| 
 SIGMA 18 (2022), 094, 19 pages       arXiv:2201.09576     
https://doi.org/10.3842/SIGMA.2022.094 
 
Equivalent Integrable Metrics on the Sphere with Quartic Invariants
Andrey V. Tsiganov
 St. Petersburg State University, St. Petersburg, Russia
 
 
Received March 31, 2022, in final form December 04, 2022; Published online December 06, 2022
 Abstract 
We discuss canonical transformations relating well-known geodesic flows on the cotangent bundle of the sphere with a set of geodesic flows with quartic invariants. By adding various potentials to the corresponding geodesic Hamiltonians, we can construct new integrable systems on the sphere with quartic invariants.
 Key words: integrable metrics; canonical transformations; two-dimensional sphere. 
pdf (378 kb)  
tex (21 kb)  
 
 
References 
- Arnold V.I., Mathematical methods of classical mechanics, 2nd ed., Grad. Texts  in Math., Vol. 60, Springer, New York, 1989.
 
- Bialy M., Mironov A., New semi-Hamiltonian hierarchy related to integrable  magnetic flows on surfaces, Cent. Eur. J. Math. 10 (2012),  1596-1604, arXiv:1112.1232.
 
- Bishop R.L., Goldberg S.I., Tensor analysis on manifolds, Dover Publications,  Inc., New York, 1980.
 
- Błaszak M., Marciniak K., On reciprocal equivalence of Stäckel systems,  Stud. Appl. Math. 129 (2012), 26-50, arXiv:1201.0446.
 
- Bolsinov A.V., Fomenko A.T., Integrable geodesic flows on two-dimensional  surfaces, Monogr. Contemp. Math., Consultants Bureau, New York, 2000.
 
- Bolsinov A.V., Kozlov V.V., Fomenko A.T., The Maupertuis principle and geodesic  flow on the sphere arising from integrable cases in the dynamic of a rigid  body, Russian Math. Surv. 50 (1995), 473-501.
 
- D'Ambra G., Gromov M., Lectures on transformation groups: geometry and  dynamics, in Surveys in Differential Geometry (Cambridge, MA, 1990),  Lehigh University, Bethlehem, PA, 1991, 19-111.
 
- Dorizzi B., Grammaticos B., Ramani A., Winternitz P., Integrable Hamiltonian  systems with velocity-dependent potentials, J. Math. Phys.  26 (1985), 3070-3079.
 
- Kiyohara K., Topalov P., On Liouville integrability of $h$-projectively  equivalent Kähler metrics, Proc. Amer. Math. Soc. 139  (2011), 231-242.
 
- Matveev V.S., Quantum integrability for the Beltrami-Laplace operators of  projectively equivalent metrics of arbitrary signatures,  Chebyshevskii Sb. 21 (2020), 275-289, arXiv:1906.06757.
 
- McSween E., Winternitz P., Integrable and superintegrable Hamiltonian systems  in magnetic fields, J. Math. Phys. 41 (2000), 2957-2967.
 
- Taber W., Projectively equivalent metrics subject to constraints,  Trans. Amer. Math. Soc. 282 (1984), 711-737.
 
- Tsiganov A.V., Duality between integrable Stäckel systems,  J. Phys. A 32 (1999), 7965-7982,  arXiv:solv-int/9812001.
 
- Tsiganov A.V., The Maupertuis principle and canonical transformations of the  extended phase space, J. Nonlinear Math. Phys. 8 (2001),  157-182, arXiv:nlin.SI/0101061.
 
- Tsiganov A.V., On natural Poisson bivectors on the sphere,  J. Phys. A 44 (2011), 105203, 21 pages, arXiv:1010.3492.
 
- Tsiganov A.V., On auto and hetero Bäcklund transformations for the  Hénon-Heiles systems, Phys. Lett. A 379 (2015),  2903-2907, arXiv:1501.06695.
 
- Tsiganov A.V., On the Chaplygin system on the sphere with velocity dependent  potential, J. Geom. Phys. 92 (2015), 94-99.
 
- Tsiganov A.V., Simultaneous separation for the Neumann and Chaplygin  systems, Regul. Chaotic Dyn. 20 (2015), 74-93.
 
- Tsiganov A.V., Bäcklund transformations for the Jacobi system on an  ellipsoid, Theoret. and Math. Phys. 192 (2017), 1350-1364.
 
- Tsiganov A.V., Bäcklund transformations for the nonholonomic Veselova  system, Regul. Chaotic Dyn. 22 (2017), 163-179,  arXiv:1703.04251.
 
- Tsiganov A.V., Integrable discretization and deformation of the nonholonomic  Chaplygin ball, Regul. Chaotic Dyn. 22 (2017), 353-367,  arXiv:1705.01866.
 
- Tsiganov A.V., New bi-Hamiltonian systems on the plane, J. Math.  Phys. 58 (2017), 062901, 14 pages, arXiv:1701.05716.
 
- Tsiganov A.V., On discretization of the Euler top, Regul. Chaotic  Dyn. 23 (2018), 785-796, arXiv:1803.06511.
 
- Tsiganov A.V., On exact discretization of cubic-quintic Duffing oscillator,  J. Math. Phys. 59 (2018), 072703, 15 pages,  arXiv:1805.05693.
 
- Tsyganov A.V., Discretization of Hamiltonian systems and intersection theory,  Theoret. and Math. Phys. 197 (2018), 1806-1822.
 
- Vershilov A.V., Tsiganov A.V., On bi-Hamiltonian geometry of some integrable  systems on the sphere with cubic integral of motion, J. Phys. A  42 (2009), 105203, 12 pages, arXiv:0812.0217.
 
- Vinogradov A.M., Kupershmidt B.A., The structure of Hamiltonian mechanics,  Russian Math. Surveys 32 (1977), no. 4, 177-243.
 
 
 | 
 |