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Abstract. We provide the law of large numbers for roots of finite free multiplicative con-
volution of polynomials which have only non-negative real roots. Moreover, we study the
empirical root distributions of limit polynomials obtained through the law of large numbers
of finite free multiplicative convolution when their degree tends to infinity.
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1 Introduction

1.1 Free probability theory

Denote by P and P+ the set of all probability measures on R and [0,∞), respectively. Moreover,
we define Pc and P+,c as the set of all compactly supported probability measures on R and [0,∞),

respectively. The notation
w−→ means the weak convergence of sequences of probability measures.

Voiculescu initiated free probability theory to attack problems related to the free product of
operator algebras. One of the most important notions in this theory is the free independence
of non-commutative random variables. In this paper, we say free random variables as freely
independent non-commutative random variables for short.

The law of large numbers (LLN) is well-known as a result that a sample average of independent
identically distributed random variables with finite mean concentrates on the theoretical mean
when the sample size is sufficiently large. As the analogous result on classical probability, the
LLN for free random variables was also established (see [5]). More precisely, for any µ ∈ P with
mean α, we have D1/n

(
µ⊞n

) w−→ δα as n→ ∞, where (i) Dc(ν) is the push-forward of a measure ν
by the mapping x 7→ cx for c ∈ R and (ii) µ⊞ ν is called the free additive convolution, which is
the probability distribution of addition X + Y of free random variables X and Y distributed as
µ ∈ P and ν ∈ P, respectively, in particular µ⊞n is the n-th power of free additive convolution
of µ.

The LLN for multiplication of (classically or freely) independent positive random variables
are also considered. In classical probability, it is easy to formulate and investigate the LLN
of multiplication by considering the exponential mapping of those random variables. However,
it is not easy to consider the LLN for multiplication in free probability since eX+Y ̸= eXeY

for (non-commutative) random variables X and Y . In [8], the LLN for multiplication of free
bounded positive random variables was obtained. After that, this LLN was extended to one for
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multiplication of free positive random variables (which are not necessary to be bounded) in [3].
More precisely, the LLN for multiplication of free positive random variables can be formulated
as the convergence of{(

µ⊠n
) 1

n

}
n∈N

, (1.1)

for µ ∈ P+, where (i) να denotes the push forward of a measure ν by the mapping x 7→ xα

for α ∈ R and (ii) µ ⊠ ν is called the free multiplicative convolution, which is the probability
distribution of multiplication

√
XY

√
X of free random variables X ≥ 0 and Y distributed as

µ ∈ P+ and ν ∈ P, respectively, in particular µ⊠n is the n-th power of free multiplicative
convolution of µ (see [10] and [2] for more details). According to [3], the limit distribution of
the sequence (1.1) always exists and is denoted by Φ(µ). For µ ̸= δ0, the measure Φ(µ) ∈ P+ is
characterized by the S-transform (see Section 2.1 for details).

1.2 Finite free probability and main result

In [6] and [7], Marcus, Spielman and Srivastava investigated a link between polynomial convolu-
tions and the sum of random matrices related to free probability theory. For monic polynomials
p(x) =

∑d
i=0(−1)ipix

d−i and q(x) =
∑d

i=0(−1)iqix
d−i of degree d, the finite free additive con-

volution p⊞d q is defined by

(
p⊞d q

)
(x) :=

∑
i+j≤d

(−1)i+j (d− i)!(d− j)!

(d− i− j)!d!
piqjx

d−i−j .

The finite free additive convolution plays an important role in studying characteristic polynomi-
als of the sum of (random) matrices. More precisely, for d× d real symmetric matrices A and B
with characteristic polynomials χA and χB, respectively, χA ⊞d χB is given by(

χA ⊞d χB

)
(x) = EQ det[xId −A−QBQ∗],

where the expectation is taken over unitary matrices Q distributed uniformly on the unitary
group in dimension d. Furthermore, the finite free additive convolution is very closely related
to free additive convolution because it turned out to be that the empirical root distribution
of pd ⊞d qd converges weakly to µ ⊞ ν when d tends to infinity, where µ, ν ∈ P are limit laws
of sequences of empirical root distribution of pd and qd, respectively. Moreover, Marcus [6]
obtained the typical limit theorems (LLN, the central limit theorem and the Poisson’s law of
small numbers, etc.) for finite free additive convolution. According to the evidence above, we
can treat finite free probability as a discrete approximation theory for free probability.

In this paper, we investigate the LLN for finite free multiplicative convolution. The finite
free multiplicative convolution ⊠d of monic polynomials p(x) =

∑d
i=0(−1)ipix

d−i and q(x) =∑d
i=0(−1)iqix

d−i of degree d with non-negative real roots is defined by

(
p⊠d q

)
(x) :=

d∑
i=0

(−1)i
piqi(
d
i

) xd−i.

In particular, p⊠dn denotes the n-th power of finite free multiplicative convolution of p. We
formulate the LLN for roots of finite free multiplicative convolution of polynomials as the con-
vergence of a sequence of{(

λ
(n)
1

) 1
n ≥ · · · ≥

(
λ
(n)
d

) 1
n

}
n∈N

, (1.2)
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where λ
(n)
i is the i-th (non-negative) root of p⊠dn for a monic polynomial p of degree d with

non-negative roots.
We define the notations for later use. For a finite multiset Λ = {λ1, . . . , λd} of complex

numbers, the i-th elementary symmetric polynomials ei(Λ) is denoted by

ei(Λ) :=
∑

J⊂[d], |J |=i

(∏
j∈J

λj

)
, e0(Λ) := 1,

where [d] := {1, 2, . . . , d}. In addition, we define

ẽi(Λ) :=
ei(Λ)(

d
i

) .

for each 0 ≤ i ≤ d.
We then obtain the limit theorem for the sequence (1.2) as follows.

Theorem 1.1 (LLN for ⊠d). Let p be a monic polynomial of degree d with non-negative real
roots Λ and let us set k = k(p) as the number of zeros in Λ. Then,

lim
n→∞

(
λ
(n)
i

) 1
n =

ẽi(Λ)

ẽi−1(Λ)

for 1 ≤ i ≤ d− k, and limn→∞
(
λ
(n)
i

) 1
n = 0 for d− k + 1 ≤ i ≤ d.

The paper consists of 4 sections. In Section 2, we introduce some concepts and preliminary
results on free probability and finite free probability theories. In Section 3, we study the roots
of finite free multiplicative convolution of polynomials and provide a proof of our main result
(Theorem 1.1). In Section 4, we investigate the behavior of the empirical root distribution of
polynomials obtained by the LLN for finite free multiplicative convolution when their degree
tends to infinity. In the last of this section, we give a conjecture related to a connection between
LLNs for ⊠d and ⊠ from evidence obtained by this section.

2 Preliminaries

2.1 Free multiplicative convolution

In this section, we introduce free multiplicative convolution and its characterization via the
S-transform (see [2] for more details). For a probability measure µ ̸= δ0 on [0,∞), we define

ψµ(z) :=

∫ ∞

0

tz

1− tz
µ(dt), z ∈ C \ [0,∞).

It is known that its inverse function ψ−1
µ exists in a neighborhood of (µ({0})− 1, 0), and so we

define the S-transform of µ by

Sµ(z) :=
z + 1

z
ψ−1
µ (z), z ∈ (µ({0})− 1, 0).

According to [2], for probability measures µ, ν ̸= δ0 on [0,∞), the free multiplicative convolution
µ⊠ ν is characterized by

Sµ⊠ν(z) = Sµ(z)Sν(z),

for all z in the common interval where all three S-transform are defined. Note that the common
interval is not empty since

(
µ⊠ ν

)
({0}) = max{µ({0}), ν({0})} (see [2, Lemma 6.9]).

The LLN for free multiplicative convolution of a probability measure on [0,∞) was obtained
by Tucci [8] and Haagerup and Möller [3].
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Proposition 2.1. Let us consider µ ∈ P+. As n → ∞, the sequence of
(
µ⊠n

) 1
n converges

weakly to the measure Φ(µ) ∈ P+ characterized by

Φ(µ)

([
0,

1

Sµ(t− 1)

])
= t, t ∈ (µ({0}), 1),

Φ(µ)({0}) = µ({0}).

Moreover, the support of the measure Φ(µ) is the closure of the interval((∫ ∞

0
t−1µ(dt)

)−1

,

∫ ∞

0
t µ(dt)

)
⊂ [0,∞].

Example 2.2.

(1) Let MP be the Marchenko–Pastur distribution which is defined by

MP(dt) =

√
t(4− t)

2πt
1(0,4)(t) dt.

Then Φ(MP) is the uniform distribution U(0, 1) on the open interval (0, 1) by [9].

(2) Consider µ = 1
2(δ0 + δ1). Then we have

Φ(µ) =
1

2
δ0 +

1

2(1− t)2
1(0,1/2)(t) dt,

since Sµ(t) = (2 + 2t)/(1 + 2t), t ∈ (−1/2, 0) implies that Φ(µ)([0, t]) = 2−1(1 − t)−1 for
all 1/2 < t < 1.

2.2 Finite free multiplicative convolution

In this section, we introduce some concepts and preliminary results on finite free probability
that are used in the remainder of this paper; see [1, 6, 7] for more details.

Definition 2.3. For monic polynomials p and q of degree d which have only non-negative real
roots:

p(x) =

d∑
i=0

(−1)ipix
d−i, and q(x) =

d∑
i=0

(−1)iqix
d−i,

the finite free multiplicative convolution p⊠d q is defined by

(
p⊠d q

)
(x) :=

d∑
i=0

(−1)i
piqi(
d
i

) xd−i.

In [7, Theorem 1.5], the finite free multiplicative convolution ⊠d can be realized as a char-
acteristic polynomial of a product of positive definite matrices. That is, if χA and χB are
characteristic polynomials of d× d positive definite matrices A and B, respectively, then(

χA ⊠d χB

)
(x) = EQ det[xI −AQBQ∗],

where the expectation is taken over unitary matrices Q distributed uniformly on the unitary
group in dimension d. Moreover, if p and q have only non-negative real roots, then so is p⊠d q
(see [7, Theorem 1.6]).

There is the following asymptotic relation between finite free multiplicative convolution and
free multiplicative convolution by [1, Theorem 1.4]. Let us consider pd and qd as real-rooted
monic polynomials of degree d in which pd has only non-negative real roots. Assume the empirical
root distributions of pd and qd converge weakly to µ ∈ P+,c and ν ∈ Pc as d→ ∞, respectively.
Then the empirical root distribution of pd ⊠d qd converges weakly to µ⊠ ν as d→ ∞.
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3 Main result

In this section, we provide the LLN for finite free multiplicative convolution. First, we calculate
the n-th power of finite free multiplicative convolution of polynomials which have only non-
negative real roots. Let Λ(n) be the set of roots of p⊠dn for n ≥ 1 and a monic polynomial p of
degree d with non-negative real roots. We put Λ := Λ(1), for short.

Lemma 3.1. Let p be a monic polynomial of degree d with non-negative real roots Λ. Then we
have

ẽi
(
Λ(n)

)
= ẽi(Λ)

n, 0 ≤ i ≤ d. (3.1)

In particular, the number of zeros in Λ is the same as the one in Λ(n).

Proof. Note that

p(x) =
d∑

i=0

(−1)i
(
d

i

)
ẽi(Λ)x

d−i,

then by Definition 2.3

p⊠dn(x) =
d∑

i=0

(−1)i
(
d

i

)
ẽi(Λ)

nxd−i.

This is equivalent to (3.1). The rest is because the number of zeros in Λ is equal to k if and only
if

ed−k(Λ) > 0 and ed−k+1(Λ) = 0,

where we understand ed+1(Λ) = 0. ■

Due to the relation (3.1), we obtain the following LLN for roots of finite free multiplicative
convolution of polynomials.

Theorem 3.2. Consider a monic polynomial p of degree d with non-negative real roots Λ and

let k = k(p) be the number of zeros in Λ. Let Λ(n) :=
{
λ
(n)
1 ≥ λ

(n)
2 ≥ · · · ≥ λ

(n)
d

}
be the set of

non-negative real roots of p⊠dn. Then we get

lim
n→∞

(
λ
(n)
i

) 1
n =

ẽi(Λ)

ẽi−1(Λ)
, 1 ≤ i ≤ d− k.

Remark 3.3. Note that λ
(n)
i = 0 for d− k + 1 ≤ i ≤ d by Lemma 3.1.

Proof. For 1 ≤ i ≤ d− k, the equation (3.1) implies that

ẽi
(
Λ(n)

)
ẽi−1

(
Λ(n)

) =

(
ẽi(Λ)

ẽi−1(Λ)

)n

. (3.2)

For i = 1, the equation (3.2) implies that

λ
(n)
1 + · · ·+ λ

(n)
d

d
= ẽ1

(
Λ(n)

)
= ẽ1(Λ)

n.
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Since

λ
(n)
1

d
≤
λ
(n)
1 + · · ·+ λ

(n)
d

d
≤ λ

(n)
1 ,

we obtain

ẽ1(Λ) ≤
(
λ
(n)
1

) 1
n ≤ d

1
n ẽ1(Λ),

and therefore
(
λ
(n)
1

) 1
n → ẽ1(Λ) as n→ ∞.

For 2 ≤ i ≤ d− k, we have

ei
(
Λ(n)

)
ei−1

(
Λ(n)

) =

∑
J⊂[d], |J |=i

(∏
j∈J λ

(n)
j

)
∑

J⊂[d], |J |=i−1

(∏
j∈J λ

(n)
j

) ≥

∑
J⊂[d], |J |=i

(∏
j∈J λ

(n)
j

)
(

d
i−1

)
λ
(n)
1 λ

(n)
2 · · ·λ(n)i−1

≥
λ
(n)
1 λ

(n)
2 · · ·λ(n)i(

d
i−1

)
λ
(n)
1 λ

(n)
2 · · ·λ(n)i−1

=

(
d

i− 1

)−1

λ
(n)
i .

Similar to the estimation above, we obtain

ei
(
Λ(n)

)
ei−1

(
Λ(n)

) ≤
(
d
i

)
λ
(n)
1 λ

(n)
2 · · ·λ(n)i

λ
(n)
1 λ

(n)
2 · · ·λ(n)i−1

=

(
d

i

)
λ
(n)
i .

Consequently, we have(
d

i

)−1 ei
(
Λ(n)

)
ei−1

(
Λ(n)

) ≤ λ
(n)
i ≤

(
d

i− 1

)
ei
(
Λ(n)

)
ei−1

(
Λ(n)

) ,
and therefore(

d

i− 1

)−1( ẽi(Λ)

ẽi−1(Λ)

)n

≤ λ
(n)
i ≤

(
d

i

)(
ẽi(Λ)

ẽi−1(Λ)

)n

by using (3.2). Taking the n-th root of each value in the above inequality, we get(
d

i− 1

)− 1
n ẽi(Λ)

ẽi−1(Λ)
≤
(
λ
(n)
i

) 1
n ≤

(
d

i

) 1
n ẽi(Λ)

ẽi−1(Λ)
.

Hence, we obtain
(
λ
(n)
i

) 1
n → ẽi(Λ)/ẽi−1(Λ) as n→ ∞. ■

For a positive number α > 0 and a monic polynomial p(x) =
∏d

i=1(x−λi) with non-negative
real roots, we define

p(α)(x) :=

d∏
i=1

(
x− λαi

)
.

Remark 3.4. According to Theorem 3.2, if p is a monic polynomial of degree d with non-
negative real roots Λ and k is the number of zeros in Λ, then

lim
n→∞

(
p⊠dn

)( 1
n)(x) = xk

d−k∏
i=1

(
x− ẽi(Λ)

ẽi−1(Λ)

)
.

Thus, the LLN for finite free multiplicative convolution of polynomials is established.
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Remark 3.5. Let p be a monic polynomial of degree d with non-negative real roots Λ = {λ1 ≥
· · · ≥ λd}, k the number of zeros in Λ, and λ

(n)
i the i-th real root of p⊠dn for 1 ≤ i ≤ d. By

Newton’s inequality (see, e.g., [4]), we have

ẽi(Λ)

ẽi−1(Λ)
≥ ẽi+1(Λ)

ẽi(Λ)
, 1 ≤ i ≤ d− k − 1, (3.3)

where the equality holds if and only if λ1 = · · · = λd. However, the inequality (3.3) can be

directly proven by Theorem 3.2 due to λ
(n)
i ≥ λ

(n)
i+1.

Consequently, we find the following remarkable phenomenon; except for trivial cases, the

limit roots of
(
p⊠dn

)( 1
n), not being zero, are all distinct.

In particular, we apply Theorem 3.2 to the (renormalized) Laguerre polynomial and a poly-
nomial with two real roots.

Example 3.6 (case of the Laguerre polynomial). Consider d ≥ 1. We define

p(x) := d!(−d)−dL0,d(dx),

where Lα,d is the Laguerre polynomial which is defined by

Lα,d(x) :=

d∑
i=0

(−x)i

i!

(
d+ α

d− i

)
.

Let Λ be the set of positive real roots of p. Note that p has no zero roots since p(0) =
d!(−d)−d ̸= 0. Computing the polynomial p, we have

p(x) = d!(−d)−d
d∑

i=0

(−dx)i

i!

(
d

d− i

)

= xd +

d∑
j=1

(−1)j
(
d

j

)(
d

d
· d− 1

d
· · · d− j + 1

d

)
xd−j ,

where the last equality holds by changing variable to j = d− i. This implies that

ẽj(Λ) =
d

d
· d− 1

d
· · · d− j + 1

d
, 1 ≤ j ≤ d.

Suppose that λ
(n)
1 ≥ · · · ≥ λ

(n)
d are non-negative real roots of p⊠dn. By Theorem 3.2, we

obtain

lim
n→∞

(
λ
(n)
i

) 1
n =

ẽi(Λ)

ẽi−1(Λ)
=

d
d · d−1

d · · · d−i+1
d

d
d · d−1

d · · · d−i+2
d

=
d− i+ 1

d

for 1 ≤ i ≤ d, where note that ẽ0(Λ) = 1.

Example 3.7 (case of a polynomial with two roots). Given d ≥ 1, consider the following monic
polynomial p of 2d degree:

p(x) = xd(x− 1)d, d ≥ 1,

and put Λ = {1, . . . , 1︸ ︷︷ ︸
d times

, 0, . . . , 0︸ ︷︷ ︸
d times

} as the set of roots of p. Then we get

ẽj(Λ) =

(
d
j

)(
2d
j

) , 0 ≤ j ≤ d,
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and ẽj(Λ) = 0 for d+1 ≤ j ≤ 2d. Suppose that λ
(n)
1 ≥ · · · ≥ λ

(n)
d are positive real roots of p⊠dn.

By Theorem 3.2, we have

lim
n→∞

(
λ
(n)
i

) 1
n =

d− i+ 1

2d− i+ 1
,

for all 1 ≤ i ≤ d.

At the end of this section, we mention the rate of convergence in the LLN for roots of finite
free multiplicative convolution of polynomials.

Remark 3.8. According to a proof of Theorem 3.2, it is easy to see that

log
(
λ
(n)
i

) 1
n = log

(
ẽi(Λ)

ẽi−1(Λ)

)
+O

(
1

n

)
,

as n→ ∞.
We demonstrate an example in which the rate of convergence is of order 1/n and it is optimal.

Consider d = 2 in Example 3.6, that is, p(x) = x2 − 2x+2−1. As a consequent result of a proof
of Lemma 3.1, we obtain p⊠2n(x) = x2− 2x+2−n for n ∈ N. Hence (positive) real roots of p⊠2n

are given by

λ
(n)
1 = 1 +

√
1− 2−n, λ

(n)
2 = 1−

√
1− 2−n.

It is easy to see that limn→∞
(
λ
(n)
1

) 1
n = 1, limn→∞

(
λ
(n)
2

) 1
n = 1/2 and also

n
(
log
(
λ
(n)
1

) 1
n − log 1

)
→ log 2, n

(
log
(
λ
(n)
2

) 1
n − log

1

2

)
→ − log 2,

as n→ ∞. Consequently, the order 1/n is optimal.

4 Relation to the LLN for free multiplicative convolution

In this section, given a monic polynomial of degree d, we investigate how the empirical root
distributions of their limit polynomial obtained by Theorem 3.2 (or Remark 3.4) converge weakly
as d→ ∞. For the reason above, we emphasize their degree as follows.

Let pd be a monic polynomial of degree d with non-negative real roots Λd = {λ1,d ≥ · · · ≥ λd,d}
and let kd be the number of zeros in Λd. Denote by Ri(Λd) the limit roots of

(
p⊠dn
d

)( 1
n) as n→ ∞

for 1 ≤ i ≤ d, that is,

Ri(Λd) =
ẽi(Λd)

ẽi−1(Λd)
,

as provided in Theorem 3.2. In the following, we investigate relationships between the empirical
root distributions:

µd :=
1

d

d∑
i=1

δλi,d
, and νd :=

1

d

d∑
i=1

δRi(Λd).

Lemma 4.1. Let pd be a monic polynomial of degree d with non-negative real roots Λd. Assume
that kd = 0 (equivalently, λd,d > 0 or Rd(Λd) > 0). Then we have∫ ∞

0
(log t)µd(dt) =

∫ ∞

0
(log t) νd(dt).
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Proof. Note that the integrals
∫∞
0 (log t)µd(dt) and

∫∞
0 (log t) νd(dt) are finite since kd = 0.

A direct computation shows that∫ ∞

0
(log t) νd(dt) =

1

d

d∑
i=1

logRi(Λd)

=
1

d

d∑
i=1

log
ẽi(Λd)

ẽi−1(Λd)
(by Theorem 3.2)

=
1

d
log ẽd(Λd) (since ẽ0(Λd) = 1)

=
1

d
log

d∏
i=1

λi,d

=
1

d

d∑
i=1

log λi,d =

∫ ∞

0
(log t)µd(dt). ■

We study how the empirical root distributions νd = 1
d

∑d
i=1 δRi(Λd) behave as d → ∞ when

µd = 1
d

∑d
i=1 δλi,d

converges weakly to some probability measure on [0,∞).

Proposition 4.2. Let pd be a monic polynomial of degree d with non-negative real roots Λd.
Assume that there exist µ ∈ P+,c and a compact set K in [0,∞), such that the measures µd
and µ are supported on K for all d ≥ 1, and such that µd

w−→ µ as d→ ∞. Then we obtain

R1(Λd) →
∫ ∞

0
t µ(dt)

as d→ ∞. In addition, if 0 /∈ K, then it satisfies that

Rd(Λd) →
(∫ ∞

0
t−1µ(dt)

)−1

and

∫ ∞

0
(log t)νd(dt) →

∫ ∞

0
(log t)Φ(µ)(dt)

as d→ ∞, where Φ(µ) is defined in Proposition 2.1.

Proof. By the assumptions and Theorem 3.2, we get

R1(Λd) = ẽ1(Λd) =
1

d

d∑
i=1

λi,d =

∫ ∞

0
t µd(dt) →

∫ ∞

0
t µ(dt)

as d→ ∞.
Moreover, we assume that 0 /∈ K in the following. Note that the functions t 7→ t−1 and

t 7→ log t are bounded and continuous on K. We then obtain

Rd(Λd) =
ẽd(Λd)

ẽd−1(Λd)
=

(
1

d

d∑
i=1

λ−1
i,d

)−1

=

(∫ ∞

0
t−1µd(dt)

)−1

→
(∫ ∞

0
t−1µ(dt)

)−1

as d→ ∞. It follows that kd = 0 from 0 /∈ K. By Lemma 4.1, we obtain∫ ∞

0
(log t)νd(dt) =

∫ ∞

0
(log t)µd(dt) →

∫ ∞

0
(log t)µ(dt).

According to [3, Proposition 1], the last integral equals to
∫∞
0 (log t)Φ(µ)(dt), and therefore we

get the convergence. ■



10 K. Fujie and Y. Ueda

We give examples of the weak limit laws of empirical root distributions 1
d

∑d
i=1 δRi(Λd) as

d→ ∞.

Example 4.3.

(1) In Example 3.6, it was shown that Ri(Λd) =
d−i+1

d when we consider

pd(x) = d!(−d)−dL0,d(dx)

with non-negative real roots Λd for each d ≥ 1. It is easy to see that

1

d

d∑
i=1

δ d−i+1
d

w−→ U(0, 1) = Φ(MP),

as d→ ∞, where the last equality holds due to Example 2.2 (1).

(2) In Example 3.7, we obtained that Ri(Λ2d) =
d−i+1
2d−i+1 for 1 ≤ i ≤ d when pd(x) = xd(x−1)d

with non-negative real roots Λ2d. For any bounded continuous functions f on [0,∞), we
get ∫ ∞

0
f(t)

[
1

2
δ0 +

1

2d

d∑
i=1

δ d−i+1
2d−i+1

]
(dt) =

1

2
f(0) +

1

2d

d∑
i=1

f

(
d− i+ 1

2d− i+ 1

)

=
1

2
f(0) +

1

2d

d∑
ℓ=1

f

(
ℓ

d+ ℓ

)

=
1

2
f(0) +

1

2d

d∑
ℓ=1

f

(
ℓ
d

1 + ℓ
d

)

→ 1

2
f(0) +

1

2

∫ 1

0
f

(
t

1 + t

)
dt

=
1

2
f(0) +

1

2

∫ 1/2

0

f(u)

(1− u)2
du,

where the last equality holds by changing variable to u = t/(1 + t), and therefore

1

2
δ0 +

1

2d

d∑
i=1

δ d−i+1
2d−i+1

w−→ 1

2
δ0 +

1

2(1− t)2
1(0,1/2)(t)dt = Φ

(
1

2
(δ0 + δ1)

)
,

as d→ ∞, where the last equality holds due to Example 2.2 (2).

According to Proposition 4.2 and Example 4.3, it is natural to conjecture the following
statement.

Conjecture 4.4. Let pd be a monic polynomial of degree d with non-negative real roots
Λd = {λ1,d ≥ · · · ≥ λd,d}. Let us further consider µ ∈ P+,c. Assume that the empirical

root distributions of pd, that is,
1
d

∑d
i=1 δλi,d

converge weakly to µ as d→ ∞. Then we obtain

1

d

d∑
i=1

δRi(Λd)
w−→ Φ(µ)

as d→ ∞.
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University) and Noriyoshi Sakuma (Nagoya City University) for introducing the discussion.
Thanks to the lectures, the authors could start to study the LLN for finite free multiplicative
convolution. Furthermore, the authors would also like to thank the referees who gave useful
comments to improve this paper.

References

[1] Arizmendi O., Garza-Vargas J., Perales D., Finite free cumulants: multiplicative convolutions, genus expan-
sion and infinitesimal distributions, arXiv:2108.08489.

[2] Bercovici H., Voiculescu D., Free convolution of measures with unbounded support, Indiana Univ. Math. J.
42 (1993), 733–773.
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