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1 Introduction

Studies of curves on surfaces is one of the oldest problems in mathematics, starting from the
intersection theory of configurations of lines on a plane. It is also an important tool in under-
standing the geometry of surfaces, see for example [1, 12]. Enumeration of curves on surfaces is
an old subject which dates back to the 19th century. It has received much renewed interest and
had become a very active research area, probably started from the ground breaking paper by
Yau and Zaslow [56] which gave a beautiful formula for the number of curves on a K3 surface
in terms of a modular form. Namely the number of rational curves on a K3 surface of a given
degree is given by the coefficients of the generating function

q/∆(q) =
∏∞

m=1
(1− qm)−24,

where ∆ is the well-known modular form of weight 12. Beauville [4] (see also [23]) gave a math-
ematical approach to this formula by interpreting the BPS count in terms of compactified Ja-
cobians of curves. For primitive classes, the Yau–Zaslow formula was proven by Bryan and the
second author [9, 10, 11, 38, 39] and the full conjecture was proven later by Klemm, Maulik,
Pandharipande and Scheidegger [33] (see also [48]) via mirror symmetry for a Calabi–Yau three-
fold with a K3 fibration.

In [26], Göttsche gave an intriguing generalization of the Yau–Zaslow formula which applies
to any surface X and any genus g as long as the curve class C is sufficiently ample. Concretely
the number of genus g curves in |C| passing through an appropriate number r of points is given
as the coefficient of qC·(C−K)/2 in the following power series in q
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where D = q d
dq , G2(q) = − 1

24 +
∑

k>0

(∑
d|k d

)
qk is the Eisenstein series and B1(q) and B2(q)

are universal power series in q. The universality of this amazing conjecture has been solved by
Kool–Shende–Thomas [37] and Tzeng [55] independently in 2011 and 2012.

There is also a refined curve counting defined by Block and Göttsche which is related to
tropical geometry [5] and real algebraic geometry [27] as well.

In this article, we study very different aspects of the geometry of curves on surfaces, namely
the intricate relationships between configurations of low degree curves, for instance lines, and
representation theory of simple Lie algebras. The most famous example is probably the 27 lines
on a cubic surface discovered by Cayley and Salmon in 1849 and their relationships with the
exceptional Lie algebra E6 (see, e.g., [19, 46]).

The organization of this paper is as follows. In Sections 2, 3, 4 and 5, we introduce the
famous examples that reflect the deep connections between the geometry of surfaces and Lie
theory. Specifically, we study ADE singularities in Section 2, cubic surfaces in Section 3, del
Pezzo surfaces in Section 4 and ADE surfaces in Section 5. Based on Section 5 (ADE surfaces),
Sections 6 and 7 are related to F/string theory duality. In Sections 8, 9, 10 and 11, we introduce
some results related to deformation of ADE bundles over surfaces with ADE singularities, based
on Section 2 (ADE singularities). We study Cox rings of ADE surfaces in Section 12. And the
final Section 13 is a summary.

2 ADE singularities vs ADE Lie theory

In this section, we will recall ADE surface singularities, Lie algebras of ADE types and their
fundamental represenations. Another intricate relationship between geometry of surfaces and
Lie theory is the McKay correspondence [50]. The simplest type of surface singularity p ∈ X
is called a simple singularity (also called a rational double point, canonical singularity, Du Val
singularity or ADE singularity) [1]. Locally it is given by the quotient C2/Γ of C2 by a finite
subgroup Γ ⊂ SL(2,C). The exceptional curve C =

⋃r
i=1Ci of its minimal resolution X̃ → X

is a union of smooth rational curves Ci’s satisfying Ci · Ci = −2, i.e., (−2)-curves, and the
configuration can be described by its dual graph which is a simply-laced Dynkin diagram, i.e.,
of ADE type.

Recall that a simple Lie algebra g is called simply-laced if all roots have the same length and
they are exactly those of ADE types in the classification of simple Lie algebras [29], see Figure 1.
Nodes in a Dynkin diagram label fundamental representations of g.

The Lie algebra An = sl(n+ 1) is the algebra of symmetries of a volume form on V ≃ Cn+1.
The fundamental representations of sl(n + 1) consist of the standard representation V ≃ Cn+1

together with its exterior powers ΛkV with k = 2, 3, . . . , n.

The Lie algebra Dn = o(2n) is the algebra of infinitesimal symmetries of a nondegenerate
quadratic form q ∈ S2V ∗ on V ≃ C2n. The fundamental representations of o(2n) consist of the
standard representation V together with its exterior powers ΛkV with k = 2, 3, . . . , n − 2 and
also the two spinor representations S+ and S−.

Furthermore, E6 is the algebra of infinitesimal symmetries of a specific cubic form c ∈ S3V ∗

on V ≃ C27 and E7 is the algebra of infinitesimal symmetries of a specific quartic form t ∈ S4V ∗

on V ≃ C56. The explicit forms of these cubic form and quartic form can be described in terms
of the geometry of del Pezzo surfaces of degree 3 and 2 respectively. The situation for E8 is more
complicated as its smallest representation V is not a miniscule representation, instead it is the
adjoint representation of E8. We will call the above V ’s as the standard representations of g,
see Figure 2.
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Figure 1. Dynkin diagrams of ADE types.

3 Cubic surfaces vs E6 Lie theory

Let us come back to explain the relationships between cubic surfaces, or more generally del
Pezzo surfaces, with the representation theory of exceptional Lie algebras of type E.

In this section, we will recall various ways to realize the famous 27 lines on cubic surfaces
in P3. Each such geometric setting corresponds to the branching rule for the 27-dimensional
standard representation of E6 to a Lie subalgebra.

Geometric settings Lie subalgebra of E6

Degenerate to 3 planes sl(3)× sl(3)× sl(3)

Degenerate to plane + quadric surface sl(6)× sl(2)

Blowing down a line o(10)

We will also explain how to realize the E6 structure from the configuration of these 27 lines.
It is a classical result that there are exactly 27 lines on a smooth cubic surfaces X = {f(z)

= 0} ⊂ P3 and the symmetry of their intersection pattern is the Weyl group WE6 of E6 (see, e.g.,
[46, 49]). Could we recover the Lie algebra E6 itself, rather than just its Weyl group? Indeed
this can be done from the geometry of these 27 lines.

One way to locate these lines is to consider a family of cubic surfaces of the form [51]

X(t) = {z1z2z3 + tf (z0, z1, z2, z3) = 0} ⊂ P3

for a homogeneous polynomial f of degree 3. Suppose f is generic, then X(t) is a smooth
cubic surface for any generic t ̸= 0. When t = 0, X(0) is the union of 3 coordinate planes,
which certainly contain infinitely many lines. But only a few of them could survive for nearby t.
To explain this, we note that the singular set of X(0) is the union of 3 coordinate axes. In the
smoothingX (t ̸= 0), each such singular point p becomes a vanishing S1 as in the standard model
of smoothing from {xy = 0} to {xy = t}, with the exception when f vanishes at p. As deg(f) = 3,
f vanishes at 3 points on each coordinate axis. We call these unstable points as without them
the total family of X(t)’s would be a semi-stable degeneration for small t. A line on a coordinate
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Figure 2. Dynkin diagrams with fundamental representations labelled.

plane, say {z1 = 0} ⊂ X(0), survives on nearby X(t)’s if and only if it meets one of these 3
points on the z2-axis, as well as on z3-axis. Therefore the total number of lines on X(0) which
survive on nearby X(t)’s is 3× 3 + 3× 3 + 3× 3 = 27.

We will see that these 27 lines can be used to construct the fundamental representation
L = 27 of E6. Here 27 means a particular representation of E6 of dimension 27. In fact, the
above description of these lines corresponds to the branching rule from E6 to its subalgebra
su(3)1 × su(3)2 × su(3)3:

27 = 31 × 3∗2 + 32 × 3∗3 + 33 × 3∗1.

Here 3i refers to the standard representation of the ith-factor su(3)i in su(3)1 × su(3)2 × su(3)3
and 3∗i is its dual representation.

Similarly, we could degenerate X(t) to a union of a plane H and a smooth quadric surface Q
in P3, i.e., X(0) = H ∪ Q [42]. Then there are 6 points on the curve C = H ∩ Q which stay
onX(t) for t infinitesimally close to 0. They play the same role as the 3 points on each coordinate
axis in the previous example, namely they are the unstable points for the family X(t)’s. A line
on the plane H joining any 2 of these 6 points will deform to a line on nearby X(t)’s. The
total number of such lines is

(
6
2

)
= 15. On the other hand, the quadric Q has 2 rulings, each is

a P1-family of lines. A line in Q passing through one the these 6 points in C will also deform
to one in nearby X(t), and the total number of such lines is 6 × 2 = 12. All together, we have(
6
2

)
+ 6 × 2 = 27 lines on X(t). This corresponds to the branching rule for the fundamental

representation LE6 = 27 of E6 to its subalgebra sl(6)× sl(2) ⊂ E6 as follows:

LE6 ≃ Λ2V6 + V6 ⊗ V2,

where V6 ≃ C6 and V2 ≃ C2 are the standard representations of sl(6) and sl(2) respectively.
There is another way to see these lines once a particular line l ⊂ X is given. Any hyperplane

section containing l must be of the form l+C for some conic curve C ⊂ X [46, 49]. The pencil
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of such hyperplane sections degenerates into sum of three lines l+ l′i + l′′i five times i = 1, . . . , 5.
These 10 divisors l′i’s and l

′′
i ’s determine the standard representation of O(5, 5) = D5 (see

Dn-surfaces). The remaining 16 lines, which do not intersect l, form a spinor representation
of D5 and

27 = 1 + 16 + 10

is the branching rule from E6 to E5 = D5. From the surface perspective, these three types of
lines correspond to lines with intersection numbers −1, 0 and 1 with the given line l.

We could realize the E6 structure more concretely. We recall that the standard representa-
tion 27 of E6 admits a cubic form

c : 27⊗ 27⊗ 27 → C

such that E6 ≃ Aut(27, c), similar to Dn ≃ Aut(2n, q) as the symmetry group of a quadratic
form on its standard representation. We consider the direct sum of line bundles from lines on X:

LE6 =
27⊕
i=1

O(li).

If 3 of them l1, l2, l3 form a triangle, i.e., li ·lj = 1 whenever i ̸= j, then l1+l2+l3 is a hyperplane
section. Therefore

O(l1)⊗O(l2)⊗O(l3) ≃ O(1) ≃ K−1,

where K is the canonical line bundle of X. With suitable choices of these isomorphisms [42] and
using all triangles in X, we obtain

cL : LE6 ⊗ LE6 ⊗ LE6 → K−1

so that the fiberwise cubic structures give a conformal E6-bundle EE6 over the cubic surface X.

The root lattice ΛE6 of E6 can be identified as the orthogonal complement ⟨K⟩⊥ of K
in Pic(X) ≃ H2(X,Z) ≃ Z1,6. Here Z1,6 denotes the lattice Z7 with the quadratic form
(1)⊕ (−1)⊕6, which is isomorphic to H2(X,Z) equipped with the intersection form. This is
because any smooth cubic surface is a blowup of P2 at 6 points. Note that α ∈ H2(X,Z) is
a root in ΛE6 if and only if α · α = −2 and α · K = 0, i.e., α ∈ ⟨K⟩⊥ ≃ ΛE6 . We denote the
collection of all roots as Φ. If α ∈ Φ can be represented by an effective divisor C, then C ≃ P1

is called an (−2)-curve. Furthermore, (1) l ∈ Pic(X) ≃ H2(X,Z) satisfying l · l = −1 and
l ·K = −1 is always represented by a unique line on X; (2) f ∈ Pic(X) ≃ H2(X,Z) satisfying
f · f = 0 and f · K = −2 will be called a ruling, or conic bundle, as it defines a P1-bundle
Φf : X → |f | ≃ P1 on X with fiber degree 2; (3) h ∈ Pic(X) ≃ H2(X,Z) satisfying h · h = 1
and h · K = −3 gives Φh : X → |h| ≃ P2 which realizes X as a blowup of P2 at 6 points.
Similar structures hold for all del Pezzo surfaces and they are closely related to the fundamental
representations L, R and H of En corresponding the left node, the right node and the top node
in the Dynkin diagram of En’s, see Figure 3.

t t t t t
t

q q q
L R

H

Figure 3. Dynkin diagram of En with L, R and H labelled.
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In fact, the Lie algebra E6-bundle of fiberwise infinitesimal automorphisms of
(
LE6 , cL

)
is

naturally

EE6 = O⊕6
X

⊕
α·K=0
α·α=−2

OX(α),

similar to the root space decomposition of Lie algebra Lie(E6) = h
⊕
α∈Φ

gα.

Given any smooth anti-canonical curve Σ ∈ | −K|, then it is always an elliptic curve by the
adjunction formula. For any α ∈ Φ, O(α)|Σ has degree 0 and therefore defines a flat line bundle
over Σ. Indeed EE6 |Σ is a flat E6-bundle over Σ and every flat E6-bundle over Σ always arises
this way for an embedding of Σ into some cubic surface. Such a correspondence works for any
En-bundle, or even any ADE bundle, as we will describe next.

4 Del Pezzo surfaces vs En Lie theory

Cubic surfaces are degree three del Pezzo surfaces. In this section, we explain the analogous
results between the configuration of lines in degree 9− n del Pezzo surfaces and representation
theory for the Lie algebra En for any n between 1 and 8, as given in [42].

A smooth surface X is called a del Pezzo surface if K−1 is ample. Its degree degX = K ·K
is always between 1 and 9. A del Pezzo surface of degree d is always a blowup of P2 at n = 9−d
points in general position, with the exception of P1 × P1. We will denote them as Xn and
X ′

1 = P1×P1 respectively. For example X0 = P2, X5 is the complete intersection of two quadric
hypersurfaces in P4, X6 is a cubic surface in P3, X7 is a branched cover of P2 branched along
a quartic curve and X8 has a pencil of elliptic curves, i.e., | −K| ≃ P1. If we blowup the unique
base point of this pencil, we obtain a surface X9 which is a rational elliptic surface. We will see
in later sections that the geometry of this surface is related to affine Kac–Moody Lie algebras
of type Ê8’s.

In fact, the Xn’s and X ′
1 correspond to simple Lie algebras of type En, 1 ≤ n ≤ 9 and C

if the Abelian Lie algebra C is also included as a rank one simple Lie algebra. We recall that
En’s with n ≤ 5 coincide with certain classical Lie algebras, as can be seen directly from Dynkin
diagrams. Concretely, we have E5 ≃ D5 = o(10), E4 ≃ A4 = sl(5), E3 ≃ A2×A1 = sl(3)×sl(2),
E2 ≃ sl(2)×C, E1 ≃ C, E′

1 ≃ sl(2) and E0 = 0. We remark that there is a physical explanation
of having two En’s when n = 1 [31] via supergravity in eleven dimensions where En arises as
one compactifies the 11-dimensional space-time along a n-dimensional torus.

The first relationship between the geometry of a del Pezzo surface Xn and the Lie algebra En

is the following: the orthogonal complement ⟨K⟩⊥ ⊂ H2(Xn,Z) ≃ Zn,1 is a root system ΛEn

for En.
Similar to the cubic surface case, a line l ⊂ Xn means a curve in Xn of degree one with

respect to the anti-canonical class, which is equivalent to l ∈ H2(Xn,Z) satisfying l · l = −1 and
l ·K = −1. It is because each such cohomology class can be represented as the Poincare dual
of a unique line in Xn. The number of lines in Xn is equal to the dimension of the standard
representation L of En, unless n = 8 in which case it is dimL − 8 = 240 because L is no
longer a minuscule representation. Explicitly these numbers are 1, 3, 6, 10, 16, 27, 56 and 240.
Similarly f ∈ Pic(X) ≃ H2(X,Z) satisfying f · f = 0 and f ·K = −2 will be called a ruling, or
conic bundle, as it defines a P1-bundle Φf : X → |f | ≃ P1 on X with fiber degree 2. The number
of rulings in Xn is equal to the dimension of the fundamental representation R of En for n < 7.

We define

EEn = O⊕n ⊕
α·K=0
α·α=−2

O(α), LEn =
⊕

l·K=−1
l·l=−1

O(l), REn =
⊕

f ·K=−2
f ·f=0

O(f).
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Then (1) EEn is always an En-bundle over Xn; (2) LEn is an EEn-representation bundle over Xn

corresponding to the En representation L, for n < 8 and (3) REn is an EEn-representation
bundle over Xn corresponding to the En-representation R, for n < 7. The restriction on n is
related to the fact that L for E8 and R for E7 are the adjoint representations.

If l1 and l2 are two lines in Xn satisfying l1 · l2 = 1, then l1 + l2 is a ruling. This is reflected
by the fact that R is an irreducible component of the tensor product En-representation L ⊗ L
and in fact we have a natural bundle homomorphism

LEn ⊗ LEn → REn

over any Xn.

For example X1 is the blowup of P2 and the exceptional curve is its unique line. The two
exceptional curves in X2 together with the strict transform of the line joining two blow up
points in P2 give the 3 lines in X2. Having two different types of lines in X2 reflects that LE2 is
a reducible representation of E2 and it is also responsible for the fact that there are two different
degree 8 del Pezzo surfaces, namely X1 and X ′

1 = P1×P1. The 6 = 3×2 lines in X3 is reflecting
the fact that X3 is the blow up of P2 in 2 different ways, which in turns is the origin of the
Cremona transformation. In terms of the representation LE3 of E3 ≃ sl(3)× sl(2) we have

LE3 ≃ V3 ⊗ V2,

where V3 and V2 are the standard representations of sl(3) and sl(2) respectively. OnX4, there are
10 lines and 5 rulings. Under the identification of E4 with sl(5), we have RE4 ≃ V5 the standard
representation of sl(5) and LE4 ≃ Λ3V5. We could also see the relationship LE4 ≃ Λ3RE4 from
the fact that every 3 distinct rulings on X4 determines a unique line in X4 which is a bisection
to each of these 3 rulings. In fact, we have a natural bundle isomorphism

LE4 ≃ Λ3RE4(K).

On X5 there are 16 lines and 10 rulings, which are related to a spinor representation S+
10

and the standard representation V10 of E5 ≃ D5 = o(10). The defining quadratic form of o(10)
on V10 ≃ C10 is reflected by the geometric fact that given any two rulings f1 and f2, we have
f1 · f2 ≤ 2 and the equality sign holds if and only if f1 + f2 = −K. In fact, we have a fiberwise
quadratic form q over X5,

q : RE5 ⊗RE5 → O(−K),

so that the Lie algebra E5-bundle over X5 is the bundle of infinitesimal symmetries of q
on RE5 [40]. A smooth X5 is the complete intersection of two quadric hypersurfaces Q0 and Q
in P4. If Q0 varies in a one parameter family Q0(t) and degenerates into a union of two hyper-
planes Q0(0) = H ′ ∪H ′′, thus X5(0) = X ′

5 ∪X ′′
5 , then its geometry is governed by the reduction

of the Lie algebra E5 ≃ D5 = o(10) to A3 ×A1 ×A1 ≃ D3 ×D2 = o(6)× o(4). For instance the
branching rule

S+
10 ≃ S+

6 ⊗ S+
4 + S−

6 ⊗ S−
4

is reflected by the following geometric statements: X ′
5 and X ′′

5 are quadric surfaces and therefore
each admits two rulings. Lines on each ruling passing through one of the four points in the curve
Q∩H ′ ∩H ′′, which are the unstable points for the total family X5(t), are exactly those lines on
X5(0) which will survive for nearby X5(t)’s. Thus the 16 = 4×2+4×2 lines on X5(t) is reflecting
the above branching rule of S+

10. The relationship between the branching rule V10 ≃ V6+V4 and
the geometry of rulings on X5(t) can be described in a similar fashion.
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The relationship between the geometry of cubic surfaces X6 and representation theory of E6

has been discussed in the previous section. Recall that a smooth degree 2 del Pezzo surface X7

is a double cover of P2, branched along a quartic curve Q ⊂ P2. A bitangent line to Q in P2

determines a pair of lines in X7 as its double cover, thus the 28 bitangents to Q gives 56 lines
in X7. If l and l′ is any such pair of lines in X7, then l + l′ = −K and we have a fiberwise
non-degenerate quadratic form q on LE7 ,

q : LE7 ⊗ LE7 → O(−K).

Furthermore, there is a fiberwise quartic form f on LE7 ,

f : LE7 ⊗ LE7 ⊗ LE7 ⊗ LE7 → O(−2K),

so that its bundle of infinitesimal symmetries is the Lie algebra E7-bundle EE7 over X7. We also
have

EE7 ≃
(
O⊕7 +RE7

)
(K).

If we degenerate the smooth quartic branch curve Q ⊂ P2 to a double conic 2C, then we obtain
a family of smooth del Pezzo surfaceX7(t) degenerating to a nonnormal surfaceX7(0) = X ′

7∪X ′′
7

with X ′
7 ≃ X ′′

7 ≃ P2 ⊃ C. There are 8 unstable points on C ⊂ X7(0). Each line in X ′
7

or X ′′
7 passing through 2 of these 8 unstable points will survive on nearby X7(t)’s, thus giving(

8
2

)
+
(
8
2

)
= 56 lines on X7. This is reflected by the branching rule of LE7 of E7 to its subalgebra

A7 = sl(8),

LE7 ≃ Λ2V8 + Λ2V ∗
8 ,

where V8 ≃ C8 is the standard representation of sl(8). For degree 1 del Pezzo surfaces X8, the
relationships between their geometry with E8 are discussed in [40].

5 ADE surfaces vs ADE Lie theory

In this section, the above relationships between the representation theory of En and the geometry
of del Pezzo surfaces will be generalized to other simply-laced Lie algebras, i.e., Lie algebras of
type ADE [42]. We call the corresponding surfaces ADE surfaces. In this unified description,
an En-surface is an Xn+1 together with a choice of a line, or equivalently Xn with a point in it.

First we describe Dn-surfaces. Given any ruling f on Xn+1, its linear system defines a P1-
bundle on Xn+1

Φf : Xn+1 → |f | ≃ P1.

For a generic Xn+1, there are n singular fibers and each is a union of two lines intersecting at
a point. To see this, we note the Euler characteristic of Xn+1 equals

χ(Xn+1) = χ
(
P2

)
+ n+ 1 = n+ 4.

Smooth (resp. singular) fibers have Euler characteristic 2 (resp. 3). We have

χ(Xn+1) = χ
(
P1 × P1

)
+# (singular fibers)

and therefore there are n singular fibers [3]. Using these fiberwise lines, i.e., l · f = 0, we
construct a rank 2n vector bundle LDn over Xn+1,

LDn =
⊕

l·K=−1
l·l=−1
l·f=0

O(l).
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Notice that any two such lines l and l′ intersect if and only if l + l′ is a singular fiber of Φf .
When this happens, we have

O(l)⊗O(l′) ≃ O(f).

Putting these isomorphisms together, we obtain a fiberwise quadratic form qL on LDn overXn+1,

qL : LDn ⊗ LDn → O(f).

The bundle of infinitesimal symmetries of
(
LDn , qL

)
is naturally

EDn = O⊕n ⊕
α·K=0
α·α=−2
α·f=0

O(α),

which is a Dn-Lie algebra bundle over Xn+1 so that LDn is its representation bundle correspond-
ing to the standard representation of Dn = o(2n). We call (Xn+1, f) a Dn-surface, denoted
as XDn .

In fact, the orthogonal complement of K and f in H2(Xn+1,Z) is the root lattice of type Dn

⟨K, f⟩⊥ ≃ ΛDn .

Furthermore, this holds true for any n without the restriction n ≤ 8.
In a similar fashion, an An-surface XAn is a pair (Xn+1, h) with h ·K = −3 and h · h = 1.

The rank n+ 1 vector bundle

LAn =
⊕

l·K=−1
l·l=−1
l·h=0

O(l)

over XAn admits a fiberwise determinant morphism

det : Λn+1LAn ∼→ O(K + 3h).

This is because

Φh : Xn+1 → |h| ≃ P2,

which realizes Xn+1 as a blowup of P2 at n+1 points and exceptional curves for Φh are precisely
those lines used to construct LAn . The bundle of infinitesimal symmetries of

(
LAn ,det

)
is

naturally

EAn = O⊕n ⊕
α·K=0
α·α=−2
α·h=0

O(α),

which is an An-Lie algebra bundle over XAn so that LAn is its representation bundle correspond-
ing to the standard representation of An = sl(n + 1). Again the orthogonal complement of K
and h in H2(Xn+1,Z) is the root lattice of type An

⟨K,h⟩⊥ ≃ ΛAn .

We remark that an En-surface can be interpreted as (Xn+1, l), as in the Dn and An cases.
But since l is an exceptional curve and therefore it can be blown down to Xn. We also remark
that a choice of h, f or l in Xn+1 defines an An-surface, Dn-surface or En-surface accordingly.
From the Lie theoretical perspective, they correspond to the fundamental representations H, R
and L for En+1. By removing the corresponding nodes in the En+1 Dynkin diagram, we also
obtain Dynkin diagrams of type A, D and E respectively.
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An ADE surface is a surface Xn+1, P2 blown up at n+1 points in general position, together
with a divisor h, r or l as below:

An-surface (Xn+1, h) with h ·K = −3 and h · h = 1

Dn-surface (Xn+1, r) with r ·K = −2 and r · r = 0

En-surface (Xn+1, l) with l ·K = −1 and l · l = −1

6 F/String theory duality

In this section, we recall a physical motivation for the construction of En-bundles over del Pezzo
surfaces of degree 9−n given in [17, 20, 21, 24]. Physically, if G is a simple subgroup of E8×E8,
then G-bundles are related to the duality between F-theory and heterotic string theory. Among
other things, this duality predicts that the moduli of flat En-bundles over a fixed elliptic curve Σ
can be identified with the moduli of del Pezzo surfaces with a fixed anti-canonical curve Σ.

Given any smooth elliptic curve Σ and any ADE Lie group G of adjoint type, if Σ is an
anti-canonical curve in a G-surface X, then the natural g Lie algebra bundle Eg restricts to
a flat G-bundle over Σ. In fact, every flat G-bundle on Σ arises this way. To state the result,
we denote MG

Σ to be the moduli space of flat G-bundles over Σ and SG
Σ to be the moduli space

of pairs (X,Σ ∈ | −KX |) with X being an ADE surface of type G and Σ is an anti-canonical
curve in X.

Theorem 6.1 ([42]). Given Σ and G as above, there is an open dense embedding

Φ: SG
Σ → MG

Σ

given by the restriction of the natural g-bundle Eg over X to Σ. Furthermore, there is a natural
compactification S̄G

Σ of SG
Σ given by those surfaces X equipped with G-configurations and Φ

extends to an isomorphism Φ: S̄G
Σ

∼→ MG
Σ.

This particular form is given in [42] and its generalization for non-simply laced G is given
in [43, 44]. Such a correspondence was originally motivated from the duality between F-theory
and heterotic string theory in physics by the work of Friedman–Morgan–Witten [24] and Do-
nagi [20] where different proofs of this correspondence are also given.

Let us very briefly describe how such a correspondence arises from the physical duality be-
tween F-theory and heterotic string theory. The space-time in F-theory is a Calabi–Yau four-
fold Z equipped with an elliptic K3 fibration over a complex surface B and the space-time in
heterotic string theory is a Calabi–Yau threefold Y equipped with an elliptic fibration over the
same complex surface B and coupled with an E8 × E8 Hermitian Yang–Mills bundle over Y .
When the two theories are dual to each other, in a certain adiabatic limit, the duality becomes
a fiberwise duality. Namely an elliptic K3 fiber X over b ∈ B in Z is dual to an elliptic curve
fiber Σ over b ∈ B in Y coupled with a flat E8 × E8-bundle over Σ. To obtain a geometric cor-
respondence, the dilaton field in the string theory should vanish, which corresponds to a type II
degeneration of the elliptic K3 surface, that is X is a fiber sum X1#ΣX2, each Xi is a rational
elliptic surface with section with Σ being a fiber. In particular, Xi is a blowup of P2 at 9 points
with one exceptional curve identified with the section, namely Xi is an E8-surface as defined
previously. Hence each (Xi,Σ) is an E8-surface and therefore gives an E8-bundle over Σ by our
above discussions. Together we obtain the flat E8 × E8-bundle over Σ.
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7 Generalization to Kac–Moody cases

In this section, we generalize the above results for En-bundles in Theorem 6.1 to Kac–Moody
Ên-bundles in [41, Theorems 2 and 3]. If we blowup P2 at 9 points, then the resulting surface X9

is no longer a del Pezzo surface. As K ·K = 0, ⟨KX⟩⊥ ⊂ H2(X9,Z) is only non-positive definite
and there are infinitely many roots. The latter is because for any root α, namely α · α = −2
and α ·K = 0, α+ nK is also a root for any integer n [15, 46].

In fact, ΛE9 ≜ ⟨KX⟩⊥ is the root system of the affine Kac–Moody Lie algebra Ê8, or the
loop algebra LE8 of E8, up to central extension. The following is the list of Dynkin diagrams of
simply-laced affine Kac–Moody Lie algebras, which coincides with extended Dynkin diagrams
of simply-laced simple Lie algebras, namely ADE types (see [32] for details):

Ân : t t t t t
t

��
���

��

HH
HHH

HH

r r r

D̂n : t t t t t
tt

r r r

Ê6 : t t t t t
t
t

Ê7 : t t t t t t t
t

Ê8 : t t t t t t t t
t

Figure 4. Dynkin diagrams of affine ADE types.

We could also realize other Ên’s with n ≤ 8 from rational surfaces as follows: Let C1, . . . , C8−n

be an A8−n-chain of (−2)-curves in X9, i.e., Ci ≃ P1, Ci ·Ci = −2, Ci ·Ci+1 = 1 and other Ci ·Cj ’s
are zero. Then we could blow down this chain of (−2)-curves in X9 to obtain a rational surface,
denoted XÊn

, with a rational singular point of type A8−n. Equivalently XÊn
is a singular del

Pezzo surface of degree 8−n with a canonical singularity of type A8−n, for n ≤ 7. When n = 8,
further care is needed as the representation Ln is no longer a miniscule representation in this
case. We call these XÊn

’s Ên-surfaces.
Then we have the following results [41] generalizing the construction of En-bundles over del

Pezzo surfaces and their relationships with flat En-bundles over elliptic curves.

Theorem 7.1 ([41]). For any Ên-surface XÊn
, the orthogonal complement of K in H2

(
XÊn

,Z
)

is isomorphic to the root system of the affine Kac–Moody Lie algebra Ên, i.e.,

⟨K⟩⊥ ≃ ΛÊn
.
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Furthermore, the real root system of Ên is ∆re
(
Ên

)
≃ ⟨K⟩⊥ ∩ {α · α = −2}, the imaginary root

system of Ên is ∆im
(
Ên

)
≃ Z ̸=0⟨K⟩ and the null root is −K.

There is also a canonically defined Ên-bundle E Ên over XÊn
,

E Ên = O⊕n+1 ⊕
⊕

α∈∆re(Ên)

O(α)
⊕

β∈∆im(Ên)

O(β)

≃ EEn ⊗
(⊕
n∈Z

O(nK)
)
⊕O.

Note that the last isomorphism is a realization of the Kac–Moody bundle as a central exten-
sion of a loop algebra bundle over X, which depends on a choice of a fixed line in X.

Given any fixed smooth elliptic curve Σ, let SÊn
Σ be the moduli space of Ên-surfaces XÊn

containing Σ as an anti-canonical curve andMÊn
Σ be the moduli space of holomorphic Ên-bundles

over Σ, in particular

MÊn
Σ ≃ Hom

(
ΛÊn

,Σ
)
/WÊn×Z2

.

Theorem 7.2 ([41]). Given any smooth elliptic curve Σ, there is an open embedding

Φ: SÊn
Σ → MÊn

Σ

given by the restriction of the canonically defined Ên-bundle E Ên over XÊn
to Σ ⊂ XÊn

. Fur-

thermore, there is a natural extension Φ: S̄Ên
Σ

∼→ MÊn
Σ .

In above discussions, we contract an Ad-chain of (−2)-curves on X9 to realize affine E9−d

structures on rational surfaces and elliptic curves. However, in Section 4, En structures on
rational surfaces and elliptic curves also appear for considerations of P2 blown up at n points.
In general we could consider Ad-chains of (−2)-curves on P2 blown up at n + 1 points. Corre-
sponding Lie algebras are listed in the following magic triangle of Julia [31], see Table 1.

Table 1. Julia’s magic triangle.

n = 8 n = 7 n = 6 n = 5 n = 4 n = 3 n = 2 n = 1 n = 0

d = 11 +

d = 10 R or A1 +

d = 9 R×A1 R
d = 8 A1 ×A2 R×A1 or A2 A1

d = 7 E4 R×A2 R×A1 R +

d = 6 E5 A1 ×A3 R×A2
1 R2 or A2

1 R
d = 5 E6 A5 A2

2 R×A2
1 R×A1 A1

d = 4 E7 D6 A5 A1 ×A3 R×A2 R×A1 or A2 R +

d = 3 E8 E7 E6 E5 E4 A1 ×A2 R×A1 R or A1 +

Notice that there is a symmetry between d and n in this magic triangle, extending our earlier
descriptions on En bundles and affine En bundles. The motivation of Julia is from the studies
of 11-dimensional supergravity in which the bosonic fields are pairs (g, C), where g is a metric
tensor on R1,10 and C is a three form field on R1,10, called the C-field. Consider a physical
toroidal compactification, namely one replaces R1,10 by R1,10−n × Tn and requires the volume
of Tn to shrink to zero size. By viewing g as a family of metrics on Tn parametrized by R1,10−n,
we might expect to obtain an effective theory which is a sigma model for maps from R1,10−n to



ADE Bundles over Surfaces 13

SL(n,Z)\SL(n,R)/SO(n), as the latter space parametrizes Einstein metrics on Tn. However,
the C-field will also decompose and regroup with components of g to enhance the sigma model
to En,Z\Esplit

n /Kn where Kn is the maximal compact subgroup of the split Lie group Esplit
n of

type En. Various structures that we mentioned on ADE structures would have their counterparts
in this supergravity theory, which is a fascinating connection between algebraic geometry and
physics.

8 ADE bundles over surfaces with ADE singularities

In this section, we explain that ADE singularities on a surface X with q = pg = 0 leads to ADE
bundles over X, as stated in Theorem 8.1. Suppose X ′ is a singular surface with q(X ′) = 0 and
with a simple singularity p and X is its minimal resolution with exceptional divisor C =

⋃r
i=1Ci.

As explained in Section 2, each irreducible component Ci is an (−2)-curve, i.e., Ci ≃ P1 with
Ci · Ci = −2. In particular, Ci · K = 0 by the adjunction formula. The dual graph for the
configuration of these Ci’s is a Dynkin diagram of ADE type, thus there is a corresponding
simple Lie algebra g of ADE type, and we also call the corresponding singularity p an ADE
singularity. The Z-span of the Ci’s is a root lattice Λg of type g inside H2(X,Z),

Z⟨C1, . . . , Cr⟩ = Λg ⊂ H2(X,Z).

We denote the set of roots in Λg as Φ, i.e., α ∈ Λg lies in Φ if α ·α = −2. We write Φ = Φ+⨿Φ−,
where α ∈ Φ+ if α =

∑
niCi with ni ≤ 0 and Φ− = −Φ+. Since q(X) = 0, every class in

H2(X,Z) ≃ Pic(X) corresponds to a unique line bundle over X up to isomorphisms. Similar
to our earlier constructions, we could construct a Lie algebra bundle of ADE type g over X as
follows:

Eg = O⊕r
X

⊕
α∈Φ

OX(α).

It is natural to ask whether this ADE bundle Eg over X can be descended to the original
surface X ′ which admits the ADE singularity p. Namely surfaces with an ADE singularity has
a natural ADE bundle over it. In [25], Friedman and Morgan showed that it is possible for del
Pezzo surfaces after small deformations of Eg. In [13], we gave a direct construction of these
deformations, which also works for general surfaces X ′ satisfying q = pg = 0.

In the simplest case where p is an A1 singularity, namely locally C2/{±1}, there is only
one (−2)-curve C1 in the exceptional locus and we have EA1 = OX ⊕ OX(−C1) ⊕ OX(C1) =
End0(OX ⊕ OX(C1)), the bundle of traceless endomorphisms of OX ⊕ OX(C1). Restricting to
C1 ⊂ X we have

(OX ⊕OX(C1))|C1 ≃ OP1 ⊕OP1(−2),

which admits a nontrivial deformation as an extension

0 → OP1(−2) → OP1(−1)⊕OP1(−1) → OP1 → 0.

Using pg(X) = 0, we could lift this extension from C1 to X. The corresponding deformations
of EA1 would then be trivial along C1 and therefore can be descended to X ′ as a Lie algebra
bundle.

In the general case, we have the following result about these Lie algebra bundles Eg through
studying their minuscule representation bundles in terms of (−1)-curves in X.

Theorem 8.1 ([13]). Let p be an ADE singularity of a surface X ′ with q(X ′) = pg(X
′) = 0

and X be its minimal resolution with exceptional curve C =
⋃r

i=1Ci. Then
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(i) given any (φCi
)ni=1 ∈ Ω0,1

(
X,

⊕n
i=1O(Ci)

)
with ∂φCi

= 0 for every i, it can be extended

to φ = (φα)α∈Φ− ∈ Ω0,1
(
X,

⊕
α∈Φ− O(α)

)
such that ∂φ := ∂ + ad(φ) is a holomorphic

structure on Eg. We denote this new holomorphic bundle as Eg
φ;

(ii) such a ∂φ is compatible with the Lie algebra structure;

(iii) Eg
φ is trivial on Ci if and only if [φCi

|Ci ] ̸= 0 ∈ H1(Ci, OCi(Ci)) ∼= C;
(iv) there exists [φCi

] ∈ H1(X,O(Ci)) such that [φCi
|Ci ] ̸= 0;

(v) such a Eg
φ can descend to X ′ if and only if [φCi

|Ci ] ̸= 0 for every i.

9 Relation to flag varieties of ADE type

In this section, we explain a relationship between our G-bundles over a surface X with a tau-
tological G-bundle over the flag variety G/B and its cotangent bundle G × n/B, as given in
[16, Theorems 5, 6 and 7]. An ADE singularity of type g is locally given by the intersection
of the transversal slice Sx of a subregular nilpotent element x and the nilpotent variety N(g)
of the complex Lie algebra g. Recall that N(g) is the fiber over zero of the adjoint quotient
g → g/G ≃ t/W , where t is the Cartan subalgebra of g and W is the corresponding Weyl
group. Furthermore, the restriction of the adjoint quotient g → t/W to the transversal slice Sx

is a semiuniversal deformation of the corresponding ADE singularity. This result is conjectured
by Grothendieck and proved by Brieskorn in 1970 [6]. After that, Grothendieck defined a mor-
phism G× b/B → t and gave a simultaneous resolution of the adjoint quotient g → t/W using
it. The restriction of the Grothendieck resolution to the above transversal slice Sx is also a
simultaneous resolution [54]. In 1969, Springer gave a resolution of singularities for the nilpo-
tent variety N(g) through G × n/B → N(g). Note that G × n/B ∼= T ∗(G/B) is the cotangent
bundle of the flag variety G/B. The connection among these resolutions can be shown in the
following Brieskorn–Slodowy–Grothendieck diagram (here S̃ is the minimal resolution of S and
C =

⋃r
i=1Ci is the exceptional locus with each Ci irreducible component):

C =
⋃r

i=1Ci ⊂ S̃ −→ S = N(g) ∩ Sx

∩ ∩ ∩
G/B ⊂ G× n/B −→ N(g)

∩ ∩
G× b/B −→ g

↓ ↓
t −→ t/W.

Under the above background, we consider the associated Lie algebra bundles G × g/B over
G/B and G× n× g/B over G× n/B respectively. It is obvious that these bundles are trivial as
the action of B on g can extend to the whole G. We [16] describe natural holomorphic filtration
structures on these bundles explicitly.

As B is a solvable Lie group, the associated representation bundle G × g/B over G/B is
an iterated extension of holomorphic line bundles. Also for the full flag variety G/B, we have
Pic(G/B) = Λ, where Λ is the weight lattice of the Lie algebra g. Hence for every λ ∈ Λ, we
can associate a line bundle Lλ over G/B. From the Borel–Weil–Bott theorem, we can compute
some particular cases of cohomology of line bundles over G/B easily. Note that our choice of B
gives rise to Φ+, the set of positive roots, such that b = t⊕

⊕
α∈Φ+

gα. We let {α1, . . . , αr} be
the simple roots, then for any root α ∈ Φ, we have

(i) H i(G/B,Lα) = 0 for any i ≥ 2;

(ii) H1(G/B,Lα) ∼= C if α = −αi for some simple root αi and H1(G/B,Lα) = 0 otherwise;
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(iii) the restriction map H1(G/B,L−αi) → H1(Ci, L−αi |Ci)
∼= C is an isomorphism for every

simple root αi. Hence [φ−αi
|Ci ] ̸= 0 if and only if [φ−αi

] ̸= 0 ∈ H1(G/B,L−αi).

Now we try to write the holomorphic structures on G× g/B explicitly. The filtration of the
representation g is given by the Chevalley order of its weights, hence not unique and we will
choose an arbitrary one. Then the holomorphic structure ∂φ on G× g/B can be written in an
upper-triangular form with respect to the holomorphic structure ∂ on the graded vector bundle
associated to this filtration. Note that for a homogenous space G/P , a vector bundle V on G/P
is trivial if and only if the restriction of V to every Schubert line is trivial [47]. Back to our
cases, the Schubert lines in G/B are given by Ci = Pαi/B, where αi’s run through all the simple
roots, and Pαi is the parabolic subgroup of G corresponding to αi. The main result is as follows:

Theorem 9.1 ([16]). For the Lie algebra bundle (G × g/B, [ , ]) over G/B with holomorphic
structure ∂φ as above, we have:

(i) ∂φ[ , ] = 0 if and only if ∂φ = ∂ +
∑

α∈Φ− ad(φα) with φα ∈ Ω0,1(G/B,Lα) for some
α ∈ Φ−.

(ii) The bundle
(
G × g/B, ∂φ = ∂ +

∑
α∈Φ− ad(φα)

)
is holomorphically trivial if and only if

[φ−αi
|Ci ] ̸= 0 for every simple root αi.

(iii) The holomorphic structure of (G× g/B, [ , ]) over G/B is ∂φ = ∂0 +
∑

α∈Φ− ad(φα) with
[φ−αi

] ̸= 0 for every simple root αi.

Consider the holomorphic structure of G × n × g/B over G × n/B ∼= T ∗(G/B) when g is of
ADE type. First, we know that G×n×g/B is an iterated extension of line bundles over G×n/B
as B is solvable. And any line bundle over G× n/B is the pull back of a line bundle over G/B
through the projection map π : T ∗(G/B) ∼= G × n/B → G/B. Denote Lλ := π∗Lλ to be the
corresponding line bundle over G×n/B for any weight λ ∈ Λ. Denote H i(λ) := H i(G×n/B,Lλ)
for convenience. Using cohomology of line bundles on the cotangent bundle of the flag variety
[7, 8, 28], we have:

(i) for any positive root α ∈ Φ+, H i(α) = 0 for all i ≥ 1;

(ii) for any negative root α ∈ Φ−, H1(α) ̸= 0, H2(α) = 0;

(iii) the restriction map H1(G × n/B,L−αi) → H1(G/B,L−αi) is surjective for every simple
root αi.

Theorem 9.2 ([16]). The holomorphic structure of (G × n × g/B, [ , ]) over G × n/B is ∂φ =
∂ +

∑
α∈Φ− ad(φα) with [φ−αi

|G/B] ̸= 0 ∈ H1(G/B,L−αi) for every simple root αi.

Since the minimal resolution S̃ of the ADE singular surface S is contained in G × n/B, we
also consider the restriction of the g-bundle G × n × g/B from G × n/B to S̃. Note that S̃ is
the minimal resolution of the ADE singular surface S = C2/Γ. It is obvious that this g-bundle
over S̃ is also an iterated extension of line bundles. The Picard group of S̃ is a free abelian group
generated by divisors dual to the irreducible curves Ci [22], i.e., Pic(S̃) = Z⟨Di⟩ with each Di

dual to Ci.

As before, we know that the irreducible curves Ci = Pαi/B are Schubert lines in G/B,
where αi’s run through all the simple roots. Now for any weight λ, we consider the restriction
of the line bundle Lλ from G/B to Ci and it is easy to see that Lλ|Ci

∼= OP1(⟨λ, αi⟩). For
the restriction of the line bundle Lλ = π∗Lλ from G × n/B to S̃, we know that for any root
α =

∑
niαi, Lα|S̃ ∼= O

S̃

(∑
−niCi

)
.
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Theorem 9.3 ([16]). The restriction of the g-bundle G× n× g/B from G× n/B to S̃ is(
O⊕r ⊕

⊕
(
∑

niCi)2=−2

O
(∑

niCi

)
, ∂φ = ∂ +

∑
α∈Φ−

ad(φα)

)

with [φ−αi
] ̸= 0 ∈ H1

(
S̃,O(Ci)

) ∼= C for every simple root αi.

We note that the holomorphic structures described here have the same form as the holomor-
phic structures constructed in Section 8.

10 Generalization to affine ADE bundles

In this section, we will generalize the results for ADE bundles in Section 8 to affine ADE bundles
and obtain [15, Theorem 8]. For convenience, we will call a curve C = ∪Ci in a surfaceX anADE
(resp. affine ADE) curve of type g (resp. ĝ) if each Ci is a smooth (−2)-curve in X and the dual
graph of C is a Dynkin diagram of the corresponding type. By Kodaira’s classification [34, 35, 36]
of fibers of relative minimal elliptic surfaces, every singular fiber is a affine ADE curve unless it
is rational with a cusp, tacnode or triplepoint (corresponding to type II or III

(
Â1

)
or V I

(
Â2

)
in Kodaira’s notations), which can also be regarded as a degenerated affine ADE curve of type
Â0, Â1 or Â2 respectively. We will not distinguish affine ADE curves from their degenerated
forms since they have the same intersection matrices. We also call the affine ADE curves as
Kodaira curves.

Suppose C = ∪r
i=0Ci is a affine ADE curve of type ĝ in X with C0 corresponding to the

extended root, then ∪r
i=1Ci will be the corresponding ADE curve of type g and

Φ :=

{
α =

[∑
i ̸=0

aiCi

]
∈ H2(X,Z) |α2 = −2

}
is the root system of g. As before, we have a g-bundle

Eg = O⊕r ⊕
⊕
α∈Φ

O(α).

Also, there exists unique ni’s up to overall scalings such that F :=
∑

niCi satisfies F · F = 0.
We know

Φĝ := {α+ nF |α ∈ Φ, n ∈ Z} ∪ {nF |n ∈ Z, n ̸= 0}

is a affine root system and it decomposes into union of positive and negative roots, i.e., Φĝ =
Φ+
ĝ
∪ Φ−

ĝ
, where

Φ−
ĝ
=

{∑
aiCi ∈ Φĝ | ai ≥ 0 for all i

}
= {α+ nF |α ∈ Φ+, n ∈ Z≥1} ∪ {α+ nF |α ∈ Φ−, n ∈ Z≥0} ∪ {nF |n ∈ Z≥1}

and Φ+
ĝ
= −Φ−

ĝ
. Then there is a canonically defined ĝ-bundle E ĝ over X,

E ĝ = Eg ⊗
(⊕
n∈Z

O(nF )
)
⊕O.

We remark that if we remove the central extension part O in E ĝ, then this is a loop algebra Lg
bundle over X and the Lie algebra bundle structure is independent of the choice of the affine
root C0 in F . Similar to Section 8, we have the following results:
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Theorem 10.1 ([15]). Given any complex surface X with pg = 0. If X has a Kodaira curve
C = ∪r

i=0Ci of type ĝ, then

(i) given any (φCi
)ri=0 ∈ Ω0,1

(
X,

⊕r
i=0O(Ci)

)
with ∂φCi

= 0 for every i, it can be extended

to φ = (φα)α∈Φ−
ĝ

∈ Ω0,1
(
X,

⊕
α∈Φ−

ĝ
O(α)

)
such that ∂φ := ∂ + ad(φ) is a holomorphic

structure on E ĝ. We denote the new bundle as E ĝ
φ;

(ii) ∂φ is compatible with the Lie algebra structure on E ĝ;

(iii) E ĝ
φ is trivial on Ci if and only if [φCi

|Ci ] ̸= 0 ∈ H1(Ci, OCi(Ci)) ∼= C;
(iv) there exists [φCi

] ∈ H1(X,O(Ci)) such that [φCi
|Ci ] ̸= 0.

11 Deformability of Lie algebra bundles
and geometry of rational surfaces

In this section, we discuss the hidden geometry underlying the deformability of the affine E8

bundle over X9, as stated in [14, Theorems 9 and 10]. For an ADE curve C in a surface X with
pg = 0, the corresponding Lie algebra bundle Eg over X admits a deformation which can be
descended to the surface obtained by blowing down C in X. On the other hand, an affine ADE
curve can never be blown down. Nevertheless, we could explain the geometric meaning of such
deformabilities as below.

Recall that we have an En Lie algebra bundle EEn over Xn for n ≤ 8. When n = 9,
E9 is the affine Kac–Moody algebra of E8, i.e., E9 = Ê8. When H2(X,Z) has a sublattice Λg

isomorphic to the root lattice of a simple Lie algebra g, then our construction also gives a g
Lie algebra bundle Eg over X. Infinitesimal deformations of Eg as a g-bundle are parametrized
by H1(X, ad(Eg)) ≃ H1(X, Eg) ⊂ H1(X,End(Eg)). We say E is (i) fully deformable if there
is a base ∆ ⊂ Φ of the root system Λg such that H1(X,O(α)) ̸= 0 for every α ∈ ∆, (ii) h-
deformable with h a Lie subalgebra of g if there exists a strict h-subbundle of E which is fully
deformable, (iii) totally non-deformable if H1(X,O(α)) = 0 for every α ∈ ∆, (iv) deformable
in α-direction for α ∈ Φ if H1(X,O(α)) ̸= 0.

We proved the following results.

Theorem 11.1 ([14]). On X9, a blowup of P2 at 9 points, these points are in general position
in P2 if and only if EE9 is totally non-deformable.

Theorem 11.2 ([14]). If −K is nef on X9, then

(i) there exists an ADE curve C ⊂ X9 of type g if and only if EE9 is g-deformable;

(ii) there exists a affine ADE curve C ⊂ X9 of type ĝ if and only if EE9 is ĝ-deformable;

(iii) X9 admits an elliptic fibration structure with a multiple fiber of multiplicity m if and only
if EE9 is deformable in the (−mK)-direction, but not in (−m+ 1)K-direction.

12 Cox rings of ADE surfaces

In this section, we explain another mysterious relationship between del Pezzo surfaces Xn and
the Lie group G of type En discovered by Batyrev and Popov [2] relating the Cox ring of Xn

and the flag variety G/PL ⊂ P(L). We also establish the the corresponding results for any ADE
surface in [45, Theorem 11]. Very loosely speaking, the Cox ring of a variety X with q(X) = 0
and torsion free H2(X,Z) is the sum of spaces of sections of all line bundles on X,

Cox(X) ∼
⊕

[L]∈Pic(X)

H0(X,L),
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with the ring structure given by the tensor products of sections. As elements in Pic(X) are
only isomorphism classes of line bundles, in order to define Cox(X) properly, one needs to fix
a collection of line bundles Li’s with i = 1, . . . , b (with b = b2(X)) whose first Chern classes
represent a basis of H2(X,Z), then the correct definition of the Cox ring of X with respect to
this choice is

Cox(X) =
⊕
ni∈Z

H0
(
X,L⊗n1

1 ⊗ L⊗n2
2 ⊗ · · · ⊗ L⊗nb

b

)
.

Then the ring structure is simply given by the tensor products of holomorphic sections.

When X is a del Pezzo surface, the ample line bundle K−1 defines a grading on Cox(X). We
have seen before that the geometry of a degree d del Pezzo surface is closely related to the Lie
algebra En with n = 9−d. For example the number of lines in X is equal to the dimension of the
fundamental representation L for n < 8. It turns out that the flag variety G/PL corresponding
to L, namely the unique closed G-orbit in P(L), is closely related to the Cox ring of X as
follows: When the degree d of X satisfies d ≤ 5, Batyrev–Popov [2], Derenthal [18], Serganova–
Skorobogatov [52, 53] showed that there is a natural embedding of the projective spectrum of
the graded ring Cox(X) into G/PL:

Proj(Cox(X)) ↪→ G/PL.

It was observed in [45] that this relationship can be easily generalized to all ADE surfaces XG.
Recall that an ADE surfac XG of rank n is a blowup Xn+1 of P2 at n+1 distinct points, together
with a rational curve C in Xn+1 whose class in H2(Xn+1,Z) is (i) h satisfying h · h = 1 for
type A, (ii) f satisfying f · f = 0 for type D and (iii) l satisfying l · l = −1 for type E. We have
⟨K,C⟩⊥ ⊂ H2(Xn+1,Z) is a root lattice ΛG of corresponding ADE type. In particular, the
blow down of the (−1)-curve l in an En-surface is a del Pezzo surface X of degree d = 9 − n
and Cox(X) =

⊕
L∈⟨l⟩⊥ H0(XEn, L) defined loosely as before. Notice that H2(X,Z) ≃ ⟨l⟩⊥ ⊂

H2(Xn+1,Z).
Similarly we define a generalization of the Cox ring for an ADE surface XG = (Xn+1, C) of

type G as follows:

CoxG(XG) =
⊕

L∈⟨C⟩⊥
H0(Xn+1, L).

We also define the flag variety of G corresponding to the fundamental representation L as G/PL,
i.e., G/PL is the unique closed G-orbit in P(L). Then we have the following statement:

Theorem 12.1 ([45]). For any ADE surface XG = (Xn+1, C) of type G, we have

Proj
(
CoxG(XG)

)
↪→ G/PL,

with n ≥ 4 for type En cases.

13 Conclusions

We have discussed several intriguing relationships between the geometry of surfaces and Lie
theory. A couple of these are related to physics, namely the duality between F-theory and
heterotic string theory and supergravity theory in eleven dimensions. There is also a mysterious
duality between the geometry of del Pezzo surfaces and toroidal compactification of M-theory
in physics, as proposed by Iqbal, Neitzke and Vafa in [30]. We expect that more surprising
connections will be uncovered in the future.
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