■

Remark 3.2. Notice that in the case of spaces of quasi-exponentials with the difference data(
ᾱ, µ̄; z̄, λ̄

)
, we had to include the condition (3.1) into the definition. As Lemma 3.1 shows, in

case of quasi-polynomials, this condition holds automatically. This can be explained by the fact
that for the space of quasi-polynomials with the data

(
z̄, λ̄; ᾱ, µ̄

)
, we additionally require the

non-degeneracy at 0.

Remark 3.3. Notice that if V is a space of quasi-polynomials with some data, then this data
is defined uniquely. This is not the case for spaces of quasi-exponentials with a difference data,
see Example 2.15.

Example 3.4. Let V be the span of the functions f1 = x−1, f2 = (x−1)2, and f3 =
√
x(x−1).

Then Wr(f1, f2, f3) = −1/4x−3/2(x − 1)3. The sequence of exponents of V at 1 is (3, 2, 1).
Therefore, V is a space of quasi-polynomials with the data

(
z̄, λ̄; ᾱ, µ̄

)
, where z̄ = (0, 1/2), λ̄ =

(λ1, λ2) with λ1 = (1, 1, 0, . . . ), λ2 = (1, 0, . . . ), ᾱ = (1), and µ̄ = (µ1) with µ1 = (1, 1, 1, 0, . . . ).

3.2 Spaces of quasi-polynomials and quotient differential operator

We will use the following two facts about linear differential operators. For proofs, see for
example, [11].

1. Let f1(x), . . . , fs(x) be sufficiently differentiable functions such that Wr(f1, . . . , fs) ̸= 0.
Then there is a unique monic linear differential operatorD = (d/dx)s+

∑s
i=1ai(x)(d/dx)

s−i
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of order s such that Dfi = 0, i = 1, . . . , s. The coefficients of the operator D are given by
the formulas

ai(x) = (−1)i
Wri(f1, . . . , fs)

Wr(f1, . . . , fs)
, i = 1, . . . , s, (3.2)

where Wri(f1, . . . , fs) is the determinant of the s×s matrix whose j-th row is fj , (d/dx)fj ,
. . . , (d/dx)s−i−1fj , (d/dx)

s−i+1fj , . . . , (d/dx)
sfj .

2. Let V and V̂ be two spaces of functions such that V ⊂ V̂ , and for any f1, . . . , fm ∈ V̂ ,
Wr(f1, . . . , fm) ̸= 0 if and only if f1, . . . , fm are linearly independent. Let D and D̂ be
linear differential operators of order dimV and dim V̂ annihilating V and V̂ , respectively.
Then there exists a differential operator Ď such that D̂ = ĎD.

Consider a space V like in the previous section. By item (1) above, there exists a unique monic
differential operator DV of order L′ annihilating V . We will say that DV is the fundamental
differential operator of V .

Denote la = λ
(a)
1 +

(
λ(a)

)′
1
− 1. Introduce a differential operator

D̂ =
k∏

a=1

la∏
b=0

(
x
d

dx
− za − b

)
.

Then the span V̂ of the functions xza+b, a = 1, . . . , k, b = 0, . . . , la is annihilated by D̂.

Since V ⊂ V̂ , there exists a differential operator ĎV such that D̂ = ĎV x
kDV , see item (2)

in the beginning of the section.

For a differential operator D =
∑s

i=0 bi(x)(d/dx)
s−i, define its formal conjugate D† by the

formula:

D†f(x) =

s∑
i=0

(
− d

dx

)s−i

(bi(x)f(x)),

where f(x) is any sufficiently differentiable function.

Let Ď†
V be the formal conjugate of ĎV . Denote 1− z̄− λ̄′1− λ̄1 =

(
1− z1−

(
λ(1)

)′
1
−λ

(1)
1 , 1−

z2 −
(
λ(2)

)′
1
− λ

(2)
1 , . . . , 1− zk −

(
λ(k)

)′
1
− λ

(k)
1

)
. We have the following theorem

Theorem 3.5. Let V be a space of quasi-polynomials with the data
(
z̄, λ̄; ᾱ, µ̄

)
. Then there

exists a unique space T2(V ) of quasi-polynomials with the data
(
1− z̄− λ̄′1− λ̄1, λ̄

′; ᾱ, µ̄′
)
, which

is annihilated by Ď†
V .

We will prove Theorem 3.5 in Section 5.1.

Let us write P
(̄
z, λ̄; ᾱ, µ̄

)
for the set of all spaces of quasi-polynomials with the data

(̄
z, λ̄; ᾱ, µ̄

)
.

By Theorem 3.5, we have a map

T2 : P
(
z̄, λ̄; ᾱ, µ̄

)
→ P

(
1− z̄ − λ̄′1 − λ̄1, λ̄

′; ᾱ, µ̄′
)
,

V 7→ T2(V ).

4 Bispectral duality

In this section, we recall a transformation introduced in [6].

Fix sequences z̄, ᾱ, λ̄, and µ̄, where z̄ = (z1, . . . , zk) is a sequence of complex numbers such
that za − zb /∈ Z for a ̸= b, ᾱ = (α1, . . . , αn) is a sequence of nonzero complex numbers such
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that αi ̸= αj for i ̸= j, and λ̄ =
(
λ(1), . . . , λ(k)

)
, µ̄ =

(
µ(1), . . . , µ(n)

)
are sequences of non-zero

partitions. Denote L′ =
∑k

a=1

(
λ(a)

)′
1
, M ′ =

∑n
i=1

(
µ(i)
)′
1
, and nab =

(
λ(a)

)′
1
+ λ

(a)
b − b.

Define polynomials pᾱ,µ̄(x) and qz̄,λ̄(x) as follows:

pᾱ,µ̄(x) =
n∏

i=1

(x− αi)
(µ(i))′1 , (4.1)

qz̄,λ̄(x) =
k∏

a=1

(λ(a))′1∏
b=1

(x− za − nab). (4.2)

Let V be a space of quasi-polynomials with the data
(
z̄, λ̄; ᾱ, µ̄

)
. Let DV be the fundamental

differential operator of V . Define the functions β1(x), . . . , βL′(x) by

xL
′
DV =

(
x
d

dx

)L′

+

L′∑
a=1

βa(x)

(
x
d

dx

)L′−a

.

Lemma 4.1. The following holds

1. The functions β1(x), . . . , βL′(x) are rational functions regular at infinity. Denote βa(∞) =
lim
x→∞

βa(x), a = 1, . . . , L′. Then

uL
′
+

L′∑
a=1

βa(∞)uL
′−a = qz̄,λ̄(u). (4.3)

2. For each a = 1, . . . , L′, pᾱ,µ̄(x)βa(x) is a polynomial in x.

Proof. The fact that β1(x), . . . , βL′(x) are rational functions regular at infinity follows from

formula (3.2). Notice that ker
∏(λ(a))′1

b=1 (x(d/dx) − za − nab) is the span of
{
xza+nab | a = 1, . . . ,

k, b = 1, . . . ,
(
λ(a)

)′
1

}
, which implies formula (4.3).

Part (2) of the lemma follows from formula (3.2) and the following observations:

� Let g1, . . . , gL′ be a basis of V . Denote Na =
(
λ(a)

)′
1
. For each a = 1, . . . , L′, define an

integer ca by
∑L′

b=ca
Nb > a,

∑L′

b=ca+1Nb < a. Then one can check that

Wra(g1, . . . , gL′) = x
∑k

a=1 Naza−
∑k

a,b=1 NaNb−
∑L′

b=ca+1 Nb p̃(x), (4.4)

where p̃(x) is a polynomial, and for each i = 1, . . . , n, αi is a zero of p̃(x) of multiplicity
not less than

∑n
j=1
j ̸=i

(
µ(j)

)′
1
.

� As noted in the proof of Lemma 3.1, we have

Wr(g1, . . . , gL′) = x
∑k

a=1 Naza−
∑k

a,b=1 NaNbp(x), (4.5)

where p(x) is a polynomial, the numbers α1, . . . , αn are zeros of p(x) with multiplicities∣∣µ(1)∣∣, . . . , ∣∣µ(n)∣∣, respectively, and p(x) has no other zeros. ■

We will call the differential operator D̄V = xL
′
pᾱ,µ̄(x)DV the regularized fundamental differ-

ential operator of V .
Let W be a space of quasi-exponentials with the difference data

(
ᾱ, µ̄; z̄, λ̄

)
.

Let b1(x), . . . , bM ′ be the coefficients of the fundamental difference operator SW of W :

SW = TM ′
+

M ′∑
i=1

bi(x)T
M ′−i.

Denote z̄− λ̄′1 =
(
z1−

(
λ(1)

)′
1
, . . . , zk−

(
λ(k)

)′
1

)
and z̄+ λ̄′1 =

(
z1+

(
λ(1)

)′
1
, . . . , zk+

(
λ(k)

)′
1

)
.
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Lemma 4.2. The following holds.

1. The coefficients bi(x) of SW are rational functions regular at infinity. Denote bi(∞) =
lim
x→∞

bi(x). Then

uM
′
+

M ′∑
i=1

bi(∞)uM
′−i = pᾱ,µ̄(u).

2. For each i = 1, . . . ,M ′, qz̄−λ̄′
1,λ̄

(x)bi(x) is a polynomial in x.

Proof. Item (1) of the lemma can be proved similarly to item (1) in Lemma 4.1. For a proof
of item (2), see [6, Lemma 3.9]. ■

We will call the difference operator S̄W = qz̄−λ̄′
1,λ̄

(x)SW the regularized fundamental differ-
ence operator of W .

For any complex numbers bai, a = 0, . . . , s, 0 = 1, . . . , r, consider a differential operator D
and a difference operator S defined by

D =

s∑
a=0

r∑
i=0

baix
a

(
x
d

dx

)i

, S =

s∑
a=0

r∑
i=0

baix
iT a.

We will say that D is bispectral dual to S, and vice versa, and write D = S#, S = D#.

The following theorem was proved in [6].

Theorem 4.3. There exists a bijection

T3 : P
(
z̄, λ̄; ᾱ, µ̄

)
→ E

(
ᾱ, µ̄; z̄ + λ̄′1, λ̄

)
(4.6)

such that for every V ∈ P
(
z̄, λ̄; ᾱ, µ̄

)
, D̄#

V is the regularized fundamental difference operator
of T3(V ).

Remark 4.4. Theorem 4.3 follows from the proofs of Theorems 4.1 and 4.2 in [6]. The latter
theorems state the duality for spaces called non-degenerate in [6]. We will not need the duality
for non-degenerate spaces here.

Example 4.5. Consider the space W from Example 2.15. Then

SW = T 3 − 3(x+ 3)

2(x+ 2)
T 2 +

x+ 3

2x
.

If we choose the difference data
(
ᾱ, µ̄; z̄, λ̄

)
for W with z̄ = (0) and λ̄ = (λ1), λ1 =

(1, 1, 1, 0 . . . ), then S̄W = x(x+1)(x+2)SW and T−1
3 (W ) is the span of the functions 1+(1/2)x−3,

x−1, and x−2 − (1/2)x−3.

If we choose the difference data
(
ᾱ, µ̄; z̄, λ̄

)
for W with z̄ = (−1) and λ̄ = (λ2), λ2 =

(2, 1, 0, . . . ), then S̄W = x(x+ 2)SW and T−1
3 (W ) is the span of the functions 1− (3/8)x−3 and

x−2 − x−3.

We will call the space T3(V ) bispectral dual to V , and vice versa. In Section 5, we will
construct the map T2 as the counterpart of the map T1 under the bispectral duality T3, see
formula (5.7) for the precise statement.
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5 Algebra of pseudo-difference operators

A pseudo-difference operator is a formal series of the form

M∑
m=−∞

L∑
l=−∞

Clmx
lTm, (5.1)

where Clm are some complex numbers. Using the operator relations Tmxl = (x + m)lTm,
l,m ∈ Z, and identifying (x+m)l with its Laurent series at infinity, one can multiply series (5.1).
This multiplication is associative. Denote the algebra of pseudo-difference operators as ΨDq.

Lemma 5.1. If S =
∑M

m=−∞
∑L

l=−∞Clmx
lTm with CLM ̸= 0, then S is invertible in ΨDq.

Proof. Define Ś by the rule 1 + Ś = C−1
LMx

−LST−M . Then
∑∞

j=0(−1)j Śj is a well-defined
element of ΨDq and the inverse of S is given by the formula:

S−1 = C−1
LMT

−M

 ∞∑
j=0

(−1)j Śj

x−L. ■

We consider a difference operator S =
∑M

i=0 ai(x)T
M−i with rational coefficients a0(x), . . . ,

aM (x) as an element of ΨDq replacing each ai(x) by its Laurent series at infinity. By Lemma 5.1,
if a0(x) = 1, and a1(x), . . . , aM (x) are regular at infinity, then S is invertible in ΨDq.

Denote by D̄ the algebra of differential operators with rational coefficients. One can check
that the assignment

τ : x
d

dx
7→ −x, x 7→ T (5.2)

defines a monomorphism of algebras τ : D̄ → ΨDq.

As before, fix sequences z̄, ᾱ, λ̄, and µ̄, where z̄ = (z1, . . . , zk) is a sequence of complex
numbers such that za − zb /∈ Z for a ̸= b, ᾱ = (α1, . . . , αn) is a sequence of nonzero complex
numbers such that αi ̸= αj for i ̸= j, and λ̄ =

(
λ(1), . . . , λ(k)

)
, µ̄ =

(
µ(1), . . . , µ(n)

)
are sequences

of non-zero partitions.

Let V be a space of quasi-polynomials with the data
(
z̄, λ̄; ᾱ, µ̄

)
. Let D̄V ∈ D̄ be the

fundamental regularized differential operator of V . Define the fundamental pseudo-difference
operator SV of V by the following formula:

SV = (pᾱ,µ̄(T ))
−1τ

(
D̄V

)
(qz̄,λ̄(−x))−1,

where the polynomials pᾱ,µ̄(x) and qz̄,λ̄(x) are defined in formulas (4.1) and (4.2), respectively.

Let W be a space of quasi-exponentials with the difference data
(
ᾱ, µ̄; z̄, λ̄

)
. Let S̄W be the

fundamental regularized difference operator of W . Define the fundamental pseudo-difference
operator SW of W by the following formula:

SW = (qz̄−λ̄′
1,λ̄

(x))−1S̄W (pᾱ,µ̄(T ))
−1.

Notice that both SV and SW have the form 1+
∑

l,m≤1Clmx
lTm. Therefore, by Lemma 5.1,

the operators SV and SW are invertible in ΨDq.

Recall the maps T1 and T3, see formulas (2.15) and (4.6), respectively. Denote 1− z̄ − λ̄′1 =(
1− z1 −

(
λ(1)

)′
1
, . . . , 1− zk −

(
λ(k)

)′
1

)
.



Difference Operators and Duality for Trigonometric Gaudin and Dynamical Hamiltonians 19

Theorem 5.2. Consider a space V ∈ P
(
z̄, λ̄; ᾱ, µ̄

)
. Denote W = T1(T3(V )) ∈ E

(
ᾱ, µ̄′; 1− z̄ −

λ̄′1, λ̄
′). Let SV and SW be the fundamental pseudo-difference operators of V andW , respectively.

Then

SW = S−1
V .

Proof. For any pseudo-difference operator S =
∑N

i=−∞
∑K

j=−∞Cijx
iT j , define a pseudo-dif-

ference operator S‡ by

S‡ =

N∑
i=−∞

K∑
j=−∞

CijT
j(−x)i. (5.3)

It is easy to check that (·)‡ is an involutive antiautomorphism on ΨDq.
Let V be a space of quasi-polynomials with the data

(
z̄, λ̄; ᾱ, µ̄

)
. Let D̄V be the fundamental

regularized differential operator of V . Denote S̄V = τ
(
D̄V

)
, where τ is given by formula (5.2).

Denote U = T3(V ) ∈ E
(
ᾱ, µ̄; z̄ + λ̄′1, λ̄

)
. Let SU be the fundamental difference operator

of U . Then S̄U = qz̄,λ̄(x)SU is the regularized fundamental difference operator of U , where the

polynomial qz̄,λ̄(x) is defined in formula (4.2). We have S̄U = D̄#
V = S̄‡

V .
Therefore, for the fundamental pseudo-difference operator SV of V , we get

S
‡
V =

(
(qz̄,λ̄(−x))−1

)‡(
S̄V
)‡(

(pᾱ,µ̄(T ))
−1
)‡

= (qz̄,λ̄(x))
−1S̄U (pᾱ,µ̄(T ))

−1

= SU (pᾱ,µ̄(T ))
−1. (5.4)

By construction, for the fundamental difference operator Q→(SU ) of T1(U), see (2.14), we
have

pᾱ,µ̄′(T )pᾱ,µ̄(T ) = (Q→(SU ))
‡SU .

Let us rewrite the last formula as follows[
(pᾱ,µ̄′(T ))−1(Q→(SU ))

‡][SU (pᾱ,µ̄(T ))−1
]
= 1.

This, together with formula (5.4), gives(
S
‡
V

)−1
= (pᾱ,µ̄′(T ))−1(Q→(SU ))

‡. (5.5)

Applying the involutive antiautomorphism (·)‡ to both sides of equation (5.5), we obtain

S−1
V = Q→(SU )(pᾱ,µ̄′(T ))−1. (5.6)

Let SW be the fundamental pseudo-difference operator of W . By definition, we have SW =
Q→(SU )(pᾱ,µ̄′(T ))−1. Therefore, formula (5.6) gives S−1

V = SW .
Theorem 5.2 is proved. ■

5.1 Proof of Theorem 3.5

For each space V of quasi-polynomials with the data
(
z̄, λ̄; ᾱ, µ̄

)
, define

T2(V ) = T−1
3 T1T3(V ). (5.7)

Let DV be the fundamental differential operator of V . We need to show that T2(V ) is anni-

hilated by Ď†
V . By definition, the regularized fundamental differential operator D̄V of V is given
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by the formula D̄V = pᾱ,µ̄(x)x
L′
DV , where pᾱ,µ̄(x) is the polynomial defined in formula (4.1).

Denote S̄V = τ(D̄V ), where τ is given by formula (5.2). Then

τ
(
xL

′
DV

)
= τ

(
(pᾱ,µ̄(x))

−1
)
τ(D̄V ) = (pᾱ,µ̄(T ))

−1S̄V . (5.8)

Denote la = λ
(a)
1 +

(
λ(a)

)′
1
− 1. By definition of ĎV , we have

k∏
a=1

la∏
b=0

(
x
d

dx
− za − b

)
= ĎV x

L′
DV . (5.9)

Applying the homomorphism τ to both sides of relation (5.9) and using formula (5.8), we get

k∏
a=1

la∏
b=0

(−x− za − b) = τ
(
ĎV

)
(pᾱ,µ̄(T ))

−1S̄V . (5.10)

Denote ∆a = {0, . . . , la} \
{(
λ(a)

)′
1
+ λ

(a)
b − b, b = 1, . . . ,

(
λ(a)

)′
1

}
, and set

q̄z̄,λ̄(x) =
k∏

a=1

∏
b∈∆a

(x− za − b).

Notice that

k∏
a=1

la∏
b=0

(−x− za − b) = q̄z̄,λ̄(−x)qz̄,λ̄(−x),

where qz̄,λ̄(x) is defined in formula (4.2).
Then we can rewrite relation (5.10) as follows:[

(q̄z̄,λ̄(−x))−1τ(ĎV )
][
(pᾱ,µ̄(T ))

−1S̄V (qz̄,λ̄(−x))−1
]
= 1, (5.11)

Since, by definition, SV = (pᾱ,µ̄(T ))
−1S̄V (qz̄,λ̄(−x))−1, formula (5.11) gives

S−1
V = (q̄z̄,λ̄(−x))−1τ(ĎV ). (5.12)

Let W = T1T3(V ). Let SW and S̄W be the fundamental pseudo-difference operator of W
and the regularized fundamental difference operator of W , respectively. Denote η̄ =

(
1 − z1 −(

λ(1)
)′
1
− λ

(1)
1 , . . . , 1− zk −

(
λ(k)

)′
1
− λ

(k)
1

)
. Then by Theorem 5.2, we have

S−1
V = SW = (qη̄,λ̄′(x))−1S̄W (pᾱ,µ̄′(T ))−1. (5.13)

Notice that for each a = 1, . . . , k, ∆a =
{
(λ(a))′1−(λ(a))′b+b−1, b = 1, . . . , λ

(a)
1

}
. This can be

illustrated by enumerating sides of boxes in the Young diagram for the partition λ(a) similarly
to what we did in the proof of Proposition 2.6. Using this description of ∆a, one can check that
q̄z̄,λ̄(−x) = (−1)L

′
qη̄,λ̄′(x). Therefore, formulas (5.12) and (5.13) give

S̄W = (−1)L
′
τ
(
ĎV

)
pᾱ,µ̄′(T ).

Thus,

S̄‡
W = (−1)L

′
pᾱ,µ̄′(T )

(
τ
(
ĎV

))‡
.
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Using that
(
τ
(
ĎV

))‡
= τ

(
Ď†

V

)
, we obtain

(−1)L
′
pᾱ,µ̄′(x)Ď†

V = τ−1
(
S̄‡
W

)
= S̄#

W .

Notice that by definition of the map T3, the differential operator S̄
#
W annihilates the space T2(V ),

therefore, we proved that Ď†
V annihilates T2(V ).

The uniqueness of the space T2(V ) follows from an analog of Lemma 2.5 for differential
operators.

Theorem 3.5 is proved.

6 Duality for trigonometric Gaudin
and dynamical Hamiltonians

6.1 (glk, gln)-duality for trigonometric Gaudin and dynamical Hamiltonians

Let Xn be the vector space of all polynomials in anticommuting variables ξ1, . . . , ξn. Since
ξiξj = −ξjξi for any i, j, in particular, ξ2i = 0 for any i, the monomials ξi1 . . . ξil , 1 ≤ i1 < i2 <
· · · < il ≤ n, form a basis of Xn. Notice that the space Xn coincides with the exterior algebra
of Cn.

The left derivations ∂1, . . . , ∂n on Xn are linear maps such that

∂i(ξj1 . . . ξjl) =

{
(−1)s−1ξj1 . . . ξjs−1ξjs+1 . . . ξjl , if i = js for some s,

= 0, otherwise.
(6.1)

It is easy to check that ∂i∂j = −∂j∂i for any i, j, in particular, ∂2i = 0 for any i, and ∂iξj+ξj∂i =
δij for any i, j.

Let eij , i, j = 1, . . . , n, be the standard basis of the Lie algebra gln, in particular, we have
[eij , ekl] = δjkeil − δilekj . Define a gln-action on Xn by the rule eij 7→ ξi∂j . As a gln-module, Xn

is isomorphic to
⊕n

l=0 Lωl
, where Lωl

is the irreducible finite-dimensional gln-module of highest
weight

ωl = (1, . . . , 1︸ ︷︷ ︸
l

, 0, . . . , 0).

The component Lωl
in Xn is spanned by the monomials of degree l.

Remark 6.1. As we mentioned in Introduction, the (gln, glk)-duality for integrable systems
was first studied in works of Mukhin, Tarasov, and Varchenko for the case, when instead of
the space Xn, one considers the space Pn of polynomials in commuting variables. The latter is
also a gln-module, and it decomposes into irreducibles as

⊕∞
i=1 Lsi , where Lsi is the irreducible

finite-dimensional gln-module of highest weight si = (i, 0, 0, . . . ).

From now on, we will consider the Lie algebras gln and glk together. We will write super-
scripts ⟨n⟩ and ⟨k⟩ to distinguish objects associated with algebras gln and glk, respectively. For

example, e
⟨n⟩
ij , i, j = 1, . . . , n, is the basis of gln, and e

⟨k⟩
ab , a, b = 1, . . . , k, is the basis of glk.

Let Pkn be the vector space of polynomials in kn pairwise anticommuting variables ξai,
a = 1, . . . , k, i = 1, . . . , n. We have two vector space isomorphisms ψ1 : (Xk)

⊗n → Pkn, and
ψ2 : (Xn)

⊗k → Pkn given by

ψ1 : (p1 ⊗ · · · ⊗ pn) 7→ p1(ξ11, . . . , ξk1)p2(ξ12, . . . , ξk2) · · · pn(ξ1n, . . . , ξkn),
ψ2 : (p1 ⊗ · · · ⊗ pk) 7→ p1(ξ11, . . . , ξ1n)p2(ξ21, . . . , ξ2n) · · · pk(ξk1, . . . , ξkn).
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Let ∂ai, a = 1, . . . , k, i = 1, . . . , n, be the left derivations on Pkn defined similarly to the left
derivations on Xn, see (6.1). For any g ∈ U(glk), denote g(i) = 1⊗(i−1) ⊗ g⊗ 1⊗(n−i) ∈ U(glk)

⊗n.
We will identify the algebra U(glk) and its image under the diagonal embedding g 7→

∑n
i=1 g(i) ∈

U(glk)
⊗n. We will use similar conventions for U(gln)

⊗k. Define actions of U(glk)
⊗n and U(gln)

⊗k

on Pkn by the formulas

ρ⟨k,n⟩ :
(
e
⟨k⟩
ab

)
(i)

7→ ξai∂bi, (6.2)

ρ⟨n,k⟩ :
(
e
⟨n⟩
ij

)
(a)

7→ ξai∂aj . (6.3)

Then ψ1 and ψ2 are isomorphisms of U(glk)
⊗n- and U(gln)

⊗k-modules, respectively.

For any i, j = 1, . . . , n, i ̸= j, define the following elements of U(glk)
⊗n

Ω+
(ij) =

1

2

k∑
a=1

(
e⟨k⟩aa

)
(i)

(
e⟨k⟩aa

)
(j)

+
∑

1≤a<b≤k

(
e
⟨k⟩
ab

)
(i)

(
e
⟨k⟩
ba

)
(j)
,

Ω−
(ij) =

1

2

k∑
a=1

(
e⟨k⟩aa

)
(i)

(
e⟨k⟩aa

)
(j)

+
∑

1≤a<b≤k

(
e
⟨k⟩
ba

)
(i)

(
e
⟨k⟩
ab

)
(j)
.

Fix sequences of pairwise distinct complex numbers z̄ = (z1, . . . , zk) and ᾱ = (α1, . . . , αn).

For each i = 1, . . . , n, define the trigonometric Gaudin Hamiltonians H
⟨k,n⟩
i (ᾱ, z̄) ∈ U(glk)

⊗n by
the following formula:

H
⟨k,n⟩
i (ᾱ, z̄) =

k∑
a=1

(
za −

e
⟨k⟩
aa

2

)(
e⟨k⟩aa

)
(i)

+
n∑

j=1
j ̸=i

αiΩ
+
(ij) + αjΩ

−
(ij)

αi − αj
.

For each i = 1, . . . , n, define the trigonometric dynamical Hamiltonians G
⟨n,k⟩
i (z̄, ᾱ) ∈ U(gln)

⊗k

by the following formula:

G
⟨n,k⟩
i (z̄, ᾱ) = −

(e
⟨n⟩
ii )2

2
+

k∑
a=1

za
(
e
⟨n⟩
ii

)
(a)

+

n∑
j=1
j ̸=i

αj

αi − αj

(
e
⟨n⟩
ij e

⟨n⟩
ji − e

⟨n⟩
ii

)
+

n∑
j=1

∑
1≤a<b≤k

(
e
⟨n⟩
ij

)
(a)

(e
⟨n⟩
ji )(b).

Denote −z̄+1 = (−z1+1, . . . ,−zk +1). Let ρ⟨k,n⟩ and ρ⟨n,k⟩ be the U(glk)
⊗n and U(gln)

⊗k-
actions on Pkn defined in formulas (6.2) and (6.3), respectively. The following can be checked
by a straightforward computation.

Proposition 6.2. For any i = 1, . . . , n, we have

ρ⟨k,n⟩
(
H

⟨k,n⟩
i (ᾱ, z̄)

)
= −ρ⟨n,k⟩

(
G

⟨n,k⟩
i (−z̄ + 1, ᾱ)

)
.

Proposition 6.2 is a part of Theorem 4.4 in [12]. A similar identity for the case, when instead
of the space Pkn, we have the space Pkn = SkCn = SnCk of polynomials in kn commutative
variables, can be found in [13].
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6.2 Bethe ansatz method for trigonometric Gaudin model

Fix sequences l = (l1, . . . , lk) ∈ Zk
≥0 and m = (m1, . . . ,mn) ∈ Zn

≥0 such that
∑k

a=1 la =∑n
i=1mi. Let Pkn[l,m] ⊂ Pkn be the span of all monomials ξd1111 · · · ξdk1k1 · · · ξd1n1n · · · ξdknkn such

that
∑k

a=1 dai = mi and
∑n

i=1 dai = la. Assume that Pkn[l,m] ̸= {0}. We have

Pkn[l,m] =
{
p ∈ Pkn | e⟨k⟩aa p = lap, e

⟨n⟩
ii p = mip, a = 1, . . . , k, i = 1, . . . , n

}
.

Under the map ψ1, the space Pkn[l,m] correspond to the weight subspace of weight (l1, . . . ,

lk) of the subrepresentation L
⟨k⟩
ωm1

⊗ · · · ⊗ L
⟨k⟩
ωmn

of X⊗n
k =

(⊕k
l=0L

⟨k⟩
ωl

)⊗n
. Similarly, under the

map ψ2, the space Pkn[l,m] correspond to the weight subspace of weight (m1, . . . ,mn) of the

subrepresentation L
⟨n⟩
ωl1

⊗ · · · ⊗ L
⟨n⟩
ωlk

of X⊗k
n =

(⊕n
l=0L

⟨n⟩
ωl

)⊗k
.

It is easy to check that all trigonometric Gaudin and dynamical Hamiltonians commute with

elements e
⟨k⟩
11 , . . . , e

⟨k⟩
kk , e

⟨n⟩
11 , . . . , e

⟨n⟩
nn . Therefore, H

⟨k,n⟩
1 (ᾱ, z̄), . . . ,H

⟨k,n⟩
n (ᾱ, z̄), G

⟨n,k⟩
1 (z̄, ᾱ), . . . ,

G
⟨n,k⟩
n (z̄, ᾱ) act on the subspace Pkn[l,m]. We will be interested in the common eigenvectors of

the Hamiltonians in the subspace Pkn[l,m].
For each m ∈ Z≥0, let ωm be a partition given by ωm = (1, . . . , 1, 0, 0, . . . ) with m ones.

Define the sequence l0 =
(
l01, . . . , l

0
k

)
by l0a =

∑n
i=1(ωmi)a.

For any sequence of integers (c1, . . . , ck) and for each a = 1, . . . , k−1, define a transformation

ra : (c1, . . . , ck) 7→ (c1, . . . , ca − 1, ca+1 + 1, . . . , ck).

Since
∑k

a=1 la =
∑k

a=1 l
0
a =

∑n
i=1mi, there exist integers l̄1, . . . , l̄k−1 such that l = rl̄11 · · · rl̄k−1

k−1 l0.
It is easy to check that if l̄a < 0 for some a = 1, . . . , k − 1, then Pkn[l,m] = 0. Therefore, we
can assume that l̄a ≥ 0 for all a = 1, . . . , k − 1.

Put l̄0 = l̄k = 0. Then we have

la =

n∑
i=1

(ωmi)a + l̄a−1 − l̄a, a = 1, . . . , k.

Therefore

l̄a =
k∑

b=a+1

(
lb −

n∑
i=1

(ωmi)b

)
, a = 0, . . . , k − 1. (6.4)

Let t be a set of l̄1 + · · ·+ l̄k−1 variables:

t =
(
t
(1)
1 , . . . , t

(1)

l̄1
, t

(2)
1 , . . . , t

(2)

l̄2
, . . . , t

(k−1)
1 , . . . , t

(k−1)

l̄k−1

)
.

Fix sequences of pairwise distinct complex numbers z̄ = (z1, . . . , zk) and ᾱ = (α1, . . . , αn).
Define the master function:

Φ(t, ᾱ, z̄, l,m) =
∏

1≤i<j≤n

(αi − αj)
min(mi,mj)

n∏
i=1

l̄mi∏
a=1

(
t(mi)
a − αi

)−1
n∏

i=1

α
∑mi

a=1 za+
mi
2

i

×
k−1∏
a=1

l̄a∏
b=1

(
t
(a)
b

)za+1−za+1
k−1∏
a=1

∏
1≤b<b′≤l̄a

(
t
(a)
b − t

(a)
b′
)2

×
k−2∏
a=1

l̄a∏
b=1

l̄a+1∏
b′=1

(
t
(a)
b − t

(a+1)
b′

)−1
. (6.5)
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The following equations are called the Gaudin Bethe ansatz equations:(
1

Φ

∂Φ

∂t
(a)
b

)
(t, ᾱ, z̄, l,m) = 0, a = 1, . . . , k − 1, b = 1, . . . , l̄a. (6.6)

We will call a solution t of the Gaudin Bethe ansatz equation (6.6) Gaudin admissible if

t
(a)
i ̸= t

(a)
j , t

(b)
i′ ̸= t

(b+1)
j′ , t

(a)
i ̸= αl, t

(a)
i ̸= 0 (6.7)

for all a = 1, . . . , k − 1, i, j = 1, . . . , l̄a, i ̸= j, b = 1, . . . , k − 2, i′ = 1, . . . , l̄b, j
′ = 1, . . . , l̄b+1,

l = 1, . . . , n.
We will also need a function constructed in [2] and denoted there as ϕ(z, t). This function was

introduced to obtain a hypergeometric solution of the trigonometric Knizhnik–Zamolodchikov
(KZ) equations. The explicit formulas for ϕ(z, t) are rather lengthy, and we will not need them
to formulate the statements below, so we omit them and instead, indicate how notations in [2]
match our notation. The parameters z1, . . . , zn in [2] correspond to α1, . . . , αn in our paper, and

variables t
(a)
b in [2] correspond to t

(b)
a in our paper. We will write ϕ(ᾱ, t) for ϕ(z, t) with z1, . . . ,

zn replaced by α1, . . . , αn and t
(a)
b replaced by t

(b)
a . The Lie algebra glN in [2] corresponds to glk

here, and for the glN -weights Λ1, . . . ,Λn, ν in [2], we should take the glk-weights ωm1 , . . . , ωmn ,
(l1, . . . , lk), respectively. Then under the identification ψ1, ϕ(ᾱ, t) becomes a Pkn[l,m]-valued
function.

Theorem 6.3. Let t be a Gaudin admissible solution of the Gaudin Bethe ansatz equations (6.6).
Suppose that ϕ(ᾱ, t) ̸= 0. Then ϕ(ᾱ, t) is a common eigenvector of the Gaudin Hamiltonians,

and for each i = 1, . . . , n, the corresponding eigenvalue h
⟨k,n⟩
i (t, ᾱ, z̄, l,m) of H

⟨k,n⟩
i (ᾱ, z̄) is given

by

h
⟨k,n⟩
i (t, ᾱ, z̄, l,m) =

(
αi

∂

∂αi
lnΦ

)
(t, ᾱ, z̄ − l, l,m), (6.8)

where z̄ − l = (z1 − l1, z2 − l2, . . . , zk − lk).

Proof. The theorem can be proved by applying the steepest descend method to hypergeometric
solutions of the trigonometric KZ equations. We refer a reader to the work [10], where the
method was applied to hypergeometric solutions of the rational KZ equations. Theorem 6.3 is
the modification of Corollary 4.16 in [10] to the trigonometric case. ■

6.3 Spaces of quasi-polynomials and eigenvalues
of trigonometric Gaudin Hamiltonians

Fix a pair (l,m) like in the previous section. Assume additionally that la ̸= 0 and mi ̸= 0 for
all a = 1, . . . , k, i = 1, . . . , n. Assume that Pkn[l,m] ̸= {0}. Define the sequence of partitions
λ̄ =

(
λ(1), . . . , λ(k)

)
by λ(a) = (la, 0, 0, . . . ), a = 1, . . . , k. Recall that for each m ∈ Z≥0, ωm is

a partition given by ωm = (1, . . . , 1, 0, 0, . . . ) with m ones. Define a sequence of partitions
µ̄ = (ωm1 , . . . , ωmn).

Let z̄ = (z1, . . . , zk) be a sequence of complex numbers such that za − zb /∈ Z for a ̸= b. Let
ᾱ = (α1, . . . , αn) be a sequence of pairwise distinct non-zero complex numbers. Let V be a space
of quasi-polynomials with the data

(
z̄, λ̄; ᾱ, µ̄

)
. Then V has a basis of the form{

xz1q1(x), x
z2q2(x), . . . , x

zkqk(x)
}
,

where q1(x), . . . , qk(x) are polynomials and deg qa(x) = la.
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For each a = 1, . . . , k − 1, b = 1, . . . , k, define

Tb(x) =

n∏
i=1
mi≥b

(x− αi),

ya(x) =
Wr
(
xzkqk(x), x

zk−1qk−1(x), . . . , x
za+1qa+1(x)

)∏k
b=a+1

(
xzb−k+bTb(x)

) .

One can check that for each a = 1, . . . , k − 1, ya(x) is a polynomial of degree l̄a. The
polynomials q1(x), . . . , qk(x) can be normalized in such a way that the polynomials y0(x), . . . ,
yn−1(x) are monic. Write

ya(x) =

l̄a∏
b=1

(
x− t̃

(a)
b

)
.

We will call the space V Gaudin admissible if the tuple

t̃ =
(
t̃
(1)
1 , . . . , t̃

(1)

l̄1
, t̃

(2)
1 , . . . , t̃

(2)

l̄2
, . . . , t̃

(k−1)
1 , . . . , t̃

(k−1)

l̄k−1

)
satisfies conditions (6.7).

The following theorem was proved in [9].

Theorem 6.4. Let V be Gaudin admissible. Then t̃ is a Gaudin admissible solution of the
Gaudin Bethe ansatz equations (6.6).

Define functions β1(x), . . . , βk(x) by the following formula:

xkDV =

(
x
d

dx

)k

+
k∑

a=1

βa(x)

(
x
d

dx

)k−a

.

By Lemma 4.1, the functions β1(x), . . . , βk(x) are rational.

Let t̃ be the Gaudin admissible solution of the Gaudin Bethe ansatz equation corresponding
to V , like in Theorem 6.4. Suppose that ϕ

(
ᾱ, t̃
)
̸= 0. Denote z̄ + l = (z1 + l1, z2 + l2, . . . ,

zk + lk). According to Theorem 6.3, ϕ
(
ᾱ, t̃
)
is a common eigenvector of the trigonometric

Gaudin Hamiltonians, and for each i = 1, . . . , n, the corresponding eigenvalue of H
⟨k,n⟩
i (ᾱ, z̄+ l)

is hVi := h
⟨k,n⟩
i

(
t̃, ᾱ, z̄ + l, l,m

)
. We will also call ϕ

(
t̃, ᾱ
)
the Bethe vector vV corresponding

to V .

Proposition 6.5. The following holds

hVi =
1

αi
Resx=αi

(
1

2
β21(x)− β2(x)

)
+
m2

i

2
−mi. (6.9)

Proof. For each function g of x, write ln′(g) = (ln(g))′, where (·)′ is the differentiation with
respect to x. By an analog of Proposition 2 for differential operators, see [11], we have

DV =

(
d

dx
− ln′

(
xz1−k+1T1(x)

y1(x)

))(
d

dx
− ln′

(
xz2−k+2T2(x)y1

y2(x)

))
· · ·

×
(

d

dx
− ln′

(
xzk−1−1Tk−1(x)yk−2(x)

yk−1(x)

))(
d

dx
− ln′

(
xzkTkyk−1(x)

))
. (6.10)
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Multiplying each side of (6.10) by xk, we get

xkDV =

(
x
d

dx
− x ln′

(
T1(x)

y1(x)

)
− z1

)(
x
d

dx
− x ln′

(
T2(x)y1
y2(x)

)
− z2

)
· · ·

×
(
x
d

dx
− x ln′ (Tkyk−1(x))− zk

)
. (6.11)

Put y0(x) = yk(x) = 1. For each a = 1, . . . , k, denote

Ya = −x ln′
(
Ta(x)ya−1(x)

ya(x)

)
− za.

By formula (6.11), we have

β2(x) =
∑

1≤a<b≤k

Ya(x)Yb(x) +
k∑

a=1

xY ′
a(x), β1(x) =

k∑
a=1

Ya(x). (6.12)

Since t̃ is Gaudin admissible, for each i = 1, . . . , n, a = 1, . . . , k − 1, αi is not a root of the
polynomial ya(x). Also, for each i = 1, . . . , n, αi is a root of the polynomial Ta(x) if and only if
a ≤ mi. Using this, we can compute:

1

αi
Resx=αi

( ∑
1≤a<b≤k

Ya(x)Yb(x)

)

=

l̄a∑
b=1

αi

αi − t̃
(mi)
b

+

mi∑
a=1

k∑
b=1
b ̸=a

(
zb +

n∑
j=1
mj≥b

αi

αi − αj

)
+mi(mi − 1), (6.13)

1

αi
Resx=αi

(
k∑

a=1

xY ′
a(x)

)
=
mi(mi − 1)

2
, (6.14)

1

αi
Resx=αi

(
1

2

(
k∑

a=1

Ya(x)

)2)
=

mi∑
a=1

k∑
b=1

(
zb +

n∑
j=1
mj≥b

αi

αi − αj

)
+m2

i . (6.15)

From formulas (6.12)–(6.15), we get

1

αi
Resx=αi

(
1

2
β21(x)− β2(x)

)

=

l̄a∑
b=1

αi

t̃
(mi)
b − αi

+

mi∑
a=1

za +

n∑
j=1
j ̸=i

αimin(mi,mj)

αi − αj
− m2

i

2
+

3

2
mi. (6.16)

On the other hand, using formula (6.5), we can compute(
αi

∂

∂αi
lnΦ

)
(t̃, ᾱ, z̄, l,m)

=

l̄a∑
b=1

αi

t̃
(mi)
b − αi

+

mi∑
a=1

za +
n∑

j=1
j ̸=i

αimin(mi,mj)

αi − αj
+
mi

2
. (6.17)

Comparing formulas (6.16), (6.17), and (6.8), we get relation (6.9). ■
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6.4 Bethe ansatz method for XXX-type spin chain model

Fix sequences l = (l1, . . . , lk) ∈ Zk
≥0 andm = (m1, . . . ,mn) ∈ Zn

≥0 such that
∑k

a=1 la =
∑n

i=1mi.
Assume that Pkn[l,m] ̸= {0}. Unlike in the previous section, we do not assume that la ̸= 0 and
mi ̸= 0 for all a = 1, . . . , k, i = 1, . . . , n. For each i = 0, . . . , n− 1, define

m̄i =
n∑

j=i+1

(
mj −

k∑
a=1

(ωla)j

)
. (6.18)

The numbers m̄1, . . . , m̄n−1 are the (glk, gln)-dual analogs of the numbers l̄1, . . . , l̄k−1, see for-
mula (6.4). Recall that Pkn[l,m] ̸= {0} implies l̄a ≥ 0, a = 0, . . . , k − 1. Similarly, Pkn[l,m] ̸=
{0} implies m̄i ≥ 0, i = 0, . . . , n− 1.

Let t be a set of m̄1 + · · ·+ m̄n−1 variables:

t =
(
t
(1)
1 , . . . , t

(1)
m̄1
, t

(2)
1 , . . . , t

(2)
m̄2
, . . . , t

(n−1)
1 , . . . , t

(n−1)
m̄n−1

)
.

Fix sequences of pairwise distinct complex numbers z̄ = (z1, . . . , zk) and ᾱ = (α1, . . . , αn).
We have m̄0 = 0. Also, put m̄n = 0. The XXX Bethe ansatz equations is the following system
of m̄1 + · · ·+ m̄n−1 equations:

αi+1

αi
=

k∏
a=1
la=i

t
(la)
b − za + 1

t
(la)
b − za

m̄i−1∏
a=1

t
(i)
b − t

(i−1)
a + 1

t
(i)
b − t

(i−1)
a

m̄i+1∏
a=1

t
(i)
b − t

(i+1)
a

t
(i)
b − t

(i−1)
a − 1

m̄i∏
a=1
a̸=b

t
(i)
b − t

(i)
a − 1

t
(i)
b − t

(i)
a + 1

, (6.19)

where i = 1, . . . , n− 1, b = 1, . . . , m̄i.

A solution t of the XXX Bethe ansatz equations (6.19) is called XXX-admissible if t
(i)
a ̸= t

(i)
b ,

t
(j)
a′ ̸= t

(j+1)
b′ for any i = 1, . . . , n − 1, a, b = 1, . . . , m̄i, a ̸= b, j = 1, . . . , n − 2, a′ = 1, . . . , m̄j ,

b′ = 1, . . . , m̄j+1.
For each i, j = 1, . . . , n, define

Xi(x, t, z̄, ᾱ) = αi

k∏
a=1
la≥i

x− za + 1

x− za

m̄i−1∏
a=1

x− t
(i−1)
a + 1

x− t
(i−1)
a

m̄i∏
a=1

x− t
(i)
a − 1

x− t
(i)
a

, (6.20)

Ẽj(x, t, z̄, ᾱ) =
∑

1≤i1<···<ij≤n

Xi1(x)Xi2(x− 1) . . .Xij (x− j + 1). (6.21)

In the last formula Xi(x) = Xi(x, t, z̄, ᾱ), i = 1, . . . , n.
Introduce a new variable u. Consider the following polynomial in u:

E(u, x, t, z̄, ᾱ) = un +

n∑
j=1

Ẽj(x, t, z̄, ᾱ)u
n−i,

which is also a rational function of x regular at infinity. Let Ea(u, t, z̄, ᾱ), a ∈ Z≥0 be the
coefficients of the Laurent series at infinity of E(u, x, t, z̄, ᾱ) as a function of x:

E(u, x, t, z̄, ᾱ) =

∞∑
a=0

x−aEa(u, t, z̄, ᾱ). (6.22)

In [4], a certain function ψi(t, z̄) of t called the universal weight function for the XXX-type
spin chain model was defined. This function takes values in tensor products of highest weight
gln-modules. In the case that we need, ψi(t, z̄) is a Pkn[l,m]-valued function. If t is an XXX-
admissible solution of the XXX Bethe ansatz equations (6.19), and ψi(t, z̄) ̸= 0, then ψi(t, z̄) is
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a common eigenvector of the higher transfer matrices for the XXX-type spin chain model. Higher
transfer matrices are series in x−1, whose coefficients generate a large commutative subalgebra
called the XXX Bethe subalgebra inside the Yangian Y (gln). The XXX Bethe subalgebra
depends on parameters ᾱ = (α1, . . . , αn). The algebra Y (gln) acts on Pkn. This action depends
on parameters z̄ = (z1, . . . , zk). Therefore, we have a homomorphism ρYz̄ : Y (gln) → End(Pkn).

The images of the trigonometric dynamical Hamiltonians under the action ρ⟨n,k⟩ : (U(gln))
⊗k

→ End(Pkn) introduced in formula (6.3) can be considered as elements of the image of the
XXX Bethe subalgebra under the map ρYz̄ , see [4, Appendix B]. In particular, if t is an XXX-
admissible solution of the XXX Bethe ansatz equations (6.19), and ψi(t, z̄) ̸= 0, then ψi(t, z̄) is
a common eigenvector of the dynamical Hamiltonians, and the corresponding eigenvalue can be
computed using [4, Proposition B.1]. We will formulate the result in the following theorem:

Theorem 6.6. Let t be an XXX-admissible solution of the XXX Bethe ansatz equations (6.19).
Then for each i = 1, . . . , n, we have

G
⟨n,k⟩
i (z̄, ᾱ)ψi(t, z̄) = g

⟨n,k⟩
i (t, z̄, ᾱ)ψi(t, z̄),

where

g
⟨n,k⟩
i (t, z̄, ᾱ) = − 1

αi
Resu=αi

E2(u, t, z̄, ᾱ)∏n
j=1(u− αi)

+
n∑

j=1
j ̸=i

αjmimj

αi − αj
− m2

i

2
, (6.23)

and E2(u, t, z̄, ᾱ) is the coefficient in the expansion (6.22).

6.5 Spaces of quasi-exponentials and eigenvalues
of trigonometric dynamical Hamiltonians

Assume again that la ̸= 0 and mi ̸= 0 for all a = 1, . . . , k, i = 1, . . . , n. Let the data
(
ᾱ, µ̄; z̄, λ̄

)
be like in Section 6.3, and let W be a space of quasi-exponentials with the difference data(
ᾱ, µ̄′;−z̄, λ̄′

)
. Then W has a basis of the form{

αx
1r1(x), α

x
2r2(x), . . . , α

x
nrn(x)

}
,

where r1(x), . . . , rn(x) are polynomials and deg ri(x) = mi.
For each i = 1, . . . , n, define

Ti(x) =
k∏

a=1
la≥i

(x+ za + la − i). (6.24)

The following lemma is a special case of Lemma 3.7 in [6]:

Lemma 6.7. For each i = 0, . . . , n− 1, j1, . . . , jn−i ∈ {1, . . . , n}, the functions

Wr
(
αx
j1
rj1(x), α

x
j2
rj2(x), . . . , α

x
jn−i

rjn−i(x)
)∏n

l=i+1

(
αx
jn−l+1

Tj(x)
)

are polynomials.

For each i = 0, . . . , n− 1, j = 1, . . . , n, define

yi(x) =
Wr
(
αx
nrn(x), α

x
n−1rn−1(x), . . . , α

x
i+1ri+1(x)

)∏n
j=i+1

(
αx
jTj(x)

) , T̃j(x) =

k∏
a=1
la=j

(x+ za). (6.25)

According to Lemma 6.7, the functions y0(x), . . . , yn−1(x) are polynomials.
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Lemma 6.8. For each i = 1, . . . , n− 1, there exists a polynomial ỹi such that

Wr

(
yi(x),

αx
i

αx
i+1

ỹi(x)

)
=

αx
i

αx
i+1

T̃i(x)yi−1(x)yi+1(x+ 1). (6.26)

Proof. Set

ỹi(x) = αi+1
Wr
(
αx
nrn(x), . . . , α

x
i+2ri+2(x), α

x
i ri(x)

)
αx
n · · ·αx

i+2α
x
i

∏n
j=i+1(Tj(x))

, i = 1, . . . , n− 1.

By Lemma 6.26, ỹ1(x), . . . , ỹn−1(x) are polynomials, and (6.26) follows from discrete Wronskian
identities (A.1) and (A.4). ■

Denote ui(x) = yi(x+ i/2), i = 0, . . . , n− 1. Then equations (6.26) become

Wr

(
ui(x),

αx
i

αx
i+1

ỹi(x+ i/2)

)
=

αx
i

αx
i+1

T̃i(x+ i/2)ui−1(x+ 1/2)ui+1(x+ 1/2), (6.27)

where i = 1, . . . , n− 1.
It is easy to see that for each i = 0, . . . , n − 1, deg ui = deg yi = m̄i, where m̄0, . . . , m̄n−1

are given by formula (6.18). In particular, deg u0 = deg y0 = 0. One can normalize polynomials
r1(x), . . . , rn(x) so that the polynomials y0(x), . . . , yn−1(x) (and hence u0(x), . . . , un−1(x)) are
monic. For each i = 1, . . . , n− 1, write

ui(x) =

m̄i∏
a=1

(
x− s(i)a

)
.

We will call the space W XXX-admissible if for each i = 1, . . . , n − 1, the polynomial ui(x)
has only simple roots, different from the roots of the polynomials ui−1(x+ 1/2), ui+1(x+ 1/2),
T̃i(x+ i/2), and ui(x+ 1).

The following theorem is a part of Theorem 7.4 in [9]:

Theorem 6.9. Let W be XXX-admissible, then relations (6.27) imply

αi+1

αi
=

k∏
a=1
la=i

s
(la)
b − ža + 1/2

s
(la)
b − ža − 1/2

∏
|j−i|=1

m̄j∏
a=1

s
(i)
b − s

(j)
a + 1/2

s
(i)
b − s

(j)
a − 1/2

m̄i∏
a=1
a̸=b

s
(i)
b − s

(i)
a − 1

s
(i)
b − s

(i)
a + 1

, (6.28)

where i = 1, . . . , n− 1, b = 1, . . . , m̄i, and ža = −za − la/2 + 1/2 for each a = 1, . . . , k.

A tuple of polynomials u1(x), . . . , un−1(x) such that relations (6.27) hold for some polynomials
ỹ1(x), . . . , ỹn−1(x) is called a fertile tuple in [9].

Let us call the equations (6.19) the XXX Bethe ansatz equations associated to z̄ = (z1, . . . ,

zk). For each i = 1, . . . , n − 1, a = 1, . . . , m̄i, set t
(i)
a = s

(i)
a − i/2. Then, using (6.28), it

is easy to check that t =
(
t
(1)
1 , . . . , t

(n−1)
m̄n−1

)
is an XXX-admissible solution of the XXX Bethe

ansatz equations associated to −z̄ − l̄ + 1̄ = (−z1 − l1 + 1,−z2 − l2 + 1, . . . ,−zk − lk + 1).
Therefore, to each XXX-admissible space of quasi-exponentials W with the difference data(
ᾱ, µ̄′;−z̄, λ̄′

)
, corresponds a vector vW = ψ

(
t,−z̄ − l̄ + 1̄

)
∈ Pkn[l,m], which, provided that

vW ̸= 0, is an eigenvector of the trigonometric dynamical Hamiltonians G
⟨n,k⟩
1

(
−z̄− l̄+1̄, ᾱ

)
, . . . ,

G
⟨n,k⟩
n

(
−z̄ − l̄ + 1̄, ᾱ

)
, and the associated eigenvalues are given by the formula (6.23), where we

should substitute za → −za−la+1, a = 1, . . . , k. We will call vW the Bethe vector corresponding
to W .
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We are now going to relate the eigenvalues of the trigonometric dynamical Hamiltonians as-
sociated with the eigenvector vW and the coefficients of the fundamental difference operator SW
of the space W .

Let y0(x), . . . , yn−1(x), T1(x), . . . , Tn(x) be the polynomials given by (6.25) and (6.24), re-
spectively. Put yn(x) = 1. Define

Yi = αi
Ti(x+ 1)yi−1(x+ 1)yi(x)

Ti(x)yi−1(x)yi(x+ 1)
, i = 1, . . . , n. (6.29)

Comparing formulas (2.3), (2.4), and (6.29), we get

SW = (T − Y1(x))(T − Y2(x)) · · · (T − Yn(x)).

For each i = 1, . . . , n− 1, write

yi(x) =

m̄i∏
a=1

(
x− t̃(i)a

)
.

Then we have

Yi(x) = αi

k∏
a=1
la≥i

x+ za + la − i+ 1

x+ za + la − i

m̄i−1∏
a=1

x− t̃
(i−1)
a + 1

x− t̃
(i−1)
a

m̄i∏
a=1

x− t̃
(i)
a − 1

x− t̃
(i)
a

, i = 1, . . . , n.

Since yi(x) = ui(x− i/2), we have s
(i)
a = t̃

(i)
a − i/2, i = 1, . . . , n− 1, a = 1, . . . , m̄i. Therefore,

for the solution t =
(
t
(1)
1 , . . . , t

(n−1)
m̄n−1

)
of the XXX Bethe ansatz equations corresponding to the

space W , we get t
(i)
a = s

(i)
a − i/2 = t̃

(i)
a − i. Denote this solution as t̃− i.

Comparing the last formula for Yi(x) with the formula (6.20) for Xi(x, t, z̄, ᾱ), we have

Xi

(
x, t̃− i,−z̄ − l̄ + 1̄, ᾱ

)
= Yi(x+ i− 1). (6.30)

Let Ě1(x), . . . , Ěn(x) be the coefficients of the fundamental difference operator SW of the
space W :

SW = Tn +
n∑

i=1

Ěi(x)T
n−i.

For each i = 1, . . . , n, we have

Ěi(x) =
∑

1≤i1<···<ij≤n

Yi1(x+ i1 − 1)Yi2(x+ i2 − 2) · · ·Yij (x+ ij − j). (6.31)

Comparing formulas (6.21), (6.31), and (6.30), we get Ẽi

(
x, t̃ − i,−z̄ − l̄ + 1̄, ᾱ

)
= Ěi(x).

This, together with Theorem 6.6, proves the following:

Proposition 6.10. Let W be an XXX-admissible space of quasi-exponentials W with the differ-
ence data

(
ᾱ, µ̄′;−z̄, λ̄′

)
. Let vW be the Bethe vector corresponding to W . Write the fundamental

difference operator SW of the space W in the following form:

SW =
∞∑
a=0

x−aEa(T ),

where E1(T ), E2(T ), . . . are some polynomials in T . Then we have

G
⟨n,k⟩
i

(
−z̄ − l+ 1̄, ᾱ

)
vW = gWi vW ,

where

gWi = − 1

αi
Resu=αi

E2(u)∏n
j=1(u− αi)

+

n∑
j=1
j ̸=i

αjmimj

αi − αj
− m2

i

2
.
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6.6 Quotient difference operator and duality for trigonometric Gaudin
and dynamical Hamiltonians

Fix a pair (l,m) like in the previous section. Let the data
(
z̄, λ̄; ᾱ, µ̄

)
be like in Section 6.3.

Let V be a Gaudin admissible space of quasi-polynomials with the data
(
z̄, λ̄; ᾱ, µ̄

)
.

Recall the maps T1 and T3, see formulas (2.15) and (4.6), respectively. Set W = T1(T3(V )).
Then W is a space of quasi-exponentials with the difference data

(
ᾱ, µ̄′;−z̄, λ̄′

)
. In this section,

we will relate the map V 7→ W = T1(T3(V )) with the (glk, gln)-duality of the trigonometric
Gaudin and dynamical Hamiltonians.

We will need the following lemma.

Lemma 6.11. For generic ᾱ, z̄, the common eigenspaces of the trigonometric dynamical Hamil-

tonians G
⟨n,k⟩
1 (z̄, ᾱ), . . . , G

⟨n,k⟩
n (z̄, ᾱ) in Pkn are one-dimensional.

Proof. For every monomial p ∈ Pkn, we have
(
e
⟨n⟩
ii

)
(a)
p = ma

i (p)p for some ma
i (p) ∈ Z. More-

over, if p ̸= p′, there exist i, a such that ma
i (p) ̸= ma

i (p
′). Thus, if z1, . . . , zk are linearly inde-

pendent over Z, the common eigenspaces of the operators Ki =
∑k

a=1 za
(
e
⟨n⟩
ii

)
(a)

, i = 1, . . . , n,

in Pkn are one-dimensional. Therefore, the common eigenspaces of the operators G
⟨n,k⟩
1 (z̄, ᾱ),

. . . , G
⟨n,k⟩
n (z̄, ᾱ) in Pkn are one-dimensional provided that z1, . . . , zk are sufficiently large posi-

tive numbers linearly independent over Z. Hence, the common eigenspaces for generic ᾱ, z̄ are
one-dimensional. ■

Let vV ∈ Pkn[l,m] be the Bethe vector corresponding to V , see Section 6.3. Assume
that vV ̸= 0. Then the vector vV is an eigenvector of the trigonometric Gaudin Hamilto-

nians H
⟨k,n⟩
1 (ᾱ, z̄ + l), . . . ,H

⟨k,n⟩
n (ᾱ, z̄ + l). Denote the associated eigenvalues as hV1 , . . . , h

V
k ,

respectively.
Assume that the spaceW = T1(T3(V )) is XXX-admissible. Let vW ∈ Pkn[l,m] be the Bethe

vector corresponding to W , see Section 6.5. Assume that vW ̸= 0. Then the vector vW is an

eigenvector of the trigonometric dynamical Hamiltonians G
⟨n,k⟩
1

(
−z̄− l+ 1̄, ᾱ

)
, . . . , G

⟨n,k⟩
n

(
−z̄−

l+ 1̄, ᾱ
)
. Denote the associated eigenvalues as gW1 , . . . , gWn , respectively.

Theorem 6.12. The following holds:

hVi = −gWi , i = 1, . . . , n. (6.32)

Before proving the theorem, let us discuss how it explains the relation between the map
V 7→ W = T1(T3(V )) and the (glk, gln)-duality. By Proposition 6.2, for each i = 1, . . . , n, we
have

G⟨n,k⟩
n

(
−z̄ − l+ 1̄, ᾱ

)
vV = −H⟨k,n⟩

i (ᾱ, z̄ + l)vV = −hVi vV . (6.33)

Therefore, starting with the space V and the corresponding vector vV , we have two different
ways to obtain a common eigenvector of the trigonometric dynamical Hamiltonians. First, by
the (glk, gln)-duality, vV is itself a common eigenvector of the dynamical Hamiltonians, see
formula (6.33). Second, the map V 7→ W = T1(T3(V )) gives the vector vW . Theorem 6.12 and
Lemma 6.11 assure that for generic z̄, ᾱ, these two eigenvectors are the same up to a constant
multiple.

Indeed, comparing formulas (6.32) and (6.33), we have

G⟨n,k⟩
n

(
−z̄ − l+ 1̄, ᾱ

)
vV = gWi vV ,

which means that the vectors vV and vW belong to the same eigenspace. Then Lemma 6.11
implies that vW is proportional to vV .
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Proof of Theorem 6.12. Denote U = T3(V ) ∈ E
(
ᾱ, µ̄; z̄ + λ̄′1, λ̄

)
. By Lemma 4.2, the funda-

mental difference operator SU = TM +
∑M

i=1 bi(x)T
M−i of U has rational coefficients b1(x), . . . ,

bM (x), which are regular at infinity. Therefore, there exist polynomials B0(u), B1(u), B2(u), . . .
such that

SU =
∞∑
a=0

x−aBa(T ). (6.34)

Moreover, Lemma 4.2 gives an explicit formula for the polynomial B0(x):

B0(u) = pᾱ,µ̄(u) =

n∏
i=1

(u− αi)
mi . (6.35)

Consider the regularized fundamental difference operator S̄U = qz̄,λ̄(x)SU of U , where qz̄,λ̄(x)

=
∏k

a=1(x − za − la), see Section 4. Since deg qz̄,λ̄(x) = k, the coefficients b̄1(x), . . . , b̄M (x) in

the expansion S̄U = TM +
∑M

i=1 b̄i(x)T
M−i are polynomials in x of degree at most k.

Define numbers Aia, i = 1, . . . ,M , a = 1, . . . , k by S̄U =
∑M

i=1

∑k
a=1Aiax

aT i. Then we have

SU =
1∏k

a=1(x− za − la)

M∑
i=1

k∑
a=1

Aiax
aT i. (6.36)

Denote
∑k

a=1(za + la) = Z. Comparing formulas (6.34) and (6.36), we get

B0(u) =
M∑
i=1

Ai,ku
i, B1(u) =

M∑
i=1

(Ai,k−1 + ZAi,k)u
i,

B2(u) =

M∑
i=1

(
Ai,k−2 + ZAi,k−1 + Z2Ai,k

)
ui. (6.37)

Let D̄V be the regularized fundamental differential operator of V . Since U = T3(V ), by
Theorem 4.3, we have

D̄V =
M∑
i=1

k∑
a=1

Aiax
i

(
x
d

dx

)a

. (6.38)

Let DV be the fundamental differential operator of V . We have D̄V = pᾱ,µ̄(x)
(
xkDV

)
, where

pᾱ,µ̄(x) =
∏n

i=1(x− αi)
mi , see Section 4. Write

xkDV =

(
x
d

dx

)k

+

k∑
a=1

βa(x)

(
x
d

dx

)k−a

.

Then formula (6.38) gives

βa =

∑M
i=1Ai,k−ax

i∏n
i=1(x− αi)mi

, a = 1, . . . , k. (6.39)

By Proposition 6.5, we have

hVi =
1

αi
Resx=αi

(
1

2
β21(x)− β2(x)

)
+
m2

i

2
−mi. (6.40)
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Using formulas (6.37), (6.35), and (6.39), one can check

Resx=αi

(
1

2
β21(x)− β2(x)

)
= Resu=αi

(
1

2

B2
1(u)

B2
0(u)

− B2(u)

B0(u)

)
.

Therefore, formula (6.40) gives

hVi =
1

αi
Resu=αi

(
1

2

B2
1(u)

B2
0(u)

− B2(u)

B0(u)

)
+
m2

i

2
−mi. (6.41)

Consider the space W = T1(U) ∈ E
(
ᾱ, µ̄′;−z̄, λ̄′

)
. We have

n∏
i=1

(T − αi)
mi+1 = S‡

WSU , (6.42)

where the involutive automorphism (·)‡ is defined in formula (5.3).

The fundamental difference operator SW of W can be written in the form

SW =
∞∑
a=0

x−aEa(T ).

Substituting this into formula (6.42), we have

n∏
i=1

(T − αi)
mi+1 =

( ∞∑
a=0

Ea(T )(−x)−a

)( ∞∑
a=0

x−aBa(T )

)
.

Writing the right hand side of the last formula in the form
∑∞

a=0 x
−aPa(T ) with some poly-

nomials P0(x), P1(x), P2(x), . . . and comparing it to the left hand side, we see that Pa(u) = 0
for all a ≥ 1, and

E0(u)B0(u) = P0(u) =

n∏
i=1

(u− αi)
mi+1. (6.43)

From P1(u) = 0, we get

E0(u)B1(u)− E1(u)B0(u) = 0. (6.44)

From P2(u) = 0, we get

E2(u)B0(u) + E0(u)B2(u) + uE′
1(u)B0(u)− uE′

0(u)B1(u)− E1(u)B1(u) = 0. (6.45)

In the last formula we used that for every polynomial P (u), we have

P (T )x−1 = x−1P (T )− x−2TP ′(T ) +
∑
a≥3

x−aP̃a(T )

for some polynomials P̃3(u), P̃4(u), . . . .

Using relations (6.44) and (6.45), one can check

1

2

B2
1(u)

B2
0(u)

− B2(u)

B0(u)
= −

(
1

2

E2
1(u)

E2
0(u)

− E2(u)

E0(u)

)
+ u

(
E1(u)

E0(u)

)′
.
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Therefore, formula (6.41) gives

hVi = − 1

αi
Resu=αi

(
1

2

E2
1(u)

E2
0(u)

− E2(u)

E0(u)

)
+Resu=αi

(
u

(
E1(u)

E0(u)

)′)
+
m2

i

2
−mi. (6.46)

Let gW1 , . . . , gWn be the eigenvalues of the trigonometric dynamical Hamiltonians G
⟨n,k⟩
1

(
−z̄−

l + 1̄, ᾱ
)
, . . . , G

⟨n,k⟩
n

(
−z̄ − l + 1̄, ᾱ

)
, respectively, associated with the Bethe vector vW . By

Proposition 6.10, we have

gWi = − 1

αi
Resu=αi

E2(u)∏n
j=1(u− αi)

+

n∑
j=1
j ̸=i

αjmimj

αi − αj
− m2

i

2
. (6.47)

We will use again [4, Proposition B.1], which gives the following explicit formula for the
quotient E1(u)/

∏n
i=1(u− αi):

E1(u)∏n
i=1(u− αi)

=

n∑
j=1

αjmj

αj − u
. (6.48)

From formulas (6.35) and (6.43), we get

E0(u) =

n∏
i=1

(u− αi). (6.49)

Using (6.48) and (6.49), we can rewrite (6.47) in the following way:

gWi =
1

αi
Resu=αi

(
1

2

E2
1(u)

E2
0(u)

− E2(u)

E0(u)

)
− m2

i

2
. (6.50)

Using (6.48) and (6.49) again, we compute

1

αi
Resu=αi

(
u

(
E1(u)

E0(u)

)′)
= mi. (6.51)

Comparing formulas (6.46), (6.50), and (6.51), we get (6.32). Theorem 6.12 is proved. ■

6.7 Non-reduced data

In the previous section, we related the quotient difference operator and the (glk, gln)-duality
of the trigonometric Gaudin and dynamical Hamiltonians acting on the space Pkn[l,m], where
l = (l1, . . . , lk) andm = (m1, . . . ,mn) are such that la ̸= 0, a = 1, . . . , k andmi ̸= 0, i = 1, . . . , n.
In this section, we are going to extend this result to all nontrivial subspaces Pkn[l,m], that is,
we are going to include the cases when some la, mi are zero.

Fix l = (l1, . . . , lk) ∈ Zk
≥0. For each a = 1, . . . , k, let qa(x) be a polynomial of degree la such

that qa(0) ̸= 0. Fix complex numbers z1, . . . , zk such that za − zb /∈ Z if a ̸= b. Denote by V the
space spanned by the functions xzaqa(x), a = 1, . . . , k.

Define

V red =
k∏

a=1
la=0

(
x
d

dx
− za

)
V.

Denote k′ = dimV red. Fix α ∈ C∗. Let (e1 > · · · > ek) be the sequence of exponents of V at α,
and let

(
ered1 > · · · > eredk′

)
be the sequence of exponents of V red at α.
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Lemma 6.13. Define a partition µ = (µ1, µ2, . . . ) by e
red
a = k′+µa−a, a = 1, . . . , k′, µk′+1 = 0.

Then ea = k + µa − a, a = 1, . . . , k.
Conversely, if a partition µ is such that ea = k + µa − a, a = 1, . . . , k, then µk′+1 = 0 and

ereda = k′ + µa − a, a = 1, . . . , k′.

Proof. It is enough to prove the lemma for the case when l1 = 0, and l2, . . . , lk are not zero.
Let DV and DV red be the monic linear differential operators of order k and k − 1, respectively,
annihilating V and V red, respectively. Then

xkDV = xk−1DV red

(
x
d

dx
− z1

)
. (6.52)

Define functions b1(x), . . . , bk(x), b
red
1 (x), . . . , bredk−1(x) by

xkDV =
k∑

a=0

ba(x)

(x− α)a

(
x
d

dx

)k−a

,

xk−1DV red =

k−1∑
a=0

breda (x)

(x− α)a

(
x
d

dx

)k−1−a

.

Using formulas (3.2), (4.4), and (4.5), one can check that b1(x), . . . , bk(x), b
red
1 (x), . . . , bredk−1(x)

are regular at α. Define polynomials I(r) and Ired(r) by

I(r) =
k∑

a=1

ba(α)α
k−ar(r − 1)(r − 2) · · · (r − k + a+ 1),

Ired(r) =
k−1∑
a=1

breda (α)αk−1−ar(r − 1)(r − 2) · · · (r − k + a+ 2).

Notice that {e1, . . . , ek} is the set of roots of the polynomial I(r). Indeed, substituting a series∑∞
i=0Ai(x− α)i+r into the differential equation DV f = 0, and looking at the coefficient for the

lowest power of (x − α), we get I(r) = 0. Similarly,
{
ered1 , . . . , eredk′

}
is the set of roots of the

polynomial Ired(r). The polynomials I(r) and Ired(r) are called the indicial polynomials of the
differential equations DV f = 0 and DV redf = 0, respectively.

Using formula (6.52), we obtain the following relations:

ba(x) = breda (x)− z1(x− α)breda−1(x), a = 1, . . . , k, (6.53)

where we assume that bredk (x) = 0. Relations (6.53) imply ba(α) = breda (α), a = 1, . . . , k.
Since DV and DV red are monic, we also have b0(x) = bred0 (x) = 1. Therefore, I(r) = rIred(r−1),
which implies the lemma. ■

Let {α1, . . . , αn} be a set including all non-zero singular points of V . Assume that αi ̸= αj

if i ̸= j, and αi ̸= 0 for all i = 1, . . . , n. Suppose that for each i = 1, . . . , n, the sequence of
exponents of V at αi is given by

(k, k − 1, . . . , k −mi + 1, k −mi − 1, k −mi − 2, . . . , 1, 0)

for some mi ∈ Z, 0 ≤ mi ≤ k.
Define a sequence of partitions λ̄ =

(
λ(1), . . . , λ(k)

)
by λ(a) = (la, 0, 0, . . . ), a = 1, . . . , k.

Define a sequence of partitions µ̄ =
(
µ(1), . . . , µ(n)

)
by µ(i) = (1, 1, . . . , 1, 0, 0, . . . ) with mi ones,

i = 1, . . . , n. Define sequences λ̄red, µ̄red, z̄red, and ᾱred by removing all zero partitions from
the sequences λ̄, µ̄, and removing corresponding numbers from the sequences z̄ = (z1, . . . , zn),
ᾱ = (α1, . . . , αn). We will call the data

(
z̄, λ̄; ᾱ, µ̄

)
reduced if

(
z̄, λ̄; ᾱ, µ̄

)
=
(
z̄red, λ̄red; ᾱred, µ̄red

)
,

and non-reduced otherwise.
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Proposition 6.14. V red is a space of quasi-polynomials with the data
(
z̄red, λ̄red; ᾱred, µ̄red

)
.

Proof. Recall that V is spanned by the functions xzaqa(x), a = 1, . . . , k, where q1(x), . . . , qk(x)
are polynomials such that deg qa = la, and qa(0) ̸= 0, a = 1, . . . , k. Then the space V red is
spanned by the functions xza q̃a(x), a = 1, . . . , k, where

q̃b(x) =

k∏
a=1
la=0

(
x
d

dx
+ zb − za

)
qb(x). (6.54)

If lb ̸= 0, then for each a in the product on the left hand side of formula (6.54), we have
zb − za /∈ Z, which yields deg q̃a(x) = deg qa(x), a = 1, . . . , k. If lb = 0, then formula (6.54)
implies q̃b(x) = 0. This shows that the space V red has a basis{

xza q̃a(x) | za is present in z̄red
}
,

and the degrees of the polynomials q̃a(x) appearing in this basis correspond to the sequence λ̄red.
Notice that ᾱred is the set of all singular points of V , and the sequences of exponents of V

at these points correspond to the sequence µ̄red. Therefore, the proposition follows from Lem-
ma 6.13. ■

Recall the maps T1 and T3, see (2.15) and (4.6), respectively. Set W red = T1

(
T3

(
V red

))
.

ThenW red is a space of quasi-exponentials with the difference data
(
ᾱred,

(
µ̄red

)′
;−z̄red,

(
λ̄red

)′)
.

We are going to construct a space W such that

W red =

n∏
i=1
mi=0

(T − αi)W.

For this we will need the following lemma:

Lemma 6.15. Fix α, β ∈ C∗, and a polynomial p(x). Assume that α ̸= β. Then there exists
a unique polynomial p̃(x) such that deg p̃(x) = deg p(x), and

(T − β)αxp̃(x) = αxp(x). (6.55)

Proof. Relation (6.55) is the same as relation

αp̃(x+ 1)− βp̃(x) = p(x). (6.56)

Let a0, . . . , am be the coefficients of p(x): p(x) = amx
m+am−1x

m−1+· · ·+a1x+a0. Substituting
a polynomial p̃(x) = ãmx

m + ãm−1x
m−1 + · · · + ã1x + ã0 into equation (6.56) and comparing

coefficients for powers of x, we get

ãm−i(α− β) = am−i − α

i−1∑
j=0

(
m− j

m− i

)
ãm−j , i = 0, . . . ,m,

which is a recursion that allows to find the numbers ã1, . . . , ãn uniquely. ■

For any β ∈ C∗, define a linear operator (T − β)−1 on the space spanned by all functions of
the form αxp(x), where α ∈ C∗, α ̸= β, and p(x) is a polynomial, by the formula

(T − β)−1αxp(x) = αxp̃(x),

where p̃(x) is the polynomial from Lemma 6.15.
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Let 1 ≤ i1 < i2 < · · · < il ≤ n be such that mi = 0 if i = is for some s = 1, . . . , l, and mi ̸= 0
otherwise. Denote by W the space spanned by the functions

(T − αi1)
−1(T − αi2)

−1 . . . (T − αil)
−1f, f ∈W red, and αx

i1 , . . . , α
x
il
.

Let SW be the fundamental difference operator ofW . Let SW red be the fundamental difference
operator of W red. Then we have

SW = SW red

n∏
i=1
mi=0

(T − αi). (6.57)

Together with Lemma 2.5, this shows that the order of αi1 , . . . , αil in the definition of W does
not matter.

Recall that W red is a space of quasi-exponentials with the difference data
(
ᾱred,

(
µ̄red

)′
;

−z̄red,
(
λ̄red

)′)
. Then the equality deg p̃(x) = deg p(x) in Lemma 6.15 implies that the space W

has a basis of the form{
αx
i ri(x), i = 1, . . . , n

}
,

where r1(x), . . . , rn(x) are polynomials such that deg ri(x) = mi, i = 1, . . . , n.
Fix z ∈ C. Let (ẽ1 > · · · > ẽn) be the sequence of discrete exponents of W at z. Denote

n′ = n − l = dimW red. Let
(
ẽred1 > · · · > ẽredn′

)
be the sequence of discrete exponents of W red

at z.

Lemma 6.16. Define a partition λ = (λ1, λ2, . . . ) by ẽ
red
i = n′+λi− i, i = 1, . . . , n′, λn′+1 = 0.

Then ẽi = n+ λi − i, i = 1, . . . , n.
Conversely, if a partition λ is such that ẽi = n + λi − i, i = 1, . . . , n, then λn′+1 = 0 and

ẽredi = n′ + λi − i, i = 1, . . . , n′.

Proof. It is enough to prove the Lemma for the case m1 = 0, and m2, . . . ,mn are not zero.
Let f1(x), . . . , fn−1(x) be a basis of W red such that for each i = 1, . . . , n − 1, T jfi(z) = 0,

j = 0, . . . , ẽredi − 1, and T ẽredi fi(z) ̸= 0. Set

f̃i(x) = (T − α1)
−1fi(x)− αx−z

1 (T − αi)
−1fi(z), i = 1, . . . , n.

Then f̃i(x) ∈W , (T − α1)f̃i(x) = fi(x), and f̃i(z) = 0, i = 1, . . . , n− 1.
Since T j − αj

1 =
(∑j−1

s=0 α
j−1−s
1 T s

)
(T − α1), we have

T j f̃i(x) = αj
1f̃i(x) +

j−1∑
s=0

αj−1−s
1 T sfi(x).

The last relation implies T j f̃i(z) = 0, j = 0, . . . , ẽredi , and T ẽredi +1f̃i(z) = T ẽredi fi(z) ̸= 0.
Since {αx

1 , f̃1(x), . . . , f̃n−1(x)} is a basis of W , the sequence of discrete exponents of W at z
is given by(

ẽred1 + 1 > · · · > ẽredn−1 + 1 > 0
)
,

which implies the lemma. ■

Notice that for each a = 1, . . . , k, the sequence of discrete exponents of W red at −za is given
by

(n′, n′ − 1, . . . , n′ − la + 1, n′ − la − 1, . . . , 1, 0).
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Therefore, by Lemma 6.16, for each a = 1, . . . , k, the sequence of discrete exponents ofW at −za
is given by

(n, n− 1, . . . , n− la + 1, n− la − 1, . . . , 1, 0).

Consider the space Pkn[l,m], where l = (l1, . . . , lk) and m = (m1, . . . ,mn). One can repeat all
constructions in Section 6.3 for the space V . Assume that V satisfies conditions similar to those
for a Gaudin admissible space in Section 6.3. Then we obtain a vector vV ∈ Pkn[l,m] such that

H
⟨k,n⟩
i (ᾱ, z̄ + l)vV = hVi vV , i = 1, . . . , n

for some numbers hV1 , . . . , h
V
n . We will assume that vV ̸= 0.

Similarly, one can repeat all constructions in Section 6.5 for the space W . Assume that W
satisfies conditions similar to those for an XXX-admissible space in Section 6.5. Then we obtain
a vector vW ∈ Pkn[l,m] such that

G
⟨n,k⟩
i

(
−z̄ − l+ 1̄, ᾱ

)
vW = gWi vW , i = 1, . . . , n

for some numbers gW1 , . . . , gWn . We will assume that vW ̸= 0.

Theorem 6.17. The following holds:

hVi = −gWi , i = 1, . . . , n.

Proof. Define functions β0(x), . . . , βk(x), β
red
0 (x), . . . , βredk′ (x) by

xkDV =

k∑
a=0

βa(x)

(
x
d

dx

)k−a

, xk
′
DV red =

k′∑
a=0

βreda (x)

(
x
d

dx

)k′−a

.

The eigenvalues hV1 , . . . , h
W
n can be expressed through β1(x), β2(x) using the same formula

as in the case of reduced data, see (6.9). For convenience, we repeat this formula here:

hVi =
1

αi
Resx=αi

(
1

2
β21(x)− β2(x)

)
+
m2

i

2
−mi.

Define also the following numbers:

hV,redi =
1

αi
Resx=αi

(
1

2

(
βred1

)2
(x)− βred2 (x)

)
+
m2

i

2
−mi.

Suppose that l1 = 0, and l2, . . . , lk are not zero. Relation (6.52) implies

β1 = βred1 − z1, β2 = βred2 − z1β
red
1 .

Using the last two formulas, it is easy to check that

Resx=αi

(
1

2
β21(x)− β2(x)

)
= Resx=αi

(
1

2

(
βred1

)2
(x)− βred2 (x)

)
. (6.58)

By induction, formula (6.58) holds for any l1, . . . , lk. Therefore, we have hVi = hV,redi , i = 1,
. . . , n.

Define polynomials E0(u), E1(u), E2(u), . . . , E
red
0 (u), Ered

1 (u), Ered
2 (u), . . . by

SW =

∞∑
a=0

x−aEa(T ), SW red =

∞∑
a=0

x−aEred
a (T ).
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The eigenvalues gW1 , . . . , gWn can be expressed through E1(u), E2(u) using the same formula
as in the case of reduced data, see (6.50). For convenience, we repeat this formula here:

gWi =
1

αi
Resu=αi

(
1

2

E2
1(u)

E2
0(u)

− E2(u)

E0(u)

)
− m2

i

2
.

Define also the following numbers

gW,red
i =

1

αi
Resu=αi

(
1

2

(
Ered

1 (u)
)2(

Ered
0 (u)

)2 − Ered
2 (u)

Ered
0 (u)

)
− m2

i

2
.

Using relation (6.57), we have

Ea(u) = Ered
a (u)

n∏
i=1
mi=0

(u− αi),

which implies gWi = gW,red
i , i = 1, . . . , n.

In the proof of Theorem 6.12, we already checked that hV,redi = −gW,red
i for all i such that

mi ̸= 0. If mi = 0, then hV,redi = gW,red
i = 0. Therefore, we have hVi = −gWi , i = 1, . . . , n.

Theorem 6.17 is proved. ■

A Discrete Wronskian identities

In this section, we collect discrete Wronskian identities that were used in the paper. Identities
(A.1)–(A.4) with proofs can also be found in [8, Appendix B].

Recall that T is the shift operator defined by Tf(x) = f(x+1). Recall that for any functions
f1, . . . , fn, the discrete Wronskian Wr(f1, . . . , fn) is the determinant of the matrix

(
T j−1fi

)n
i,j=1

.

Denote T (n)f = f(Tf)
(
T 2f

)
· · ·
(
Tn−1f

)
. We have the following obvious relations:

Wr(hf1, . . . , hfn) =
(
T (n)h

)
Wr(f1, . . . , fn) for any h, (A.1)

Wr(1, f1, . . . , fn) = Wr((T − 1)f1, . . . , (T − 1)fn). (A.2)

Assume that f1 ̸= 0. Combining formulas (A.1) and (A.2), we get

Wr(f1, f2, . . . , fn) =
(
T (n)f1

)
Wr

(
(T − 1)

f2
f1
, . . . , (T − 1)

fn
f1

)
. (A.3)

Proposition A.1. For any functions f1, . . . , fn, h1, . . . , hm, where f1 ̸= 0, the following holds:

Wr(Wr(f1, . . . , fn, h1), . . . ,Wr(f1, . . . , fn, hm))

=
(
T (m−1)Wr(Tf1, . . . , T fn)

)
Wr(f1, . . . , fn, h1, . . . , hm). (A.4)

Proof. We will prove the proposition by induction on n. Let n = 1. Denote f1 = f . Using
formula (A.3), we compute

Wr(f, hi) =
(
T (2)f

)
Wr

(
(T − 1)

hi
f

)
=
(
T (2)f

)
(T − 1)

hi
f
, i = 1, . . . ,m.

Therefore,

Wr(Wr(f, h1), . . . ,Wr(f, hm)) =
(
T (m)T (2)f

)
Wr

(
(T − 1)

h1
f
, . . . , (T − 1)

hm
f

)
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=
(
T (m−1)Tf

)(
T (m+1)f

)
Wr

(
(T − 1)

h1
f
, . . . , (T − 1)

hm
f

)
=
(
T (m−1)Tf

)
Wr(h1, . . . , hm).

Assume that formula (A.4) is true for some n ≥ 1. For functions f1, . . . , fn+1, h1, . . . , hm, define
f̃i = (T − 1)(fi/f1), h̃j = (T − 1)(hj/f1), i = 2, . . . , n+ 1, j = 1, . . . ,m. Then we compute

Wr(Wr(f1, . . . , fn+1, h1), . . . ,Wr(f1, . . . , fn+1, hm))

=
(
T (m)T (n+2)f1

)
Wr
(
Wr
(
f̃2, . . . , f̃n+1, h̃1

)
, . . . ,Wr

(
f̃2, . . . , f̃n+1, h̃m

))
=
(
T (m)T (n+2)f1

)(
T (m−1)Wr

(
T f̃2, . . . , T f̃n+1

))
Wr
(
f̃2, . . . , f̃n+1, h̃1, . . . , h̃m

)
=
(
T (m−1)

[(
T (n+1)Tf1

)
Wr
(
T f̃2, . . . , T f̃n+1

)])
×
(
T (n+m+1)f1

)
Wr
(
f̃2, . . . , f̃n+1, h̃1, . . . , h̃m

)
=
(
T (m−1)Wr(Tf1, . . . , T fn+1)

)
Wr(f1, . . . , fn+1, h1, . . . , hm). (A.5)

Here, on the first step, we used formulas (A.1) and (A.3), on the second step, we used the
assumption hypothesis, on the third step, we used

T (m)T (n+2)f1 =
(
T (m−1)T (n+1)Tf1

)(
T (n+m+1)f1

)
,

and on the fourth step, we used formula (A.3) again.

Computation (A.5) proves the induction step finishing the proof of the proposition. ■
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