| 
 SIGMA 19 (2023), 012, 7 pages       arXiv:2301.09683     
https://doi.org/10.3842/SIGMA.2023.012 
Contribution to the Special Issue on Differential Geometry Inspired by Mathematical Physics in honor of Jean-Pierre Bourguignon for his 75th birthday 
Spin${}^h$ Manifolds
H. Blaine Lawson Jr.
 Stony Brook University, Stony Brook NY, USA
 
 
Received January 25, 2023, in final form March 06, 2023; Published online March 19, 2023
 Abstract 
The concept of a ${\rm Spin}^h$-manifold, which is a cousin of Spin- and ${\rm Spin}^c$-manifolds, has been at the center of much research in recent years. This article discusses some of the highlights of this story.
 Key words: Spin-manifold; ${\rm Spin}^c$-manifold; obstructions; embedding theorems; bundle invariants; ABS-isomophism. 
pdf (321 kb)  
tex (18 kb)  
 
 
References 
- Albanese M., Milivojević A., ${\rm Spin}^h$ and further generalisations of spin, J. Geom. Phys. 164 (2021), 104174, 13 pages, arXiv:2008.04934.
 
- Albanese M., Milivojević A., Corrigendum to ''${\rm Spin}^h$ and further generalisations of spin'', J. Geom. Phys. 184 (2023), 104709, 4 pages.
 
- Anderson D., Universal coefficient theorems for K-theory, Mimeographed Notes, University of California, Berkeley, CA, 1969, aviable at https://faculty.tcu.edu/gfriedman/notes/Anderson-UCT.pdf.
 
- Atiyah M.F., Bott R., Shapiro A., Clifford modules, Topology 3 (1964), suppl. 1, 3-38.
 
- Atiyah M.F., Hirzebruch F., Riemann-Roch theorems for differentiable manifolds, Bull. Amer. Math. Soc. 65 (1959), 276-281.
 
- Atiyah M.F., Singer I.M., Index theory for skew-adjoint Fredholm operators, Inst. Hautes Études Sci. Publ. Math. 37 (1969), 5-26.
 
- Avis S.J., Isham C.J., Generalized Spin structures on four-dimensional space-times, textitComm. Math. Phys. 72 (1980), 103-118.
 
- Back A., Freund P.G., Forger M., New gravitational instantons and universal spin structures, Phys. Lett. B 77 (1978), 181-184.
 
- Bär C., Elliptic symbols, Math. Nachr. 201 (1999), 7-35.
 
- Bourguignon J.-P., Lawson Jr. H.B., Yang-Mills theory: its physical origins and differential geometric aspects, in Seminar on Differential Geometry, Ann. of Math. Stud., Vol. 102, Princeton University Press, Princeton, N.J., 1982, 395-421.
 
- Bourguignon J.-P., Lawson Jr. H.B., Simons J., Stability and gap phenomena for Yang-Mills fields, Proc. Nat. Acad. Sci. USA 76 (1979), 1550-1553.
 
- Chen X., Bundles of irreducible Clifford modules and the existence of spin structures, Ph.D. Thesis, sStony Brook University, 2017.
 
- Freed D.S., Hopkins M.J., Reflection positivity and invertible topological phases, Geom. Topol. 25 (2021), 1165-1330, arXiv:1604.06527.
 
- Hawking S.W., Pope C.N., Generalized spin structures in quantum gravity, Phys. Lett. B 73 (1978), 42-43.
 
- Hirzebruch F., Hopf H., Felder von Flächenelementen in 4-dimensionalen Mannigfaltigkeiten, Math. Ann. 136 (1958), 156-172.
 
- Hu J., Invariants of real vector bundles, Ph.D. Thesis, Stony Brook University, 2023.
 
- Lawson Jr. H.B., Michelsohn M.-L., Spin geometry, Princeton Math. Ser., Vol. 38, Princeton University Press, Princeton, NJ, 1989.
 
- Lazaroiu C.I., Shahbazi C.S., Real pinor bundles and real Lipschitz structures, Asian J. Math. 23 (2019), 749-836, arXiv:1606.07894.
 
- LeBrun C., Twistors, self-duality, and spinc structures, SIGMA 17 (2021), 102, 11 pages, arXiv:2108.01739.
 
- Morgan J.W., The Seiberg-Witten equations and applications to the topology of smooth four-manifolds, Math. Notes, Vol. 44, Princeton University Press, Princeton, NJ, 1996.
 
- Nagase M., ${\rm Spin}^q$ structures, J. Math. Soc. Japan 47 (1995), 93-119.
 
- Okonek C., Teleman A., Quaternionic monopoles, Comm. Math. Phys. 180 (1996), 363-388, arXiv:alg-geom/9505029.
 
- Shiozaki K., Shapourian H., Gomi K., Ryu S., Many-body topological invariants for fermionic short-range entangled topological phases protected by antiunitary symmetries, Phys. Rev. B 98 (2018), 035151, 55 pages, arXiv:1710.01886.
 
- Sullivan D., On the Hauptvermutung for manifolds, Bull. Amer. Math. Soc. 73 (1967), 598-600.
 
- Teichner P., Vogt E., All 4-manifolds have spinc structures, available at https://math.berkeley.edu/ teichner/Papers/spin.pdf.
 
- Wang J., Wen X.-G., Witten E., A new ${\rm SU}(2)$ anomaly, J. Math. Phys. 60 (2019), 052301, 23 pages, arXiv:1810.00844.
 
 
 | 
 |