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Abstract. We study the difference analog of the quotient differential operator from [Tara-
sov V., Uvarov F., Lett. Math. Phys. 110 (2020), 3375-3400, arXiv:1907.02117]. Start-
ing with a space of quasi-exponentials W = (afp;;(z), ¢ =1,...,n,j = 1,...,n;), where
a; € C* and p;;(x) are polynomials, we consider the formal conjugate S"T,V of the quotient

difference operator Sy satisfying S = SwSw. Here, Sy is a linear difference operator
of order dim W annihilating W, and S is a linear difference operator with constant coef-
ficients depending on «; and degp;;(z) only. We construct a space of quasi-exponentials
of dimension ord S;BV, which is annihilated by Sxtv and describe its basis and discrete ex-
ponents. We also consider a similar construction for differential operators associated with
spaces of quasi-polynomials, which are linear combinations of functions of the form z*q(x),
where z € C and ¢(x) is a polynomial. Combining our results with the results on the bis-
pectral duality obtained in [Mukhin E., Tarasov V., Varchenko A., Adv. Math. 218 (2008),
216-265, arXivimath.QA /0605172], we relate the construction of the quotient difference op-
erator to the (gly, gl,,)-duality of the trigonometric Gaudin Hamiltonians and trigonometric
dynamical Hamiltonians acting on the space of polynomials in kn anticommuting variables.
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1 Introduction

1.1. Consider an operator T acting on functions of a variable x by the rule (T'f)(x) = f(x +1).
An operator S of the form S = Zf\io a;(x)TN~?, where ag(x),...,an(x) are complex valued
functions of = and ag(z) # 0, is called a linear difference operator of order N. Say that the
operator S is monic if ag(z) = 1. Let us write ord(S) for the order of S.

Let us fix a branch of In z and write o for e for any non-zero complex number a. A quasi-
exponential is a function of the form op(x) for some non-zero o and polynomial p(x). We will
say that a complex vector space W is a space of quasi-exponentials if W has a basis consisting
of quasi-exponentials. Let W be a space of quasi-exponentials with a basis {afp;j(x), i = 1,
...,n, j=1,...,n;}, where the numbers «q, ..., a, are distinct, and p;; are some polynomials.
Set d; = max; (deg Dij (:U)) It can be shown that there exists a unique monic linear divfference
operator Sy of order dim W annihilating W and a monic linear difference operator Sy, such
that

n

[T — 0+ = Sy Sw,
=1

see Sections 2.1-2.4 for details. We will call Sy the quotient difference operator.
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Write Sy = Y27, a;(x)T™ " and denote T— = T~'. The formal conjugate S;V of Sy is
a linear difference operator acting on a function f(x) as follows:

m

(St 1) (@) = ST ag(x) £ ().

i=1

In Section 2.4, we construct a vector space of functions Q(W') of dimension ord (S"tv) =m
such that SI];V annihilates Q(W). We prove that (W) has a basis of the form

{o “qij(x), i =1,...,n, 5 =1,...,1;}, ¢j € Clz],

and describe the degrees of the polynomials ¢;;(x).

For a space of quasi-exponentials W and a point z € C, we define the discrete exponents
of W at z associated with the operator 1" and the T'_-discrete exponents of W at z associated
with the operator T_. In Sections 2.5 and 2.6, we compute the T_-discrete exponents of the
space Q(W) at the point z — 1 using the discrete exponents of W at the point z.

1.2. In Section 2.7, we introduce spaces of quasi-exponentials with difference data (o?, sz, 5\),
where a@ = (aq,...,an), 2 = (21,...,2k) are sequences of distinct complex numbers, and g =
(,u(l), - ,,u(”)), A= ()\(1), ey /\(k)) are sequences of partitions. A space W with the difference
data (64, i Z, 5\) has a basis of the form {o]p;;j(x)}, and for each i =1,...,n, the partition pld)
describes the degrees of the polynomials p;j(x) with given i. The numbers z1,. .., 2, are singular
points (not all) of W, and for each a = 1, ..., k, the partition @) describes the discrete exponents
of W at the point z,. We denote the set of all spaces of quasi-exponentials with the fixed
difference data as 8(@, s Z, 5\).

Applying the results of Sections 2.4-2.6, we define a map

T &(a,myz,A) = &(a, is1 -z, X))

by sending the space W € 8(07, i Z, 5\) to the image of the space Q(W) under the map f(z) —
f(—x). Here, the sequences fi’, A" are obtained from fi, A by replacing all partitions ,u(i), @) by
their conjugate, (u(i)),, (/\(“))/, and 1 —z=(1—z,...,1 — z), see details in Section 2.7.

1.3. Besides quasi-exponentials, we consider quasi-polynomials, which are functions of the
form x*p(x), where z € C and p(z) is a polynomial. We introduce the notion of a space of
quasi-polynomials with data (2, \; @, ﬂ), which is analogous to the notion of a space of quasi-
exponentials with difference data. Denote the set of all spaces of quasi-polynomials with the
fixed data (2, X; d,ﬂ) as 9’(2, X @, ﬂ). We introduce an analog of the map ¥ for the spaces of
quasi-polynomials:

To: P(z, N a,0) »P(L—z—- N = A, Nsa, 1),
where 1 — 2 — Aj — X, = (1— 21 = A% = (AD) 01— 2 = A — (A®))) and AP, (A0
are the first components of the partitions \(®), ()\(i))/. The map Ty provides a space of quasi-
polynomials, which is annihilated by the formal conjugate of the quotient differential operator,
an analog of the quotient difference operator introduced above.

The map T9 is constructed as the counterpart of the map ¥; under the bispectral duality
introduced and studied in paper [6], see also Section 4. More precisely, the bispectral duality
establishes a bijection

Ty P(z, M@, fi) — &(a, fi;, 2 + N1, A),

where Z + M = (21 + (AW)], ...,z + (A®)]). We define T, = T5%,T5 and prove that for
a space of quasi-polynomials V', the space To(V') is annihilated by the formal conjugate DI/
quotient differential operator Dy (see Theorem 3.5).
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1.4. To study relations between the quotient difference operator and the quotient differential
operator, we use the notion of pseudo-differnce operators, see Section 5. Let V be a space
of quasi-polynomials with the data (2, \; @, ﬂ), and denote W = T1(%3(V)). To the spaces V
and W, one can associate pseudo-difference operators 8y and Sy called the fundamental pseudo-
difference operators of V' and W, respectively. Then W = %;(T3(V)) implies

Sy =871,

see Theorem 5.2.
For convenience of a reader, we depict the relations between €1, T2, and T3 on the following
commutative diagram:

k T

P(1—z-XN — A, Nsa, 1)

1.5. Our study of the map ¥; is motivated by the (gl, gl,,)-duality between the trigonometric
Gaudin Hamiltonians Hy, ..., H, € U(gl;)®" and the trigonometric dynamical Hamiltonians
Gi,...,G, € U(gl,)®*, see [1, 14], and Section 6.1. Both U(gl,)®™ and U(gl,)®* act on the
space Br, of polynomials in k times n anticommuting variables &, a = 1,...,k, i =1,...,n.
Let p(H1), ..., p(Hy) be the images of the trigonometric Gaudin Hamiltonians in End (%, ), and
let p(G1),...,p(Gy) be the images of the trigonometric dynamical Hamiltonians in End(PB,).
It is known that

p(H;) = —p(G;), i=1,...,n, (1.1)
see [12] and Proposition 6.2. In particular, any common eigenvector of Hy, ..., H, in Py, is
a common eigenvector of G1,...,Gy,, and vice versa.

Common eigenvectors of the Hamiltonians can be found using the Bethe ansatz method. For
an “admissible” space of quasi-polynomials V € T(Z, \; @, ﬂ), the Bethe ansatz associates an
eigenvector vy of Hi,..., H, acting in Py, see [8] and Sections 6.2, 6.3 for details. Denote
the corresponding eigenvalues as hi,...,h)Y. Similarly, for an “admissible” space of quasi-
exponentials W € &(a,f/;1 — z — M|, \'), the Bethe ansatz associates an eigenvector vy of
Gi,...,G, acting in Py, see [8] and Sections 6.4, 6.5 for details. Denote the corresponding
eigenvalues as g}', ..., 9" . We will show that if W = T1(T3(V)), then

h'}/ = _gZVV’

see Theorems 6.12 and 6.17. This “matches” the (g, gl,,)-duality (1.1), so, using that for
generic z, &, the common eigenspaces of the Hamiltonians are one-dimensional, we conclude
that for such z, &, the vector vy is proportional to vy, see Sections 6.6, 6.7. Here and below,
when we say “for generic z, @”, we mean “for all Z, &, except, maybe, solutions of some algebraic
equation”.

The exchange of the trigonometric Gaudin and dynamical Hamiltonians under the (gly, gl,,)-
duality is expected to be a part of the duality between the Bethe algebras of the trigonometric
Gaudin model and the XXX-type spin chain model. The Bethe algebra of the trigonometric
Gaudin model is a commutative subalgebra of the universal enveloping algebra U (g[k) of the loop
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algebra gf\(;c, see [3], and the Bethe algebra of the XXX-type spin chain model is a commutative
subalgebra of the Yangian Y (gl,,), see [4]. Both U(gfﬁﬁ) and Y'(gl,,) act on the space Py,. The
images of the trigonometric Gaudin Hamiltonians in End(B%,,) belong to the image of the Bethe
algebra of the trigonometric Gaudin model, and the images of the trigonometric dynamical
Hamiltonians in End (B, ) belong to the image of the Bethe algebra of the XXX-type spin chain
model. It is expected that the equality of the images of the Hamiltonians extends to the equality
of the images of the Bethe algebras. The corresponding result for the rational Gaudin model was
established in [11], where we developed and used the differential analogs of the results for the
quotient difference operator studied here. Therefore, the results of this paper can be considered
as the first steps in establishing the duality between the Bethe algebras of the trigonometric
Gaudin model and the XXX-type spin chain model.

The results of this work and our previous works [11, 12] are devoted to the (gly, gl,,)-duality
in quantum integrable models on the space B, of polynomials in anticommuting variables. The
parallel results for the space Py, of polynomials in commuting variables were obtained earlier,
see works [5, 6, 7, 13]. In particular, our map %7 0%3 is the Py -analog of the map T introduced
in [6].

1.6. Summary of the results.

1. For a space of quasi-exponentials W and the formal conjugate of the quotient difference
operator SYIT,V, we construct a space of quasi-exponentials Q(W) of dimension ord SI]:V anni-
hilated by S;EV We describe quasi-exponential basis of Q(W) and its T_-discrete exponents.
Our findings allow us to define the map ¥ between sets of spaces of quasi-exponentials
with difference data.

2. We prove that if W = T1(%3(v)), where T3 is the bispectral duality studied earlier in [6],
then for the fundamental pseudo-difference operators 8y and Sy of V' and W, respectively,
we have 8y = 8;' (Theorem 5.2).

3. We prove that €9 = T3 12, %5 provides the space of quasi-polynomials annihilated by the
quotient differential operator.

4. For the eigenvalues hY,...,hY of the trigonometric Gaudin Hamiltonians given by an
admissible space of quasi-polynomials V' with the data (E, 5\;64,;1) and the eigenvalues
aV,..., g% of the trigonometric dynamical Hamiltonians given by an admissible space
of quasi-exponentials W with the difference data (@, 7’;1 — z — Xj, X'), we show that if
W = T1(%T3(v)), then h) = —g¥ (Theorems 6.12 and 6.17).

1.7. Plan of the paper. The paper is organized as follows. In Section 2, we construct and
study the quotient difference operator, and define the map ¥;. In Section 3, we introduce the
spaces of quasi-polynomials with the data (Z, X\ @, ,a) and announce the existence of the map .
We recall the bispectral duality map T3 in Section 4. In Section 5, we study relations between
quotient differential and quotient difference operators using pseudo-difference operators and use
these relations to construct and study the map To. In Section 6, we consider the (gl gl,,)-duality
for the trigonometric Gaudin and dynamical Hamiltonians and relate it to the composition map
T1 0 T3. Identities for discrete Wronskian used in the paper are collected in Appendix A.

2 Quotient difference operator

The results of Sections 2.1-2.4 for difference operators are analogous to that of [11, Sections 6.1
6.4] for differential operators.
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2.1 Factorization of a difference operator

For any functions g1,...,gn, let

Wr(g1,...,9n) = det ((Tj_lgi)zjzl)
be their discrete Wronskian. Let Wr;(g1, ..., gn) be the determinant of the n x n matrix whose
j-th row is g;,Tg;, ... ,T”_’_lgj, T”_H'lgj, o TTgj.
Fix functions fi,..., f, such that Wr(f;,,..., fi,,) Z0forany 1 < i3 < -+ < ip, < n. In
particular, the functions fi,..., f, are linearly independent.

Lemma 2.1. There exists a unique monic linear difference operator S =T™ + 31" a; T of
order n such that Sf; = 0,1 =1,...,n. Moreover, the coefficients a1,...,a, of the difference
operator S are given by the formula

iwri(fl)' 7fn)

a; = (—1 , 1=1,...,n, 2.1
i = )Wr(fl,...,fn) (2.1)
and for any function g, we have
S’g: r(f17 7f’rl7g). (22)
Wr(f1,..., fn)
Proof. Solving
i TH .. TUAN [an ™ fh
fo Tfn .. TV ') \a T fy,
for ai,...,a, by Cramer’s rule yields formula (2.1), and this solution is unique. Formula (2.2)
follows from the last row expansion of the determinant in the numerator. |

Proposition 2.2. The difference operator S can be written in the following form.:
1 1 n 1
S:<T_91<$+>) <T_92@3+>>...<T_f7<33+>), (2.3)
91() 92(x) gn()

where g = fn, and

g = Wr(fn;fn—la v >fl)
! Wr(fnafnflv--'vfiJrl),

i=1,...,n—1. (2.4)

Proof. Denote by S; the difference operator in the right-hand side of (2.3). By uniqueness of
the operator S stated in Lemma 2.1, it is sufficient to prove that S1f; =0 forall i =1,...,n.
We will prove it by induction on n.

If n =1, then g1 = f1, and S1f1 = (T — fi(x+1)/fi(x)) fi(x) = 0. Let Sy be the monic linear
difference operator of order n — 1 such that Saof; =0, ¢ = 2,...,n. By induction assumption,

Since S1 = (T — g1(z+1)/g1(x))S2, we have S1f; =0, ¢ = 2,...,n. Formulas (2.2) and (2.4)
yeild Sy f1 = g1, thus S1 f1 = 0 as well. |
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2.2 Formal conjugate difference operator

Denote T = T~'. Then (T_f)(z) = f(x —1). Let fi,..., fn, and S be like in the previous

section. Define the formal conjugate of S by the formula:
STh(x) = (T-)"h(x) + > _(T-)""*(ai(x)h(z)).
i=1

By Proposition 2.2, we have
ot = (T__W> <T__MM>...<T__W+U>_ (2.5)
gn(z) In-1(z) g1()
Define
hi -7 (Wr(flv BRI 7fi—17fi+17 BRI 7f7l)> )
Wr(f1,..., fn)
Proposition 2.3. We have STh; =0 for alli=1,...,n.

Proof. Since hy = (—=1)""'/gi(z + 1), formula (2.5) immediately gives STh; = 0. To prove

that ST annihilates hs, ..., h,, one can consider factorization (2.3) of S, where functions gi, ...,
gn are defined using a different order of functions fi,..., f,, see the proof of Proposition 6.3
in [11] for a differential analog of this argument. [

2.3 Quotient difference operator

Consider functions fi, fa,..., fn, h1,..., i such that Wr(g1,...,gm) # 0 for any subset {g1,
ey gm} of {f1, fa,. .., fnyh1,..., hi}. Let S and S be the monic linear difference operators of
order n and n + k annihilating fi, fo,..., f, and fi, fo,..., fn, b1, ..., hi, respectively. Then
there is a unique difference operator S such that S =38. Indeed, the existence of S can be
seen from the factorization formula (2.3), and the uniqueness follows from the long division
algorithm. We will call S the quotient difference operator.
Define functions ¢q, ..., ¢g by the formula

(Wr(fl, .. .,fn,hl, .. '7ha—17ha+17 PN ,hk)) (2 6)
Wr(fl,...,fn,hl,...,hk) ) ’

Proposition 2.4. We have ST¢, =0 for alla=1,... k.

Proof. Set hy = Shy, a = 1,... k. Formula (2.2) yields h; = Wr(f1,..., fa, hi)/Wr(f1,...,
fn). Using this and the Wronskian identities (A.1) and (A.4), it is easy to check that
— Wr(f17' ")fTwhila-‘ 'ahim)

Wr(f1,..., fn)

forany 1 <iy < --- < i, < k. In particular, Wr(fzil,,...,ﬁim)# Oforany 1 <iy < -+ <im,<k.
By Proposition 2.3, the functions

g)a:T Wr(illa"'7}~Ea—laﬁaj-17"~7ilk) 7 azl,...,k‘,
Wr(hl,...,hk)

¢a =T

WI‘(]NIZ'I,,...,]?LZ'M) (27)

vanish under the action of ST.
Taking {i1,...,im} ={1,...,a=1,a+1,... k} and {i1,...,in} = {1,..., k} in formula (2.7),
it is easy to see that ¢, = ¢4, a = 1,..., k. The proposition is proved. |

Let W and W be the vector spaces with the bases fi,..., f, and f1,..., fa, h1,..., by, Te-
spectively. We will call the span of ¢1, ..., ¢, the quotient conjugate space for the pair (I/V, W)
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2.4 Quotient difference operator and spaces of quasi-exponentials

Recall that a quasi-exponential is a function of the form o®p(z) for some non-zero e and a poly-
nomial p(z), and a space of quasi-exponentials is a vector space with a basis consisting of
quasi-exponentials. It is straightforward to check that if g1,..., g, are quasi-exponentials, then
Wr(g1,...,9m) = 0 if and only if gi,..., g are linearly dependent. Therefore, by Lemma 2.1,
for any space of quasi-exponentials W, there exists a unique monic linear difference operator Sy
of order dim W annihilating W. We will call Sy the fundamental difference operator of W. The
following lemma will be useful for us later.

Lemma 2.5. If for two spaces of quasi-exponentials W1 and Wa, we have Sw, = Sw,, then
Wi = Ws.

Proof. Let fi1,..., fn and hy, ..., h, be the quasi-exponential bases of W7 and Wa, respectively.
Using formula (2.2), for each i = 1,...,n, we have Wr(f1,..., fun, hi) = Wr(f1,..., fn)Sw, hi = 0.
Therefore, f1,..., fn, h; are linearly dependent for each i = 1,...,n, and Wy C Wy. Similarly,
one proves that Wi C Whs. [ |

In this paper, a partition p = (u1, g2, . . . ) is an infinite nonincreasing sequence of nonnegative
integers stabilizing at zero. Let p' = (u),ph,...) denote the conjugated partition, that is,

= #{j|p; > i}. In particular, pj equals the number of nonzero entries in p.

Fix nonzero complex numbers «aq, ..., a, and nonzero partitions ,u(l), el u(”). Assume that
a; # aj for i # j. For each i = 1,...,n, denote n; = (u(i))ll. Let W be a space of quasi-
exponentials with a basis

{afqij(z),i=1,...,n,j=1,...,n;},
where ¢;;(z) are polynomials such that degq;; = n; + ugi) — 7.

Denote p; = ,ugi) +n; = max; deg ¢g;; +1, and take W to be the span the functions o a?, ¢ = 1,

n,p=0,...,p;, — 1. Let Q(W) denote the quotient conjugate space for the pair (VV, W)

Let Sy be the monic linear difference operator of order dim W annihilating W. We will
say that Sy is the fundamental difference operator of W. On the other hand, the difference
operator S = [Ti-, (T —a;)Pi annihilates . Then there exists a difference operator Sy such that

S = Sy Sy, see Section 2.3. By Proposition 2.4, the difference operator SW annihilates Q(W).
Proposition 2.6. The space Q(W) has a basis of the form

{a;xqij(x) li=1,...,n,j= 1,...,;1@},
wheredeg(jij:ug) ( (1)) —7,1=1,. 7j:1,_,,,#§i),
Proof. Denote

Wr(W) = Wr(af,afz,. .. cafaPTl ot ol ,azxp"_l),

Wrij(/W) = Wr(...,a/f;,...).

The functions in the second line are the same except the function afacj is omitted.
For each i =1,...,n, set

di={ni+pl) —j j=1,...n}, di={0,1,2....p—1}\ds

Notice that the functions af:vl, i=1,...,n, 1 €df, complement the basis {afq;;(z), i =1,...,n,
j=1,...,n;} of W to a basis of W. Therefore, from the construction of the space Q(W), in
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particular, from formula (2.6), it follows that Q(W) is spanned by functions f;;, i = 1,...,n,
Jj € dj of the form

—

pi—1
fij = TW Z C'dSN/VTZS/\ ) s
W( s=j+1 W)

where Cj;s are complex numbers.
Using an induction similar to what we used in the proof of Lemma 6.5 in [11], we obtain the
following formulas:

n pi—1
Wr(W H (ozpl H o; S'> H (0 — a;)PiPs (2.8)
=1 1<i<j<n
n pi—1
Wr%] =rij(x H <a H ai‘sg> H (o — al)(mﬂszi)(pz/*éz/i)’
=1 s—1 1<i<l'<n

(1,8)7(i.)

where 7;;(z) is a monic polynomial in # and degr;; = p; — j — 1. Then for the functions f;;, we
have f;; = a; “7j(x), where deg7i; = p; —j — 1.

Notice that df = {nZ ( ’)) +l-1]l=1,... ,ugi)}. This can be illustrated by enumerating,
starting from 0, the sides of boxes in the Young diagram for u(i) that form the bottom-right
boundary, see the example with p() = (7,4,2,0,...) on the picture below:

9

3 4
2

0 1

Then the set {nZ + ,ug.i) -4, i=1,... ,ni} corresponds to the right-most sides of the rows,
which are the vertical bonds of the boundary, and the set {m — (,u(l)) +75—-1,7 =1,.
ugi)} corresponds to the bottom sides of the columns, which are the horizontal bonds of the

boundary. For instance, in the given example, {nZ + u§) j,J = } {2,5,9} and
{n; — (N(i)); +j—-1,j=1,....,7 = {0,1,3,4,6,7,8}. Since the horlzontal bonds of the
boundary complement the vertical bonds, we have df = {0,1,2,...,p;—1}\{n; —1—,u§i)

i} ={ni— (W) 45 =1, =16}
Denote j; = n; — (,u())l +1-1,1= 1,...,,ug'), so that di = {jl, [ = 1,...,u§i)}. Denote

_jvjzla

G =Tij,, L=1,... ,,ugi). Then

{a;xcjil(:nﬂi: 1,...,n, 1= 1,...,ugi)}
is a basis of Q(W), and

deg iy = pi —ji — 1= p{" +ni = (ni = (uD); +1-1) =1 = pi” + (u@); - 1. u
2.5 Transform of discrete exponents

Denote M’ = Y"1, (u(i))l1 =dimW and M =Y, ,ugi) = dim Q(W). For z € C, define the

sequence of discrete exponents of W at z as a unique sequence of integers (e; > --- > epp)
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with the property: there exists a basis 91,...,1y of W such that for each i = 1,..., M/,
(T94;)(2) =0 for j =0,...,e; — 1 and (T1;)(2) # 0.

The sequence of discrete exponents of W at z differs from the sequence (M’ —1,M' —2,...,
0) if and only if z is a root of Wr(g1,...,gn), where g1, ..., gy is any basis of W. If z is such
a root, we will call it a discrete singular point of W.

Define the sequence of T_-discrete exponents of W at z by replacing the operator 71" in the
definition of the sequence of discrete exponents by the operator 7_ = T1.

Proposition 2.7. Let (ey,...,epr) be the sequence of discrete exponents of W at some point
z € C. Define a partition X = (A, Aa,...) bye; =M + XN —i,i=1,...,M" and \pyry1 =0
fori> M'. Let (é1,...,én) be the sequence of T—-discrete exponents of Q(W) at z — 1. Define
a partition 1 = (m1,M2,...) by éa =M + 1, —a, a=1,..., M, and npr41 = 0. Then n, > N,
foralla=1,2,....

Proof. Let {¢1,...,1¥} be a basis of W such that for each i = 1,...,M', j =0,...,e; — 1,
we have (TV1;)(z) = 0 and (T1;)(z) # 0.
By formula (2.8), the Wronskian Wr (W) has no zeros, thus z is not a discrete singular point

of W. Therefore, there is a basis { f1, fa, ..., far+ar } of W such that it contains the set {1,...,
Ypr} and foreach i =0,..., M+M'—1,5j=0,...,i, we have fi11(2+j) = 0and fiy1(z+1) # 0.
Consider a matrix-valued function

G=0,0 MAM'—2
and denote
Wra(/W) =det Fo(x) = Wr(f1,. ..\ famts fat1s o5 fraenr)-

Notice that since {¢1,...,¥Yp} C {f1,-.., farear}, we have {e1,...,epr} € {0,1,2,...,
M + M’ — 1}, in particular, \; < M. Denote e® = {0,1,2,..., M + M' — 1} \ {e1,...,en}.
Then by the construction of the space Q(W), the functions

Wra i1 (W
Xa =T L/(\) , a € e,
Wr(W)
span Q(W). Let us prove that
(T—)bxa(z_l):07 b:07"'7M+M/_a_2- (29)

The matrix Fy(z) is upper-triangular, and the diagonal of F,(z) is of the form {d,ds,...,
dy—1,0,0...}, where d, #0, b=1,...,a — 1. An example with M + M’ = 6, a = 4 is shown
below:

di * * *x %
0 d2 *x k%
Fy(z)=|0 0 d3 » «*
0 0 0 0 dy
0O 0 0 0 O

For every b=10,...,M+M'—2 let Fy bean (M +M'—b—1) x (M + M’ —b—1) submatrix
of F,(z) located in the upper-left corner. We have

det [(T_)°F,)(2)] = Cap - det(Fpp),  b=0,...,M + M -2, (2.10)

where C'y; are some functions of z.
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The relations (2.10) are illustrated by the example with M + M’ =6, a =4, b = 1,2 below:

*|di * * * * *|d; * %
x| 0 doy * % * x| 0 do «*
(T-)Fy)(2) = x| 0 0 dg x| | ((T_)2F4)(z) = * %[ 0 0 dj
*0 0 0 0 * %[0 0 O
00 00 * x/0 0 0

In each matrix above, we boxed two minors, whose product gives the determinant of the
corresponding matrix up to a sign. The lower-left boxed minor in each case corresponds to the
factor Cgp in formula (2.10). The upper-right boxed minor of ((7_)F4)(z) is the determinant
of Fj; and the upper-right boxed minor of ((T_)2F4) (z) is the determinant of Fjs.

Since det(F,) =0 for all b=0,...,M + M’ — a — 1, formula (2.10) implies (2.9).

Notice that e® = {M' — A, +a—1,a = 1,...,M}. This can be illustrated by a similar
picture to what we used for the set df in the proof of Proposition 2.6, except now we should
enumerate the path which contains M horizontal intervals and M’ vertical intervals, where M
and M’ might be greater then the number of columns and the number of rows in the diagram
for \, respectively, see the example with A = (7,4,2,0,0,...), M = 10, and M’ = 5 below:

12 13 14
11

Denote €6 = M'— XN, +a—1,a=1,...,M,so that e“={e,a=1,..., M}.
Notice that M + M’ — e —2 = M + X, — a — 1. Therefore, formula (2.9) yields

(T-)Xec41(z—1) =0, b=0,...., M+ )\, —a—1. (2.11)

Let (é1,...,éx) be the sequence of T_-discrete exponents of Q(W) at z — 1, and let n =
(m,n2,...) be a partition such that é¢, = M +n, —a, a=1,..., M, and np;+1 = 0. Denote by
b1, ..., ¢ the basis of Q(W) such that for every a = 1,..., M, we have (T_)bgzga(z —-1) =0,
b=0,...,6,— 1, and (T_)%@q(z — 1) # 0.

For each a = 1,..., M, consider the subspace V, of all functions f in Q(W) such that
(T_)’f(z—1) =0,b=0,...,6,. Then the set {¢1,...,¢a_1} is a basis of V,, in particular,
dimV, =a—1.

Suppose that n, < X, for some a = 1,..., M. Then formula (2.11) implies that the span V.,
of X1,...,Xa is a subspace of V,. But this is impossible since dim V, = a > dim V,. Therefore,
Ne >N, foralla=1,..., M.

As we mentioned above, Ay < M. Therefore, /\/M +1 =0, and the inequality 7, > A/, holds for
alla=1,2,....

The proposition is proved. |

Remark 2.8. In the next section, we will prove that in Proposition 2.7, we actually have n = X,
see Corollary 2.13.
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2.6 Quotient for a difference operator with left shifts

For any functions g1, ..., gn, denote

Wr_(gl,...,gm)—det((Tj 192):7; D

Let f1, fo,..., fn, h1,..., hy be functions such that Wr_(g1,...,gm) # 0 for any subset {g1, ...,
gm} of {f1, fo,..., fn,h1,..., hi}. Denote the span of fi,..., f, as W_ and the span of fi, fa,

oy Jnsha, .o i as W_. Then define the quotient conjugate space with left shifts for the pair
(W,, W,) to be the span of

Wf—(fh-~-7fn7h17-~-,ha—1,ha+1,~-J%))
T_ , a=1,...,k.
( r_(fl,...,fn,hl,...,hk)
Let W_ be a vector space with a basis of the form
{a;xqij(xﬂz’:l,...,n,j— ,...,ul)}
where ¢;;(x) are polynomials and degg;; = u() (u( )) -7, i=1,...,n,j=1,.. .,Mg) Also,

take W_ to be the vector space with a basis a; “2?, p = 0,...,p; — 1. Denote by Q_(W_) the
quotient conjugate space with left shifts for the pair (W_, W_).

We have dimW_ = > | ,ugl) M. Similarly to the case of right shifts, it can be shown that
there exists a difference operator Sj;, of the form

M
Sy = (T)M + Y bi(a)(T)M
i=1

annihilating W_, and that the difference operator S_ = [Ti-,(T- — o;)?" annihilating W
divisible by Sy_ from the right. Write S’vai for the difference operator such that S_ = Sx;/, Sy -

For a difference operator S = Eé:l a;i(x)(T-)"", define its formal conjugate ST by the formula

l

STh(z) =T (ai(x)h(=)).

i=1
Proposition 2.9. The difference operator (S’V_V_)T annihilates the space Q_(W_).
Proposition 2.9 is proved similarly to Proposition 2.4.

Proposition 2.10. The space Q_(W_) has a basis of the form

{ozqU i:1,...,n,j:1,...,ni}7

where §;j(x) are polynomials such that deg G;; = (,u(i))ll + M§z) -

Proposition 2.10 is proved similarly to Proposition 2.6.

Denote the sequences (aq, ..., ay) and (,u(l), e M(”)) as a and i, respectively. Let &(a, 1)
be the set of all spaces of quasi-exponentials with a basis of the form

{afqij(azﬂi: 1,...,n,j= 1,...,ni},

where ¢;;(x) are polynomials such that deg ¢;; = (u(l)) + ,ugz)

Let us write a~! for the sequence (all,...,agl) and i’ for the sequence ((u(l))/,...,

(,u("))/). By Propositions 2.6 and 2.10, we have maps Q: &(a, i) — &(a~t, '), W — Q(W)
and Q_: 8(64_1,/1’) — &(a, 1), W_ — Q_(W_). Let us prove that Q_ is the inverse for Q.
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Proposition 2.11. For any W € &(a, i) and W_ € 8(07_1,[/), the following holds:
Q-(QW)) =W,  QQ-(W-))=W_.

Proof. For any W € £(a, ), define Q(Sw) to be the difference operator S’;SV Similarly, for
any W_ € 8(07_1,[/), define Q_ (S}, ) to be the difference operator (S;Vi)f.

Recall that S = [ (T — ;)P = (§_)T and S = (Q(Sw))!Sw. We have

~

S =" =swesw). (2.12)
In the relation S_ = (Q_(Sw_)) Sw_, take W_ = Q(W). This yields

S_ = (Q-(Q(Sw))) Q(Sw). (2.13)

Comparing formulas (2.12) and (2.13), we have Q_(Q(Sw)) = Sw. Therefore, the funda-
mental difference operators of W and Q_(Q(W)) coincide, and the relation Q_(Q(W)) = W
follows from Lemma 2.5.

The relation Q(Q—_(W_)) = W_ is proved in a similar way. [

Proposition 2.12. Fiz z € C. Let (e1,...,en) be the sequence of T_-discrete exponents of
W_ e S(d_l,[/) at z — 1. Define a partition A = (A1, Ao,...) byes =M+ XN —i,i=1,....M
and A\ppy1 = 0. Let (é1,...,ép) be the sequence of discrete exponents of Q_(W_) at z. Define
a partition n = (N1, m2,...) by éa =M +n,—a, a=1,...,M', and nypy1 = 0. Then ng, > X\,
foralla=1,2,....

Proposition 2.12 is proved similarly to Proposition 2.7.
Corollary 2.13. In both Propositions 2.7 and 2.12, we have n = X.

Proof. Consider a space W € &(a, 1), and let partitions A and 1 be like in Proposition 2.7, in

particular n, > A, for all a = 1,2,.... But by Proposition 2.11 and 2.12, we have \; > 7, for all
i=1,2,..., which is the same as A, > 7, for all a = 1,2,.... Therefore, we have n = \.
The equality n = X\ for Proposition 2.12 is proved in a similar way. |

2.7 Spaces of quasi-exponentials with the difference data (54, s z, 5\)

Let W be a space from the set €(a, ). Assume that there exists a sequence of complex numbers
zZ = (z1,...,2r) and a sequence of partitions A = ()\(1), ceey )\(k)) such that z1,..., z; are discrete
(a) (a)

singular points of W, z, — z, ¢ Z for a # b, sequence (61 yeen ,eM,) of discrete exponents at z, is
given by el = M’+)\§a)—i fori=1,...,M’, Aga) =0fori > M', and 22:1 ‘)\(“)‘ =3, |p(i)|.

i
Here |A| denotes the number of boxes in the Young diagram corresponding to the partition .

We will say that W is a space of quasi-exponentials with the difference data (d, 1 Z, 5\).

Example 2.14. Let W be the span of the functions = —2/3, 22, and 2%z. This space belongs to
the set &(a, i), wheren = 2, a; = 1, ap = 2, u) = (1,1,0,...), u® = (1,0,...). Since Wr(z —
2/3,2%,2%x) = 2%x(x — 1)(z + 8/3), the discrete singular points of W are 0, 1, and —8/3. The
sequence of discrete exponents of W at x = 0 and x = —8/3 is (3,1,0), and the corresponding
partition is Ay = (1,0,...). The sequence of discrete exponents of W at x = 1 is (3,2,0),
and the corresponding partition is Ag = (1,1,0,...). Therefore, the space W is a space of
quasi-exponentials with the data (Cy,ﬂ; zZ, 5\), where z = (—8/3,1) and A = (A1, \2).
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Example 2.15. Let W be the span of the functions z, 22, and (—1/2)%z. This space belongs
to the set &(@, i), where n =2, oy = 1, ap = —1/2, u = (1,1,0,...), u® = (1,0,...). Since
Wr(z, 2%, (—1/2)*z) = (—=1/2)"z(x + 1)(x + 2), the discrete singular points of W are 0, —1,
and —2. The sequence of discrete exponents of W at x = 0 is (3,2,1), and the corresponding
partition is Ay = (1,1,1,0,...). The sequence of discrete exponents of W at z = —1 is (4,2,0),
and the corresponding partition is Ay = (2,1,0,...). The sequence of discrete exponents of W
at © = —2is (3,1,0), and the corresponding partition is A3 = (1,0,...). Therefore, the space
W is a space of quasi-exponentials with the data (d, i Z, 5\), where either 2 = (0) and A = ()\1),
or z=(—1) and A = (A2).

Define the map refl: €(a™,@') — &(a,p’) by refi(W) = {f(—z)|f(z) € W}. Denote
%1 =reflo@Q. If for a space W € E(a, 1), the difference operator Q(Swy ) is written as Q(Sw) =
(T)M + 32, bi()(T-)M~, then

M
Q7 (Sw) =TY +> bi(—a)TM (2.14)
i=1
is the fundamental difference operator of T;(W).
For a sequence z = (z1,...,2;), denote 1 — z = (1 — z1,...,1 — z). Recall that for a
sequence of partitions ) = (77(1), e ,n(s)), 77’ denotes the sequence of the conjugated partitions:

7 = ((77(1)),, ey (n(s))/). The next theorem is the main result of Section 2, and it is an easy
consequence of Propositions 2.6, 2.7, and Corollary 2.13.

Theorem 2.16. Let W be a space of quasi-exponentials with the data (07, i; Z, 5\). Then %1 (W)
is a space of quasi-exponentials with the data (@,ﬂ’; 11—z, )\’).

Let us write 8(64, i Z, 5\) for the set of all spaces of quasi-exponentials with the difference
data (d, sz, )\). We constructed a map

T &(a, 2, N) = E(a, 71—z, ),

W — T, (W). (2.15)

In Section 6.6, we will show that this map is closely related to the (gl,, gl;)-duality of the
trigonometric Gaudin and dynamical Hamiltonians.

3 Quotient differential operator

3.1 Spaces of quasi-polynomials

By quasi-polynomial we mean a function of the form z*p(x), where z € C and p(z) is a polyno-
mial.

Fix complex numbers z1, . . ., z; and nonzero partitions A, ..., A®) Assume that z, — 2 ¢ 7
for a # b. Let V be a vector space of functions in one variable with a basis {z**¢.(x) |a = 1,
oL kb=1,..., ()\(“))/1}, where ¢,5(x) are polynomials and deg g,y = ()\(“))Il +)\l()a) —b. Assume
that the space V satisfies the following property, which we will call the non-degeneracy at 0: for
eacha=1,...,kand any b =1,..., ()\(a))ll, there exists a linear combination of polynomials
Ga1;qa2; - - - > Ga(A(@)Y, which has a root at x = 0 of multiplicity b — 1.

Denote L' = 25:1 ()\(a))ll =dim V. For a € C*, define the sequence of exponents of V at «
as a unique sequence of integers (e; > --- > ey/), with the property: there exists a basis fi, ...,
frr of V such that for each a =1,..., L', we have f,(z) = (x — a)®*(1 4+ 0o(1)) as = — a.



14 F. Uvarov

For any sufficiently differentiable functions g1, ..., gs, let
Wr(g1,...,9s) = det (((d/d:c)jflgi(a:))ijzl)

be their Wronskian. The sequence of exponents of V' at a differs from the sequence (L'—1, L' —2,
..,0) if and only if « is a root of Wr(g,...,gr/), where g1,..., gz is any basis of V. If « is
such a root, we will call it a singular point of V.

Let a1, ..., a, be the singular points of V' and for each i = 1,...,n, let (egz), cee e(Ll,)) be the
sequence of exponents of V' at a;. For each ¢ = 1,...,n, define a partition u(i) = (ugl), ug), .. )
as follows: e((f) =L+ ,ugf) —afora=1,...,L, and ,ug) =0 for a > L'. Clearly, all partitions
,u(l), e ,,u(”) are nonzero.
~ Denote the sequences (215, 2K), (A(l),...,A(k)), (al,...,an), and (u(l),...,,u(”)) as z,
A, @, and [i, respectively. We will say that V' is a space of quasi-polynomials with the data
(z, X a,1).

Lemma 3.1. Let V be a space of quasi-polynomials with the data (2, X a, ,a). Then
k n '
I CES I 1)
a=1 i=1
Here || denotes the number of boxes in the Young diagram corresponding to the partition X.

Proof. Let g1,...,g1 be some basis of the space V. Denote N, = (/\(“))/1. Then

Z§=1 Naza*zs,b=1 NaNp

Wr(gly"'v.g[/) =T p($)7
where p(x) is a polynomial of degree 22:1 ‘)\(“) ‘ On the other hand, the numbers ay, ..., a, are
zeros of p(z) with multiplicities ||, ..., |u(]|, respectively, and p(x) has no other zeros. M

Remark 3.2. Notice that in the case of spaces of quasi-exponentials with the difference data
(d, i Z, 5\), we had to include the condition (3.1) into the definition. As Lemma 3.1 shows, in
case of quasi-polynomials, this condition holds automatically. This can be explained by the fact
that for the space of quasi-polynomials with the data (2, \; @, ﬂ), we additionally require the
non-degeneracy at 0.

Remark 3.3. Notice that if V' is a space of quasi-polynomials with some data, then this data
is defined uniquely. This is not the case for spaces of quasi-exponentials with a difference data,
see Example 2.15.

Example 3.4. Let V be the span of the functions f; = 2 —1, fo = (r—1)?, and f3 = z(z—1).
Then Wr(fi, fo, f3) = —1/4273/2(z — 1)3. The sequence of exponents of V at 1 is (3,2,1).
Therefore, V is a space of quasi-polynomials with the data (Z, \; @, ﬂ), where z = (0,1/2), A =
(A1, A2) with Ay = (1,1,0,...), Aa = (1,0,...), @a= (1), and @ = (p1) with p; = (1,1,1,0,...).

3.2 Spaces of quasi-polynomials and quotient differential operator

We will use the following two facts about linear differential operators. For proofs, see for
example, [11].

1. Let fi(x),..., fs(x) be sufficiently differentiable functions such that Wr(fi,..., fs) # 0.
Then there is a unique monic linear differential operator D = (d/dx)*+3_;_,a;(z)(d/dx)~
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of order s such that Df; = 0,7 =1,...,s. The coefficients of the operator D are given by
the formulas

Z—Wri(fl,. . .,fs)
Wr(fl,. . ;fs) ’

where Wr;(f1, ..., fs) is the determinant of the s x s matrix whose j-th row is f;, (d/dz)f;,
oy (d/dz)s T (d/da) ST L (d/da)d

2. Let V and V be two spaces of functions such that V C ‘7, and for any f1,..., fm € ‘7,
Wr(fi,..., fm) # 0 if and only if fi,..., fm are linearly independent. Let D and D be

linear differential operators of order dim V' and dim V' annihilating V' and 17, respectively.
Then there exists a differential operator D such that D = DD.

a;i(z) = (1) i=1,...,s, (3.2)

Consider a space V like in the previous section. By item (1) above, there exists a unique monic
differential operator Dy of order L' annihilating V. We will say that Dy is the fundamental
differential operator of V.

Denote [, = /\ga) + ()\(“))/1 — 1. Introduce a differential operator

R kg d
DzHH(:wa—za—b).

Then the span V of the functions %t q=1,...k,b=0,...,1, is annihilated by D.

Since V' C V, there exists a differential operator Dy such that D = Dya*Dy, see item (2)
in the beginning of the section.

For a differential operator D = >"7_, b;(z)(d/dz)*, define its formal conjugate DT by the
formula:

D=3 () s

i=0
where f(x) is any sufficiently differentiable function.
Let D;r/ be the formal conjugate of Dy,. Denote 1 — z — M= = (1 —z1— ()\(1))’1 — )\gl), 1-—
29 — ()\(2))/1 - )\§2), ol =z — ()\(k’))ll - )\gk)). We have the following theorem

Theorem 3.5. Let V' be a space of quasi-polynomials with the data (_2, 5\;_07,@. Then there
exists a unique space T2(V') of quasi-polynomials with the data (1 — 2z —X; — Ay, Nsa, i), which
18 annthilated by DL.

We will prove Thﬁeorem 3.5 in Section 5.1. )
Let us write iP(E, A @, ,a) for the set of all spaces of quasi-polynomials with the data (27 A @, ’).
By Theorem 3.5, we have a map

To: Pz, ha,p) - P(1—z- XN — A\, Nsa, 1),

4 Bispectral duality

In this section, we recall a transformation introduced in [6].
Fix sequences z, &, A\, and fi, where z = (z1,..., z;) is a sequence of complex numbers such
that zq — 2p ¢ Z for a # b, @ = («1,...,qy) is a sequence of nonzero complex numbers such
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that o; # o for i # j, and A\ = ()\(1), e ,)\(k)), = (u(l), o ,M(”)) are sequences of non-zero
partitions. Denote L' = Z];:l ()\(“))/1, M=%, (,u(i))/l, and ng, = ()\(“)),1 + )\I()a) —b.
Define polynomials ps z(z) and ¢; 5(z) as follows:

n

pau(x) = [J(x — ¥, (4.1)

=1
ko (

qz,X(x) = H
a=1

Let V be a space of quasi-polynomials with the data (2, \; @,
differential operator of V. Define the functions (1 (z),..., B (z

L/ d L/ L/ d L/—CL
x” Dy = <xd:z:> + ;ﬁa(:c) <xdm> .

Lemma 4.1. The following holds

H (x — zq — Ngp). (4.2)

X,
b=1

ﬂ). Let Dy be the fundamental
) by

1. The functions B1(z), ..., B (z) are rational functions regular at infinity. Denote Bq(00) =
lim Bq(z), a=1,...,L". Then
T—00

L/
ub + 3 Ba(co)u " = g2 5 (u). (4.3)
a=1

2. Foreacha=1,...,L, pau(z)Ba(z) is a polynomial in x.
Proof. The fact that 1(x),..., S (x) are rational functions regular at infinity follows from
formula (3.2). Notice that ker Hg:))&(x(d/dx) — 24 — Ngp) is the span of {z* b g =1,...,
kEb=1,..., (A(“))/l}, which implies formula (4.3).
Part (2) of the lemma follows from formula (3.2) and the following observations:
e Let g1,...,91 be a basis of V. Denote N, = ()\(“)),1. For each a = 1,..., L', define an
integer ¢, by Zf;ca Ny > a, Zf;cﬁl N, < a. Then one can check that

Wra(g1, .., gry) = a2a= Neza=Ea ey NeNo= S0l 1 Nojs() (4.4)
where p(x) is a polynomial, and for each i = 1,...,n, a; is a zero of p(x) of multiplicity
not less than ) j_; (M(j))/l'

J#1

e As noted in the proof of Lemma 3.1, we have

k k
Wr(g1,...,q1) = pa=1Naza=3q b1 NaNbp(x)’ (4.5)
where p(x) is a polynomial, the numbers aq,...,«, are zeros of p(z) with multiplicities
‘,u(l)’, ce ‘,u(”)|, respectively, and p(z) has no other zeros. |

We will call the differential operator Dy = xL/po—m(ac)Dv the reqularized fundamental differ-
ential operator of V.
Let W be a space of quasi-exponentials with the difference data (64, i Z, 5\).
Let by (z),...,by be the coefficients of the fundamental difference operator Sy of W:
M
Sw=T" +> bi(x)T™".
i=1

Denote z — N = (z1 — ()\(1))/1, R ()\(k)),l) and 24+ N1 = (21 + ()\(1)),1, R ()\(k)),l).
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Lemma 4.2. The following holds.

1. The coefficients b;(x) of Sw are rational functions regular at infinity. Denote b;(oco) =
lim b;(x). Then
T—00

M/
uM > " bi(00)u™ T = pg (u).
=1

2. For eachi=1,...,M’, 0z x5, x(@)bi(z) is a polynomial in x.

Proof. Item (1) of the lemma can be proved similarly to item (1) in Lemma 4.1. For a proof
of item (2), see [6, Lemma 3.9]. |

We will call the difference operator Sy = g;_ v, 1 (@)Sw the reqularized fundamental differ-
ence operator of W.

For any complex numbers by, a = 0,...,s, 0 = 1,...,r, consider a differential operator D
and a difference operator S defined by

D = i{)gb‘”wa (mi)l, S = iogbm‘a:iTa.

We will say that D is bispectral dual to S, and vice versa, and write D = S#, § = D#.
The following theorem was proved in [6].

Theorem 4.3. There exists a bijection

L) (4.6)

Qi
=I
I

) )

T3 T(E,;\;d, ’) — 8(

such that for every V & ?(2,5\;@,,&), fo is the regularized fundamental difference operator
of T3(V).

Remark 4.4. Theorem 4.3 follows from the proofs of Theorems 4.1 and 4.2 in [6]. The latter
theorems state the duality for spaces called non-degenerate in [6]. We will not need the duality
for non-degenerate spaces here.

Example 4.5. Consider the space W from Example 2.15. Then

3(w+3)T2+a:+3'

Sy =T3 —
W 2z + 2) 2

If we choose the difference data (&,f;2,A) for W with 2 = (0) and A = (A1), A1 =
(1,1,1,0...), then Sy = z(z+1)(2+2)Sw and T3 (W) is the span of the functions 1+(1/2)z 2,
r71 and 272 — (1/2)273.

If we choose the difference data (@, ;z,A\) for W with z = (=1) and A = (X\2), A =
(2,1,0,...), then Sy = x(z +2)Sy and Ty (W) is the span of the functions 1 — (3/8)2~3 and
72— 23

We will call the space T3(V) bispectral dual to V, and vice versa. In Section 5, we will
construct the map %o as the counterpart of the map ¥; under the bispectral duality T3, see
formula (5.7) for the precise statement.
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5 Algebra of pseudo-difference operators

A pseudo-difference operator is a formal series of the form

M L
> D Cima'T™, (5.1)

m=—00 [=—00

where Cj,, are some complex numbers. Using the operator relations T™z! = (z + m)'T™,
l,m € 7, and identifying (z+m)’ with its Laurent series at infinity, one can multiply series (5.1).
This multiplication is associative. Denote the algebra of pseudo-difference operators as VD,,.

Lemma 5.1. If 8§ = an‘f{:foo ZlL:foo Cim@'T™ with Cpa # 0, then § is invertible in ¥D,,.

Proof. Define § by the rule 1 + § = Craa~t8T~M. Then Z;’;O(—l)jsj is a well-defined
element of ¥, and the inverse of & is given by the formula:

$t=Cp T (D (=178 | 2k u
=0

We consider a difference operator S = Zi]\io ai(x)TM~" with rational coefficients ag(x), ...,
an (z) as an element of U, replacing each a;(x) by its Laurent series at infinity. By Lemma 5.1,
if ag(xz) =1, and aq(x),...,anm(z) are regular at infinity, then S is invertible in ¥D,.

Denote by © the algebra of differential operators with rational coefficients. One can check
that the assignment

d
T: T— +— —, z—T 5.2
P (5.2)
defines a monomorphism of algebras 7: © — ¥D,,.
As before, fix sequences z, &, A, and fi, where Z = (z1,...,2;) is a sequence of complex
numbers such that z, — 2, ¢ Z for a # b, @ = (o, ...,q,) is a sequence of nonzero complex

numbers such that o; # «; for i # j, and A = (/\(1), . ,)\(k)), = (u(l), e ,,u(”)) are sequences
of non-zero partitions.

Let V be a space of quasi-polynomials with the data (2, 5\;54,;2). Let Dy € © be the
fundamental regularized differential operator of V. Define the fundamental pseudo-difference
operator 8y of V by the following formula:

Sv = (pa,u(T))”

—
ﬂ
—~
S
<
SN—
=
i
>1
0
8
=
L

where the polynomials ps z(z) and g; 5(z) are defined in formulas (4.1) and (4.2), respectively.

Let W be a space of quasi-exponentials with the difference data (d, s Z, 5\) Let Sy be the
fundamental regularized difference operator of W. Define the fundamental pseudo-difference
operator Sy of W by the following formula:

Sw = (¢—5, 3(2)) " Sw (pap(T)) ™"

Notice that both 8y and Sy have the form 1 + Zl,mgl Cpx'T™. Therefore, by Lemma 5.1,
the operators 8y and Sy are invertible in ¥3,.

Recall the maps T; and T3, see formulas (2.15) and (4.6), respectively. Denote 1 —z — N =
(1—2 — ()\(1))/1, coy =2 — ()\(k))/l).
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Theorem 5.2. Consider a space V € fP(E, X; o?,ﬂ). Denote W = T1(%3(V)) € 8(64, il —z—
N1, )\’). Let 8y and Sy be the fundamental pseudo-difference operators of V- and W, respectively.
Then

Sw = 5‘71.

Proof. For any pseudo-difference operator 8§ = ZN ZK C’ij:niTj , define a pseudo-dif-

1=—00 j=—00
ference operator 8t by

N K
st= YY" > CiyTi(-a). (5.3)

1=—00 j=—00

It is easy to check that (-)! is an involutive antiautomorphism on ¥®,.
Let V be a space of quasi-polynomials with the data (E, X @, ﬂ). Let Dy be the fundamental
regularized differential operator of V. Denote Sy = T(Dv), where 7 is given by formula (5.2).
Denote U = %3(V) € 8(07,,&;2 + X’l,j\). Let Sy be the fundamental difference operator
of U. Then Sy = g¢; 3(x)Sy is the regularized fundamental difference operator of U, where the

polynomial ¢; 5(z) is defined in formula (4.2). We have Sy = D# = 5’%,.
Therefore, for the fundamental pseudo-difference operator 8y of V', we get

8 = ((a:3=2) ") (Sv) (e (M) ) = (4:3(@)) " Su (1)) !
= Su(pau(T)) . (5.4)

By construction, for the fundamental difference operator Q@ (Sy) of T1(U), see (2.14), we
have

Pai (Tpaa(T) = (Q7 (Sv)) Su.
Let us rewrite the last formula as follows

[(pa (7)) 1@ (S0))¥] [Su (Pa(T) '] = 1.

This, together with formula (5.4), gives

—1 _
(81) 7" = (paw (1) HQ™ (Sv). (5.5)
Applying the involutive antiautomorphism (-)¥ to both sides of equation (5.5), we obtain
Syt = Q7 (Sv) (paw (1) " (5.6)

Let Sy be the fundamental pseudo-difference operator of W. By definition, we have Sy =
Q7 (Sy)(paw(T))~*. Therefore, formula (5.6) gives 8i,' = Sy
Theorem 5.2 is proved. |

5.1 Proof of Theorem 3.5
For each space V' of quasi-polynomials with the data (2, X @, _), define
To(V) = T3151 T3 (V). (5.7)

Let Dy be the fundamental differential operator of V. We need to show that To(V') is anni-
hilated by DI/. By definition, the regularized fundamental differential operator Dy of V is given
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by the formula DJ/ = pa,u(r)z" Dy, where ps;(z) is the polynomial defined in formula (4.1).
Denote Sy = 7(Dy ), where 7 is given by formula (5.2). Then

7(z" Dv) = 7((pau() ") 7(Dv) = (paa(T)) " Sy (5.8)

Denote [, = )\ga) + (/\(“))/1 — 1. By definition of Dy, we have

la
1111 (x;x — 24— b) = Dy Dy. (5.9)

a=1b=0

Applying the homomorphism 7 to both sides of relation (5.9) and using formula (5.8), we get
kol )
L]z — ) = 7(Dv) (pau(T)) " Sv. (5.10)
a=1b=0
Denote A, = {0,...,1l,}\ {(/\(“)),1 + /\I()a) -bb=1,..., ()\(a))ll}, and set

k
i:5(@) =[] I] @2 —0).

where ¢; x(7) is defined in formula (4.2).
Then we can rewrite relation (5.10) as follows:

(@2 (=2) "' 7 (Dv)] [(paa(T)) Sy (gzx(—2) '] =1, (5.11)
Since, by definition, 8y = (p&ﬂ(T))_lS'V(qg’;\(—a:))_l, formula (5.11) gives
8y = (@za(—x))"'7(Dv). (5.12)

Let W = T7773(V). Let 8y and Sy be the fundamental pseudo-difference operator of W
and the regularized fundamental difference operator of W, respectively. Denote 71 = (1 — 21 —

DY =AM 1=z — (AR)) =AM, Then by Theorem 5.2, we have

Syt = 8w = (g5,3(x) " Sw (paw(T)) . (5.13)

Notice that for each a = 1,...,k, Ay = {(A )] = (A@); +b-1,b=1,..., )\ga)}. This can be
illustrated by enumerating sides of boxes in the Young diagram for the partition A(® similarly
to what we did in the proof of Proposition 2.6. Using this description of A,, one can check that
gz (—) = (—1)L/qﬁ75\, (x). Therefore, formulas (5.12) and (5.13) give

Sw = (—1)LIT(DV)p6z,ﬂ’(T)'
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Using that (7' (DV))i = T(DL), we obtain

(—1)  pap(x)D}, = 771(Sh,) = S&.

Notice that by definition of the map T3, the differential operator S’#V annihilates the space To(V),
therefore, we proved that DI/ annihilates Ta(V).

The uniqueness of the space To(V') follows from an analog of Lemma 2.5 for differential
operators.

Theorem 3.5 is proved.

6 Duality for trigonometric Gaudin
and dynamical Hamiltonians

6.1 (glg, gl,,)-duality for trigonometric Gaudin and dynamical Hamiltonians

Let X,, be the vector space of all polynomials in anticommuting variables &i,...,&,. Since
&&; = —¢;& for any 4, j, in particular, £2 = 0 for any i, the monomials &;, ...&,, 1 <i; <is <
--- < 4; < n, form a basis of X,,. Notice that the space X,, coincides with the exterior algebra
of C™.
The left derivations 0y, ...,3d, on X,, are linear maps such that
K. ) = {(—1)51§j1 &G 18 -y, i i = j for some s, (6.1)

=0, otherwise.

It is easy to check that 0;0; = —0;0; for any 1, j, in particular, 0? = 0 for any 4, and 0;&+€;0; =
5ij for any i, ]

Let e;j, 4,7 = 1,...,n, be the standard basis of the Lie algebra gl,, in particular, we have
leij, ent] = djreq — Oyex;. Define a gl,-action on X,, by the rule e;; — §0;. As a gl,-module, X,,
is isomorphic to @;’, L, , where Ly, is the irreducible finite-dimensional gl,,-module of highest
weight

w =(1,...,1,0,...,0).
l

The component L, in X,, is spanned by the monomials of degree .

Remark 6.1. As we mentioned in Introduction, the (gl,,, gl;)-duality for integrable systems
was first studied in works of Mukhin, Tarasov, and Varchenko for the case, when instead of
the space X,,, one considers the space P, of polynomials in commuting variables. The latter is
also a gl,,-module, and it decomposes into irreducibles as @;°; Ls,, where Ly, is the irreducible
finite-dimensional gl,-module of highest weight s; = (¢,0,0,...).

From now on, we will consider the Lie algebras gl,, and gl; together. We will write super-
scripts (n) and (k) to distinguish objects associated with algebras gl,, and gl;,, respectively. For

example, ei? , 4,5 =1,...,n, is the basis of gl,, and eg?, a,b=1,...,k, is the basis of gl.
Let P, be the vector space of polynomials in kn pairwise anticommuting variables &g,
a=1,....,k, i =1,...,n. We have two vector space isomorphisms 1 : (X;)®" — Bn, and

Yo (X,)%% — P, given by

Y1 (1@ @pp) = P&, k)p2(12, -, &k2) - P(ns - -5 &)
Po: (p1® - @pk) = p1(&uns - n)p2(&1, - on) - PE(Erts - -5 Ekn)-
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Let Oy, a=1,...,k,i=1,...,n, be the left derivations on By, defined similarly to the left
derivations on Xy, see (6.1). For any g € U(gl},), denote g;) = 120~V ® g @ 120"~ € U(gl;,)®".
We will identify the algebra U(gl,) and its image under the diagonal embedding g — > " ; 90) €
U(gl),)®™. We will use similar conventions for U(gl,,)®*. Define actions of U(gl;)*" and U (gl,,)®*
on Py, by the formulas

p<k’n> : (e(i?)(z) = gaiabia (62)
P (el) 0y > Euiag. (6:3)

Then 11 and v are isomorphisms of U(gl,)®"- and U(gl,,)®*-modules, respectively.
For any 7,7 = 1,...,n, i # j, define the following elements of U(gl;)®"

k
1
Uiy = 52 D D+ D ) lem) gy
a=1 1<a<b<k
k
1 (k) (k)
Uiy = 52 (6 oy (ad) gy + D0 () (ea)
a=1 1<a<b<k
Fix sequences of pairwise distinct complex numbers z = (z1,...,2;) and @ = (aq1,...,an).

For each i = 1,...,n, define the trigonometric Gaudin Hamiltonians H;k’m (a,z) € U(gl,)®™ by
the following formula:

k (k) Q; Q ) +a; Qg
(k) = 2y _ €aa ’ 7).
H, (a,z)-Z(za— 5 ) +Z p—
a=1
J?él
For each i = 1,...,n, define the trigonometric dynamical Hamiltonians ng’m (z,&) € U(gl,)®"

by the following formula:

Denote —2+1= (—z+1,...,—z,+1). Let p®*™ and p(™*) be the U(gl,)®" and U(gl,)®*-
actions on Py, defined in formulas (6.2) and (6.3), respectively. The following can be checked
by a straightforward computation.

Proposition 6.2 is a part of Theorem 4.4 in [12]. A similar identity for the case, when instead
of the space Py, we have the space Py, = S*C" = S"C* of polynomials in kn commutative
variables, can be found in [13].
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6.2 Bethe ansatz method for trigonometric Gaudin model

Fix sequences I = (I1,...,lx) € Z’;O and m = (my,...,my) € Z%; such that le e =
oy mi. Let Pry[l,m] C Py, be the span of all monomials fd“ . fd’“ . dl” : §d’“" such
that 25:1 wi = m; and Y -y dg; = l,. Assume that Py, [l, m] # {0}. We have

PBrn[l,m] = {pemkn\e :lap,e§?>p:m¢p,azl,...,k,izl,...,n}.

Under the map 1, the space By, [l, m] correspond to the weight subspace of weight (I1,. ..,
l) of the subrepresentation Lgfil R LSJ’Z” of %?” = (@fZOLSJ?)@n. Similarly, under the
map 2, the space P, [l, m] correspond to the weight subspace of weight (mq,...,my,) of the
subrepresentation ng ® - ®L§ul> of X8 = (@l "o wz )®k.

It is easy to check that all trigonometric Gaudin and dynamical Hamiltonians commute with
elements ey?, e egz), eYlL>, ce eﬁﬁ?. Therefore, H1<k’n> (@, 2),... ,H,sk’n>(&, zZ), G§n’k> (z,@),...,
Gimh (z, @) act on the subspace By, [l, m]. We will be interested in the common eigenvectors of
the Hamiltonians in the subspace Py, [l, m].

For each m € Z>q, let wy, be a partition given by w,, = (1,...,1,0,0,...) with m ones.
Define the sequence Iy = (l?, .. ,lg) by 19 =37 (Wi, )a-

For any sequence of integers (ci, ..., ;) and for each a = 1,..., k—1, define a transformation
ra: (C1y...yck) = (c1y ¢ — 1 car1+1,. .0 ck).

Since S2F_ 1, = S2F_ 19 = S my, there exist integers Iy, . . ., [, such that I = 7“1;1 . -rﬁfjlllo.

It is easy to check that if lo <0 for some a = 1,...,k — 1, then Ly, [I, m] = 0. Therefore, we
can assume that [, > 0 foralla =1,...,k — 1.
Put [y = [ = 0. Then we have

n

o= (@m)atlotr—l a=1,...k

i=1
Therefore
b=a+1 i=1

Let t be a set of ] + - -- + 1 variables:

1 1 2 2 k—1 k—1
t:(tp,...,tlﬁl),tg),...t£>...,t§ VY,

RSP T e

Fix sequences of pairwise distinct complex numbers z = (z1,...,2;) and @ = (aq,...,an).
Define the master function:

lml
O(t,a,z,l,m) = H (a; — aj)™n (ms,m;) HH —az H Yoty sty
1<i<j<n i=1a=1
k—1 I
% H H Za+1 Za+1 H H (tl()a) _ tl(;l))Q
a=1b=1 a=11<b<t/<l,
k=2 g Za+1

« [TTIII & )~ (6.5)

a=1b=1b=1
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The following equations are called the Gaudin Bethe ansatz equations:

1 09 _
ffo(u@szgza a=1,... k=1, b=1,....1, (6.6)
) 8tl()a)

We will call a solution ¢ of the Gaudin Bethe ansatz equation (6.6) Gaudin admissible if
4, D, g, 40 6D

forala=1,....,k—1,4,j=1,...0q, i # 4, b=1,.... k=2, 4 =1,..., 0, 7 = 1,...,lp41,
l=1,...,n.

We will also need a function constructed in [2] and denoted there as ¢(z,t). This function was
introduced to obtain a hypergeometric solution of the trigonometric Knizhnik—Zamolodchikov
(KZ) equations. The explicit formulas for ¢(z,t) are rather lengthy, and we will not need them
to formulate the statements below, so we omit them and instead, indicate how notations in [2]
match our notation. The parameters z1, ..., 2, in [2] correspond to ay, ..., a, in our paper, and

variables t,()a) in [2] correspond to ¢ in our paper. We will write ¢(@, t) for ¢(z,t) with 21, ...,

zn, replaced by ag, ..., a, and tl()a) replaced by t((lb). The Lie algebra gl in [2] corresponds to gl
here, and for the gly-weights Ay, ..., Ay, v in [2], we should take the gl -weights wp,, ..., wmn,
(I1,...,1lx), respectively. Then under the identification 11, ¢(@,t) becomes a By, [l, m]-valued

function.

Theorem 6.3. Lett be a Gaudin admissible solution of the Gaudin Bethe ansatz equations (6.6).
Suppose that ¢(a,t) # 0. Then ¢(a,t) is a common eigenvector of the Gaudin Hamiltonians,

and for eachi =1,...,n, the corresponding eigenvalue h§k’n) (t,a, z,l,m) of Hi<k’n)(6z, zZ) is given
by
k) 1y — = 0 _
h; 7 (t @, 2, m) = ozi%lnfb (t,a,z—1,l,m), (6.8)
where z — 1= (21 — l1,20 — lo, ...,z — lg).

Proof. The theorem can be proved by applying the steepest descend method to hypergeometric
solutions of the trigonometric KZ equations. We refer a reader to the work [10], where the
method was applied to hypergeometric solutions of the rational KZ equations. Theorem 6.3 is
the modification of Corollary 4.16 in [10] to the trigonometric case. |

6.3 Spaces of quasi-polynomials and eigenvalues
of trigonometric Gaudin Hamiltonians

Fix a pair (I, m) like in the previous section. Assume additionally that [, # 0 and m; # 0 for
alla=1,...,k, ¢ =1,...,n. Assume that By,[l, m] # {0}. Define the sequence of partitions

A\ = (A(l),...,)\(k)) by (@) = (14,0,0,...), a =1,...,k. Recall that for each m € Z>g, wy, is
a partition given by w,, = (1,...,1,0,0,...) with m ones. Define a sequence of partitions
= (Wmys--vWm,,)-

Let z = (z1,...,2;) be a sequence of complex numbers such that z, — z, ¢ Z for a # b. Let
a = (ai,...,ay) be a sequence of pairwise distinct non-zero complex numbers. Let V' be a space

of quasi-polynomials with the data (2, X @, ﬂ). Then V has a basis of the form

{leql(az),x'z?qg(x), . ,azquk(:z)},

where q1(x),...,qx(x) are polynomials and deg g, (z) = l,.
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Foreacha=1,....k—1,b=1,...,k, define

n

|| (x — ay),

=1
miZb

Wr (kaq}C(x))xzk_lqk—l(x)7 s z'”lq +l( ))
| (x%—k%Tb(m))

One can check that for each a = 1,...,k — 1, y,(z) is a polynomial of degree I,. The
polynomials ¢;(x),...,qx(x) can be normalized in such a way that the polynomials yo(x),...,
Yn—1(x) are monic. Write

Ya(z) =

la

ya(z) =] (= - i),
b=1

We will call the space V' Gaudin admissible if the tuple

7 (51 (1) 72(2) (2) H(k—1)
t=(f sty it tr t

1ol ey NP

Egk—l))

Pk

satisfies conditions (6.7).
The following theorem was proved in [9)].

Theorem 6.4. Let V be Gaudin admissible. Then t is a Gaudin admissible solution of the
Gaudin Bethe ansatz equations (6.6).

Define functions S1(z), ..., Bx(x) by the following formula:

Dy = <xx> +Zﬁa <$d>k—a.

By Lemma 4.1, the functions p1(z),..., Bk(x) are rational.

Let t be the Gaudin admissible solution of the Gaudin Bethe ansatz equation corresponding
to V, like in Theorem 6.4. Suppose that QS(d,i) # 0. Denote z +1 = (21 + l1,22 + lo, ...,
zr + lg). According to Theorem 6.3, (f)(@,i) is a common eigenvector of the trigonometric

Gaudin Hamiltonians, and for each i = 1,...,n, the corresponding eigenvalue of H i<k7n> (a,z+1)
is hy = hgk’m (i,a,z + l,l,m). We will also call qb(f,o‘z) the Bethe vector vy corresponding
to V.

Proposition 6.5. The following holds

2
Y = 2 Rosa, (920) — o)) + T35 (6:9)

Proof. For each function g of z, write In’(g) = (In(g))’, where ()" is the differentiation with
respect to x. By an analog of Proposition 2 for differential operators, see [11], we have

oo (o (=) (3w () -

x (;x — I/ <ka—1—1§::122%_2($))> (i; — I/ (xszkykl(x))) . (6.10)
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Multiplying each side of (6.10) by x*, we get

"Dy = <x(§c —z1n’ <§ig;> — zl) <x(i —zln/ (13222;1) - 22)

d
X <x —zln’ (Tyyr_1(x)) — zk> . (6.11)
dx
Put yo(z) = yx(x) = 1. For each a = 1,..., k, denote
T _
Y, =—zln <a(w)ya 1(x)> — Zg-
Ya(2)
By formula (6.11), we have
k k
Bo(z) = > Ya(@)Vp(x)+ D a¥i(x),  Bi(z) =) Ya(). (6.12)
1<a<b<k a=1 a=1
Since t is Gaudin admissible, for each i = 1,...,n, a =1,...,k — 1, o is not a root of the
polynomial y,(x). Also, for each i = 1,...,n, «; is a root of the polynomial T,(x) if and only if
a < m;. Using this, we can compute:
R > V@)
o E€Sr=q; a\T)Yp(T
1<a<b<k
Iy a m; k n a
1
- T T > (zb—l— Z — > -+ my( 1), (6.13)
b=1 X — a=1b=1 j=1 J
b#a m;>b
1 , ~ my(m; — 1)
p” Resgy—q; (; zY, (1‘)) = 5 , (6.14)
1 1/ E 2 mi k n o
EiResx:az (2 (Zm@) > =>»> <zb + Z — _Zaj> + m? (6.15)
a=1 a=1b=1 j=1
mj>b
From formulas (6.12)—(6.15), we get
1 1
sy (Qﬁ%@c) - o))
B La o; min ml,mj) m? 3 6.16
= {{( —I—Zza—l—z —O[j —7+§mz ( )
b=1 Y Qy
J#l
On the other hand, using formula (6.5), we can compute
<a, In <I>) (t,a,z,1,m)
Q;
la
B a; min(m;, m;)  m;
=> —|—Zza—|—z p— + 5 (6.17)
bh=1 tb J
J#z
Comparing formulas (6.16), (6.17), and (6.8), we get relation (6.9). [



Difference Operators and Duality for Trigonometric Gaudin and Dynamical Hamiltonians 27

6.4 Bethe ansatz method for XXX-type spin chain model

Fix sequences I = (Iy,...,1lx) € Zéo and m = (my,...,my) € Z%, such that lezl lo =)0 m,.
Assume that P, [l, m] # {0}. Unlike in the previous section, we do not assume that I, # 0 and
m; #Q0foralla=1,... )k, i=1,...,n. Foreachi=0,...,n — 1, define

n k
o= 3 (o Yot ) 19

j=i+1 a=1

The numbers My, ..., M, 1 are the (g, gl,,)-dual analogs of the numbers Iy, ...,l_1, see for-
mula (6.4). Recall that By, [I, m] # {0} implies [, > 0, a =0, ...,k — 1. Similarly, By, [l, m] #
{0} implies m; > 0,i=0,...,n — 1.

Let ¢ be a set of my + - - - + m,,_1 variables:

1 D L2 2 -1 -1
t= (0, ) D@ D)y
Fix sequences of pairwise distinct complex numbers z = (z1,...,2;) and @ = (aq,...,qp).

We have mg = 0. Also, put m,, = 0. The XXX Bethe ansatz equations is the following system
of mi + - -+ + my_1 equations:

Qi1 k t(la) 41 mi—1 t(z) . t(i—l) 41 Mit1 tl()z) . t(i—i—l) m; t(z) . t((li) 1

= b b % . . - b —— (6.19)
o lal;[ll 751()la) — 2, ;ll;[ tl()l) . tngl) g tl()l) - ((1171) -1 621) t{()z) . tgl) +1
a=1 a

wherei=1,...,.n—1,b=1,...,m;.

A solution t of the XXX Bethe ansatz equations (6.19) is called XXX-admissible if t((f) %+ tl(f),
t9 29 forany i = 1,...on— 1, a,b=1,....m5, a# b, j=1,...,n—2,d =1,...,m,,
b = 1,...,m]~+1.

For each i,7 =1,...,n, define

k i1 (i-1) " (i)
o T —2z4+1 T —t, +1 Tz —t, —1
Xi(z,t,z,a) = oy H - H o=y R (6.20)
a=1 a a=1 — la a=1 T — ta
1a>1
Ej(z,t,z,a) = > Xy () Xiy(x — 1) ... X5, (z — j + 1). (6.21)

1<y <--<ij<n

In the last formula X;(z) = X;(z,¢,z,a), i =1,...,n.
Introduce a new variable u. Consider the following polynomial in u:

n
E(u,z,t,z,a) = u" + Z Ej(l’, t,z, a)u" ",
j=1

which is also a rational function of x regular at infinity. Let E,(u,t,Z, &), a € Z>o be the
coefficients of the Laurent series at infinity of F(u,x,t,z, &) as a function of x:

o0
E(u,z,t,2,6) =Y 2 Eq(u,t,z,a). (6.22)
a=0

In [4], a certain function ¥;(t, z) of ¢ called the universal weight function for the XXX-type
spin chain model was defined. This function takes values in tensor products of highest weight
gl,,-modules. In the case that we need, ©;(¢t, z) is a Py, [l, m]-valued function. If ¢ is an XXX-
admissible solution of the XXX Bethe ansatz equations (6.19), and ;(t, Z) # 0, then ;(t, ) is
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a common eigenvector of the higher transfer matrices for the XXX-type spin chain model. Higher
transfer matrices are series in #=!, whose coefficients generate a large commutative subalgebra
called the XXX Bethe subalgebra inside the Yangian Y(gl,). The XXX Bethe subalgebra
depends on parameters @ = (a1, ..., a,). The algebra Y (gl,,) acts on By,,. This action depends
on parameters Z = (21, ..., 2). Therefore, we have a homomorphism pY : Y (gl,,) — End(Bgn).
The images of the trigonometric dynamical Hamiltonians under the action p{™* : (U (gl,,))®*
— End(PBg,) introduced in formula (6.3) can be considered as elements of the image of the
XXX Bethe subalgebra under the map pY, see [4, Appendix B]. In particular, if ¢ is an XXX-
admissible solution of the XXX Bethe ansatz equations (6.19), and ;(¢, z) # 0, then ;(¢, 2) is
a common eigenvector of the dynamical Hamiltonians, and the corresponding eigenvalue can be
computed using [4, Proposition B.1]. We will formulate the result in the following theorem:

Theorem 6.6. Let t be an XXX-admissible solution of the XXX Bethe ansatz equations (6.19).

Then for each i =1,...,n, we have

G (z,a)wi(t, 2) = g™ (¢, 2, a)i(t, 2),

i

where
_ n 2
(n,k) o 1 E2 (u, t, zZ, a) ajmimj mi
RN 2 a) = —— ReSy—q; o 4y T T 6.23
J#i

and Es(u,t,z, @) is the coefficient in the expansion (6.22).

6.5 Spaces of quasi-exponentials and eigenvalues
of trigonometric dynamical Hamiltonians

Assume again that I, #0 and m; 0 foralla=1,...,k, i =1,...,n. Let the data (d,ﬂ; z, 5\)
be like in §ection 6.3, and let W be a space of quasi-exponentials with the difference data
(a, i —z, X). Then W has a basis of the form

{Oé??"l(l‘), OZ%CTZ('Z‘)v cee 7O‘§7ﬂn(x)}7
where ri(x),...,r,(x) are polynomials and degr;(z) = m;.
For each ¢t = 1,...,n, define

k
Ti(z) = [[ (@ + za + la — 9). (6.24)

a .
la>1

—

The following lemma is a special case of Lemma 3.7 in [6]:

Lemma 6.7. For eachi=0,...,n—1, j1,...,jn— € {1,...,n}, the functions

Wr (O[]x'l T (), a;‘cg T2 (@), aj':n,irjnfi (.T))
H?:i+1 (aﬁn,MTj(m))

are polynomials.

For each:=0,....,n—1,j=1,...,n, define

o Wr(adrn(2), 0k _yrp1(x), ..., af g1 (2)) [ (1) —
yi(z) [T (aT5(x)) B a

According to Lemma 6.7, the functions yo(z), ..., yn—1(z) are polynomials.
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Lemma 6.8. For eachi=1,...,n—1, there exists a polynomial 3; such that
af of -
Wr <yl(a:), - yz(l‘)> = —=Ti(x)yi—1(x)yiy1(x + 1). (6.26)
@it Qi1
Proof. Set
~ Wr(aﬁrn(x), ERE ()4;0+2’l”i+2($), Qf?‘z(l‘))

i(z) = aiv1
' ' o - 00 H?:erl(T](x)) ’

By Lemma 6.26, 91 (z), . .., Jn—1(x) are polynomials, and (6.26) follows from discrete Wronskian
identities (A.1) and (A.4). |

Denote u;(z) = y;i(x +1i/2), i =0,...,n — 1. Then equations (6.26) become

af | ) af - )
Wr <uz(x), ——7i(x + z/2)> = ——Ti(x+i/2)ui—1(x + 1/2)uir1(x + 1/2), (6.27)
Qit1 Qg1
where i =1,...,n— 1.

It is easy to see that for each ¢ = 0,...,n — 1, degu; = degy; = m;, where mg,...,Mp_1
are given by formula (6.18). In particular, degug = degyo = 0. One can normalize polynomials
ri(x),...,rn(z) so that the polynomials yo(z),...,yn—1(z) (and hence uy(x),...,up—1(x)) are
monic. For eachi=1,...,n— 1, write

m;
ui(x) = H (z— S((f)).
a=1

We will call the space W XXX-admissible if for each i = 1,...,n — 1, the polynomial u;(x)
has only simple roots, different from the roots of the polynomials u;—1(z +1/2), uj+1(z +1/2),

Ti(x +1/2), and u;(x + 1).
The following theorem is a part of Theorem 7.4 in [9]:

Theorem 6.9. Let W be XXX-admissible, then relations (6.27) imply

ko (a) g myo (@) () mi (@) (9)
= - 11 SI()z ) Lt I1 ﬁ Sb') - S?J') L 11 S?') - 8?‘) - 1’ (6.28)
o am1 Sy —Za—1/2 lj—i|=1a=1 S((;Z —sq’ —1/2 .51 sz —sq’ +1
lg=1 a#b

wherei=1,...,n—1,b=1,...,m;, and 2, = —24 — lo/2+ 1/2 for each a = 1,... k.

A tuple of polynomials uj (), . .., u,—1(x) such that relations (6.27) hold for some polynomials
71(x), ..., Yn—1(z) is called a fertile tuple in [9].

Let us call the equations (6.19) the XXX Bethe ansatz equations associated to z = (21, ...,
zi). Foreach i =1,...,n—1,a = 1,...,m,;, set tgi) = sgi) — /2. Then, using (6.28), it
is easy to check that t = (tgl), e ,tﬁﬁ;}f ) is an XXX-admissible solution of the XXX Bethe
ansatz equations associated to —Z — [ +1 = (—z; — I +1,—20 —lo + 1,...,—2x — I + 1).
Therefore, to each XXX-admissible space of quasi-exponentials W with the difference data
(a, i@'; =2, X'), corresponds a vector vy = (¢, —z — I + 1) € Py, [l,m], which, provided that

vy # 0, is an eigenvector of the trigonometric dynamical Hamiltonians G§n’k> (—2 —I+1, @), R

Gﬁlmk) (—2 —1+1, 54), and the associated eigenvalues are given by the formula (6.23), where we
should substitute z, - —z,—ls+1,a=1,...,k. We will call vy the Bethe vector corresponding
to W.
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We are now going to relate the eigenvalues of the trigonometric dynamical Hamiltonians as-
sociated with the eigenvector vy and the coefficients of the fundamental difference operator Sy,
of the space W.

Let yo(x),...,yn—1(x), T1(x),...,Tp(z) be the polynomials given by (6.25) and (6.24), re-
spectively. Put y,(z) = 1. Define
Ti(z + Dyi—1(z + Dyi(z)

Ti(z)yi—1(@)yi(z + 1)
Comparing formulas (2.3), (2.4), and (6.29), we get

Sw = (T = Y1(2))(T = Ya(z)) - - - (T = Yo()).

Y=« =1,...,n. (6.29)

Foreachi=1,...,n— 1, write
m; A
yi(x) = H (x — tfl’)).
a=1

Then we have

Yi(o) ﬁx+za+la—i+1ﬁﬁlx—t~g1)+1mias—fg)—l -
(1) = oy , — — i=1,...,n.
! Za: T4 zg+ 1y —1 x—((f 1) e _(SZ)

la>1

Since y;(z) = w;(z —i/2), we have s = 9 —i/2,i=1,...,n—1,a=1,...,m;. Therefore,
for the solution t = (tgl), . ,t,(%;ll)) of the XXX Bethe ansatz equations corresponding to the
space W, we get téi) = sg) —i/2 = ﬂ(j) — 4. Denote this solution as t — 4.

Comparing the last formula for Y;(z) with the formula (6.20) for X;(x,t, z, &), we have

Xi(z,t—i,—z—1+1,a) =Y(z+i—1). (6.30)
Let E1(z),...,En(z) be the coefficients of the fundamental difference operator Sy, of the
space W:

Sw=T"+ Z Ev'z(x)Tnfl

i=1
For each i =1,...,n, we have
Ex)= Y  Yi(wtin— DYi(z+iz—2)- Yy (z+i;—j). (6.31)

1<) << <n
Comparing formulas (6.21), (6.31), and (6.30), we get E;(z, —4,—2 — [+ 1,a) = E;(x).
This, together with Theorem 6.6, proves the following:

Proposition 6.10. Let W be an XXX-admissible space of quasi-exponentials W with the differ-
ence data (07, i —z, )\’). Let vy be the Bethe vector corresponding to W. Write the fundamental
difference operator Sy of the space W in the following form:

SW == i l'_aEa(T)’
a=0

where Ey(T), E5(T), ... are some polynomials in T. Then we have
an,k) (—5 —1+1, d)’UW = glyvvw,
where
1 Es(u) " aymim;  m?
W 2 gttty 7
Y= ——Resy—ey =+ y —-—F — —L.
9; o u=0; H?:l(u — ai) ; Q; — Qg 2
J#
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6.6 Quotient difference operator and duality for trigonometric Gaudin
and dynamical Hamiltonians

Fix a pair (I,m) like in the previous section. Let the data (2, X; @,ﬂ) be like in Section 6.3.
Let V be a Gaudin admissible space of quasi-polynomials with the data (Z, \; @, ,a).

Recall the maps T; and %3, see formulas (2.15) and (4.6), respectively. Set W = T1(T3(V)).
Then W is a space of quasi-exponentials with the difference data (d, i =z, N ) In this section,
we will relate the map V — W = T1(T3(V)) with the (gly, gl,,)-duality of the trigonometric
Gaudin and dynamical Hamiltonians.

We will need the following lemma.

Lemma 6.11. For generic &, zZ, the common eigenspaces of the trigonometric dynamical Hamil-

tonians ng’m(i, a,..., ng’m(é, &) in P, are one-dimensional.

(n)

Proof. For every monomial p € By, we have (eii )(a)p = m{(p)p for some mf(p) € Z. More-

over, if p # p/, there exist i, a such that m¢(p) # m(p’). Thus, if z1,..., z; are linearly inde-

pendent over Z, the common eigenspaces of the operators K; = 22:1 Zq (e§?>)(a), i=1,...,n,
in P, are one-dimensional. Therefore, the common eigenspaces of the operators G%mk) (z,@),

. ’G;HM (z,@) in Py, are one-dimensional provided that z1, ...,z are sufficiently large posi-
tive numbers linearly independent over Z. Hence, the common eigenspaces for generic &, Z are
one-dimensional. |

Let vy € Pnpll,m] be the Bethe vector corresponding to V, see Section 6.3. Assume
that vy # 0. Then the vector vy is an eigenvector of the trigonometric Gaudin Hamilto-
nians H1<k’m(d, z4+1),..., Hék’m (@, 2z +1). Denote the associated eigenvalues as hy,...,h}
respectively.

Assume that the space W = %1 (T3(V)) is XXX-admissible. Let vy € By, [l, m] be the Bethe

vector corresponding to W, see Section 6.5. Assume that vy # 0. Then the vector vy is an

eigenvector of the trigonometric dynamical Hamiltonians G§"’k> (—Z —1+1, d), .. ,Gf{"“ (—Z —
l+1, Ev). Denote the associated eigenvalues as g¥V Yo g,‘{V , respectively.
Theorem 6.12. The following holds:

hY = —gW, i=1,...,n. (6.32)

Before proving the theorem, let us discuss how it explains the relation between the map
Vi W = %(%3(V)) and the (gly, gl,,)-duality. By Proposition 6.2, for each ¢ = 1,...,n, we
have

G (=2 =1+ T,a)vy = —H" (@ 2+ Doy = —h} vy (6:33)

Therefore, starting with the space V and the corresponding vector vy, we have two different
ways to obtain a common eigenvector of the trigonometric dynamical Hamiltonians. First, by
the (gly, gl,,)-duality, vy is itself a common eigenvector of the dynamical Hamiltonians, see
formula (6.33). Second, the map V +— W = T;(¥3(V)) gives the vector vyy. Theorem 6.12 and
Lemma 6.11 assure that for generic z, &, these two eigenvectors are the same up to a constant
multiple.

Indeed, comparing formulas (6.32) and (6.33), we have

GM (=2 — 1+ T,a) vy = gV vy,

which means that the vectors vy and vy belong to the same eigenspace. Then Lemma 6.11
implies that vy is proportional to vy .
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Proof of Theorem 6.12. Denote U = T3(V) € 8(07,/1; Z4+ M, 5\). By Lemma 4.2, the funda-
mental difference operator Sy = TM + M b;(2)TM~7 of U has rational coefficients by (), . . .,
bar(x), which are regular at infinity. Therefore, there exist polynomials By(u), B (u), Ba(u), . ..
such that

Sy = ix_“Ba(T). (6.34)
a=0

Moreover, Lemma 4.2 gives an explicit formula for the polynomial By(x):

n

Bo(u) = pa,p(u) = H(u — ;)™ (6.35)
i=1

Consider the regularized fundamental difference operator Sy = q:5(2)Su of U, where ¢; 5(z)
= H’;Zl ( — 24 — la), see Section 4. Since degg; x(z) = k, the coefficients bi(z),...,ba(z) in

the expansion Sy = TM + Zf\il bi(x)TM~" are polynomials in z of degree at most k.
Define numbers A;,,i=1,....M,a=1,...,k by Sy = Zf\il Zl;:l A;jqx®T". Then we have

1 M
Sy = > Ajga® T, (6.36)

[z — 20— la) S o

Denote 25:1(% +1,) = Z. Comparing formulas (6.34) and (6.36), we get

M M
Bo(u) =Y Ajpu',  Bi(u) =Y (Ajg-1+ ZAip)',
=1 =1
M .
Bg(u) = Z (Ai,ka + ZAi’kfl + Z2Ai7k)ul. (637)
=1

Let Dy be the regularized fundamental differential operator of V. Since U = T3(V), by
Theorem 4.3, we have

_ Mk /d\®
Dy =) ) Aia' (mdx) . (6.38)
i=1 a=1

Let Dy be the fundamental differential operator of V. We have Dy = Pa,i(T) (kav), where
pa,ﬂ(l‘) = H?:l(x — a;)™i, see Section 4. Write

Dy — <x;x>k + f:ﬁa(x) <x(ic>k_a.

a=1

Then formula (6.38) gives

By Proposition 6.5, we have

B, a=1,.... k. (6.39)

Y = 2 Rosya, (5070) — o)) + ™ (6.40)

(67 2
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Using formulas (6.37), (6.35), and (6.39), one can check

R, (00— ) = e, (202 - 222,

Therefore, formula (6.40) gives

2 2
nY — iReSu:ai <1B1 (u) _ BQ(U)) + mi m;. (6.41)

! i 2B2(u) Bo(u) 2
Consider the space W = T1(U) € 8(07, i =z, N ) We have
[T = ai™** = s}, 80, (6.42)

i=1

where the involutive automorphism (-)* is defined in formula (5.3).
The fundamental difference operator Sy of W can be written in the form

=Y @ "Eq(T)
a=0

Substituting this into formula (6.42), we have

ﬁ(T )it = (ZE ) (ix“Ba(T)> _

=1

Writing the right hand side of the last formula in the form > o2 2~ *P,(T") with some poly-
nomials Py(z), Pi(z), P2(x),... and comparing it to the left hand side, we see that P,(u) = 0
for all @ > 1, and

Eo(u)By(u) = Po(u) = H(u — )™t (6.43)

From Pj(u) = 0, we get

Eo(u)Bi(u) — E1(u)By(u) = 0. (6.44)
From P5(u) = 0, we get

E5(u)Bo(u) + Eo(u)Ba(u) + uEf (u) Bo(u) — uE)(u)B1(u) — E1(u)B;(u) = 0. (6.45)
In the last formula we used that for every polynomial P(u), we have

P(T)x™ =27 'P(T) — 2 2TP'(T) + ) 2 "Pu(T)
a>3

for some polynomials Ps(u), Py(u),. ...
Using relations (6.44) and (6.45), one can check

1B} u)  By(u) (1 Ef (u) Ez(w) S (El(“))/.

2E2(u)  Eo(u) Eo(u)

2B2(u) Bo(u)
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Therefore, formula (6.41) gives

e (15 ) e (B 2 e

Let g1",..., 9% be the eigenvalues of the trigonometric dynamical Hamiltonians G§n’k> (—Z —

L+ 1,a),.. .,Gf@”””(—z — 1+ 1,@), respectively, associated with the Bethe vector vy. By
Proposition 6.10, we have
1 Es(u) " aymim;  m?

w 2 gty
Y= —— Res,—py, ——————— + _— 6.47
gz a; U=0 H;'Lzl(u . OZZ) JZI a; — Oé] 2 ( )

J#i
We will use again [4, Proposition B.1], which gives the following explicit formula for the
quotient B (u)/ [T, (v — oi):

B (u) = zn: Qjm; (6.48)

H?:1(U—Ofi 27 —u

From formulas (6.35) and (6.43), we get

=1

n

Eo(u) = [J(u— a). (6.49)

i=1
Using (6.48) and (6.49), we can rewrite (6.47) in the following way:

1 1E?(u)  Esx(u) m?
ot = oo (3~ mg)) 3 (650

&%)

Using (6.48) and (6.49) again, we compute

;Resuai <u (2&3)/) = my. (6.51)

Comparing formulas (6.46), (6.50), and (6.51), we get (6.32). Theorem 6.12 is proved. =~ W

6.7 Non-reduced data

In the previous section, we related the quotient difference operator and the (gl, gl,,)-duality
of the trigonometric Gaudin and dynamical Hamiltonians acting on the space By, [l, m|, where
l=(l1,...,lp) and m = (my,...,my,) aresuch that l, #0,a=1,...,kandm; #0,i=1,...,n.
In this section, we are going to extend this result to all nontrivial subspaces P, [l, m], that is,
we are going to include the cases when some [,, m; are zero.

Fix L = (I1,...,l;) € ZX,. For each a =1,...,k, let g,(z) be a polynomial of degree I, such
that g,(0) # 0. Fix complex numbers 21, ..., 2 such that z, — 2, ¢ Z if a # b. Denote by V the

space spanned by the functions x*q,(z), a =1,... k.
Define
bl d
Vred — - V.
H <xdx Za)
a=1
1a=0

Denote k' = dim V™4, Fix a € C*. Let (e; > --- > e},) be the sequence of exponents of V at «,
and let (e{ed > > e};‘?d) be the sequence of exponents of V4 at a.
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Lemma 6.13. Define a partition pn = (u1, pa,...) by e =k +ps—a, a=1,... .k, pp41 = 0.
Then e, =k+pug—a,a=1,... k.

Conversely, if a partition p is such that eq = k 4+ pg —a, a =1,...,k, then pg 41 = 0 and
el =k g —a,a=1,... k.

Proof. It is enough to prove the lemma for the case when [; = 0, and lo,...,[; are not zero.
Let Dy and Dyrea be the monic linear differential operators of order k£ and k — 1, respectively,
annihilating V and V™, respectively. Then

dx
Define functions by (), ..., bx(x), b°4(z), ..., b (z) by

d
2*Dy = 2¥ "1 Dyrea (x - 21> . (6.52)

Using formulas (3.2), (4.4), and (4.5), one can check that by (z), ..., bk(x), B5°4(z), ..., b4, (z)
are regular at «. Define polynomials I(r) and I'd(r) by

k

= Zba(a)ak*ar(r -Dr—2)---(r—k+a+1),

rred(r Zbged JaF 1 (r — 1)(r = 2) - (r —k +a+2).

Notice that {e1,...,ex} is the set of roots of the polynomial I(r). Indeed, substituting a series
Y20 Ai(z — @) into the differential equation Dy f = 0, and looking at the coefficient for the
lowest power of (x — «), we get I(r) = 0. Similarly, {ered,. ,e5sd} is the set of roots of the

polynomial I**d(r). The polynomials I(r) and 1™ (r) are called the indicial polynomials of the
differential equations Dy f = 0 and Dyrea f = 0, respectively.
Using formula (6.52), we obtain the following relations:

bo(z) = b5°Y(x) — 21 (x — )Y (2), a=1,...,k, (6.53)

where we assume that b7°d(z) = 0. Relations (6.53) imply bs(a) = b*(a), a = 1,...,k.
Since Dy and Dy wea are monic, we also have by(x) = b¢d(z) = 1. Therefore, I(r) = rI*d(r —1),
which implies the lemma. |

Let {a1,...,a,} be a set including all non-zero singular points of V. Assume that a; # «;
if i # 7, and o # 0 for all ¢ = 1,...,n. Suppose that for each ¢ = 1,...,n, the sequence of
exponents of V' at a; is given by

(k:,k—l,...,k‘—mi+1,k‘—mi—l,k:—mi—2,...,1,0)

for some m; € Z, 0 < m; < k.

Define a sequence of partitions A\ = ()\(1) )\(k)) by M) = (14,0,0,...), a = 1,...,k.
Define a sequence of partitions fi = (u(l), N )) by p® = =(1,1,...,1,0,0,...) with m; ones,
i =1,...,n. Define sequences A4, gred, zred, and a"d by removing all zero partitions from
the sequences )\, fi, and removing corresponding numbers from the sequences zZ = (21, ..., 2,),
a=(ag,...,a,). We will call the data (Z, X @, ﬂ) reduced if (2, X @, ﬂ) = (Zred, ared. @red,ﬂred),
and non-reduced otherwise.
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Zred’ j\red; @red7 Iared) .

Proposition 6.14. V™ js a space of quasi-polynomials with the data (

Proof. Recall that V is spanned by the functions z**q,(z), a = 1,..., k, where q1(z), ..., qx(x)
are polynomials such that deggq, = l,, and ¢,(0) # 0, a = 1,...,k. Then the space V' is
spanned by the functions z**¢,(x), a = 1,..., k, where

k
d
gy (x) = T— +2p — 2za | @(). (6.54)
i H (ags #5020 )

If I, # 0, then for each a in the product on the left hand side of formula (6.54), we have
2y — 24 ¢ Z, which yields degg,(x) = degqu(x), a = 1,...,k. If [, = 0, then formula (6.54)
implies G,(2) = 0. This shows that the space V**? has a basis

{2%*Gq(z) | 24 is present in Zred},

and the degrees of the polynomials §,(x) appearing in this basis correspond to the sequence \*d.

Notice that @**d is the set of all singular points of V, and the sequences of exponents of V
at these points correspond to the sequence fi**d. Therefore, the proposition follows from Lem-
ma 6.13. |

Recall the maps T; and T3, see (2.15) and (4.6), respectively. Set Wrd = T, (‘Ig (Vred )
Then W™ is a space of quasi-exponentials with the difference data (@red, (ﬁred),; —zred, (Xred),).
We are going to construct a space W such that

wred = T (T — ai)W.
=1
m;=0

For this we will need the following lemma:

Lemma 6.15. Fiz o, € C*, and a polynomial p(x). Assume that o # 3. Then there exists
a unique polynomial p(x) such that deg p(x) = degp(z), and

(T - B)a"5(x) = a”p(a). (6.55)
Proof. Relation (6.55) is the same as relation
ap(z +1) — Bp(z) = p(x). (6.56)

Let a, . . ., an, be the coefficients of p(z): p(z) = ama™+am_12™ 1 +-- -+ ayz+ap. Substituting
a polynomial j(z) = @ma™ + Gm_12™ 1 + -+ + @17 + @o into equation (6.56) and comparing
coefficients for powers of x, we get

i—1 .

~ m—7\. .

am—i(a - ﬁ) = 0m—i — & E < .>am—j, 1=0,....,m,
=0 m—1

which is a recursion that allows to find the numbers aq, ..., a, uniquely. |

For any 3 € C*, define a linear operator (T — 3)~! on the space spanned by all functions of
the form o®p(x), where a € C*, @ # 3, and p(z) is a polynomial, by the formula

(T - B)~ a®p(x) = a®p(x),

where p(x) is the polynomial from Lemma 6.15.
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Let 1 <y <ig < --- <14 <n besuch that m; = 0if i = is for some s =1,...,1, and m; #0
otherwise. Denote by W the space spanned by the functions
(T — i) H(T — i)™t (T — )t f, fewrd and i .., an.

11? 1

Let Sy be the fundamental difference operator of W. Let Syyrea be the fundamental difference
operator of W4, Then we have

n

Sw = Syrea [[ (T — ). (6.57)

im0
Together with Lemma 2.5, this shows that the order of «;,,...,q;, in the definition of W does

not matter.

Recall that W4 is a space of quasi-exponentials with the difference data (d ,(ﬂ
—zred (Xred)/). Then the equality degp(z) = degp(x) in Lemma 6.15 implies that the space W

has a basis of the form

red red) /;

{afri(z),i=1,...,n},

where 71 (x),...,r,(z) are polynomials such that degr;(z) =m;, i=1,...,n.

Fix z € C. Let (¢4 > --- > é,) be the sequence of discrete exponents of W at z. Denote
n =n—1=dimW™. Let ( ered > > éif;d) be the sequence of discrete exponents of T¥/7ed
at z.

Lemma 6.16. Define a partition A = (A1, Aa,...) by & =n'+ N —i,i=1,....n, \yy1 = 0.
Theneé; =n+X\—1i,i=1,...,n.

Conversely, if a partition A is such that &, =n+X\j —1, i = 1,...,n, then Apyy1 = 0 and
ged=n/ 4N —i,i=1,...,n
Proof. It is enough to prove the Lemma for the case m; = 0, and mao, ..., m, are not zero.

Let f1(x),..., fa_1(z) be a basis of W™ such that for each i = 1,...,n — 1, T7 f;(z) = 0,
§=0,...,&% —1, and T%" f;(z) # 0. Set

filz) = (T — an) " Hfilz) — (T — ) "L fi(2), i=1,...,n.

Then f;(z) € W, (T oq)fl( )= fi(z), and fi(z) =0,i=1,...,n— 1.
Since T9 — o = (32025 &)~ 7°T%)(T — 1), we have

j—1
T fy(x) = o fiw) + Y o] 77T fi(w),.
s=0
The last relation implies Tifi(z)=0,7=0,...,&° and T% L (2) = redﬁ( ) # 0.
Since {of, fi(x),..., fn—1(z)} is a basis of W, the sequence of discrete exponents of W at z

is given by
(&t +1>->ed 41> 0),
which implies the lemma. |

Notice that for each a = 1,. .., k, the sequence of discrete exponents of W™ at —z, is given
by

(n',n' —1,....0n" =l +1,n -1, —1,...,1,0).
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Therefore, by Lemma 6.16, for each a = 1, ..., k, the sequence of discrete exponents of W at —z,
is given by

(nyn—1,....n—=ls+1,n—1,—1,...,1,0).

Consider the space Py, [l, m], where I = (I1,...,l;) and m = (mq,...,my). One can repeat all
constructions in Section 6.3 for the space V. Assume that V satisfies conditions similar to those
for a Gaudin admissible space in Section 6.3. Then we obtain a vector vy € Py, [l, m| such that

H @,z 4+ oy =hV vy,  i=1,....n

for some numbers hY, ce h,‘{ . We will assume that vy # 0.

Similarly, one can repeat all constructions in Section 6.5 for the space W. Assume that W
satisfies conditions similar to those for an XXX-admissible space in Section 6.5. Then we obtain
a vector vy € Py, [l, m] such that

GZ{"’M(—E—l—i—i,d)vW:ngvW, i=1,...,n
for some numbers g}V, ..., g/ . We will assume that vy # 0.

Theorem 6.17. The following holds:
hY = —gV, i=1,...,n.
Proof. Define functions By(z), ..., Bk(z), 854 (x),. .., B4 (z) by
k d \ e ) K d \¥-a
2*Dy = ;}ﬂa(:c) <xd:c> , 2% Dyjrea = ;Bfﬁd(m) (:Udm> .

The eigenvalues hy,...,hY can be expressed through £1(z), Ba(x) using the same formula
as in the case of reduced data, see (6.9). For convenience, we repeat this formula here:

1 1 m?
V- _o [ =82%(z) - i
Y = - Resa, (920) — o)) + T35 —
Define also the following numbers:
1 1 2
= L ges,, (2( 1e)2(z) 55%)) £

Suppose that Iy = 0, and la, ..., are not zero. Relation (6.52) implies

By = pgied — 2, By = BEed — 2y pred,

Using the last two formulas, it is easy to check that

1 1 re 2 re
Resio, (507(0) ~ (o)) = Resa, (5" (0) - 3570)). (6:58)
By induction, formula (6.58) holds for any [y,...,l;. Therefore, we have hlV = hy’red, =1,
., n.

Define polynomials Fo(u), E1(u), Ba(u),. .., EFd(u), E¥(u), EX(u),... by

o0 o0
Sw=> 2 Ee(T),  Syrea= Yy a “EFYT).
a=0 a=0
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The eigenvalues g}V, ..., g" can be expressed through E(u), F2(u) using the same formula
as in the case of reduced data, see (6.50). For convenience, we repeat this formula here:

¥ L, (LEH0) B

2E3(u)  Eo(u)

m;
%= o 2
(87

Define also the following numbers

2

1 1 Ered Ered
g;/V,red:fReSu:ai ( 1 (U)) 2 (U)

L _ _m
le% 2 (E(r)ed(u))Q Eaed(u) 5
Using relation (6.57), we have

n

Eo(u) = By (u) ] (w— i),

7

m;=0
which implies ng = ng’red, 1=1,...,n.
In the proof of Theorem 6.12, we already checked that hy’red = _ng,red for all ¢ such that
m; # 0. If m; = 0, then hly’red = gZW’red = 0. Therefore, we have hY = —g/V, i=1,...,n.
Theorem 6.17 is proved. |

A Discrete Wronskian identities

In this section, we collect discrete Wronskian identities that were used in the paper. Identities
(A.1)-(A.4) with proofs can also be found in [8, Appendix B].

Recall that T is the shift operator defined by T'f(z) = f(x+1). Recall that for any functions
fis-++, fn, the discrete Wronskian Wr(f1, ..., f,) is the determinant of the matrix (Tj -1 fi)n

ij=1"

Denote T f = f(Tf) (T2f) e (T”_lf). We have the following obvious relations: !
Wr(hfy,...,hfn) = (T™R)Wr(f1,..., f,)  for any h, (A1)
Wr(l, f1,.- s fn) =Wr(T = 1) f1,..., (T —1)fpn). (A.2)

Assume that f; # 0. Combining formulas (A.1) and (A.2), we get

Wil for o) = (CO )W (= D2 -l ) (A3)
fi fi
Proposition A.1. For any functions fi,..., fn, hi,..., hm, where f1 # 0, the following holds:
WI‘(WI‘(fl, ey fn, hl), . ,Wr(fl, ey fn, hm))
= (T DW(Tfr, .o TE)WE(fro- ey frs bty ey ). (A.4)

Proof. We will prove the proposition by induction on n. Let n = 1. Denote f; = f. Using
formula (A.3), we compute

Wr(f, hi) = (T® f)Wr <(T - 1)};}) = (TP F)(T - 1)2‘;’, i=1,...,m.
Therefore,
Wr(Wr(f,h1), ..., Wr(f, b)) = (T T £)Wr <(T - 1)};},. (T — 1)h}”>
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(7D £) (T £)Wr ((T - 1)@}, (T — 1)h}”)
= (T DT F)Wr(ha,. .., hy).

Assume that formula (A.4) is true for some n > 1. For functions fi,..., fut+1, h1,. .., lun, define
j =

fi= (T —=1V)(fi/f1), hj = (T —=1)(hj/f1),i=2,....,n+1,j=1,...,m. Then we compute

Wr(Wr(f1s -, fast, h1),s oo s WE(FLs - - gt o)
= (TMT0D FYWe(Wr(fo, .oy fasts b))y We(foy oy fagt, Bun))
= (7T £ (T DWe (T fo o T fo))Wr(foy oy fasts By oy i)
= (T D [(TCDT )W (T fo, ..., T hpi1)])
) (T YW (o, fagts by ey )
= (T DWe(Tfr, o Thas))Wr(fro oy frtts By oy ). (A.5)

Here, on the first step, we used formulas (A.1) and (A.3), on the second step, we used the
assumption hypothesis, on the third step, we used

T(m)T(n+2) fl — (T(m—l)T(n+1)Tf1) (T(n+m+1)f1);

and on the fourth step, we used formula (A.3) again.
Computation (A.5) proves the induction step finishing the proof of the proposition. |
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