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Abstract. We study the space of (orthogonal) almost complex structures on closed six-
dimensional manifolds as the space of sections of the twistor space for a given metric. For
a connected six-manifold with vanishing first Betti number, we express the space of almost
complex structures as a quotient of the space of sections of a seven-sphere bundle over the
manifold by a circle action, and then use this description to compute the rational homotopy
theoretic minimal model of the components that satisfy a certain Chern number condition.
We further obtain a formula for the homological intersection number of two sections of the
twistor space in terms of the Chern classes of the corresponding almost complex structures.
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1 Introduction

A major open problem in differential geometry is to determine whether a closed almost complex
manifold of dimension at least six always admits an integrable complex structure. By a cele-
brated theorem of Newlander and Nirenberg, an almost complex structure is integrable if and
only if it satisfies a certain system of first order partial differential equations codified by the
vanishing of the Nijenhuis tensor. An understanding of the topology of the space of all almost
complex structures may be useful in the search for those which are integrable. We take this as
motivation for our study of the topology of the space of almost complex structures on a six-
manifold. The present work is a continuation of [13] which focused on the six-sphere and touched
upon the case of almost complex structures on six-manifolds with vanishing first Chern class.

Let M denote an oriented six-manifold and J (M) be the space of all almost complex struc-
tures on M inducing the given orientation. Fixing a Riemannian metric on M , the inclusion
J(M) ↪→ J (M) of the subspace of almost complex structures which are orthogonal with respect
to the metric is a homotopy equivalence, allowing us to analyze J (M) via a space of sections
of a fiber bundle with compact fibers. Generally, over an oriented Riemannian 2n-manifold M
one can consider the SO(2n)/U(n) bundle Z+(M)→ M whose fiber over any x ∈ M is the set
of (linear) orthogonal complex structures on TxM compatible with the orientation on M ; the
space Z+(M) is known as the (positive) twistor space of M . Sections of this bundle correspond
to orthogonal almost complex structures on M compatible with the orientation.
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The twistor space construction can be done in any dimension, but six-manifolds enjoy the
special property that the fiber of the twistor space is likewise six-dimensional. Hence two
orthogonal almost complex structures on a closed Riemannian manifold M give embeddings of
the manifold into its twistor space which generically intersect at a finite number of points. One
of our main results (Theorem 5.10) computes this intersection number in terms of the Chern
classes of the two almost complex structures. Namely, denoting by ci and c

′
i the respective Chern

classes, the homological intersection number is given by∫
M

1
8

(
c31 + c21c

′
1 − c1c′21 − c′31

)
+ 1

2

(
c1c

′
2 + c′1c

′
2

)
− c3.

In particular, the homological self-intersection of an almost complex structure is given by∫
M c1c2 − c3. Employing a theorem of Michelsohn and Salamon, we observe that negative
self-intersection restricts the possible deformations of an orthogonal complex structure (Corol-
lary 5.6).

In order to study the homotopy type of J(M), in Section 3 we use the existence of spinc

structures on oriented four-manifolds and almost complex six-manifolds to describe the integral
cohomology of their twistor spaces. This will include both the positive and the negative twistor
space Z−(M), i.e., the total space of the bundle of linear complex structures inducing the
opposite orientation on the tangent space. Presumably these results are well known, but we
were not able to find them in the literature in this generality.

We take particular care with orientations throughout, due to varying historical conventions
(e.g., the original [2], and [16], refer to the negative twistor space as the “twistor space”, while
this terminology is reserved for the positive twistor space for instance in [17]1 and [23]), and to
the authors’ difficulty in verifying some formulas in [16, p. 135]; see Remark 3.9.

The twistor spaces Z+(M) and Z−(M) (whose homotopy types generally differ when the
dimension of M is divisible by four) carry two natural almost complex structures, differing by
the choice of induced orientation on the fiber (see, e.g., [23, Proposition 3.1]), known as the
Atiyah–Hitchin–Singer and Eells–Salamon almost complex structures. Even though the stan-
dard complex structure and its negative on the fibers SO(4)/U(2) ∼= CP1 and SO(6)/U(3) ∼= CP3

are biholomorphic via complex conjugation, the Eells–Salamon almost complex structure is never
integrable [23, Proposition 3.4], in contrast to the Atiyah–Hitchin–Singer structure (this phe-
nomenon is not unique to dimensions four and six).

Our second main result is a description of the rational homotopy type of (a given component
of) the space of almost complex structures on six-manifolds, under the additional assumption
that b1(M) = 0 and

∫
M c1c2 − c3 ̸= 0 (Theorem 4.4). For this we use an expression of J(M)

as the quotient of the space of sections of an S7-bundle by an S1-action (Theorem 4.1), which
one can compare with the result obtained for c1 = 0 in [13, Proposition 5.1]. Throughout we
provide examples for all of the mentioned results.

Notation and conventions

The projectivization of a complex vector bundle E is denoted by P(E). We denote the Chern
classes of a complex vector bundle by ci, and the Pontryagin classes of a real vector bundle by pi;
if the vector bundle is complex, by its Pontryagin classes we mean those of the underlying real
bundle. The Euler class is denoted by e. The Euler characteristic of a space is denoted by χ,
and σ is the signature of an oriented closed manifold. All manifolds are assumed connected
unless otherwise stated.

We denote by Γ(E) the space of sections of a bundle E → M (where E is not necessarily
a vector bundle). If s : M → E is a section, Γ(E)s denotes the connected component of s

1Despite this, the statement of [2, Theorem 4.1] in [17, Theorem IV.9.14] uses the convention of [2].
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in Γ(E). For E → M a vector bundle with a metric, we write S(E) → M for the associated
sphere bundle. We denote by J(M) the connected component of a specific point in Γ(Z+(M)),
which will be clear from context. For a vector space V with an inner product, J(V ) will
denote the space of all orthogonal (linear) complex structures on V . If V is oriented, J+(V )
(respectively J−(V )) denotes the connected component of J(V ) consisting of elements which
induce the given orientation on V (respectively the opposite orientation). By Map(X,Y ) we
denote the space of unbased maps X → Y with the compact-open topology.

Cohomology is singular cohomology with integral coefficients unless another choice of coeffi-
cients is indicated. The evaluation of a cohomology class α on a homology class A is denoted
by ⟨α,A⟩ or by

∫
A α. In the context of rational homotopy theoretic models, Λ(xi) denotes the

free graded-commutative algebra on generators xi.
We will make frequent use of the projective bundle formula, which states that for a complex

vector bundle E →M of complex rank k, the cohomology of the projectivized bundle P(E)
p−→M

is the free H∗(M)-algebra on one generator x subject only to the relation xk+c1(E)xk−1+ · · ·+
ck−1(E)x + ck(E) = 0, where x is the first Chern class of the line bundle OE∗(1) (see [8,
Definition 15.13]). This line bundle is dual to the tautological (Hopf) line subbundle of p∗(E)
whose fiber over ℓ ∈ P(Ex) is ℓ ⊂ Ex. It restricts to O(1) on each fiber CPk−1.

For a real vector space V with an endomorphism J squaring to −Id, we denote by Λ∗
C(V ) the

(complex) exterior algebra of the complex vector space (V, J). For an almost complex manifold
(M,J), Λ∗

C(TM) is the (complex) exterior bundle associated to (TM, J).

2 Preliminaries

In this section we review some of the models for the space of orthogonal complex structures on
a Euclidean space following [17, Section IV.9], to which we refer for further details.

Let (V, (·, ·)) be a 2n-dimensional real inner product space. We will write

J(V ) =
{
J ∈ End(V ) : J2 = −I, J is orthogonal

}
for the space of orthogonal complex structures on V . This space naturally has the structure of
a complex algebraic variety, given by the isomorphism

J(V )
ϕ−→ GrIson (V ⊗ C)

with the Grassmannian of n-dimensional complex subspaces of V ⊗C, which are isotropic with
respect to the complex bilinear form on V ⊗ C obtained from the inner product on V by linear
extension. The map ϕ is defined by

ϕ(J) = {v ⊗ 1 + Jv ⊗ i : v ∈ V }

(it assigns to J the plane V 0,1
J ⊂ V ⊗ C, which is the −i eigenspace of the complex linear

extension of J to V ⊗ C).
There is a tautologous complex vector bundle on J(V ) defined by

J(V )× V π1−→ J(V ),

where the fiber over J ∈ J(V ) is given the complex structure determined by J . The isomor-
phism ϕ is covered by a bundle map to the dual (or conjugate) tautological bundle over the
Grassmannian.

Lemma 2.1. Consider the universal bundle

J
(
R2n

)
= O(2n)/U(n)

ι−→ BU(n)→ BO(2n).

Then
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(i) ι classifies the tautologous complex vector bundle on J
(
R2n

)
.

(ii) ι∗(c1) generates a subgroup of index 2 in the infinite cyclic second cohomology group of
each of the two components of J

(
R2n

)
.

(iii) ι∗(c1) is positive. In particular, ι∗(c1)
n2−n

2 evaluates on the orientation class of each of
the two components of J

(
R2n

)
to a positive integer.

Proof. (i) The universal bundle can be realized by taking BU(n) = EO(2n)/U(n). The uni-
versal bundle over BU(n) is then given by EO(2n) ×U(n) R2n → EO(2n)/U(n), and pulls back
along the inclusion of the fiber ι to O(2n)×U(n) R2n → O(2n)/U(n), which is the homogeneous
expression of the tautologous bundle.

(ii) The inclusion-induced map BU(n)→ BO(2n) factors through the double cover BSO(2n)
→ BO(2n), and the two components of O(2n)/U(n) are, respectively, the fiber SO(2n)/U(n)
of BU(n) → BSO(2n) and the image of this fiber under a lift to BU(n) of the nontrivial deck
transformation of BSO(2n). Therefore it suffices to prove the statement for the component
SO(2n)/U(n). This follows from the Serre spectral sequence of the bundle BU(n) → BSO(2n)
(see for instance [20, Theorem III.6.11]).

(iii) ι∗(c1) is the pullback of c1 of the dual tautological bundle under the embedding

J
(
R2n

) ∼=−→ GrIson
(
C2n

)
⊂ Grn

(
C2n

)
.

The nth exterior power of the dual tautological bundle on Gr
(
C2n

)
gives the Plücker embedding

of the Grassmannian in projective space. Hence ι∗(c1) is the first Chern class of a line bundle
on J

(
R2n

)
whose sections embed J

(
R2n

)
in projective space and is therefore positive. ■

The above identification of orthogonal complex structures with isotropic planes in V ⊗ C
leads to another description of the space J(V ) which will play an important role in this paper.

Let Cl(V ) denote the Clifford algebra determined by the quadratic form q(v) = −∥v∥2, and let
Cl(V ) = Cl(V )⊗R C denote its complexification. Let SC denote an irreducible (2n-dimensional)
Cl(V )-module.

For each element, i.e., spinor, σ ∈ SC we have the map V ⊗R C→ SC given by right Clifford
multiplication by σ. A spinor is said to be pure if the associated kernel is half-dimensional. Let
PSC ⊂ SC denote the subset of pure spinors. As the subspace ker(·σ) ⊂ V ⊗C is isotropic there is
a natural map from the projectivization of the set of pure spinors to the isotropic Grassmannian

P(PSC)
ψ−→ GrIso2n (V ⊗ C)

defined by [σ] 7→ ker(·σ). This is a map of algebraic varieties and is in fact an SO(2n)-equivariant
isomorphism [17, Proposition IV.9.7].

The space J(V ) has two connected components corresponding to the two possible orientations
induced by the complex structure. A choice of orientation for V leads to a decomposition

J(V ) = J+(V )
∐

J−(V )

with J+(V ) the component corresponding to the given orientation. In turn this decomposes
the Grassmannian of isotropic subspaces into the components of positive and negative isotropic
subspaces.

On the level of spinors this decomposition takes the following form. The complex volume
element in Cl(V ) is the element ωC = ine1 · · · e2n, where {ei} is any oriented orthonormal basis.
As ω2

C = 1, the volume element decomposes the module SC into a direct sum of +1 and −1
eigenspaces

SC = S+
C ⊕ S

−
C .
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The elements of the summands are called the positive and negative spinors, respectively. Note
that, since ωC anti-commutes with the action of V ⊂ Cl(V ), both S+

C and S−
C are spinc repre-

sentations, called the positive and negative spinor representations, respectively.
Every pure spinor is necessarily either positive or negative and the isomorphisms ϕ, ψ give

rise to isomorphisms of algebraic varieties

P
(
PS±

C
) ∼= J±(V ).

In dimensions 2n = 4, 6 all nonzero spinors are pure [17, Remark IV.9.12] and the isomorphisms
identify the spaces of orthogonal complex structure with the disjoint union of the projectivization
of positive and negative spinors.

A point J ∈ J(V ) gives rise to a useful description (cf. [17, Chapter I, equation (5.27)]) of the
irreducible module SC. We will write ⟨·, ·⟩ for the Hermitian inner product on the complex vector
space (V, J) whose real part is (·, ·). Let Λ∗

C(V ) denote the exterior algebra of the complex vector
space (V, J). Contraction of a vector v ∈ V with ω ∈ ΛkC(V ) is determined by the expression

v⌟(w1 ∧ · · · ∧ wk) =
k∑
j=1

(−1)j+1⟨v, wj⟩w1 ∧ · · · ∧ ŵj ∧ · · · ∧ wk.

The action V ⊗R Λ∗
C(V )→ Λ∗

C(V ) defined by

v · ω = v ∧ ω − v⌟ω

satisfies

v · (v · ω) = −∥v∥2ω,

as one easily checks using an orthonormal basis for V having a real multiple of a nonzero v
as its first element. The complex linear extension of this action gives Λ∗

C(V ) the structure of
a Cl(V )-module of complex dimension 2n. This is the dimension of the irreducible complex
Cl(V )-module, so Λ∗

C(V ) is a convenient description of this module.
The following is an easy computation which we include for convenience.

Lemma 2.2. Let (V, J) be an oriented 2n-dimensional Euclidean real vector space with an
orthogonal complex structure J compatible with the orientation and let SC = Λ∗

C(V ) be the
irreducible Cl(V )-module described above. Then

S+
C =

⊕
k even

ΛkC(V ), S−
C =

⊕
k odd

ΛkC(V ).

Proof. Let e1, . . . , en be an orthonormal basis for (V, J). Then we can write the complex
volume element as

ωC = ine1Je1 · · · enJen.

Consider the basis ei1 ∧ · · · ∧ eik for ΛkC with 1 ≤ i1 < · · · < ik ≤ n. Let 1 ≤ m ≤ n and assume
that m ̸∈ {i1, . . . , ik}. Then

(emJem) · ei1 ∧ · · · ∧ eik = em ·
(
Jem ∧ ei1 ∧ · · · ∧ eik

)
= −

〈
em, Jem

〉
ei1 ∧ · · · ∧ eik = −i ei1 ∧ · · · ∧ eik .

On the other hand, if m ∈ {i1, . . . , ik}, let l be such that m = il. Then

(emJem) · ei1 ∧ · · · ∧ eik = em ·
(
−(−1)l−1

〈
Jem, eil

〉
ei1 ∧ · · · ∧ êil ∧ · · · ∧ eik

)
= em ∧

(
(−1)l(−i)ei1 ∧ · · · ∧ êil ∧ · · · ∧ eik

)
= (−1)l−1(−1)l(−i)ei1 ∧ · · · ∧ eik = iei1 ∧ · · · ∧ eik .
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Hence

ωC · ei1 ∧ · · · ∧ eik = inik(−i)n−kei1 ∧ · · · ∧ eik = (−1)2n−kei1 ∧ · · · ∧ eik ,

which completes the proof. ■

Remark 2.3. For (V, J) an oriented 2n-dimensional Euclidean real vector space with an or-
thogonal complex structure J compatible with the orientation, the line in S+

C corresponding to
J ∈ J+(V ) is Λ0

C(V ) ⊂ S+
C . Indeed,

(v ⊗ 1 + w ⊗ i) · 1 = v + Jw = 0 ⇔ w = Jv.

3 Twistor spaces of four- and six-manifolds

In this section we describe the integral cohomology of the twistor space of (Riemannian) almost
complex six-manifolds, along with the integral cohomology of the twistor space of arbitrary
oriented (Riemannian) four-manifolds. Finally we compute the Chern classes of the Atiyah–
Hitchin–Singer almost complex structure on the latter.

3.1 Spinors on almost complex four- and six-manifolds

LetM be an oriented Riemannian manifold and let Z(M) denote the space of orthogonal almost
complex structures on M , called the twistor space. The space Z(M) has two components corre-
sponding to the structures which induce the given orientation on M or the opposite orientation.
Recall, we denote these by Z±(M), and refer to them as the positive and negative twistor spaces.

The Atiyah–Hitchin–Singer almost complex structure on Z(M) is defined as follows: the
Levi-Civita connection induces a connection on the bundle Z(M) → M splitting TZ(M) into
a direct sum of horizontal and vertical subspaces

TZ(M) = T hZ(M)⊕ T vZ(M).

The almost complex structure on T vZ(M) is determined by the algebraic variety structure of
the fibers J(TxM) of Z(M)→M explained in Section 2. At a point Jx in the fiber over x ∈M
the complex structure on T h

Jx
Z(M) = TxM is given2 by Jx.

A spinc structure on M [17, Appendix D] yields a complex spinor bundle SC(M) → M
together with an action

Cl(TM)⊗ SC(M)→ SC(M).

The discussion in the previous section then provides a one-to-one correspondence between pro-
jectivized pure spinors on M and orthogonal complex structures inducing a given orientation:

Z±(M) ∼= P
(
PS±

C (M)
)
.

Now suppose M is given an orthogonal almost complex structure J compatible with the orien-
tation. Then J gives rise to a canonical spinc structure on M via the group homomomorphism
U(n)

κ−→ Spinc(2n), which is the unique lift as a group homomorphism in the following diagram

Spinc(2n) =
(
Spin(2n)× S1

)
/{±(1, 1)}

U(n) SO(2n)× S1.

π×δκ

ι×det

Here ι denotes the inclusion, π
([
h, eiθ

])
= [h], and δ

([
h, eiθ

])
= e2iθ.

2The Eells–Salamon almost complex structure is obtained replacing the vertical component of the Atiyah–
Hitchin–Singer almost complex structure by its negative; see [23, Section 3] for details.
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An element g ∈ U(n) is diagonalized by some orthonormal basis (e1, Je1, . . . , en, Jen). If

g = diag
(
eiθ1 , . . . , eiθn

)
,

then

κ(g) =

[
n∏
k=1

(
cos

θk
2

+ i sin
θk
2
ekJek

)
, ei

∑
θk
2

]

(cf. [17, equation (D.10)]). Using the formulas for the action of eiJei in the proof of Lemma 2.2,
we see that the spinor action of κ(g) on Λ∗

C
(
R2n

)
, where R2n is equipped with the complex

structure given by diag
((

0 −1
1 0

)
, . . . ,

(
0 −1
1 0

))
, agrees with the standard action of g on this space.

We obtain the following result:

Proposition 3.1. Let M be an oriented Riemannian manifold with an orthogonal almost com-
plex structure J compatible with the orientation. Then we have the following isomorphisms of
smooth fiber bundles over M :

1. If dim(M) = 4, then

Z+(M) ∼= P
(
C⊕ Λ2

C(TM)
)
, Z−(M) ∼= P(TM).

2. If dim(M) = 6, then

Z+(M) ∼= P
(
C⊕ Λ2

C(TM)
)
, Z−(M) ∼= P

(
TM ⊕ Λ3

C(TM)
)
.

Remark 3.2. The Atiyah–Hitchin–Singer and Eells–Salamon almost complex structures on
(either) twistor space do not agree with the natural almost complex structure on the projec-
tivization. Indeed, the projection map from the projectivization is complex linear whilst this is
not the case for the twistor projection.

The projective bundle formula now gives the following formulas for the cohomology rings of
the components of the twistor space in terms of the Chern classes of (TM, J).

Corollary 3.3. Let M be an oriented Riemannian manifold with an orthogonal almost complex
structure J compatible with the orientation. We have the following isomorphisms as algebras
over H∗(M):

1. If dim(M) = 4, then

H∗(Z+(M)) ∼= H∗(M)[x]/
(
x2 + c1x

)
,

H∗(Z−(M)) ∼= H∗(M)[x]/
(
x2 + c1x+ c2

)
.

2. If dim(M) = 6, then

H∗(Z+(M)) ∼= H∗(M)[x]/
(
x4 + 2c1x

3 +
(
c21 + c2

)
x2 + (c1c2 − c3)x

)
,

H∗(Z−(M)) ∼= H∗(M)[x]/
(
x4 + 2c1x

3 +
(
c21 + c2

)
x2 + (c1c2 + c3)x

)
.

Remark 3.4.

� The formulas above in dimension four agree with [11, Theorem 11.2], where it is established
that over a Kähler surfaceM , the positive twistor space is the projectivization of T 2,0M⊕C
(note that T 2,0M ∼= Λ2

C(TM)), and the negative twistor space is the projectivization of
the holomorphic tangent bundle.
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� In [12, Section 6], Evans describes the cohomology ring of the positive twistor space of
a (not necessarily almost complex) six-manifold, with complex coefficients. The description
is in terms of the first Chern class of T h(Z+(M)). Using Proposition 3.8, one can check
that Evans’ description agrees with the one in Corollary 3.3 in the case of almost complex
manifolds. We remark that Evans’ computation can quickly be reproduced using naturality
in the pullback diagram

Z+(M) BU(3)

M BSO(6)

and expressing H∗(BU(3);Q) as an H∗(BSO(6);Q)-algebra using the known behavior of
the right-hand side vertical map on cohomology.

Remark 3.5. In order for the formulas of Corollary 3.3(1) to hold, it is crucial to have an
almost complex structure inducing the given orientation on the base manifold. For instance, the

positive twistor space of CP2 (i.e., the complex projective plane with the opposite orientation)
with the Fubini–Study metric is the full flag variety U(3)/ (U(1)×U(1)×U(1)) [23, p. 217,
Example 1], whose cohomology is given by

Z[x, y, z]/(x+ y + z, xy + xz + yz, xyz) ∼= Z[x, y]/
(
x2 + xy + y2, x2y + xy2

)
,

where x, y, z are in degree two [4, Proposition 31.1]. This ring is not isomorphic to

Z[x, y]/
(
y3, x2 + kyx

)
for any integer k, so the cohomology of Z+

(
CP2

)
can not be expressed as in the first item of

Corollary 3.3(1). This corresponds to the fact that CP2 does not admit an almost complex
structure compatible with its orientation (which can of course be seen by other means as well,
e.g., Hirzebruch’s congruence χ+ σ ≡ 0 mod 4 for closed almost complex four-manifolds).

3.2 Spinc(4)-bundles and twistor spaces of four-dimensional manifolds

Twistor spaces of oriented Riemannian four-manifolds give interesting examples of almost com-
plex six-manifolds which we will consider in the following sections. In this subsection we will
compute their integral cohomology as well as the Chern classes of their Atiyah–Hitchin–Singer
almost complex structures.

Our computation requires knowledge of the integral cohomology of BSpinc(4). The cohomol-
ogy of BSpinc(n) is described in detail in [9]. We need only the simple case when n = 4, so we
include an elementary treatment of this case.

Our aim is to compute the cohomology ring of the “universal twistor space” over BSpinc(4),
namely the bundle of orthogonal complex structures on the fibers of the 4-plane bundle over
BSpinc(4) classified by the canonical map BSpinc(4) → BSO(4). Since every oriented four-
manifold admits a spinc structure, naturality will yield the cohomology ring of the twistor
space.

We will use unit quaternions to describe the four-dimensional spin groups and orthogonal
complex structures. We consider the quaternions H as a vector space over C via right multipli-
cation by C ⊂ H, i.e., we consider the identification of C2 with H given by

(z1, z2) 7→ z1 + jz2.
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The standard complex structure on H = R4 is then right multiplication by i, and (1, i, j,−k) is
an oriented basis.

The unit quaternion q = w1 + jw2 acts on H by left multiplication as

(w1 + jw2)(z1 + jz2) = (w1z1 − w2z2) + j(w2z1 + z2w1),

which corresponds via the identification with C2 to the matrix[
w1 −w2

w2 w1

]
with |w1|2 + |w2|2 = 1. This will be our identification of Sp(1) with SU(2).

The universal cover of SO(4) is modelled by the map Sp(1)× Sp(1)→ SO(4) given by

(q1, q2) 7→ (v 7→ q1vq2)

and we will identify

SO(4) = (Sp(1)× Sp(1))/{±(1, 1)}.

In these terms, the subgroup U(2) ⊂ SO(4) is

U(2) =
(
Sp(1)× S1

)
/{±(1, 1)}.

The group Spinc(4) is defined as

Spinc(4) =
(
Sp(1)× Sp(1)× S1

)
/{±(1, 1, 1)}.

There are two canonical homomorphisms

SO(4)
π←− Spinc(4)

δ−→ S1 (3.1)

given by

π
([
q1, q2, e

iθ
])

= [q1, q2], δ
([
q1, q2, e

iθ
])

= e2iθ.

The canonical map U(2)
κ−→ Spinc(4) is the unique lift as a group homomorphism in the diagram

Spinc(4)

U(2) SO(4)× S1.

π×δκ

ι×det

In terms of the coordinates above, this is given by κ
([
q1, e

iθ
])

=
[
q1, e

iθ, e−iθ
]
.

Let x ∈ H2
(
BS1

)
= H2(CP∞) denote the standard generator (the Chern class of the dual

tautological line bundle on CP∞) and

α = (Bδ)∗(x) ∈ H2
(
BSpinc(4)

)
.

We will write p1 and e for the universal Pontryagin class and Euler class in H∗(BSO(4)), re-
spectively.
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Lemma 3.6. Let π : Spinc(4) → SO(4) be as in (3.1). There are unique classes S1, S2 ∈
H4

(
BSpinc(4)

)
such that

4S1 = Bπ∗p1 − 2Bπ∗e− α2,

4S2 = Bπ∗p1 + 2Bπ∗e− α2.

Moreover the cohomology ring of BSpinc(4) is a polynomial algebra,

H∗(BSpinc(4)) ∼= Z[α, S1, S2].

Proof. The short exact sequence of groups

Sp(1)× Sp(1)
ι−→ Spinc(4)

δ−→ S1,

where ι(q1, q2) = [q1, q2, 1], leads to a fiber sequence

BSp(1)× BSp(1) Bι−→ BSpinc(4) Bδ−→ BS1. (3.2)

Let A,B ∈ H4(BSp(1) × BSp(1)) be the generators which map to x2 ∈ H4
(
BS1

)
under the

maps induced by the natural inclusions eiθ 7→
(
eiθ, 1

)
and eiθ 7→

(
1, eiθ

)
of S1 in Sp(1)× Sp(1).

By the Serre spectral sequence of the fibration (3.2), any elements in H4
(
BSpinc(4)

)
mapping

to A, B under Bι∗ together with α will freely generate the cohomology ring of BSpinc(4).
The effect of the composition

BSp(1)× BSp(1) Bι−→ BSpinc(4) Bπ−−→ BSO(4)

on degree 4 cohomology is determined by the homomorphism

S1 × S1

[
1 −1

−1 −1

]
−−−−−−→ S1 × S1

induced by π ◦ ι on the standard maximal tori. Writing a, b ∈ H2
(
BS1 × BS1

)
for the stan-

dard generators corresponding to the maximal torus of SO(4), and x, y for the corresponding
generators for Sp(1)× Sp(1), we have

a2 + b2 7→ (x− y)2 + (−x− y)2 = 2x2 + 2y2, ab 7→ −x2 + y2,

and therefore p1, e ∈ H4(BSO(4)) map to 2A + 2B and −A + B in H4(BSp(1) × BSp(1)),
respectively. Therefore

Bι∗Bπ∗(p1 − 2e) = 4A, Bι∗Bπ∗(p1 + 2e) = 4B.

It follows from the short exact sequence

0→ Zα2 → H4
(
BSpinc(4)

) Bι∗−−→ H4(BSp(1)× BSp(1))→ 0

that there exists λ ∈ Z such that Bπ∗(p1 − 2e) + λα2 is (uniquely) divisible by 4.
The composition

CP2 τCP2−−→ BU(2) Bκ−−→ BSpinc(4) Bδ−→ BS1

classifying the second exterior power of the tangent bundle of CP2 induces multiplication by 3
on H2, and hence (Bκ ◦ τCP2)∗ provides a 2-local splitting of the map Bδ∗ on H4.
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The pullback to H4
(
CP2

)
of Bπ∗(p1 − 2e) + λα2 ∈ H4

(
BSpinc(4)

)
is (3− 6 + 9λ) times the

orientation class, and the smallest value of λ for which this number is a multiple of 4 is λ = −1.
Since Bπ∗(p1)− 2Bπ∗(e)− α2 ∈ H4

(
BSpinc(4)

)
is divisible by 4, we conclude that

Bι∗
(
Bπ∗(p1)− 2Bπ∗(e)− α2

4

)
= A,

and similarly

Bι∗
(
Bπ∗(p1) + 2Bπ∗(e)− α2

4

)
= B,

which completes the proof. ■

For four-dimensionalM , a choice of spinc structure gives us the following diagram of pullback
squares:

Z(M) Z
(
BSpinc(4)

)
Z(BSO(4))

M BSpinc(4) BSO(4),Bπ

where Z(BG) denotes the bundle of orthogonal complex structures on the universal oriented
4-plane bundle over BG for G = SO(4) and its pullback for G = Spinc(4).

We will see that each of the two components of Z
(
BSpinc(4)

)
is the projectivization of

a complex plane bundle over BSpinc(4). The projective bundle formula together with naturality
will give us the following description of the cohomology ring of Z(M) as an H∗(M)-algebra.

Proposition 3.7. Let M be an oriented Riemannian four-manifold and α ∈ H2(M) be an
integral lift of w2(M) (classifying the complex line bundle associated to a spinc-structure on M).
Then there is an isomorphism of H∗(M)-algebras

H∗(Z±(M)) ∼= H∗(M)[x]/

(
x2 + αx− p1 ± 2e− α2

4

)
. (3.3)

Proof. Under our identification of R4 with H, the orthogonal complex structures on R4 com-
patible with the orientation (respectively, opposite orientation) are given by right (respectively,
left) multiplication by a unit imaginary quaternion. The element [q1, q2] ∈ SO(4) acts on J+

(
R4

)
by

[q1, q2]u = q2uq2,

and on J−
(
R4

)
by

[q1, q2]u = q1uq1.

That is, SO(4) acts on orthogonal complex structures via the two projections to SO(3). The
commutative diagrams

Spinc(4) U(2)
[
q1, q2, e

iθ
] [

q2, e
−iθ

]
SO(4) SO(3),

[
q1, q2

] [
q2
]
.

π

χ+

πright
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and

Spinc(4) U(2)
[
q1, q2, e

iθ
] [

q1, e
−iθ

]
SO(4) SO(3),

[
q1, q2

] [
q1
]
.

π

χ−

πleft

allow us to express each component of the bundle of orthogonal complex structures associated
to an oriented 4-plane bundle with a spinc structure as the projectivization of a complex plane
bundle. The formula (3.3) will follow from the projective bundle formula once we compute the
Chern classes of these plane bundles. By naturality it suffices to compute the images of c1, c2
under Bχ∗

±.

As the composition Spinc(4)
χ±−−→ U(2)

det−−→ S1 equals δ, we have Bχ∗
±(c1) = α.

We will now show that

Bχ∗
+(c2) = −S2, Bχ∗

−(c2) = −S1.

In view of Lemma 3.6, this will complete the proof. The maps

Sp(1)× Sp(1)
ι−→ Spinc(4)

χ±−−→ U(2)

are given respectively by (q1, q2) 7→ [q2, 1] and (q1, q2) 7→ [q1, 1] (i.e., they correspond respectively
to the inclusions of the right and left copies of SU(2) in U(2)). Therefore, with respect to the
standard basis for H4(BSp(1)×BSp(1)) used in the proof of Lemma 3.6, we have B(ι◦χ+)

∗c2 =
−B and B(ι ◦ χ−)

∗c2 = −A.
Hence

Bχ∗
+(c2) = −S2 + λα2, Bχ∗

−(c2) = −S2 + µα2, for some λ, µ ∈ Z.

We can determine the coefficients λ and µ by mapping toH4
(
CP2

)
under CP2 Bκ◦τCP2−−−−−→BSpinc(4).

The compositions

U(2)
κ−→ Spinc(4)

χ±−−→ U(2)

are given by[
q, eiθ

]
7→

[
eiθ, eiθ

]
and

[
q, eiθ

]
7→

[
q, eiθ

]
,

respectively. The second map is the identity, while the first map is the representation U(2)
1⊕det−−−−→

U(2) (cf. Proposition 3.1(1)). It follows that the composition

CP2 → BSpinc(4) Bχ+−−−→ BU(2)

classifies the bundle C⊕ Λ2TCP2, and

CP2 → BSpinc(4) Bχ−−−−→ BU(2)

classifies the tangent bundle of CP2. Thus c2 ∈ H4(BU(2)) must go to 0 ∈ H4
(
CP2

)
under

the composition CP2 → BSpinc(4) Bχ+−−−→ BU(2), and to 3 ∈ H4
(
CP2

)
under the composition

CP2 → BSpinc(4) Bχ−−−−→ BU(2), i.e.,

−(3 + 6− 9)/4 + 9λ = 0 ⇔ λ = 0, and −(3− 6− 9)/4 + 9µ = 3 ⇔ µ = 0. ■
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Recall that T vZ±(M) and T hZ±(M) denote the vertical and horizontal subbundles of
TZ±(M) which are complex vector bundles via the Atiyah–Hitchin–Singer almost complex struc-
ture.

Proposition 3.8. Let M be an oriented Riemannian four-manifold and α ∈ H2(M) a choice
of lift of w2(M). Then, in terms of the expression for H∗(Z±(M)) in Proposition 3.7, the total
Chern class of the standard almost complex structure on Z±(M) is

1 + (4x+ 2α) + (p1 ± 3e)± (α+ 2x)e. (3.4)

Moreover, c1(T
vZ±(M)) = c1

(
T hZ±(M)

)
= α+ 2x.

Proof. It suffices to compute the total Chern classes of the vertical and horizontal subbundles
of TZ±(M). We saw in the proof of Proposition 3.7 that Z±(M) is the projectivization of a rank
two complex vector bundle E with total Chern class

1 + α− p1 ± 2e− α2

4
.

As T v(P(E)) ⊕ C ∼= OE∗(1) ⊗ p∗E (where P(E)
p−→ M is the projection and OE∗(1) is the

canonical line bundle restricting to O(1) on each fiber [8, Definition 15.13]) we have that

c1
(
T v(Z±(M))

)
= c1(E) + 2c1(OE∗(1)) = α+ 2x.

As for the horizontal bundle, consider the pullback diagrams

Z+(M) Z+

(
BSpinc(4)

)
Z+(BSO(4)) = BU(2)

M BSpinc(4) BSO(4).

τ

Bι

Bπ

Note that Z+(BSO(4)) = ESO(4) ×SO(4) SO(4)/U(2) = BU(2), and under this identification
the projection Z+(BSO(4)) → BSO(4) is the map Bι induced by the inclusion U(2) ⊂ SO(4).
Moreover, the universal bundle ESO(4)×U(2)R4 → ESO(4)/U(2) pulls back to T hZ+(M) under

the composite map Z+(M)→ Z+

(
BSpinc(4)

) τ−→ BU(2) (cf. Lemma 2.1).

We saw in the proof of Proposition 3.7 that

H∗(Z+

(
BSpinc(4)

)) ∼= Z[α, S1, S2, x]/
(
x2 + αx− S2

)
.

In terms of this identification we have τ∗(c2) = Bπ∗e = −S1 + S2 and

τ∗(c1) = γx+ λα for some γ, λ ∈ Z.

As the bundle classified by CP1 ∼= SO(4)/U(2)→ BU(2) has c1 equal to two times the orientation
class (see Lemma 2.1), we have γ = 2. Since p1 ∈ H4(BSO(4)) maps to c21 − 2c2 in H4(BU(2)),
and to 2S1 + 2S2 + α2 in H4

(
BSpinc(4)

)
we see that

(2x+ λα)2 + 2S1 − 2S2 = 2S1 + 2S2 + α2 ⇔ 4x2 + 4λαx+ λ2α2 = 4S2 + α2.

Hence λ = 1, yielding the formula (3.4) in the case of Z+(M).

Let k ∈ O(4) be an element with determinant −1 and let φ : SO(4) → SO(4) denote con-
jugation by k. As a homogeneous space of SO(4) we have J−

(
R4

)
= SO(4)/φ(U(2)). Hence
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Z−(BSO(4)) = ESO(4)×SO(4) φ(U(2)) = B(φ(U(2)) and we have a commutative diagram

Z−(M) Z−
(
BSpinc(4)

)
B(φ(U(2)) BU(2)

M BSpinc(4) BSO(4) BSO(4)

τ ′

τ

Bφ−1

Bπ Bφ−1

with the middle and left-hand squares both pullback squares and the right hand square an
isomorphism of fiber bundles induced by the automorphism φ−1. Note that Bφ−1 is covered by
an isomorphism between the (complex) universal bundles ESO(4)×φ(U(2))R4 → ESO(4)×U(2)R4,

so that the composition Z−(M)→ Z−
(
BSpinc(4)

) τ−→ BU(2) classifies T hZ−(M).
Considering the action of Bφ on the maximal torus we see that Bφ : BSO(4)→ BSO(4) has

the following effect on cohomology:

Bφ∗(pi) = pi, Bφ∗(e) = −e.

Arguing as before, we conclude that τ∗(c2) = −Bπ∗(e) = S1−S2 and τ∗(c1) = 2x+α, leading
to the formula (3.4) in the case of Z−(M). ■

Remark 3.9.

� The formulas in Proposition 3.8 for c2 and c3 of Z−(M) differ by a sign from those given
in [16, p. 135]; however, the fundamental class being used in loc. cit. seems to also differ
by a sign from the one induced by the Atiyah–Hitchin–Singer almost complex structure
on Z−(M). Hence the values of the Chern numbers given in [16, equation (1.5)] coincide
with those obtained with the Chern classes in Proposition 3.8.

� In [16, equation (1.4)], there is a description of the real cohomology ring of the neg-
ative twistor space of a four-manifold X, as the free H∗(X;R)-module generated by
h = 1

2c1
(
T vZ−(X)

)
subject only to the relation h2 = 1

2e(X) − 1
4p1(X). However, this

description is at odds with the identification of the negative twistor space of CP2 as the
full flag variety U(3)/ (U(1)×U(1)×U(1)) [16, p. 133], [23, p. 217, Example 1]. Namely,
H∗(CP2;R

) ∼= R[x]/
(
x3

)
, where

〈
x2,

[
CP2

]〉
= 1, so e

(
CP2

)
= p1

(
CP2

)
= 3x2. Therefore

the real cohomology of the negative twistor space is, according to [16, equation (1.4)],
R[x, h]/

(
x3, h2 − 3

4x
2
)
. One can check directly, however, that this (graded) ring is not

isomorphic to the cohomology of the flag variety, i.e., to R[x, h]/
(
x2+xh+h2, x2h+hx2

)
.

In terms of Propositions 3.7 and 3.8, we have h = x+ α
2 and therefore h2 = 1

4p1(x)−
1
2e(X).

Remark 3.10. Let M be an almost complex Riemannian six-manifold. The fiberwise diffeo-
morphism a : Z+(M)→ Z−(M) sending Jx 7→ −Jx ∈ Z(TxM) induces an anti-holomorphic map
between the fibers and hence

a∗(c1(Tv(Z−(M)))) = −c1(Tv(Z+(M))).

The spaces Z±(M) are projectivizations of rank 4 complex vector bundles with first Chern class
2c1(M) (see Corollary 3.3), and so as in Proposition 3.8 we see that c1(TvZ±(M)) = 2c1(M)+4x.
Therefore

a∗(2c1 + 4x) = −2c1 − 4x ⇒ a∗(4x) = −4x− 4c1.

As there is no torsion in H2 of the universal example Z(BU(3)), it follows that a∗(x) = −x− c1.
One can check that a∗ yields an isomorphism between the H∗(M)-algebras of Corollary 3.3.

In view of the previous remark, from now on we will restrict our attention to the positive
twistor space of almost complex Riemannian six-manifolds.
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4 On the homotopy type of the space
of almost complex structures on six-manifolds

In this section we study the homotopy type of the components of the space of almost complex
structures on connected six-manifoldsM , complementing our previous treatment [13] of the case
when c1 = 0.

Theorem 4.1. Let M be an oriented Riemannian manifold of dimension four or six, J an
orthogonal almost complex structure on M compatible with the orientation, and J(M) its com-
ponent in the space of orthogonal almost complex structures. Let S+

C (M) be the positive spinor
bundle on M determined by J . Then the map

Γ
(
S
(
S+
C (M)

))
→ J(M)

is surjective, and for any lift s of J ,

Map
(
M,S1

)
→ Γ

(
S
(
S+
C
))
s
→ J(M)

is a fiber sequence.

Proof. Identifying S+
C (M) with ⊕k evenΛ

k
C(TM), Remark 2.3 shows that the constant section

s : M → Λ0
C(TM) ⊂ S+

C (M) defined by s(x) = 1 lifts the section J . As S
(
S+
C
)
→ Z+(M) is

a fiberwise fibration over M , the map induced on sections is a fibration. Since the fiber over J
is nonempty, any choice of lift of J identifies the fiber with Map

(
M,S1

)
. ■

Remark 4.2. The above argument remains valid in all dimensions if one replaces S
(
S+
C (M)

)
with S

(
S+
C (M)

)
∩ PS+

C (M).

Now let (M,J) be a closed almost complex Riemannian six-manifold with H1(M ;Z) = 0
(equivalently, b1 = 0) satisfying c1c2 − c3 ̸= 0. By Theorem 4.1, we have the fibration
Map

(
M,S1

)
→ Γ

(
S
(
S+
C (M)

))
s
→ J(M). Since H1(M ;Z) = 0, evaluation at a chosen base-

point gives a homotopy equivalence Map
(
M,S1

) ev−→ S1, so we have a principal fiber sequence
S1 → Γ

(
S
(
S+
C (M)

))
s
→ J(M).

We can thus consider instead the fiber sequence

Γ(S
(
S+
C
)
)s → J(M)→ BS1 ≃ CP∞. (4.1)

Now, S
(
S+
C
)
is an oriented fiber bundle overM with fiber S7, and hence it is classified by a map

M → BAut+
(
S7

)
to the classifying space of orientation-preserving homotopy automorphisms

of S7. It is known that BAut+
(
S7

)
Q ≃ K(Q, 8), where the subscript of Q denotes (Sullivan)

rationalization [25, Section 11]. By [21, Theorem 5.3], the rationalization of Γ
(
S
(
S+
C
))
s
is

homotopy equivalent to (the connected component corresponding to s in) the space of sections
of the fiberwise rationalized S7 bundle overM . Since H8(M ;Q) = 0, this latter bundle is trivial,
and hence

(
Γ
(
S
(
S+
C
))
s

)
Q is homotopy equivalent to a connected component of Map

(
M,S7

Q
)
.

Denoting the Betti numbers of M by bi, by Thom’s theorem on the space of maps into an
Eilenberg–Maclane space, Map

(
M,S7

Q
)
is in fact connected and has the homotopy type of

S1
Q × S7

Q ×K(Q, 3)b4 ×K(Q, 4)b3 ×K(Q, 5)b2 .
We can describe the fundamental group of J(M) by using a theorem of Crabb and Sutherland:

Theorem 4.3 ([7, Theorem 2.12(i)]). Let M be a closed connected 2n-manifold and ξ a complex
(n + 1)-plane bundle over M . Denote by Nξ any component of the space of sections of P(ξ)
whose elements lift to sections of ξ. Then π1(Nξ) is a central extension

0→ Z/
(〈
cn(ξ), [M ]

〉)
→ π1(Nξ)→ H1(M)→ 0.
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By Theorem 4.1, we can apply this to ξ = S+
C (M) ∼= C⊕Λ2

CTM , which satisfies Nξ = J(M).
Therefore, the fundamental group of J(M) is given by Zmodulo

∫
Mc1c2−c3 (where ci=ci(TM)),

see Corollary 3.3. By [21], J(M) is a nilpotent space as it is the space of sections of a fibration
with nilpotent fiber

(
namely CP3

)
over a finite-dimensional base. We may thus rationalize the

fibration (4.1) to obtain the fibration(
Γ
(
S
(
S+
C
))
s

)
Q → J(M)Q → K(Q, 2).

Consider the degree one rational class corresponding to the factor S1
Q in the fiber. If c1c2−c3 ̸= 0,

then since π1(J(M)Q) = 0, this class must hit (a nonzero multiple of) the degree two generator
in K(Q, 2) in the Serre spectral sequence. A model for the total space is given by the tensor
product of the base and fiber’s models with a perturbed differential on the fiber generators [25,
Section 4]; the previous sentence thus tells us that a model for J(M) is of the form(

Λ
(
x2, z1, z7, z

i
3, z

j
4, z

k
5

)
, dz1 = x2, dz7 ∈ (x2), dz

i
3 ∈ (x2), dz

j
4 ∈ (x2), dz

k
5 ∈ (x2)

)
,

where (x2) denotes the ideal generated by x2, and i, j, k range over sets of size b4, b3, b2,
respectively.

Notice that such a model is not minimal, and in fact a minimal model is obtained by quoti-
enting out the differential ideal generated by z1. Indeed, by the argument in [27, Proposition 2]
we see that the map (Λ, d)→

(
Λ/(z1,dz1)Λ, d̄

)
induces an isomorphism on cohomology. Here by

(Λ, d) we denote the differential graded algebra displayed above, and by d̄ the induced differential
on the quotient. We see that

(Λ/(z1, x2)Λ, d̄) ∼=
(
Λ
(
z7, z

i
3, z

j
4, z

k
5

)
, d̄ = 0

)
,

where the right-hand side is minimal. To summarize, we have the following:

Theorem 4.4. Let M be a connected closed six-manifold with b1 = 0 equipped with an almost
complex structure J such that

∫
M c1c2 − c3 ̸= 0. Then the space of almost complex structures

onM in the component of J is a nilpotent space with finite cyclic fundamental group and minimal
model given by

(
Λ
(
z7, z

i
3, z

j
4, z

k
5

)
, d = 0

)
; here i, j, k range over sets of size b4(M), b3(M), b2(M)

(= b4(M)), respectively. In particular, this space is formal.

We emphasize that the above makes no nilpotency assumption on M . Alternatively, a model
for (a given component of) the space of almost complex structures can be obtained with the
Haefliger–Sullivan model for the space of sections of a fibration [25, Section 11], [15], applied to
CP3 → Z+(M)→M . Our approach above lets one quickly describe the minimal model of J(M)
using the geometry of the setup.

Example 4.5. Using Theorem 4.4, we immediately obtain the following:

1. Observe that the space of almost complex structures inducing a given orientation on the
connected sum g

(
S3 × S3

)
is connected. By Theorem 4.4, for g ̸= 1, the rationalization

of this space is K(Q, 7) × K(Q, 4)2g. In particular, the space of almost complex struc-
tures on S6 has the same rational homotopy type as S7, i.e., K(Q, 7); cf. [13] where it is
shown that a certain natural inclusion RP7 ↪→ J

(
S6

)
induces an isomorphism on rational

homotopy groups and fundamental groups. (Note that the covering S7 → RP7 induces an
isomorphism on rational homotopy groups.)

For g = 1, one can calculate directly using the Haefliger–Sullivan model that the space of
almost complex structures on S3×S3 has the same rational homotopy type as S1×CP3×
(HP∞)2, cf. [13, Example 5.4].
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2. The components of almost complex structures on CP3 are parametrized by c1 = 2kx,
c2 =

(
2k2 − 2

)
x2, where x is the generator of H2

(
CP3

)
such that

〈
x3,

[
CP3

]〉
= 1 (i.e.,

x = c1(O(1)) for the standard complex structure). Hence c1c2 − c3 = 4k3 − 4k − 4, which
is never zero. Hence every component of almost complex structures has rationalization
K(Q, 7)×K(Q, 5)×K(Q, 3). Contrast this with the trivial CP3 bundle over CP3, whose
(infinitely many) components of sections exhibit two distinct rational homotopy types [22,
Example 3.4]; the space of maps CP3 → CP3 homotopic to any fixed essential map has
rationalization K(Q, 7)×K(Q, 5)×K(Q, 3).

5 Intersections of almost complex structures on six-manifolds
as sections of the twistor space

We will now use the results of Section 3 to calculate the homological intersection of two almost
complex structures on a given six-manifoldM , after identifying them with the image ofM under
the corresponding section of the twistor bundle.

Lemma 5.1. Let E
π−→ M be a complex vector bundle of rank n over a closed oriented mani-

fold M . Let s : M → P(E ⊕ C) denote the canonical section given pointwise by [0 : · · · : 0 : 1].
Then the Poincaré dual of s∗[M ] in H∗(P(E ⊕ C)) ∼= H∗(M)[x]/

(
xn+1 + c1x

n + · · ·+ cnx
)
is

xn + c1x
n−1 + · · ·+ cn,

where ci denote the Chern classes of E.3

Proof. The Poincaré dual to s∗[M ] is the image of the Thom class of the normal bundle to the
submanifold s(M) ⊂ P(E ⊕ C) under the first map below in the long exact sequence of a pair,

H2n(P(E ⊕ C),P(E ⊕ C) \ s(M))→ H2n(P(E ⊕ C))→ H2n(P(E ⊕ C) \ s(M)),

where H2n(P(E ⊕ C),P(E ⊕ C) \ s(M)) has been identified with H2n(U,U \ s(M)) for some
tubular neighborhood U of s(M) via excision; see [5, Section 6.11]. This is a nonzero class,
as s∗[M ] is nonzero since it projects to [M ].

Now notice that P(E ⊕ C) \ s(M) deformation retracts to P(E). Therefore the effect of the
second map on cohomology is the natural quotient

H2n(M)[x]/
(
xn+1 + c1x

n + · · ·+ cnx
)
→ H2n(M)[x]/

(
xn + c1x

n−1 + · · ·+ cn
)
,

and thus the kernel is generated by xn + c1x
n−1 + · · · + cn. Hence the Thom class maps to

xn + c1x
n−1 + · · ·+ cn up to sign. To check the sign, we restrict to a fiber and evaluate against

the fundamental class
[
CPn

]
. Since the Thom class is the orientation of the normal bundle,

which is given by the orientation of the fibers, and
〈
xn,

[
CPn

]〉
= 1, we see that the sign is

positive. ■

Theorem 5.2. Let s be a section of the positive twistor bundle over a closed Riemannian six-
manifold M , and give M the orientation determined by s. Then the homological self-intersection
number s∗[M ] · s∗[M ] of s(M) in Z+(M) is given by

∫
M c1c2 − c3, where the ci are the Chern

classes of the almost complex structure determined by s.

3Here the orientation on P(E ⊕ C) is understood to be the one induced by the orientation on M and the
canonical orientation on the fiber CPn corresponding to ⟨xn,

[
CPn

]
⟩ = 1.
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Proof. In terms of the identification in Proposition 3.1, s is the canonical section of P
(
S+
C
)
=

P
(
Λ2
CTM⊕C

)
(see the proof of Theorem 4.1), where TM is equipped with the complex structure

determined by s. To compute the homological self-intersection of s(M), we integrate the square
of the expression obtained in Lemma 5.1 for its Poincaré dual in Z+(M). We use Corollary 3.3,
and observe that since x

(
x3 + c1

(
S+
C
)
x2 + c2

(
S+
C
)
x+ c3

(
S+
C
))

= 0 in H∗(Z+(M)), we have(
x3 + c1

(
S+
C
)
x2 + c2

(
S+
C
)
x+ c3

(
S+
C
))2

= c3
(
S+
C
)(
x3 + c1

(
S+
C
)
x2 + c2

(
S+
C
)
x+ c3

(
S+
C
))

= c3
(
S+
C
)
x3 = (c1c2 − c3)x3. ■

Using Theorem 5.2, we obtain the following:

Example 5.3.

1. For any closed oriented Riemannian four-manifold M , by Proposition 3.8, we have the fol-
lowing Chern numbers of the Atiyah–Hitchin–Singer almost complex structure on Z+(M):∫

Z+(M)
c1(Z+(M))c2(Z+(M)) =

∫
Z+(M)

(4x+ 2α)(p1 + 3e)

=

(∫
CP1

4x

)(∫
M
(p1(M) + 3e(M))

)
= 12(σ(M) + χ(M)),∫

Z+(M)
c3(Z+(M)) =

∫
Z+(M)

(2x+ α)e = 2χ(M).

Hence the self-intersection of the Atiyah–Hitchin–Singer almost complex structure on
Z+(M) in Z+(Z+(M)) is 12σ(M) + 10χ(M).

By [1, Lemma 3], closed oriented four-manifolds admitting a maximally nonintegrable
almost complex structure satisfy 5χ+6σ = 0. Hence for these manifolds, the corresponding
self-intersection number is zero.

2. By a theorem of Taubes [26, Theorem 1.1], given any closed oriented four-manifold M ,
for every large enough k the manifold N =M#kCP2 carries a self-dual metric. Hence its
negative twistor space X = Z−(N) is a complex manifold [2, Theorem 4.1]. It satisfies∫

X
c1(X)c2(X) = 12(χ(N)− σ(N)),

∫
X
c3(X) = 2χ(N).

Indeed, we obtain this again from Proposition 3.8, namely∫
X
c1(X)c2(X) =

∫
X
2(α+ 2x)(p1(N)− 3e(N))

=

(∫
CP1

4x

)(∫
N
(p1(N)− 3e(N))

)
= −12(σ(N)− χ(N)).

This agrees with [16, equation (1.5)]. Alternatively, from [10, Section 4] we see that the
holomorphic Euler characteristic of X is given by 1 − b1(N) + b+2 (N). Since χ(N) = 2 +
b+2 (N)+b−2 (N)−2b1(N) and σ(N) = b+2 (N)−b−2 (N), we have 1

2(χ(N)−σ(N)) = 1−b1+b−2 ,
which equals the Todd genus

∫
X

1
24c1c2(X). The Euler characteristic of X is twice that

of N , as seen immediately, e.g., using the Leray–Hirsch theorem.

From here we obtain∫
X
c1(X)c2(X)− c3(X) = 10χ(M) + 12σ(M)− 2k.

Hence for anyM , for large enough k we obtain compact complex threefoldsX with negative
homological self-intersection in their own positive twistor space.
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Example 5.4.

1. For the connected sum g
(
S3 × S3

)
, the self-intersection number of any almost complex

structure in Z+

(
g
(
S3 × S3

))
is 2g − 2. In particular, for S6 we have −2.

2. S2 × S4 admits a unique homotopy class of almost complex structures for every choice of
c1 = 2kα, where α generates H2. Since p1 = 0 we see that c2 = 0 for any k ∈ Z, and so
the self-intersection is −4 for any homotopy class of almost complex structure. Likewise,
for g

(
S2 × S4

)
, the self-intersection of any almost complex structure is −2g − 2.

3. Recall that the homotopy classes of almost complex structures on CP3 are parametrized
by c1 = 2kx, c2 =

(
2k2 − 2

)
x2. The self-intersection numbers are given by 4k3 − 4k − 4;

in particular, for the standard complex structure it is 20.

4. To obtain more examples of compact complex threefolds with negative self-intersection,
one can blow up any given compact complex threefold X at a point sufficiently many

times. Indeed, the blowup at one point, diffeomorphic to X#CP3, satisfies∫
X#CP3

c1c2
(
X#CP3

)
=

∫
X
c1c2(X)

by invariance of the Todd genus under bimeromorphisms, and the Euler characteristic
is two larger than that of X. Note that if X is Kähler, this gives examples of Kähler
threefolds with negative self-intersection.

5. In [19], LeBrun builds examples of compact complex threefolds Xm, m > 0, each diffeo-
morphic to K3 × S2, with

∫
Xm

c1c2(Xm) = 48m. Hence the homological self-intersection
number is given by 48(m− 1).

6. By [14, Corollary 3.1], for a connected symplectic six-manifoldM with a Hamiltonian circle
action with isolated fixed points, we have

∫
M c1c2 = 24 and so

∫
M c1c2 − c3 = 24− χ(M).

In particular, this formula applies to toric six-manifolds.

Recall the following theorem of Michelsohn, Salamon, Atiyah–Hitchin–Singer:

Theorem 5.5 ([17, Theorem 9.11], [24, Theorem 1]). A section s of the positive twistor space
Z+(M)→M is pseudoholomorphic, with respect to the almost complex structure J corresponding
to s on M and the Atiyah–Hitchin–Singer almost complex structure on Z+(M), if and only if J
is integrable.

Now suppose we have an integrable orthogonal J on a Riemannian six-manifold M . Then s
gives us an embedding of M into Z+(M) as an almost complex submanifold. If we were able to
perturb s(M) to another almost complex submanifold that intersects s(M) transversally, then
the homological intersection number s∗[M ] · s∗[M ] would have to be ≥ 0. A way to obtain
perturbations of s(M) to almost complex submanifolds is by translating J by an isometry of
(M, g), but any perturbation to a transverse representative would do. Note that it is unique to
dimension six that s∗[M ] · s∗[M ] inside Z+(M) gives an integer.

Corollary 5.6. Suppose a closed Riemannian six-manifold M carries an integrable complex
structure, corresponding to a section s of Z+(M), with

∫
M c1c2 − c3 < 0. Then there is no

representative of the homology class s∗[M ] given by an almost complex submanifold of Z+(M)
which intersects s(M) transversally.

Example 5.7. Consider S6 with the round metric. Take the canonical almost complex structure
induced by the octonions, and consider its orbit under the action of the isometry group SO(7),
diffeomorphic to RP7. After identifying the twistor space of round S6 with the Grassmannian
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of oriented 2-planes in R8, Calabi and Gluck [6] show that these “octonion” J ’s send S6 to the
family of 2-planes of the form (o, v), where o is a fixed unit octonion depending on J (so, the
image of S6 is the unit sphere in the hyperplane orthogonal to a given line in R8.) Two such
nearby families intersect transversally. Therefore, the −2 homological self-intersection obtained
in Example 5.4 shows the octonion J ’s are not integrable. Of course, this also follows by a direct
computation of the Nijenhuis tensor, and the result is a special case of the classical theorem of
Blanchard [3] and LeBrun [18] that there is no integrable complex structure on S6 orthogonal
with respect to the round metric.

In order to study intersections of almost complex structures in different components of the
space of sections of the twistor space we will now analyze the dependence of our formula for the
cohomology (Corollary 3.3) on the choice of almost complex structure.

Consider the map of fibrations

CP3 CP∞

BU(3) BSpinc(6)

BSO(6) BSO(6).

ȷ

Bκ

=

(5.1)

As the canonical map κ : U(3)→ Spinc(6) is an isomorphism on π1, we see that ȷ is an isomor-
phism on π2 and hence the 5-lemma implies that Bκ is a 7-equivalence. Therefore the set of
isomorphism classes of almost complex structures on six-manifolds is in natural bijective corre-
spondence with the set of isomorphism classes of spinc structures via the canonical map from
the former to the latter.

The set of isomorphism classes of spinc-structures on a manifold M is a torsor over the group
H2(M) of isomorphism classes of complex line bundles (corresponding to the action of the fiber
on the principal fibration along the right-hand column of (5.1)). Letting [s] denote the spinc

structure associated to the almost complex structure s : M → Z+(M), and writing a · [s] for the
action of the cohomology class a ∈ H2(M) on [s], we have the following result:

Lemma 5.8. Let M be an oriented Riemannian six-manifold and let s, s′ : M → Z+(M) be two
almost complex structures on M compatible with the orientation of M . Let a ∈ H2(M) be (the
unique cohomology class) such that [s′] = a · [s]. Then the canonical isomorphism between the
expressions for H∗(Z+(M)) given in Corollary 3.3 in terms of s, s′ is given by

x′ 7→ x− a.

Proof. Let E and E′ be the positive spinor bundles associated to the spinc structures [s] and [s′],
respectively, and let L denote a complex line bundle with c1(L) = a.

The relation a · [s] = [s′] implies that there is an isomorphism

ψ : L⊗ E → E′.

The kernel in TxM ⊗ C of right multiplication by a positive spinor v ∈ Ex is the same as the
kernel of right multiplication by λ ⊗ v ∈ Lx ⊗ Ex for any λ ̸= 0, so the canonical isomorphism
given by the composition

P(L⊗ E)
ϕ′−→ Z+(M)

ϕ−1

−−→ P(E)

is the obvious one sending the line L⊗ (Cv) to Cv.
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We conclude that on Z+(M) the tautological (Hopf) line bundles H and H ′ coming respec-
tively from the identifications with P(E) and P(E′) satisfy the relation

H ′ ∼= H ⊗ L.

Since x′ = c1(H
′∗) and x = c1(H

∗), this completes the proof. ■

Given a spinc structure [s] we will write c1([s]) for the Chern class of the line bundle classified

by the projection BSpinc(2n) Bδ−→ BS1. Note that c1(a · [s]) = 2a+ c1([s]) so the difference class
a ∈ H2(M) between two almost complex structures s, s′ is a specific “square root” of the
difference c′1 − c1. We can suggestively write

x′ = x+
c1 − c′1

2
, (5.2)

which is unambiguous on rational cohomology (or when there is no 2-torsion in H2(M)).

Remark 5.9. If we use s : M → Z+(M) to write

H∗(Z+(M)) = H∗(M)[x]/
(
x4 + 2c1x

3 +
(
c21 + c2

)
x2 + (c1c2 − c3)x

)
,

then s∗(x) = 0. This follows from Remark 2.3 which implies that the pullback by s of the Hopf

bundle over P(E) is trivial. Using the isomorphism H2(Z+(M))
ι∗⊕s∗−−−→ H2

(
CP3

)
⊕H2(M) one

sees that the first Chern class of the horizontal plane bundle on Z+(M) is4 c1(M) + 2x (for any
choice of almost complex structure) leading again to (5.2).

Theorem 5.10. Let J and J ′ be two orthogonal almost complex structures inducing the same
orientation on a closed Riemannian six-manifold M , corresponding to sections s and s′ of the
twistor bundle. Denote by ci, c

′
i their respective Chern classes. Then the intersection number

s∗[M ] · s′∗[M ] in Z+(M) is given by∫
M

1
8

(
c31 + c21c

′
1 − c1c′21 − c′31

)
+ 1

2

(
c1c

′
2 + c′1c

′
2

)
− c3.

Proof. By Corollary 3.3, the presentation of H∗(Z+(M)) with reference to J is given by

H∗(M)[x]/
(
x4 + 2c1x

3 +
(
c21 + c2

)
x2 +

(
c1c2 − c3

)
x
)
,

and with reference to J ′ it is given by

H∗(M)[x′]/
(
(x′)4 + 2c′1(x

′)3 + ((c′1)
2 + c′2)(x

′)2 + (c′1c
′
2 − c′3)x′

)
.

Combining Corollary 3.3 with Lemma 5.1, we have that the Poincaré dual of s∗[M ] is given by

x3 + 2c1x
2 +

(
c21 + c2

)
x+ (c1c2 − c3),

and the Poincaré dual of s′∗[M ] is given by

(x′)3 + 2c′1(x
′)2 +

(
(c′1)

2 + c′2
)
x′ + c′1c

′
2 − c′3.

Recall from (5.2) that x′ = x + 1
2(c1 − c

′
1). (Our calculation will be insensitive to torsion, so

we may in fact work in the rational cohomology ring where there is no ambiguity in writing
1
2(c1 − c

′
1).) Using this to rewrite the expression for s′∗[M ], and multiplying with s∗[M ], yields

x3
(
1
8

(
c31 + c21c

′
1 − c1c′21 − c′31

)
+ 1

2(c1c
′
2 + c′1c

′
2)− c′3

)
.

Pairing with the fundamental class of Z+(M) gives the result. ■
4This computation also follows from the arguments used in the proof of Proposition 3.8.
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Remark 5.11. The expression for the intersection number in Theorem 5.10 is symmetric in J
and J ′ as expected, which can be verified by using c21 − 2c2 = p1 = c′21 − 2c′2 and c3 = c′3.

Example 5.12. Let J and J ′ be two almost complex structures on CP3, with Chern classes ci
and c′i. Then c1 = 2kx, c2 =

(
2k2 − 2

)
x2, c3 = 4x3 and c′1 = 2ℓx, c′2 =

(
2ℓ2 − 2

)
x2, c′3 = 4x3,

where k, ℓ are integers. From Theorem 5.10 we get that J and J ′, thought of as sections of the
twistor bundle, have homological intersection given by

k3 + k2ℓ+ kℓ2 + ℓ3 − 2k − 2ℓ− 4.

In particular, taking J to be the standard complex structure, lying in the component determined
by k = 2, we have that the homological intersection with any J ′ with ℓ < 0 is negative.

Acknowledgements

We thank Luis Fernandez and Scott Wilson for numerous illuminating discussions, and the ref-
erees for helpful comments. The first author was partially supported by FCT/Portugal through
CAMGSD, IST-ID, projects UIDB/04459/2020 and UIDP/04459/2020. The second author
would like to thank the Max Planck Institute for Mathematics in Bonn for its support, along
with the Mittag-Leffler Institute in Djursholm for its hospitality during a visit to the “Higher
algebraic structures in algebra, topology and geometry” program, where part of this work was
carried out.

References

[1] Armstrong J., On four-dimensional almost Kähler manifolds, Quart. J. Math. Oxford Ser. (2) 48 (1997),
405–415.

[2] Atiyah M.F., Hitchin N.J., Singer I.M., Self-duality in four-dimensional Riemannian geometry, Proc. Roy.
Soc. London Ser. A 362 (1978), 425–461.

[3] Blanchard A., Recherche de structures analytiques complexes sur certaines variétés, C. R. Acad. Sci. Paris
236 (1953), 657–659.

[4] Borel A., Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie
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