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Abstract. We introduce the notion of factorized ramified structure on a generic ramified
irregular singular connection on a smooth projective curve. By using the deformation theory
of connections with factorized ramified structure, we construct a canonical 2-form on the
moduli space of ramified connections. Since the factorized ramified structure provides a du-
ality on the tangent space of the moduli space, the 2-form becomes nondegenerate. We prove
that the 2-form on the moduli space of ramified connections is d-closed via constructing an
unfolding of the moduli space. Based on the Stokes data, we introduce the notion of local
generalized isomonodromic deformation for generic unramified irregular singular connections
on a unit disk. Applying the Jimbo–Miwa–Ueno theory to generic unramified connections,
the local generalized isomonodromic deformation is equivalent to the extendability of the
family of connections to an integrable connection. We give the same statement for ramified
connections. Based on this principle of Jimbo–Miwa–Ueno theory, we construct a global
generalized isomonodromic deformation on the moduli space of generic ramified connections
by constructing a horizontal lift of a universal family of connections. As a consequence of the
global generalized isomonodromic deformation, we can lift the relative symplectic form on
the moduli space to a total closed form, which is called a generalized isomonodromic 2-form.
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1 Introduction

Let C be a complex smooth projective curve and D be an effective divisor on C. Consider
an algebraic vector bundle E on C of rank r and a rational connection ∇ : E −→ E ⊗ ΩC(D)
admitting poles along D. The connection ∇ is said to be logarithmic at x ∈ D if it has at
most a simple pole at x. The notion of logarithmic connection is well formulated in [24] by
adding parabolic structure on the underlying vector bundle. In [24], C.T. Simpson established
the Riemann–Hilbert correspondence as an isomorphism between parabolic logarithmic connec-
tions and filtered local systems. The most important point of [24] is the non-abelian Hodge
theory, which connects parabolic logarithmic connections with parabolic Higgs bundles through
a harmonic metric. Its effect on the geometry of the corresponding two algebraic moduli spaces
seems mysterious to the author.

The connection ∇ is said to be irregular singular at x ∈ D, if it cannot be reduced to
a logarithmic connection via a meromorphic transform around x. So the order of pole of ∇ at x
is at least two. An irregular singular connection ∇ is locally written ∇|U = d + A(z)dz/zm for
a matrix A(z) of holomorphic functions in z, wherem is the order of pole of∇ at x and z is a local
holomorphic coordinate on a neighborhood U of x. We say that ∇ is generic unramified at x
if the leading term A(0) has r distinct eigenvalues. Among the irregular singular connections,
a generic unramified connection is of most generic type. The next generic irregular singular
connections are generic ramified connections. In this paper, we say that a connection (E,∇) is
generic ν-ramified at x if the formal completion

(
Ê, ∇̂

)
at x is isomorphic to (C[[w]],∇ν), where

w = z
1
r , ν(w) ∈

∑mr−r
l=0 Cwldw/wmr−r+1, the formal connection ∇ν is defined by

∇ν(w) : C[[w]] ∋ f(w) 7→ df(w) + f(w)ν(w) ∈ C[[w]]⊗ dz

zm
(1.1)

and the wdw/wmr−r+1-coefficient of ν(w) does not vanish.

The moduli space of logarithmic connections is well formulated by adding the parabolic
structure and it is smooth and has a symplectic structure. It is constructed in the work with
K. Iwasaki and M.-H. Saito in [11, 14]. For unramified irregular singular connections, the moduli
space is analytically constructed by O. Biquard and P. Boalch in [2] together with establishing the
non-abelian Hodge theory. The algebraic construction of the moduli space of generic unramified
irregular singular connections was done in the work with Masa-Hiko Saito in [15] by using
the same method as in the logarithmic case. Compared with the unramified connections, it is
a more difficult task to construct the moduli space of ramified connections. Over the trivial
bundle on P1, Bremer and Sage construct, in [9], the moduli space of ramified connections
via a careful consideration of the formal ramified structure from a viewpoint of representation
theory. In a higher genus case, the moduli space of ramified connections of generic ramified
type is constructed by the author in [13]. T. Pantev and B. Toën introduce in [22] the derived
geometric approach to the moduli space of connections in a general abstract setting.

Both in logarithmic and unramified irregular singular cases, the moduli space of connections
has a natural symplectic structure. Roughly speaking, the moduli space of parabolic logarithmic
connections is a torsor over the moduli space of parabolic bundles, which is locally isomorphic
to the cotangent bundle. So the moduli space has a natural symplectic structure, though we
precisely need a more careful consideration to the locus of non-simple underlying parabolic
bundles. The method of parabolic structure is also valid for the construction of symplectic
form on the moduli space of unramified irregular singular connections. However, in the case of
ramified irregular singular connections, the method of parabolic structure does not go well with
the construction of symplectic form. In [13, Theorem 4.1], we proved the existence of a symplectic
form on the moduli space of ramified connections, but the proof of nondegeneracy was not given
directly. It is reduced to the nondegeneracy in the case of logarithmic or unramified irregular
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singular connections by using an argument of codimension. So, in [13], we could not find a duality
on the tangent space like in logarithmic or unramified irregular singular case. In this paper,
we introduce the notion of factorized ramified structure, which supplies the place of parabolic
structure. It induces a canonical duality on the tangent space of the moduli space of ramified
connections which was not done in [13]. In order to see it easily, we adopt a simpler setting
than [13], while we follow almost the same formulation of the moduli space constructed in [13].

Let us see a rough idea of factorized ramified structure. Assume that a rank r irregular sin-
gular connection (E,∇) is formally isomorphic to (C[[w]],∇ν(w)) at x for ∇ν(w) defined in (1.1).
Let N be the endomorphism of E|mx, which corresponds to the action of w on C[w]/(wmr).
Then we can consider the Omx[T ]-module structure on E|mx defined by P (T )v := P (N)v for
a polynomial P (T ) in Omx[T ]. By the elementary linear algebra, we can see that there is an
isomorphism Omx[T ]/(T

r−z) ∼−→ E|mx of Omx[T ]-modules. The dual E|∨mx also has the Omx[T ]-
module structure via the map tN and we have an isomorphism E|∨mx

∼−→ Omx[T ]/(T
r − z) of

Omx[T ]-modules. Composing these isomorphisms, we get an isomorphism θ : E|∨mx
∼−→ E|mx of

Omx[T ]-modules. Set κ := θ−1 ◦N . Then θ induces a perfect pairing ϑ : E|∨mx ×E|∨mx −→ Omx

which becomes symmetric and κ induces a pairing κ : E|mx × E|mx −→ Omx which is also
symmetric. Roughly speaking, a factorized ramified structure on (E,∇) at x is given by (θ, κ)
or (ϑ,κ).

The purpose of introducing factorized ramified structure is to construct a duality on the
tangent space of the moduli space. So we require it to go well with the deformation theory. In
that context, all the conditions for the connection (E,∇) should be given only by the restriction
(E,∇)|mx to the divisor mx and the rational one form ν(w) should be considered modulo holo-
morphic forms in w. Under such setting, the endomorphism N on E|mx in fact has an ambiguity
in zm−1-term, while the restriction N |(m−1)x is uniquely determined from ∇|mx and ν(w). We
take account of this ambiguity in the precise formulation of factorized ν-ramified structure in
Definition 3.1.

In Section 2, we introduce the notion of logarithmic λ-parabolic structure and that of generic
unramified µ-parabolic structure, which locally characterize the parabolic connections intro-
duced in [11] and the unramified parabolic connections introduced in [15], respectively. We also
recall the notion of generic ν-ramified structure given in [13]. In Section 3, we introduce the
notion of factorized ν-ramified structure and prove that it is equivalent to the generic ν-ramified
structure given in Section 2. In Section 4, we see that a generic ν-ramified structure enables us to
recover a formal isomorphism to the connection ∇ν in (1.1). In Section 5, we give a construction
of the moduli space of connections with (λ, µ, ν)-structure (Theorem 5.1) using an embedding to
the moduli space of parabolic triples constructed in [14]. It is a variant of the standard method of
the GIT-construction of the moduli space established by C.T. Simpson in [25, 26]. The following
is an important property of the moduli space (see Theorem 8.1 in a precise setting).

Theorem 1.1. There exists a canonical symplectic form on the moduli space of connections
with (λ, µ, ν)-structure.

For the construction of the canonical 2-form in Theorem 1.1 (or Theorem 8.1 precisely), we
describe the tangent space of the moduli space using the hypercohomology of a complex defined
in Section 6. In Section 7, we see that this tangent space has a canonical duality (Proposition 7.2)
coming from the factorized ramified structure, which gives a canonical nondegenerate 2-form.
This duality is also of benefit to prove the smoothness of the moduli space. We also need to prove
that the canonical 2-form is d-closed. For its proof, we construct an unfolding of the moduli
space of connections with (λ, µ, ν)-structure in Section 8. An unfolding means a deformation of
the moduli space to logarithmic moduli spaces. A factorized ramified structure enables us to
construct such an unfolding in an easy way. By reducing to the fact that the canonical 2-form
on the logarithmic moduli space is d-closed, we can complete the proof of Theorem 1.1.
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The main aim of considering the moduli space of connections with (λ, µ, ν)-structure is to
construct the generalized isomonodromic deformation that fits in with our setting of the moduli
space. In the logarithmic case, the isomonodromic deformation naively means that the mon-
odromy representation corresponding to the connection is constant. Over the trivial bundle
on P1, the isomonodromic deformation is classically known as the Schlesinger equation. The
formulation of isomonodromic deformation in a higher genus case requires an appropriate setting
of the moduli space of connections, which is done in the work with K. Iwasaki and M.-H. Saito
in [14] and in [11]. A cohomological description of the isomonodromic deformation on the moduli
space is also established by I. Biswas, V. Heu, J. Hurtubise and A. Komyo in [3, 4, 18]. Con-
ceptually, the isomonodromic deformation is obtained by pulling back, via the Riemann–Hilbert
morphism, the local trivial foliation on the family of character varieties.

For irregular singular connections, we cannot recover a meromorphic connection from the
naive monodromy data and we need to consider the Stokes data. By virtue of the theorem
of Deligne, Malgrange and Sibuya [1, Theorems 4.5.1 and 4.7.3], there is a bijective corre-
spondence between the local meromorphic connections and the Stokes data on a punctured
disk. The generalized isomonodromic deformation means a family of irregular singular con-
nections, whose corresponding monodromy representation equipped with the Stokes data is
locally constant. In [16], M. Jimbo, T. Miwa and K. Ueno established the formulation of gen-
eralized isomonodromic deformation of generic unramified irregular singular connections over
the trivial bundle on P1 and described its differential equation completely. The generalized
isomonodromic deformation was also introduced by B. Malgrange in [20]. The purpose of this
paper is to extend this theory to higher genus case including generic ramified connections. In
order to realize the formulation of generalized isomonodromic deformation in such a general
setting, we need the moduli space of connections with (λ, µ, ν)-structure constructed in Sec-
tion 5.

In [5], P. Boalch constructs the moduli space of unramified connections over the trivial bundle
on P1 and describes the generalized isomonodromic deformation in [16] through the correspon-
dence with the wild character variety which is the moduli space of monodromy Stokes data.
P. Boalch extends the framework of wild character variety to the higher genus case in [6]. In [27],
M. van der Put and M.-H. Saito gives another construction of the moduli space of monodromy
Stokes data, which includes all possible singularities, and provides the explicit descriptions of
the moduli spaces in the case of Painlevé equations. I.Krichever also extends the argument by
Jimbo, Miwa and Ueno in [16] to the higher genus case and describes the generalized isomon-
odromic 2-form in [19]. Placing importance on the Simpson’s framework of Betti and de Rham
correspondence in [26], the generalized isomonodromic deformation is formulated via the full
moduli space of generic unramified connections on curves of general genus in the work with
M.-H. Saito in [15] and in [12]. C. Bremer and D. Sage establish the generalized isomonodromic
deformation of ramified connections over the trivial bundle on P1 in [8] and they prove the
integrability condition of the generalized isomonodromic deformation via examining a property
of the corresponding differential ideal. Their work is based on the construction of the moduli
space in [9], which partially uses the method by P. Boalch in [5].

In Section 9, we recall a brief sketch of the local analytic theory of ramified irregular singular
connections. First we consider the pullback of a generic ramified connection to a local analytic
ramified cover. After applying an elementary transform of vector bundle to the pullback of
the ramified connection, we get an unramified irregular connection. Such a process is called
a shearing transformation method [28, Section 19.3]. Its description is given by K. Diarra,
F. Loray and A. Komyo in [10, 17] for rank 2 ramified connections on P1. On the other hand,
we give a brief idea of producing the Stokes data corresponding to the unramified connection on
the local analytic ramified cover. Then we give a definition of local generalized isomonodromic
deformation of generic unramified irregular singular connections on a unit disk in Definition 9.4.
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Applying the Jimbo–Miwa–Ueno theory in [16] to the local setting, we get the following theorem
(see Theorem 9.7 precisely).

Theorem 1.2 (Jimbo, Miwa and Ueno). A family of generic unramified irregular singular
connections on a unit disk is a local generalized isomonodromic deformation if and only if it can
be extended to an integrable connection.

Precisely, there are ambiguities in the asymptotic solutions in our setting and our proof
of Theorem 1.2 (Theorem 9.7 precisely) follows from the asymptotic property of flat solutions,
which is essentially the result by T. Mochizuki in [21, Chapter 20]. Using Theorem 1.2 (precisely
Theorem 9.7), we get a similar statement for local ramified connections in Corollary 9.11, which
is a main consequence of Section 9.

Based on the viewpoint of Theorem 1.2 (precisely Theorem 9.7 and its consequence Corol-
lary 9.11), we formulate the generalized isomonodromic deformation on the moduli space of
ramified connections in Section 11. For the construction, we introduce in Section 10 the notion
of horizontal lift (Definition 10.1) of the universal family of connections on the moduli space. The
horizontal lift is locally a restriction of the family of integrable connections, given in Theorem 1.2
(precisely Corollary 9.11), to a first order infinitesimal neighborhood of the base parameter space.
Nevertheless, it is defined purely algebraically. In the case of logarithmic or unramified irregular
singular connections, the notion of horizontal lift is introduced in [11, 12, 15]. We can prove the
existence and the uniqueness of the horizontal lift in Propositions 10.7 and 10.10, whose proof
needs an isomorphism (E,∇)|qx ∼= (C[[w]],∇ν)|qx in deep order (for q = 2m− 1 or q = 3m− 1),
that is proved in Proposition 4.1. The existence of horizontal lift in Proposition 10.7 produces
a tangent splitting Ψ: π∗T TT −→ TMα

C,D(λ,µ̃,ν̃) in Section 11, equation (11.2), where Mα
C,D(λ, µ̃, ν̃)

is a family of moduli spaces of α-stable connections with (λ, µ̃, ν̃)-structure and T is the space
of time variables parameterizing local exponents and curves with divisors. We call the subbun-
dle ImΨ ⊂ TMα

C,D(λ,µ̃,ν̃) the generalized isomonodromic subbundle (Definition 11.3). The main

purpose of this paper is the following theorem (see Theorem 11.6 precisely).

Theorem 1.3. The generalized isomonodromic subbundle ImΨ of TMα
C,D(λ,µ̃,ν̃) satisfies the in-

tegrability condition [ImΨ, ImΨ] ⊂ ImΨ.

In the proof of the above theorem, we need the uniqueness of the horizontal lift with respect
to two deformation parameters ϵ1, ϵ2, which is proved in Proposition 10.10. We can prove the
integrability condition of Theorem 1.3 by looking at the ϵ1ϵ2-term of the horizontal lift.

By Theorem 1.3 (or Theorem 11.6), the generalized isomonodromic subbundle ImΨ deter-
mines a foliation on the moduli spaceMα

C,D(λ, µ̃, ν̃), which we call the generalized isomonodromic
foliation (Definition 11.7). We regard the generalized isomonodromic subbundle or the induced
foliation as the generalized isomonodromic deformation. However, our construction of general-
ized isomonodromic deformation is not complete, because we do not establish the generalized
Riemann–Hilbert correspondence between the moduli space of connections and the wild char-
acter variety. The construction of wild character variety in [7] will be a key work in that
framework.

The generalized isomonodromic deformation is known to be characterized by a canonical 2-
form, which is introduced in [16] and extended to higher genus case in [19]. The works [5, 8]
are also based on this principle. By means of the generalized isomonodromic subbundle ImΨ
constructed in Theorem 1.3, we can extend the relative symplectic form given in Theorem 1.1 to
a total 2-form (Definition 11.4), which we call the generalized isomonodromic 2-form. Using the
generalized isomonodromic foliation produced by Theorem 1.3, we can prove in Corollary 11.8
that the generalized isomonodromic 2-form is d-closed.
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2 Logarithmic, unramified irregular singular
or ramified irregular singular structure on a connection

Let C be a complex smooth projective curve of genus g. We consider an effective divisor
D = Dlog+Dun+Dram on C, where Dlog, Dun and Dram are mutually disjoint, Dlog is a reduced
divisor, Dun =

∑
x∈Dun

mxx and Dram =
∑

x∈Dram
mxx are multiple divisors with mx ≥ 2 for

x ∈ Dun ∪Dram.

For each point x ∈ Dlog, we fix a tuple (λx0 , . . . , λ
x
r−1) ∈ Cr and put λx := (λxk)0≤k≤r−1 and

λ := (λx)x∈Dlog
.

For x ∈ Dun, we take µ
x
0 , . . . , µ

x
r−1 ∈ Ω1

C(mxx)
∣∣
mxx

whose leading terms are mutually distinct.

In other words, µxk − µxk′ is a generator of the Omxx-module Ω1
C(mxx)

∣∣
mxx

for k ̸= k′. We write
µx := (µxk)0≤k≤r−1 and µ := (µx)x∈Dun .

Let E be an algebraic vector bundle on C of rank r and let ∇ : E −→ E ⊗ Ω1
C(D) be an

algebraic connection admitting poles along D.

Definition 2.1. We say that lx is a logarithmic λx-parabolic structure on (E,∇) at x ∈ Dlog,
if it is a filtration E|x = lx0 ⊃ · · · ⊃ lxr−1 ⊃ lxr = 0 satisfying (resx(∇) − λxkid)(l

x
k) ⊂ lxk+1 for

k = 0, . . . , r−1, where resx(∇) : E|x −→ E|x is the linear map determined by taking the residue
at x.

Definition 2.2. We say that ℓx is a generic unramified µx-parabolic structure on (E,∇) at
x ∈ Dun, if it is a filtration E|mxx = ℓx0 ⊃ · · · ⊃ ℓxr−1 ⊃ ℓxr = 0 satisfying ℓxk/ℓ

x
k+1

∼= Omxx and
(∇|mxx − µxkid)(ℓ

x
k) ⊂ ℓxk+1 for k = 0, . . . , r − 1, where ∇|mxx : E|mxx −→ E ⊗Ω1

X(D)|mxx is the
Omxx-homomorphism given by the restriction of ∇ to the finite subscheme mxx ⊂ X.

For each x ∈ Dram, we take a generator z of the maximal ideal of the local ring OC,x. Assume
that

νx0 (z) ∈ Ω1
C(Dram)|mxx, νx1 (z), . . . , ν

x
r−1(z) ∈ Ω1

C(Dram)|(mx−1)x

are given and that the leading term of νx1 (z) does not vanish. In other words, νx1 (z) is a generator
of the OC,x-module Ω1

C(Dram)|(mx−1)x. We take a variable w with wr = z and put

νx(w) = νx0 (z) + νx1 (z)w + · · ·+ νxr−1(z)w
r−1.

We write ν = (νx(w))x∈Dram . Furthermore, we assume the following

Assumption 2.3. We assume that

d := −
∑

x∈Dlog

r−1∑
k=0

λxk −
∑
x∈Dun

r−1∑
k=0

resx(µ
x
k)−

∑
x∈Dram

(
r resx(ν

x
0 ) +

r − 1

2

)

is an integer.

Next we recall the formulation of ramified connection given in [13]. In this paper, we give
a simplified version, since the formulation in [13] is somewhat complicated. Before stating the
precise definition, we will see the reason why we introduce a filtration on E|mxx. What we want
to consider is a connection (E,∇) on C with a formal isomorphism (E,∇)⊗ÔC,x

∼= (C[[w]],∇νx).
However, it is difficult to treat the formal isomorphism in the construction of the moduli space
and also in the deformation theory. It is rather convenient to formulate the ramified condition
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only by the data of the restriction (E,∇)|mxx. With respect to the frame of E|mxx corresponding
to 1, w, . . . , wr−1, the representation matrix of ∇|mx is

νx0 (z) zνxr−1(z) · · · zνx1 (z)

νx1 (z) νx0 (z) +
dz
rz · · · zνx2 (z)

...
...

. . .
...

νxr−1(z) νxr−2(z) · · · νx0 (z) +
(r−1)dz

r

 .

However, the assumption on ∇|mxx by the above matrix is too strict and that does not go well
with the formulation of the moduli space. It is rather better to allow ambiguities in ∇|mxx which
is given by

νx0 (z) zνxr−1(z) · · · zνx1 (z)

νx1 (z) + a1,0
dz
z νx0 (z) +

dz
rz · · · zνx2 (z)

...
...

. . .
...

νxr−1(z) + ar−1,0
dz
z νxr−2(z) + ar−1,1

dz
z · · · νx0 (z) +

(r−1)dz
r

 (2.1)

where ai,j ∈ C for r − 1 ≥ i > j ≥ 0. Indeed, if ∇|mxx is given by the above matrix with

ambiguities, there is a formal isomorphism
(
Ê, ∇̂

) ∼= (C[[w]],∇νx) (which will follow from [13,
Proposition 1.3] or Corollary 4.3 later). In order to allow the ambiguities of ∇|mxx as above,
we introduce a filtration E|mxx = V x

0 ⊃ V x
1 ⊃ · · · ⊃ V x

r−1 ⊃ zV x
0 . If we identify E|mxx

with C[[w]]/(wmxr) via the formal isomorphism, then we set V x
k := (wk)/(wmxr) and Lxk :=

(wk)/
(
wmxr−r+k+1

)
, where (wk) the ideal of C[w] generated by wk. Then all the conditions in

the following definition will be obvious.

Definition 2.4 ([13, Definitions 1.2 and 2.1]). Let (E,∇) be a pair of an algebraic vector
bundle E of rank r on C and an algebraic connection ∇ on E. We say that a tuple Vx =((
V x
k , L

x
k, π

x
k

)
0≤k≤r−1,

(
ϕxk
)
1≤k≤r

)
is a generic ν-ramified structure on (E,∇) at x ∈ Dram, if

(i) E|mxx = V x
0 ⊃ V x

1 ⊃ · · · ⊃ V x
r−1 ⊃ V x

r = zV x
0 is a filtration by Omxx-submodules which

satisfies length(V x
k /V

x
k+1) = 1 and ∇|mxx(V

x
k ) ⊂ V x

k ⊗ Ω1
C(D)|mxx for 0 ≤ k ≤ r − 1,

(ii) πxk : V
x
k ⊗C[w]/(wmxr−r+1) −→ Lxk is a quotient free C[w]/(wmxr−r+1)-module of rank one

for 0 ≤ k ≤ r − 1 such that the restrictions πxk |V x
k
: V x

k ↪→ V x
k ⊗ C[w]/(wmxr−r+1)

πx
k−→ Lxk

are surjective and that the diagrams

V x
k ⊗ C[w]/

(
wmxr−r+1

) πx
k−−−−→ Lxk

∇|mxx

y yνx(w)+ k
r

dz
z

V x
k ⊗ Ω1

C(D)⊗ C[w]/
(
wmxr−r+1

) πx
k⊗1−−−−→ Lxk ⊗ Ω1

C(D)

are commutative for 0 ≤ k ≤ r − 1,

(iii) ϕk : L
x
k −→ wLxk−1 for 1 ≤ k ≤ r − 1 and ϕxr : (z)/

(
zmx+1

)
⊗ Lx0 −→ wLxr−1 are surjective

C[w]-homomorphisms such that the diagrams

V x
k ⊗ C[w]/

(
wmxr−r+1

) πx
k−−−−→ Lxky yϕxk

V x
k−1 ⊗ C[w]/

(
wmxr−r+1

) πx
k−1−−−−→ Lxk−1
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are commutative for 1 ≤ k ≤ r − 1 and that the diagram

(z)/
(
zmx+1

)
⊗ V x

0 ⊗ C[w]/
(
wmxr−r+1

) 1⊗πx
0−−−−→ (z)/

(
wmxr+1

)
⊗ Lx0y yϕxr

V x
r−1 ⊗ C[w]/

(
wmxr−r+1

) πx
r−1−−−−→ Lxr−1

is commutative,

(iv) there are isomorphisms ψxk : L
x
k
∼−→ (w)/

(
wmxr−r+2

)
⊗ Lxk−1 of C[w]-modules for 1 ≤ k ≤

r − 1 such that the composition Lxk
ψx
k−−→ (w)/

(
wmxr−r+2

)
⊗ Lxk−1 −→ wLxk−1 coincides

with ϕxk and that the composition

(z)/
(
wmxr+1

)
⊗ Lx0

ϕxr−→ Lxr−1
ψx
r−1−−−→
∼

(w)/
(
wmxr−r+2

)
⊗ Lxr−2

ψx
r−2−−−→
∼

· · ·
ψx
1−−→
∼

(
(w)/

(
wmxr−r+2

))⊗r−1 ⊗ Lx0
∼−→
(
wr−1

)
/
(
wmxr

)
⊗ Lx0

coincides with the C[w]-homomorphism obtained by tensoring Lx0 to the canonical map
(z)/

(
wmxr+1

)
−→

(
wr−1

)
/
(
wmxr

)
.

Two ramified structures
(
V x
k , L

x
k, π

x
k , ϕ

x
k

)
and

(
V ′xk , L

′x
k , π

′x
k , ϕ

′x
k

)
on (E,∇) at x ∈ Dram are

equivalent if V x
k = V ′xk for 0 ≤ k ≤ r, there are isomorphisms σk : L

x
k
∼−→ L′xk of C[w]-modules for

0 ≤ k ≤ r − 1 such that the diagrams

V x
k

πx
k |V x

k−−−−→ Lxk

∥ ∼=
yσk

V x
k

π′x
k |V x

k−−−−→ L′xk

(0 ≤ k ≤ r − 1)

Lxk
ϕxk−−−−→ Lxk−1

σk

y∼= ∼=
yσk−1

L′xk
ϕ′xk−−−−→ L′xk−1

(1 ≤ k ≤ r − 1)

and the diagram

(z)/
(
wmxr+1

)
⊗ Lx0

ϕxr−−−−→ Lxr−1

id⊗σ0
y∼= ∼=

yσr−1

(z)/
(
wmxr+1

)
⊗ L′x0

ϕ′xr−−−−→ L′xr−1

are commutative.

Remark 2.5. In the condition (iv) of Definition 2.4, the composition ψx1 ◦ · · · ◦ ψxr−1 ◦ ϕxr is
independent of the choices of the lifts ψk of ϕk taken for 1 ≤ k ≤ r − 1. In particular, the
condition (iv) is independent of the choices of ψk.

Example 2.6. Let us consider the typical case (E,∇)⊗ÔC,x = (C[[w]],∇ν), where z ∈ OC,x is

a generator of the maximal ideal, w = z
1
r and the connection ∇ν is given by

∇ν : C[[w]] ∋ f(w) 7→ df(w) + f(w)ν ∈ C[[w]]⊗ dz

zm
.

In this case, a generic ν-ramified structure in Definition 2.4 is given in the following way. We
consider the filtration C[[w]]/zmC[[w]] ⊃ (w)/

(
wmr

)
⊃ · · · ⊃

(
wr−1

)
/
(
wmr

)
⊃ zC[[w]]/zmC[[w]]
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and put Vk :=
(
wk
)
/
(
wmr

)
for 0 ≤ k ≤ r − 1. We put Lk :=

(
wk
)
/
(
wmr−r+k+1

)
and regard it

as a C[w]/
(
wmr−r+1

)
-module. The canonical surjection

Vk =
(
wk
)
/
(
wmr

)
−→

(
wk
)
/
(
wmr−r+k+1

)
= Lk

induces a surjective homomorphism

πk : Vk ⊗C[z]/(zm) C[w]/
(
wmr−r+1

)
−→ Lk

of C[w]/
(
wmr−r+1

)
-modules. Then the conditions (i), (iii), (iv) of Definition 2.4 are obvious for

such data. Since the restriction

∇ν : wkC[[w]] −→ wkC[[w]]⊗ dz

zm

satisfies the equality

∇ν

(
wkf(w)

)
= kwk−1dw f(w) + wkdf(w) + wkf(w)ν

= wkf(w)
k

r

dz

z
+ wk(df(w) + f(w)ν),

we can also see the commutativity of the diagrams in Definition 2.4 (ii).
We will see later in Corollary 4.3 that any connection with generic ν-ramified structure at x

is in fact isomorphic to the one given in this example.

Definition 2.7. We say that (E,∇, l, ℓ,V) is a connection with (λ, µ, ν)-structure, if

(i) E is an algebraic vector bundle of rank r on C of degree d,

(ii) ∇ : E −→ E ⊗ Ω1
C(D) is an algebraic connection admitting poles along D,

(iii) l = (lx)x∈Dlog
is a tuple of logarithmic λx-parabolic structures lx on (E,∇) at x ∈ Dlog,

(iii) ℓ = (ℓx)x∈Dun is a tuple of generic unramified µx-parabolic structures ℓx on (E,∇) at
x ∈ Dun,

(iv) V = (Vx)x∈Dram is a tuple of generic νx-ramified structures Vx on (E,∇) at x ∈ Dram.

We take a tuple α = (αxk)
x∈D
1≤k≤r of positive rational numbers such that 0 < αx1 < · · · < αxr < 1

for any x ∈ D and that αxk ̸= αx
′
k′ for (x, k) ̸= (x′, k′).

For a non-zero subbundle F of E, we write

pardegα(F ) = degF +
∑

x∈Dlog

r∑
k=1

αxk length((F |x ∩ lxk−1)/(F |x ∩ lxk))

+
∑
x∈Dun

r∑
k=1

αxk length((F |nxx ∩ ℓxk−1)/(F |nxx ∩ ℓxk))

+
∑

x∈Dram

r∑
k=1

αxk length
(
(F |mxx ∩ V x

k−1)/(F |mxx ∩ V x
k )
)
.

Definition 2.8. We say that a connection (E,∇, l, ℓ,V) with (λ, µ, ν)-structure is α-stable
(resp. α-semistable) if the inequality

pardegα(F )

rankF
<

pardegα(E)

rankE

(
resp.

pardegα(F )

rankF
≤ pardegα(E)

rankE

)
holds for any subbundle 0 ̸= F ⊊ E satisfying ∇(F ) ⊂ F ⊗ Ω1

C(D).

Remark 2.9. If Dram ̸= ∅, then we can see (E,∇)⊗ÔC,x
∼= (C[[w]],∇ν) by Corollary 4.3, which

will be proved later. Since (C[[w]],∇ν) is irreducible, (E,∇) is also irreducible and (E,∇, l, ℓ,V)
is automatically α-stable for any parabolic weight α in this case.
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3 Factorized ramified structure

In this section, we introduce the notion of factorized ramified structure which is a rephrasing
of generic ν-ramified structure in Definition 2.4. This notion is useful for the description of
symplectic form later. In the Introduction, we saw a rough idea of factorized ramified structure.
Before giving the precise definition of factorized ramified structure, we will see another aspect
of the ambiguity in (2.1), which affects the definition of factorized ramified structure.

Let (E,∇) be a connection on C with a formal isomorphism (E,∇) ⊗ ÔC,x
∼= (C[[w]],∇ν),

where z is a generator of the maximal ideal of OC,x, w
r = z and ∇ν is the connection defined

in (1.1). Write ν(w) =
∑r−1

k=0 ck(z)w
kdz/zmxx with c0(z), . . . , cr−1(z) ∈ Omxx and c1(z) ∈ O×mxx.

There is in fact an ambiguity coming from the choice of z, but it can be expressed by a modifica-
tion of ν and we do not pursue this point any more. Recall that the endomorphism N on E|mxx

corresponds to the action of w via the isomorphism E|mxx
∼−→ C[w]/

(
wrmx

)
. Since c1(z) is

invertible, there is a polynomial P (T ) ∈ Omxx[T ] satisfying the equality

w = P
(
c0(z) + c1(z)w + · · ·+ cr−1w

r−1)
in the ring Omxx[w]/(w

r − z). Since the equality ∇|(mx−1)x = ν(N)|(mx−1)x holds, N |(mx−1)x is
uniquely determined from ∇|mxx by substitution to P (T ). However, N always has an ambiguity
in the zmx−1-coefficients. This ambiguity causes the ambiguity in the matrix (2.1) of ∇|mxx.

In order to see more precisely, consider the filtration E|mx = V0 ⊃ V1 ⊃ · · · ⊃ Vr−1 ⊃ Vr = zV0
given in Definition 2.4 (i). Since this filtration is determined by N(Vi) = Vi+1, it is uniquely
determined from ∇|mxx. Then the restriction N |Vi induces an endomorphism on Vi/z

mx−1Vi+1,
which is uniquely determined from ∇|mx . So the factorization N = θ ◦ κ will be justified
when we replace it with the induced maps on Vi/z

mx−1Vi+1 or on its dual. Although we need a
careful consideration for the expression of these induced maps, all the conditions in the following
definition will be natural.

Let C, Dlog, Dun, Dram, ν, z, w be as in Section 1 and let (E,∇) be a pair of an algebraic
vector bundle E of rank r on C and an algebraic connection ∇ on E with poles along D.

Definition 3.1. We say that a tuple (Vk, ϑk,κk)0≤k≤r−1 is a factorized ν-ramified structure on
(E,∇) at x ∈ Dram, if

(i) E|mxx = V0 ⊃ V1 ⊃ · · · ⊃ Vr−1 ⊃ Vr = zV0 is a filtration by Omxx-submodules satisfying
∇|mxx(Vk) ⊂ Vk ⊗ Ω1

C(D) and length(Vk/Vk+1) = 1 for 0 ≤ k ≤ r − 1,

(ii) for V k := Vk/z
mx−1Vk+1 and W k :=

(
V r−k−1

)∨
= HomOmxx

(
V r−k−1,Omxx

)
,

ϑk : W k ×W r−k−1 −→ Omxx

is an Omxx-bilinear pairing for 0 ≤ k ≤ r−1 such that the equality ϑk(v, v
′) = ϑr−k−1(v

′, v)
holds for v ∈W k and v′ ∈W r−k−1 and that the induced homomorphisms

θk : W k
∼−→ Hom(W r−k−1,Omxx) = V k (0 ≤ k ≤ r − 1)

are isomorphisms, which make the diagrams

W k −−−−→ W k−1

θk

y∼= θk−1

y∼=
V k −−−−→ V k−1

(1 ≤ k ≤ r − 1)

(z)/
(
zmx+1

)
⊗W 0 −−−−→ W r−1

1⊗θ0
y∼= θr−1

y∼=
(z)/

(
zmx+1

)
⊗ V 0 −−−−→

∼
V r−1

commutative, where the horizontal arrow W k −→ W k−1 is the dual of V r−k −→ V r−k−1
and the horizontal arrow (z)/

(
zmx+1

)
⊗W 0 −→W r−1 is induced by tensoring (z)/

(
zmx+1

)
toW 0 = Hom(V r−1,Omxx) −→ Hom((z)/

(
zmx+1

)
⊗V 0,Omxx) =

(
(z)/

(
zmx+1

))∨⊗W r−1,
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(iii) for 0 ≤ k ≤ r − 1,

κk : V k × V r−k−1 −→ Omxx

is an Omxx-bilinear pairing such that the equality κk(v, v′) = κr−k−1(v′, v) holds for
v ∈ V k, v

′ ∈ V r−k−1 and that the induced homomorphisms

κk : V k −→ HomOmxx

(
V r−k−1,Omxx

)
=W k (0 ≤ k ≤ r − 1)

make the diagrams

V k −−−−→ V k−1

κk

y κk−1

y
W k −−−−→ W k−1

(1 ≤ k ≤ r − 1)

(z)/
(
zmx+1

)
⊗ V 0 −−−−→ V r−1

1⊗κ0
y κr−1

y
(z)/

(
zmx+1

)
⊗W 0 −−−−→ W r−1

commutative,

(iv) the composition Nk := ⟨ϑk,κk⟩ = θk ◦κk : V k −→ V k satisfies the equalities (Nk)
r = z idV̄k

and (Nk)
mxr−r+1 = 0, from which the injective ring homomorphism

C[w]/
(
wmxr−r+1

)
∋ f(w) 7→ f(Nk) ∈ EndOmxx

(
V k

)
(3.1)

is induced and the diagrams

Vk
∇|mxx−−−−→ Vk ⊗ Ω1

C(D)y y
V k

ν(Nk)+
k
r

dz
z−−−−−−−→ V k ⊗ Ω1

C(D)

are commutative for k = 0, 1, . . . , r − 1,

(v) with respect to the C[w]-module structure on V k defined by the ring homomorphism (3.1),
there are C[w]-isomorphisms ψk : V k

∼−→ (w)/
(
wmxr−r+2

)
⊗V k−1 such that the composition

V k
ψk−→
∼

(w)/
(
wmxr−r+2

)
⊗ V k−1 −→ wV k−1 ↪→ V k−1

coincides with the homomorphism V k −→ V k−1 induced by the inclusion Vk ↪→ Vk−1 and
that the composition

(z)/
(
zmx+1

)
⊗ V 0 → V r−1

ψr−1−−−→
∼

(w)/
(
wmxr−r+2

)
⊗ V r−2

ψr−2−−−→
∼

· · · ψ1−→
∼

(
wr−1

)
/
(
wmxr

)
⊗ V 0

coincides with the homomorphism (z)/
(
zmx+1

)
⊗ V 0 −→

(
wr−1

)
/
(
wmxr

)
⊗ V 0 obtained

by tensoring V 0 to the canonical homomorphism (z)/
(
zmx+1

)
−→

(
wr−1

)
/
(
wmxr

)
.

Two factorized ramified structures (Vk, ϑk,κk) and (V ′k, ϑ
′
k,κ′k) are equivalent if Vk = V ′k and

⟨ϑk,κk⟩ = Nk = N ′k = ⟨ϑ′k,κ′k⟩ for any k and there are isomorphisms ςk : W k
∼−→ W k satisfying

tNr−k−1 ◦ ςk = ςk ◦ tNr−k−1, θ′k = θk ◦ ςk, κ′k = ς−1k ◦ κk and the commutative diagrams

(z)/
(
zmx+1

)
⊗W 0 −−−−→ W r−1

1⊗ς0
y∼= ςr−1

y∼=
(z)/

(
zmx+1

)
⊗W 0 −−−−→ W r−1

W k −−−−→ W k−1

ςk

y∼= ςk−1

y∼=
W k −−−−→ W k−1

(1 ≤ k ≤ r − 1).
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Remark 3.2. The condition ϑk(v, v
′) = ϑr−k−1(v

′, v) for v ∈ W k, v
′ ∈ W r−k−1 in Defini-

tion 3.1 (ii) is equivalent to the condition t(θk) = θr−k−1 under the identifications W r−k−1 =(
V k

)∨
and

(
W k

)∨
= V r−k−1 for 0 ≤ k ≤ r−1. Similarly, the condition κk(v, w) = κr−k−1(w, v)

for v ∈ V k, w ∈ V r−k−1 in Definition 3.1 (ii) is equivalent to the condition tκk = κr−k−1 under
the identifications

(
W k

)∨
= V r−k−1,

(
V k

)∨
=W r−k,

For a factorized ν-ramified structure (Vk, ϑk,κk) on (E,∇), we can regard the Omxx-module
V k = Vk/z

mx−1Vk+1 as a C[w]-module by using the ring homomorphism in Definition 3.1 (iv),
(3.1) and we have V k

∼= C[w]/
(
wmxr−r+1

)
. The canonical surjection Vk −→ V k induces

a surjection πk : Vk ⊗C[z]/(zmx ) C[w]/
(
wmxr−r+1

)
−→ V k of C[w]/

(
wmxr−r+1

)
-modules. For

1 ≤ k ≤ r−1, the canonical inclusion ιk : Vk ↪→ Vk−1 induces a homomorphism ιk : V k −→ V k−1
and the canonical homomorphism (z)/

(
zmx+1

)
⊗ V0 → zV0 ↪→ Vr−1 induces a homomorphism

ιr : (z)/
(
zmx+1

)
⊗ V 0 −→ V r−1. Then

(
Vk, V k, πk, ιk

)
becomes a generic ν-ramified structure

on (E,∇) at x ∈ Dram in the sense of Definition 2.4.

Proposition 3.3. The correspondence (Vk, ϑk,κk) 7→
(
Vk, V k, πk, ιk

)
gives a bijection between

the set of equivalence classes of factorized ν-ramified structures on (E,∇) at x ∈ Dram and the
set of isomorphism classes of generic ν-ramified structures on (E,∇) at x ∈ Dram.

Proof. We will construct the inverse correspondence. Let (Vk, Lk, πk, ϕk) be a generic ν-ramified
structure on (E,∇) at x ∈ Dram. By Definition 2.4 (ii), the restriction πk|Vk : Vk −→ Lk is
a surjection, which induces the isomorphism V k = Vk/z

mx−1Vk+1
∼−→ Lk. Take a generator ē0

of L0 as a C[w]-module. Let ēk be the element of Lk which corresponds to wk ⊗ ē0 via the
isomorphism

Lk
ψk−→
∼

(w)⊗ Lk−1
ψk−1−−−→
∼

· · · ψ1−→
∼

(
wk
)
⊗ L0.

Since πk|Vk is surjective, we can take an element ek ∈ Vk satisfying πk(ek) = ēk. Then
e0, e1, . . . , er−1 is a basis of the free Omxx-module E|mxx and we have

πk(el) = (ϕk+1 ◦ · · · ◦ ϕl)(πl(el)) = wl−kπk(ek) if k ≤ l ≤ r − 1,

πk(zel) = (ϕk+1 ◦ · · · ◦ ϕr)(z ⊗ π0(el)) = wr−k+lπk(ek) if 0 ≤ l < k.

Furthermore, Vk is generated by ek, ek+1, . . . , er−1, ze0, . . . , zek−1. If we define a homomorphism
N : E|mxx −→ E|mxx by

N(ek) =

{
ek+1 if 0 ≤ k ≤ r − 2,

ze0 if k = r − 1,

then N preserves Vk and the diagram

Vk
πk|Vk−−−−→ Lk

N |Vk

y yw
Vk

πk|Vk−−−−→ Lk

is commutative. By the definition, we have the equality N r = z · idE|mxx
. The induced ring

homomorphism

Omxx[w]/
(
wr − z

)
∋ f(w) 7→ f(N) ∈ EndOmxx(E|mxx)
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endows E|mxx with a structure of Omxx[w]-module. Since the minimal polynomial of N |x is wr

whose degree is r, we can see E|x ∼= C[w]/(wr) by elementary linear algebra. By Nakayama’s
lemma, we can extend it to an isomorphism

E|mxx
∼= Omxx[w]/

(
wr − z

)
(3.2)

of Omxx[w]-modules. Similarly, the endomorphism tN on E|∨mxx induces a structure of Omxx[w]-
module and we have an isomorphism

E|∨mxx
∼= Omxx[w]/

(
wr − z

)
. (3.3)

Combining (3.2) and (3.3), we get an isomorphism

θ : E|∨mxx
∼−→ E|mxx

of Omxx[w]-modules. Let

ϑ : E|∨mxx × E|∨mxx −→ Omxx (3.4)

be the corresponding bilinear pairing defined by ϑ(v∗, w∗) = w∗(θ(v∗)) for v∗, w∗ ∈ E|∨mxx. Take
a generator e∗ of E|∨mxx as an Omxx[w]-module. Then any element v∗, w∗ ∈ E|∨mxx can be written
v∗ = P

(
tN
)
e∗, w∗ = Q

(
tN
)
e∗ for polynomials P (w), Q(w) ∈ Omxx[w] in w. So we have

ϑ(v∗, w∗) = w∗(θ(v∗)) =
(
Q
(
tN
)
e∗
)(
θ(P

(
tN
)
e∗)
)

= (e∗ ◦Q(N))(P (N)(θ(e∗)))

= (e∗ ◦Q(N) ◦ P (N) ◦ θ)(e∗)
= (e∗ ◦ P (N) ◦Q(N) ◦ θ)(e∗) = ϑ(w∗, v∗). (3.5)

In other words, the pairing ϑ defined in (3.4) is symmetric, which is also equivalent to tθ = θ.
If we put

κ := θ−1 ◦N : E|mxx −→ E|∨mxx,

then we have θ ◦κ = N . By the similar calculation to (3.5), we can see that the bilinear pairing

κ : E|mxx × E|mxx −→ Omxx,

determined by κ(v, w) = κ(v)(w) is also symmetric, which is equivalent to tκ = κ.
Now we put

Wk :=
{
v∗ ∈ E|∨mxx | v∗

(
zmx−1Vr−k

)
= 0
}
= ker

(
zmx−1(tN)r−k)

for 0 ≤ k ≤ r. Then we get the exact commutative diagram

zmx−1Wk+1 = zmx−1Wk+1y y
0 −−−−→ Wk −−−−→ E|∨mxx −−−−→ (zmx−1Vr−k)

∨−→ 0y y ∥

0 −−−−→ V
∨
r−k−1 −−−−→ V ∨r−k−1 −−−−→ (zmx−1Vr−k)

∨−→ 0y y
0 0.
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So we have an isomorphism

Wk/z
mx−1Wk+1

∼−→ V
∨
r−k−1 =W k.

Using Wk = ker
(
zmx−1

(
tN
)r−k)

, we can see

θ(Wk) = θ
(
ker
(
zmx−1(tN)r−k)) = ker

(
zmx−1N r−k) = Vk.

So θ|Wk
induces an isomorphism θk : W k

∼−→ V k which makes the diagram

Wk

θ|Wk−−−−→
∼

Vky y
W k

θk−−−−→
∼

V k

commutative. By the equality κ = θ−1N , we have κ(Vk) ⊂ Wk for 0 ≤ k ≤ r and get the
commutative diagram

Vk
κ|Vk−−−−→
∼

Wky y
V k

κk−−−−→
∼

W k.

We can associate (ϑk,κk) to (θk, κk) and the conditions (ii) and (iii) of Definition 3.1 follow
from the properties of θ, κ. The other conditions (i), (iv) and (v) of Definition 3.1 are satisfied
by that of (Vk, Lk, πk, ϕk). So we get a factorized ν(w)-ramified structure (Vk, ϑk,κk).

Assume that there is another factorized ramified structure (Vk, ϑ
′
k,κ′k) which gives the same

generic ν-ramified structure (Vk, Lk, πk, ϕk). Recall that V k
∼−→ Lk. So we have θ′k ◦ κ′k = Nk =

θk ◦ κk, because both sides correspond to the multiplication by w on Lk. Since the diagram

W k
θ′k−−−−→ V k

tNk=

yκ′k◦θ′k Nk

y=θ′k◦κ
′
k

W k
θ′k−−−−→ V k

is commutative, θ′k : W k
∼−→ V k is an isomorphism of free C[w]/

(
wmxr−r+1

)
-modules of rank one.

So there is an element βk(w) ∈ C[w]/
(
wmxr−r+1

)×
such that θk = θ′k ◦ βk( tNk). Then we also

have κk = βk
(
tNk

)−1 ◦ κ′k. Taking account of the compatibility of (θ′k, κ
′
k) with (θ′k−1, κ

′
k−1),

we can see βk(w) ≡ βk−1(w) (mod wmr−r) for k = 1, . . . , r − 1. Thus we have (Vk, ϑ
′
k,κ′k) ∼

(Vk, ϑk,κk). In other words, the equivalence class of factorized ν-ramified structure (Vk, θk, κk)
is uniquely determined by the generic ν-ramified structure (Vk, Lk, πk, ϕk). So we can define
a correspondence

(Vk, Lk, πk, ϕk) 7→ (Vk, θk, κk)

and it is the inverse to the correspondence stated in the proposition. ■

Example 3.4. We will see what the factorized ramified structure is in the typical case ex-
plained in Example 2.6. We have (E,∇)⊗ ÔC,x = (C[[w]],∇ν) in that case and the filtration in
Definition 3.1 (i) is given by Vk =

(
wk
)
/
(
wmr

)
for 0 ≤ k ≤ r. Consider the trace map

Tr: C[[w]] −→ C[[z]].
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For f(w) ∈ C[[w]], Tr(f(w)) is defined as the trace of the endomorphism C[[w]] f(w)−−−→ C[[w]] on
the free C[[z]]-module C[[w]] of rank r. By construction, we have Tr

(
zl
)
= rzl and Tr

(
wkzl

)
= 0

for 1 ≤ k ≤ r−1. So the above map induces a homomorphism Tr: C[w]/
(
wmr−r+1

)
→ C[z]/(zm),

which also induces

Tr :
(
wr−1

)
/
(
wmr

)
⊗ Ω1

C[[w]]/C= C[w]/
(
wmr−r+1

)
⊗ Ω1

C[[z]]/C
Tr⊗id−−−−→C[z]/

(
zm
)
⊗ Ω1

C[[z]]/C.

Then we can define a pairing

Θk :
(
wk
)
/
(
wmr−r+k+1

)
×
(
wr−k−1

)
/
(
wmr−k

)
−→ C[z]/

(
zm
)

by setting

Θk

(
f(w), g(w)

)
dz = Tr

(
f(w)g(w)dw

)
for f(w) ∈

(
wk
)
/
(
wmr−r+k+1

)
and g(w) ∈

(
wr−k−1

)
/
(
wmr−k

)
. By the construction, the induced

C[z]/(zm)-homomorphism
(
wk
)
/
(
wmr−r+k+1

)
→
((
wr−k−1

)
/
(
wmr−k

))∨
is an isomorphism. If

we denote the inverse of this homomorphism by

θk :
((
wr−k−1

)
/
(
wmr−k

))∨ ∼−→ (
wk
)
/
(
wmr−r+k+1

)
,

then θk induces a pairing

ϑk :
((
wr−k−1

)
/
(
wmr−k

))∨ × ((wk)/(wmr−r+k+1
))∨ −→ C[z]/

(
zm
)

satisfying ϑk(v, v
′) = ϑr−k−1(v

′, v) for v∈
((
wr−k−1

)
/
(
wmr−k

))∨
and v′∈

((
wk
)
/
(
wmr−r+k+1

))∨
.

We can also define a pairing

κk :
(
wk
)
/
(
wmr−r+k+1

)
×
(
wr−k−1

)
/
(
wmr−k

)
−→ C[z]/

(
zm
)

by setting

κk(f(w), g(w)) = Θk(wf(w)g(w))

for f(w) ∈
(
wk
)
/
(
wmr−r+k+1

)
and g(w) ∈

(
wr−k−1

)
/
(
wmr−k

)
. We can see that the filtra-

tion C[[w]]/zmC[[w]] ⊃ (w)/
(
wmr

)
⊃
(
w2
)
/
(
wmr

)
⊃ · · · ⊃

(
wr−1

)
/
(
wmr

)
⊃ zC[[w]]/zmC[[w]]

together with (ϑk,κk)0≤k≤r−1 gives a factorized ν-ramified structure on (E,∇) at x.

Remark 3.5. We can extend the notion of generic ν-ramified structure or that of factorized
ν-ramified structure in a relative setting. So, if S is a noetherian scheme (or a noetherian ring)
and if (E,∇) is a pair of a vector bundle E on C ×S and a connection ∇ on E, we can mention
about a generic ν-ramified structure on (E,∇).

4 Recovery of formal structure from a generic ramified
structure

In this section, we will see in Corollary 4.4 that the generic ramified condition given in the
Introduction is equivalent to the generic ramified structure (Definition 2.4) or the factorized ν-
ramified structure (Definition 3.1). The most essential point is to recover a formal isomorphism
from a generic ramified structure or a factorized ν-ramified structure (in Corollary 4.3). In
fact, we proved it in [13, Proposition 1.3] by using the Hukuhara–Levert–Turrittin theorem (see
[1, Proposition 1.4.1] or [23, Theorem 6.8.1] for example). In this paper, we will examine it
by a direct computation only by using regular formal transforms rather than formal Laurent
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transforms in the Hukuhara–Levert–Turrittin theorem. It has the advantage of applying to (9.5)
or (9.10) later. For such applications, we actually require a formal isomorphism in a relative
setting in Corollary 4.3.

Let A be a noetherian ring over C. Take a flat family U −→ SpecA of smooth affine curves
over SpecA and let x̃ be a section of U over SpecA. We can take a local defining equation
z ∈ OU of x̃. Let w be a variable satisfying wr = z. We take an integer m with m ≥ 2. Choose(

a
(0)
0 , a

(0)
1 , . . . , a

(0)
m−1

)
∈ Am,

(
a
(k)
0 , a

(k)
1 , . . . , a

(k)
m−2

)
∈ Am−1 (k = 1, . . . , r − 1) (4.1)

with the condition a
(1)
0 ∈ A×. Using the data (4.1), we put

ν0(z) =
m−1∑
l=0

a
(0)
l zl

dz

zm
, νk(z) =

m−2∑
l=0

a
(k)
l zl

dz

zm
(k = 1, . . . , r − 1) (4.2)

and set

ν(w) := ν0(z) + ν1(z)w + · · ·+ νr−1(z)w
r−1. (4.3)

For an integer q with q ≥ m, we can regard A[w]/(wqr) as a free A[z]/(zq)-module of rank r.
Define the A-linear homomorphism

∇ν |qx̃ : A[w]/(wqr) −→ A[w]/(wqr)⊗ Ω1
U/A(mt̃)|qx̃

by setting ∇ν |qx̃(f(w)) = df(w) + f(w)ν(w) for f(w) ∈ A[w]/(wqr).

We need the following proposition in the construction of generalized isomonodromic defor-
mation later in Sections 10 and 11.

Proposition 4.1. Let the notations be as in (4.1), (4.2) and (4.3) with the assumption that the

leading coefficient a
(1)
0 of ν1(z) is invertible in A. Take a vector bundle E on U of rank r and a

connection ∇ : E −→ E ⊗ Ω1
U/A(mx̃) with a generic ν-ramified structure(

(Vk, πk, , Lk)0≤k≤r−1, (ϕk)1≤k≤r
)

at x̃. Then, for any integer q with q ≥ m, there is an isomorphism

σ : E|qx̃
∼−→ (A[z]/(zq))[w]/(wr − z) ∼= A[w]/(wqr)

which makes the diagram

E|qx̃
σ−−−−→
∼

A[w]/(wqr)

∇|qx̃
y ∇ν |qx̃

y
E|qx̃ ⊗ Ω1

U/A(mx̃)|qx̃
σ⊗1−−−−→
∼

A[w]/(wqr)⊗ dz
zm

commutative.

Proof. Let Ṽk be the pullback of Vk via the canonical surjection E|qx̃ −→ E|mx̃ for 0 ≤ k ≤
r − 1. We take a generator e′0 ∈ L0 as an A[w]/

(
wmr−r+1

)
-module. By the condition (iv) of

Definition 2.4, there is a composition of isomorphisms

Lk
ψk−→
∼

(w)⊗ Lk−1
ψk−1−−−→
∼

· · · ψ1−→
∼

(
wk
)
⊗ L0.
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Let e′k ∈ Lk be the element corresponding to wk⊗e′0 via this isomorphism. Since πk|Vk : Vk
πk|Vk−−−→

Lk is surjective, we can take ēk ∈ Vk satisfying πk(ēk) = e′k. Then we have

πk(ēk+l) = wlπk(ēk) for 0 ≤ l ≤ r − k − 1,

πk(zēl) = wr−k+lπk(ēk) for 0 ≤ l ≤ k − 1.

We take lifts e0, e1, . . . , er−1 ∈ E|qx̃ of ē0, ē1, . . . , ēr−1 ∈ E|mx̃. The commutativity of the diagram
in Definition 2.4 (ii) yields the equality

∇|qx̃(ek) ≡
(
ν0(z) +

k dz

rz

)
ek +

r−1∑
l=k+1

νl−k(z)el +
k−1∑
l=0

zνr+l−k(z)el

(
mod zm−1Ṽk+1

dz

zm

)

for k = 0, 1, . . . , r − 1. Applying the following lemma to the cases

(q′, s) = (m, 1), (m, 2), . . . , (m, r), (m+ 1, 1), (m+ 1, 2), . . . , (q, 1), . . . , (q, r − 1)

successively, we get the proposition. ■

Lemma 4.2. Let q′, s be integers with m ≤ q′ ≤ q and 1 ≤ s ≤ r. Assume that the equalities

∇|qx̃(ek) ≡
(
ν0 +

k dz

rz

)
ek +

r−1∑
l=k+1

νl−kel +

k−1∑
l=0

νr+l−kzel

(
mod zq

′−1Ṽk+s
dz

zm

)
(4.4)

hold for 0 ≤ k < r − s and the equalities

∇|qx̃(ek) ≡
(
ν0 +

k dz

r z

)
ek +

r−1∑
l=k+1

νl−kel +
k−1∑
l=0

νr+l−kzel

(
mod zq

′
Ṽk+s−r

dz

zm

)
(4.5)

hold for r − s ≤ k ≤ r − 1. Then there exist c, b1, . . . , br−1 ∈ A such that the replacement

ẽ0 =

{
e0 + czq

′−mes if 1 ≤ s ≤ r − 1,

e0 + czq
′−m+1e0 if s = r,

ẽk =


ek + czq

′−mek+s + bkz
q′−1ek+s−1 if k + s < r and 1 ≤ k ≤ r − 1,

ek + czq
′−m+1ek+s−r + bkz

q′−1ek+s−1 if k + s = r and 1 ≤ k ≤ r − 1,

ek + czq
′−m+1ek+s−r + bkz

q′ek+s−1−r if k + s > r and 1 ≤ k ≤ r − 1

(4.6)

leads to the equalities

∇|qx̃(ẽk) ≡
(
ν0 +

k dz

rz

)
ẽk +

r−1∑
l=k+1

νl−kẽl +

k−1∑
l=0

νr+l−kzẽl

(
mod zq

′−1Ṽk+s+1
dz

zm

)
(4.7)

for 0 ≤ k < r − s− 1 and the equalities

∇|qx̃(ẽk) ≡
(
ν0 +

k dz

rz

)
ẽk +

r−1∑
l=k+1

νl−kẽl +

k−1∑
l=0

νr+l−kzẽl

(
mod zq

′
Ṽk+s+1−r

dz

zm

)
(4.8)

for r − s− 1 ≤ k ≤ r − 1.
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Proof. By the assumption (4.4), we can find η0, . . . , ηr−s−1 ∈ zq
′−1Ω1

U/A(D)|qx̃ satisfying the
equalities

∇|qx̃(ek) ≡
(
ν0 +

k dz

rz

)
ek +

r−1∑
l=k+1

νl−kel

+

k−1∑
l=0

νr+l−kzel + ηkek+s

(
mod zq

′−1Ṽk+s+1
dz

zm

)
for 0 ≤ k < r − s− 1 and the equality

∇|qx̃(ek) ≡
(
ν0 +

k dz

rz

)
ek +

r−1∑
l=k+1

νl−kel +
k−1∑
l=0

νr+l−kzel + ηker−1

(
mod zq

′
Ṽ0
dz

zm

)
for k + s = r − 1. By the assumption (4.5), we can find ηr−s, . . . , ηr−1 ∈ zq

′−1Ω1
U/A(D)|qx̃

satisfying the equalities

∇|qx̃(ek) ≡
(
ν0 +

k dz

rz

)
ek +

r−1∑
l=k+1

νl−kel

+
k−1∑
l=0

νr+l−kzel + ηkzek+s−r

(
mod zq

′
Ṽk+s+1−r

dz

zm

)
for r − s ≤ k ≤ r − 1. We will determine c, b1, . . . , br−1 ∈ A so that the substitution of (4.6)
enables the equalities (4.7) and (4.8) to hold.

Consider the substitution of ẽk for 0 ≤ k < r − s. In that case, we have

∇|qx̃(ẽk) = ∇|qx̃(ek) + (q′ −m)czq
′−m−1dzek+s + czq

′−m∇(ek+s)

+ (q′ − 1)bkz
q′−2dzek+s−1 + bkz

q′−1∇(ek+s−1).

If we put b0 := 0 and br := 0, then we can calculate the above substitution in the following, while
using bkz

q′−1νl−k−s+1el ≡ 0 (mod zq
′−1Ṽk+s+1dz/z

m) for l ≥ k + s+ 1 in the second equality;

∇|qx̃(ẽk) ≡ (q′ −m)czq
′−m−1dzek+s + (q′ − 1)bkz

q′−2dzek+s−1 +

(
ν0 +

k dz

rz

)
ek + ν1ek+1

+
r−1∑
l=k+2

νl−kel +
k−1∑
l=0

νr+l−kzel + czq
′−m

(
ν0 +

(k + s)

r

dz

z

)
ek+s

+ czq
′−mν1ek+s+1 +

r−1∑
l=k+s+2

czq
′−mνl−k−sel +

k+s−1∑
l=0

czq
′−m+1νr+l−k−sel

+ bkz
q′−1ν0ek+s−1 + bkz

q′−1ν1ek+s +

r−1∑
l=k+s+1

bkz
q′−1νl−k−s+1el

+
k+s−2∑
l=0

bkz
q′νr+l−k−s+1el + ηkek+s

≡
(
ν0+

k dz

rz

)
ẽk +

(
νs + ηk +

((q′−m)r + s)zq
′−1c

rzm
dz + (bk− bk+1)z

q′−1ν1

)
ẽk+s

+ ν1ẽk+1 +
∑

k+2≤l≤r−1,l ̸=k+s
νl−kẽl +

k−1∑
l=0

νr+l−kzẽl

(
mod zq

′−1Ṽk+s+1
dz

zm

)
.
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We can similarly calculate the substitution of ẽk for r − s ≤ k ≤ r − 1 and we have

∇|qx̃(ẽk) ≡
(
ν0 +

k dz

rz

)
ẽk

+

(
νs + ηk +

((q′−m)r + s)zq
′−1c

rzm
dz + (bk − bk+1)z

q′−1ν1

)
zẽk+s−r

+
∑

k+1≤l≤r−1,l ̸=k+s
νl−kẽl +

k−1∑
l=0

νr+l−kzẽl

(
mod zq

′
Ṽk+s+1−r

dz

zm

)
.

So it is sufficient to solve the equation

((q′−m)r+s)zq
′−1

rzm dz −zq′−1ν1 0 · · · 0

((q′−m)r+s)zN
′−1

rzm dz zq
′−1ν1 −zq′−1ν1

. . . 0

((q′−m)r+s)zq
′−1

rzm dz 0 zq
′−1ν1

. . . 0

...
...

. . .
. . . −zq′−1ν1

((q′−m)r+s)zq
′−1

rzm dz 0 · · · 0 zq
′−1ν1





c
b1
b2
...

br−2
br−1


=



−η0
−η1
−η2
...

−ηr−2
−ηr−1


,

which is possible because the r × r matrix of the left hand side is invertible. ■

Under the setting (4.1), (4.2) and (4.3), let ∇ν : A[[w]] −→ A[[w]]⊗Ω1
U/A

(
mt̃
)
be the relative

formal connection defined by ∇ν(f(w)) = df(w) + f(w)ν for f(w) ∈ A[[w]]. If we take the
inverse limit of the isomorphisms (E,∇) ⊗ A[z]/(zq)

∼−→ (A[[w]]/(wqr),∇ν |qx̃) constructed in
Proposition 4.1, we get the following corollary.

Corollary 4.3. Under the same assumption as Proposition 4.1, there is an isomorphism

(E,∇)⊗A[[z]] ∼= (A[[w]],∇ν).

If a connection (E,∇) has a formal isomorphism (E,∇) ⊗ ÔC,x
∼= (C[[w]],∇ν) at x, then it

induces a generic ν-ramified structure as in Example 2.6. Conversely, the above corollary enables
us to recover a formal isomorphism from a ν-ramified structure in Definition 2.4 or a factorized
ν-ramified structure in Definition 3.1. So we have the following corollary.

Corollary 4.4. Let (E,∇) be a pair of a vector bundle E of rank r on a curve C and a connection
∇ : E −→ E ⊗ Ω1

C(D) with poles along the divisor D whose multiplicity at x is m. Take
a generator z of the maximal ideal of OX,x and a variable w with wr = z. Consider a rational
one form ν(w) = ν0(z) + ν1(z)w+ · · ·+ νr−1(z)w

r−1 such that ν0(z) ∈
∑m−1

i=0 Czi−mdz, νk(z) ∈∑m−2
i=0 Czi−mdz for 1 ≤ k ≤ r − 1 and that the leading term of ν1(z) does not vanish. Then the

following conditions are equivalent.

(1) (E,∇) is generic ν-ramified at x, that is, (Ê, ∇̂) ∼= (C[[w]],∇ν).

(2) There is a generic ν-ramified structure on (E,∇) at x in the sense of Definition 2.4.

(3) There is a factorized ν-ramified structure on (E,∇) at x in the sense of Definition 3.1.

5 Construction of the moduli space of connections

The moduli space of ramified connections is constructed in [13]. Since some notations in this
paper are different from those in [13], we recall the construction of the moduli space in our
setting.
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Let nlog, nun, nram be non-negative integers and put n = nlog + nun + nram. Consider the

moduli stack Mg,n of n-pointed curves
(
C, x

(log)
1 , . . . , x

(log)
nlog , x

(un)
1 , . . . , x

(un)
nun , x

(ram)
1 , . . . , x

(ram)
nram

)
of genus g over SpecC. We can take a smooth algebraic scheme H over SpecC with a smooth
surjective morphism H −→ Mg,n. Indeed, we can take a subscheme H ′ of HilbPL parameterizing
the l-th canonical embeddings C ↪→ P(H0(ωlC)) of smooth projective curves C of genus g for
a fixed large l if g ≥ 2. If g = 1, we take H ′ as the open subset of P∗(H0(OP2(3))) parameterizing
the smooth cubic curves in P2. If g = 0, we take H ′ as a point. In any case, there is a universal
family Z ⊂ PL ×H ′ of curves over H ′. Then the open subscheme H of the fiber product of n
copies of Z over H ′ parameterizing the distinct n points on the curves satisfies our request. We
can take a universal family

(
C×H,

(
x̃logi

)
1≤i≤nlog

, (x̃uni )1≤i≤nun , (x̃
ram
i )1≤i≤nram

)
consisting of flat

family of curves of genus g over H and sections x̃logi (1 ≤ i ≤ nlog), x̃
un
i (1 ≤ i ≤ nun), x̃

ram
i

(1 ≤ i ≤ nram) of C over H. We denote the ideal sheaf of x̃uni (resp. x̃ramj ) by Ix̃uni (resp. Ix̃ramj
).

Assume that integers mun
i ≥ 2 are given for 1 ≤ i ≤ nun and integers mram

i ≥ 2 are given for
1 ≤ i ≤ nram. We put

Dlog :=

nlog∑
i=1

x̃logi , Dun :=

nun∑
i=1

mun
i x̃

un
i , Dram :=

nram∑
i=1

mram
i x̃rami ,

D := Dlog +Dun +Dram.

Let X be the maximal open subset of

Spec SymOH

(
HomOH

( nun⊕
i=1

Ix̃uni /(Ix̃uni )m
un
i +1 ⊕

nram⊕
j=1

Ix̃ramj
/(Ix̃ramj

)m
ram
j +1, OH

))

such that the restriction z̄ of the universal section to X gives a generator of
(
Ix̃uni /I

mun
i +1

x̃uni

)
⊗OHOX

at each x̃uni (resp. a generator of
(
Ix̃ramj

/I
mram

j +1

x̃ramj

)
⊗OH OX at each x̃ramj ).

Fix complex numbers

λ =
(
λ
(i)
k

)
1≤i≤nlog, 0≤k≤r−1

∈ Crnlog ,

cun =
(
cuni,k
)
1≤i≤nun, 0≤k≤r−1 ∈ Crnun ,

cram =
(
crami

)
1≤i≤nram

∈ Cnram ,

which satisfy the equality

d+

nlog∑
i=1

r−1∑
k=0

λ
(i)
k +

nun∑
i=1

r−1∑
k=0

cuni,k +

nram∑
i=1

(
rcrami +

r − 1

2

)
= 0

for an integer d. We set

V = Spec

SymOX

( nun⊕
i=1

O⊕(m
un
i −1)r

X ⊕
nram⊕
j=1

O
⊕(mram

j −1)r
X

)
and take universal sections

(
ãuni,k,j

)
1≤i≤nun,0≤k≤r−1,0≤j≤mun

i −2
∈

nun⊕
i=1

r−1⊕
k=0

mun
i −2⊕
j=0

OV,

(
ãrami,k,j

)
1≤i≤nram,0≤k≤r−1,0≤j≤mram

i −2 ∈
nram⊕
i=1

r−1⊕
k=0

mram
i −2⊕
j=0

OV.
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Let T be the Zariski open subset of V defined by

T =

{
t ∈ V

∣∣∣∣ for each 1 ≤ i ≤ nun, ã
un
i,k,0(t) ̸= ãuni,k′,0(t) for k ̸= k′,

and ãrami,1,0(t) ̸= 0 for any 1 ≤ i ≤ nram

}
.

We take a lift z of z as a local algebraic function in a neighborhood of D and rephrase the above
universal sections by setting

µ̃k(z̄) =

nun∑
i=1

(
ãuni,k,0 + · · ·+ ãuni,k,mun

i −2 z̄
mun

i −2 + cuni,k z̄
mun

i −1
) dz

zm
un
i

∣∣∣∣
mun

i (x̃i)T

(0 ≤ k ≤ r − 1),

ν̃0(z̄) =

nram∑
i=1

(
ãrami,0,0 + ãrami,0,1 z̄ + · · ·+ ãrami,0,mram

i −2 z̄
mram

i −2 + crami z̄m
ram
i −1) dz

zm
ram
i

∣∣∣∣
mram

i (x̃i)T

,

ν̃k(z̄) =

nram∑
i=1

(
ãrami,k,0 + ãrami,k,1 z̄ + · · ·+ ãrami,k,mram

i −2 z̄
mram

i −2) dz

zm
ram
i

∣∣∣∣
mram

i (x̃i)T

(1 ≤ k ≤ r − 1),

ν̃(w) = ν̃0(z̄) + ν̃1(z̄)w + · · ·+ ν̃r−1(z̄)w
r−1

and we write µ̃ := (µ̃k)0≤k≤r−1 and ν̃ := ν̃(w). Note that the restriction of the differential forms
dz

zm
un
i

∣∣
mun

i (x̃i)T
, dz

zm
ram
i

∣∣
mram

i (x̃i)T
are independent of the choice of the representative z of z and are

uniquely determined by z.

We fix a parabolic weight α =
((
αlog
k

)1≤i≤nlog

1≤k≤r ,
(
αun
i,k

)1≤i≤nun

1≤k≤r ,
(
αram
i,k

)1≤i≤nram

1≤k≤r
)
as in Defini-

tion 2.8.

Theorem 5.1 ([13, Theorem 2.1]). There exists a relative coarse moduli spaceMα
C,D(λ, µ̃, ν̃) −→

T of α-stable connections with (λ, µ̃, ν̃)-structure on (C,D). Furthermore, Mα
C,D(λ, µ̃, ν̃) −→ T

is a quasi-projective morphism.

Proof. We use the same argument as in the proof of [15, Theorem 2.1] and [13, Theorem 2.1].
Consider the moduli functor M of tuples (E,∇, l, ℓ, (Vk)) consisting of rank r vector bundles E,
connections ∇ admitting poles along D and parabolic structure ℓ, l, (Vk) along D satisfying
α-stability. Then we can embed M to a locally closed subfunctor of the moduli functor of
stable parabolic triples (E1, E2, ϕ,∇, F∗(E1)), whose existence is proved in [14, Theorem 5.1].
So we can get a moduli space M which represents the étale sheafification of M and M is quasi-
projective over T . We can construct a quasi-projective schemeMλ,µ̃ overM which parameterizes
(λ, µ̃)-structure on (E,∇) compatible with l, ℓ as in the proof of [11, Theorem 2.1] and [15,
Theorem 2.1].

We only have to construct a parameter space of ν̃-ramified structure over Mλ,µ̃ such that the
filtration in Definition 2.4 (i) coincides with the given filtration (Vk). There is an étale surjective
morphism M ′ −→Mλ,µ̃ with a universal family

(
Ẽ, ∇̃, l̃, ℓ̃,

(
Ṽk
))

on CM ′ over M ′. We set

Aw :=

nram∏
i=1

OM ′ [w]/
(
wm

ram
i r−r+1

)
.

Since Aw is a finite module overM ′, we can construct a locally closed subscheme Q of a product
of Quot-schemes over M ′ such that the set of S-valued points of Q is

Q(S) =

{(
Ṽk ⊗ (Aw)S

πk−→ Lk
)
0≤k≤r−1

∣∣∣∣Lk is a quotient Aw module of Ṽk ⊗ (Aw)S and
Lk is a locally free (Aw)S-module of rank one

}
.

Let πk : Ṽk ⊗ (Aw)Q −→ L̃k be the universal quotient sheaf. There exists a maximal locally
closed subscheme Σ ⊂ Q such that the restrictions (πk)Σ

∣∣
(Ṽk)Σ

:
(
Ṽk
)
Σ
−→

(
L̃k
)
Σ
are surjective,
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the diagrams(
Ṽk
)
Σ

∇̃|(Dram)Σ−−−−−−→ (Ṽk)Σ ⊗ Ω1
CΣ/Σ((Dram)Σ)

πk

y yπk⊗id(
L̃k
)
Σ

ν(w)+ kdz
rz−−−−−−→

(
L̃k
)
Σ
⊗ Ω1

CΣ/Σ((Dram)Σ)

are commutative for 0 ≤ k ≤ r − 1, each composition
(
Ṽk
)
Σ

−→
(
Ṽk−1

)
Σ

πk−1−−−→
(
L̃k−1

)
Σ

factors through an (Aw)Σ-homomorphism ϕ̃k :
(
L̃k
)
Σ
−→

(
L̃k−1

)
Σ
whose image is w

(
L̃k−1

)
Σ
for

1 ≤ k ≤ r − 1 and the composition (z) ⊗ (V0)Σ −→ (Vr−1)Σ
πr−1−−−→

(
L̃r−1

)
Σ

factors thorough

an (Aw)Σ-homomorphism ϕ̃r : (z) ⊗
(
L̃0

)
Σ
−→ (L̃r−1)Σ whose image is w

(
L̃r−1

)
Σ
. We denote

the free (Aw)Σ-module
⊕nram

i=1

(
wk
)
/
(
wk+m

ram
i r−r+1

)
simply by

(
wk
)
. Consider the affine space

bundle

Vk = Spec SymOΣ

(
HomOΣ

(
Hom(Aw)Σ

((
L̃k
)
Σ
, ((w)⊗Aw ⊗ L̃k−1)Σ

)
,OΣ

))
−→ Σ

for k = 1, . . . , r − 1 and take a universal section

ψk :
(
L̃k
)
Vk

−→
(
(w)⊗Aw ⊗ L̃k−1

)
Vk
.

There is a morphism

ck : Vk −→ Spec SymOΣ

(
HomOΣ

(
Hom(Aw)Σ

((
L̃k
)
Σ
,
(
wL̃k−1

)
Σ

)
,OΣ

))
over Σ defined by the composition(

L̃k
)
Vk

ψk−→
(
(w)⊗Aw ⊗ L̃k−1

)
Vk

−→
(
wL̃k−1

)
Vk
.

Over the fiber c−1k
(
ϕ̃k
)
⊂ Vk, the composition(

L̃k
)
c−1
k (ϕ̃k)

ψk−→
(
(w)⊗Aw ⊗ L̃k−1

)
c−1
k (ϕ̃k)

−→
(
wL̃k−1

)
c−1
k (ϕ̃k)

coincides with
(
ϕ̃k
)
c−1
k (ϕ̃k)

:
(
L̃k
)
c−1
k (ϕ̃k)

−→
(
wL̃k−1

)
c−1
k (ϕ̃k)

, which is surjective. So, we can see

by the Nakayama’s lemma, that (ψk)c−1
k (ϕ̃k)

:
(
L̃k
)
c−1
k (ϕ̃k)

−→ (w)⊗
(
L̃k−1

)
c−1
k (ϕ̃k)

is surjective and

then (ψk)c−1
k (ϕ̃k)

is isomorphic because it is a surjection between locally free (Aw)c−1
k (ϕ̃k)

-modules

of rank one. Consider the group scheme G over Σ whose set of S-valued points is

G(S) =

nram∏
i=1

(
1 +H0(OS)z

mram
i −1),

where each component
(
1+H0(OS)z

mram
i −1) is regarded as a subgroup of the group of invertible

elements ofH0((Aw)S). Then there is a canonical action of G on the product Y :=
∏r−1
k=1 c

−1
k

(
ϕ̃k
)

and

Y =

r−1∏
k=1

c−1k
(
ϕ̃k
)
−→ Σ

is a G-torsor. Consider the composition

ψ1 ◦ · · · ◦ ψr−1 ◦ ϕr : (z)⊗
(
L̃0

)
Y

ϕ̃r−→
(
L̃r−1

)
Y

ψr−1−−−→
∼

(w)⊗
(
L̃r−2

)
Y

ψr−2−−−→
∼

· · · ψ1−→
∼

(
wr−1

)
⊗
(
L̃0

)
Y
.
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Then there exists a maximal closed subscheme Z ⊂ Y such that the composition
(
ψ1◦· · ·◦ψr−1◦

ϕ̃r
)
Y
coincides with the canonical homomorphism (z)⊗

(
L̃0

)
Y
−→

(
wr−1

)
⊗
(
L̃0

)
Y
induced by

the inclusion (z) ↪→
(
wr−1

)
. By the construction, Z is invariant under the action of G. So Z

descends to a closed subscheme Σν̃ ⊂ Σ. We can see that the quasi-projective scheme Σν̃
over M ′ descends to a quasi-projective scheme Mα

C,D(λ, µ̃, ν̃) over Mλ,µ̃ which is the desired
moduli space. ■

6 Tangent space of the moduli space
using factorized ramified structure

The aim of introducing the factorized ramified structure is to construct a duality on the tangent
space of the moduli space, which was not achieved in [13]. We will first describe the tangent
space of the moduli space by the infinitesimal deformation of factorized ramified structure.

Let the notation be as in Section 5. Take a point t ∈ T . We will describe the tangent space of
the fiber Mα

C,D(λ, µ̃, ν̃)t of the moduli space over t. We write C := Ct, D := Dt, Dlog = (Dlog)t,
Dun = (Dun)t, Dram = (Dram)t and (µ, ν) := (µ̃, ν̃)t. We put mx := mun

i for x = x̃uni |t and
mx := mram

i for x = x̃rami |t.
Let (E,∇, l, ℓ,V) be a connection on (C,D) with (λ, µ, ν)-structure. If we put

lk :=
⊕
x∈Dlog

lxk , ℓk :=
⊕
x∈Dun

ℓxk,

then we get filtrations E|Dlog
= l0 ⊃ l1 ⊃ · · · ⊃ lr−1 ⊃ lr = 0, E|Dun = ℓ0 ⊃ ℓ1 ⊃ · · · ⊃ ℓr−1 ⊃

lr = 0 such that lk/lk+1
∼= ODlog

and ℓk/ℓk+1
∼= ODun for 0 ≤ k ≤ r − 1. If we put

Vk :=
⊕

x∈Dram

V x
k , V k :=

⊕
x∈Dram

V
x
k, W k :=

⊕
x∈Dram

W
x
k,

then we get a filtration E|Dram = V0 ⊃ V1 ⊃ · · · ⊃ Vr−1 ⊃ Vr = zV0 with surjections Vk −→ V k

and isomorphisms W k
∼= HomODram

(V r−k−1,ODram) for 0 ≤ k ≤ r − 1.
Define a complex G• of sheaves on C by setting

G0 =

{
u ∈ End(E)

∣∣∣∣u|Dlog
(lk) ⊂ lk, u|Dun(ℓk) ⊂ ℓk and u|Dram(Vk) ⊂ Vk

for 0 ≤ k ≤ r − 1

}
, (6.1)

G1 =

{
v ∈ End(E)⊗ Ω1

C(D)

∣∣∣∣v|Dlog
(lk) ⊂ lk+1 ⊗ Ω1

C(D), v|Dun(ℓk) ⊂ ℓk+1 ⊗ Ω1
C(D)

and v|Dram(Vk) ⊂ Vk ⊗ Ω1
C(D) for 0 ≤ k ≤ r − 1

}
,

and by defining the homomorphism

d0G• : G0 ∋ u 7→ ∇ ◦ u− (u⊗ 1) ◦ ∇ ∈ G1. (6.2)

The meaning of the hypercohomology H1(G•) is the tangent space of the moduli space of connec-
tions (E,∇) on C equipped with logarithmic λ-parabolic structure alongDlog, generic unramified
µ-parabolic structure along Dun and a filtration E|Dram = V0 ⊃ V1 ⊃ · · · ⊃ Vr−1 ⊃ Vr = zV0
preserved by ∇. For the description of the tangent space of the moduli space Mα

C,D(λ, µ̃, ν̃)t, we

will construct the data of deformation of factorized ramified structure in addition to H1(G•).
For (vk) ∈

⊕r−1
k=0Hom

(
V k, V k ⊗ Ω1

C(D)
)
, consider the diagrams

zODram ⊗ V 0
vk−−−−→ zODram ⊗ V 0 ⊗ Ω1

C(D)y y
V r−1

vk−1−−−−→ V r−1 ⊗ Ω1
C(D),
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V k
vk−−−−→ V k ⊗ Ω1

C(D)y y
V k−1

vk−1−−−−→ V k−1 ⊗ Ω1
C(D)

(1 ≤ k ≤ r − 1). (6.3)

If we put

G1 =

{
(vk) ∈

r−1⊕
k=0

Hom(V k, V k ⊗ Ω1
C(D))

∣∣∣∣∣all the diagrams in (6.3)
are commutative

}
,

then there is a canonical homomorphism

ϖG : G1 −→ G1

defined by ϖG(v) =
(
v|Dram

)
k
, where v|Dram : V k −→ V k⊗Ω1

C(D) is the homomorphism induced
by v|Dram . We can see the surjectivity of ϖG by the following lemma, which is often used later.

Lemma 6.1. For any tuple (hk) ∈
∏r−1
k=0 EndODram

(
V k

)
of endomorphisms satisfying the com-

mutative diagrams

zODram ⊗ V 0
id⊗h0−−−−→ zODram ⊗ V 0y y

V r−1
hr−1−−−−→ V r−1,

V k
hk−−−−→ V ky y

V k−1
hk−1−−−−→ V k−1

(1 ≤ k ≤ r − 1),

there exists an endomorphism h ∈ EndODram
(E|Dram) satisfying h(Vk) ⊂ Vk and the commutative

diagrams

Vk
πk−−−−→ V k

h|Vk

y yhk
Vk

πk−−−−→ V k

for 0 ≤ k ≤ r − 1. Moreover, Tr(h) ∈ ODram is uniquely determined by (hk) and independent of
the choice of h.

Proof. Let e0, . . . , er−1 be the basis of E|Dram taken in the proof of Proposition 3.3. Then we
can write

hk(ek) = ak,kek + ak+1,kek+1 + · · ·+ ar−1,ker−1 + za0,ke1 + · · ·+ zak−1,kek−1

for ak,k ∈ ODram and al,k ∈ OD′
ram

for l ̸= k, where we put D′ram :=
∑

x∈Dram
(mx− 1)x and zal,k

is the image of z⊗ al,k under the isomorphism (z)⊗OD′
ram

∼−→ zODram for l < k We can see that
a lift h ∈ EndODram

(E|Dram) of (hk) desired in the lemma is given by the matrix
a0,0 za0,1 · · · za0,r−1
a1,0 a1,1 · · · z1,r−1
...

...
. . .

...
ar−1,0 ar−1,1 · · · ar−1,r−1


with respect to the basis e0, . . . , er−1, where al,k ∈ ODram are lifts of ak,l for l > k. In particular,
we obtain the existence of h. The ambiguities of h are the lower triangular entries ai,j with
i > j. So its trace Tr(h) = a0,0 + · · ·+ ar−1,r−1 is independent of the choice of h. ■
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The trace pairing Tr: ker(ϖG)⊗ G0 ∋ v ⊗ u 7→ Tr(v ◦ u) ∈ Ω1
C induces an isomorphism

kerϖG
∼−→
(
G0
)∨ ⊗ Ω1

C .

For (τk) ∈
⊕r−1

k=0Hom
(
W k, V k

)
, consider the diagrams

W k −−−−→ W k−1

τk

y τk−1

y
V k −−−−→ V k−1

(1 ≤ k ≤ r − 1),

zODram ⊗W 0 −−−−→ W r−1

id⊗τ0
y τr−1

y
zODram ⊗ V 0 −−−−→ V r−1

(6.4)

and for (ξk) ∈
⊕r−1

k=0Hom
(
V k,W k

)
, consider the diagrams

V k −−−−→ V k−1

ξk

y ξk−1

y
W k −−−−→ W k−1

(1 ≤ k ≤ r − 1),

zODram ⊗ V 0 −−−−→ V r−1

id⊗ξ0
y ξr−1

y
zODram ⊗W 0 −−−−→ W r−1.

(6.5)

Then we put

Sym2
(
W
)
=

{
(τk) ∈

r−1⊕
k=0

Hom
(
W k, V k

) ∣∣∣∣∣ the diagrams (6.4) are commutative
and tτr−k−1 = τk for 0 ≤ k ≤ r − 1

}
,

Sym2
(
V
)
=

{
(ξk) ∈

r−1⊕
k=0

Hom
(
V k,W k

) ∣∣∣∣∣ the diagrams (6.5) are commutative
and tξr−k−1 = ξk for 0 ≤ k ≤ r − 1

}

and put

A0 =

{
(ak(w)) ∈

⊕
x∈Dram

r−1∏
k=0

C[w]/
(
wmxr−r+1

) ∣∣∣∣∣w (ak(w)− ak+1(w)) = 0
for 0 ≤ k ≤ r − 2

}
,

A1 = HomODram

(
A0,ODram

)
.

We need the following lemma which is similar to Lemma 6.1.

Lemma 6.2. Assume that (τk) ∈ Sym2
(
W
)
and (ξk) ∈ Sym2

(
V
)
are given. Then there

are homomorphisms τ : E|∨Dram
−→ E|Dram, ξ : E|Dram −→ E|∨Dram

satisfying tτ = τ , tξ = ξ,
τ(Wk) ⊂ Vk, ξ(Vk) ⊂Wk and the commutative diagrams

Wk

τ |Wk−−−−→ Vky y
W k

τk−−−−→ V k,

Vk
ξ|Vk−−−−→ Wky y

V k
ξk−−−−→ W k

for k = 0, 1 . . . , r − 1, where Wk =
⊕

x∈Dram
ker(zmx−1( tN)r−k) ⊂ E|∨Dram

.

Proof. Choose the basis e0, . . . , er−1 of E|Dram taken in the proof of Proposition 3.3 and its
dual basis e∗0, . . . , e

∗
r−1. Since τk

(
W k

)
⊂ V k, we can write

τk(e
∗
r−k−1) = zb0,r−k−1e0 + · · ·+ zbk−1,r−k−1ek−1 + bk,r−k−1ek

+ bk+1,r−k−1ek+1 + · · ·+ br−1,r−k−1er−1,
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where bl,r−k−1 ∈ OD′
ram

for l ≥ k+1 and bl,r−k−1 ∈ ODramfor l ≤ k. Take a lift bl,r−k−1 ∈ ODram

of bl,r−k−1 for l ≥ k + 1. Then we have

zbl,r−k−1 = τk(e
∗
r−k−1)(e

∗
l ) = τr−k−1(e

∗
l )(e

∗
r−k−1)

= τr−l−1(e
∗
l )(e

∗
r−k−1) = zbr−k−1,l (for l ≤ k − 1),

bk,r−k−1 = τk(e
∗
r−k−1)(e

∗
k) = τr−k−1(e

∗
k)(e

∗
r−k−1) = br−k−1,k,

zbl,r−k−1 = τk(e
∗
r−k−1)(ze

∗
l ) = τr−k−1(ze

∗
l )(e

∗
r−k−1)

= τr−l−1(ze
∗
l )(e

∗
r−k−1) = zbr−k−1,l (for l ≥ k + 1).

After replacing br−k−1,l for l ≥ k + 1, we may assume bl,r−k−1 = br−k−1,l for l ≥ k + 1. Let
τ : E|∨Dram

−→ E|Dram be the homomorphism given by the matrix

zb00(z) · · · b0,r−1(z)
... . .

. ...
zb0,k(z) · · · bk,r−k−1(z) · · · bk,r−1(z)

... . .
. ...

b0,r−1(z) · · · br−1,r−1(z)


with respect to the bases (e∗0, . . . , e

∗
r−1) and (e0, . . . , er−1). Then we have tτ = τ and τ also

satisfies the other required conditions of the lemma. The same statement holds for (ξk). ■

We define a complex S•ram by setting

S0
ram = A0, S1

ram = Sym2
(
W
)
⊕ Sym2

(
V
)
, S2

ram = G1 ⊕A1 (6.6)

and by setting the homomorphisms

d0S• : S0
ram ∋ (ak(w)) 7→

((
θk ◦ ak(κk ◦ θk)

)
,
(
−ak(κk ◦ θk) ◦ κk

))
∈ S1

ram,

d1S• : S1
ram ∋ ((τk), (ξk)) 7→

(
−(δ(τk,ξk)),Θ(τk,ξk)

)
∈ S2

ram, (6.7)

where δ(τk,ξk) ∈ G1 and Θ(τk,ξk) ∈ A1 are defined by

δ(τk,ξk) =

( r−1∑
p=1

p∑
l=1

νp(z)N
p−l
k ◦

(
θk ◦ ξk + τk ◦ κk

)
◦N l−1

k

)
,

Θ(τk,ξk)

((
fk(w)

))
= Tr

(
f ◦ (θ ◦ ξ + τ ◦ κ)

)
,

where θ, κ are lifts of (θk), (κk) chosen as in the proof of Proposition 3.3, τ , ξ are lifts of (τk),
(ξk) given by Lemma 6.2 and f ∈ End(E|Dram) is a lift of (fk(θk ◦ κk)) given by Lemma 6.1. By
virtue of Lemma 6.1, we can see that Θ(τk,ξk) is independent of the choices of θ, κ, τ , ξ and f .
We can also check d1S• ◦ d0S• = 0. The meaning of the cohomology H1(S•ram) is the first order
deformation of factorized ramified structure.

We define a homomorphism of complexes γ• : G• −→ S•ram[1] by

γ0 : G0 ∋ u 7→
((
u|Dram ◦ θk + θk ◦ tu|Dram

)
,
(
−κk ◦ u|Dram − tu|Dram ◦ κk

))
∈ S1

ram,

γ1 : G1 ∋ v 7→ (−ϖG(v), 0) ∈ G1 ⊕A1 = S2
ram, (6.8)

where u|Dram : V k −→ V k is the homomorphism induced by u|Dram .
For u ∈ G0, we have

δγ0(u) =

( r−1∑
p=1

p∑
l=1

νp(z)N
p−l
k

(
u|DramNk −Nku|Dram

)
N l−1
k

)
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=
(
u|Dramν(Nk)− ν(Nk)u|Dram

)
.

On the other hand, the restriction ∇|Dram induces the homomorphism ν(Nk)+
k dz
rz id on V k. So

we have δγ0(u) = −ϖG(∇u− u∇). Thus we have d0S•[1]γ
0 = γ1d0G• , where d

0
S•[1] = −d1S• . Set

F• := Cone
(
G• γ•−→ S•ram[1]

)
[−1]. (6.9)

So we have

F0 = G0 ⊕A0, F1 = G1 ⊕ Sym2
(
V
)
⊕ Sym2

(
W
)
, F2 = G1 ⊕A1

and d0F• : F0 −→ F1, d1F• : F1 −→ F2 are defined by

d0F•(u, (ak(w))) =
(
∇ ◦ u− (u⊗ id) ◦ ∇,−γ0(u) + d0S•((ak(w)))

)
d1F•(v, ((τk), (ξk))) =

(
ϖG(v)− (δ(τk,ξk)),Θ(τk,ξk)

)
.

Consider the complexes F•0 =
[
G0 ⊕ S0

ram −→ Sym2
(
W
)]
, F•1 =

[
G1 ⊕ Sym2

(
V
)
−→ S2

ram

]
defined by

d0F•
0
: G0 ⊕A0 ∋ (u, (ak(w))) 7→

(
−u|Dram◦ θk− θk◦tu|Dram+ θk ◦ ak(κk ◦ θk)

)
∈Sym2

(
W
)
,

d0F•
1
: G1 ⊕ Sym2

(
V
)
∋ (v, (ξk)) 7→ (ϖG(v)− (δ(0,ξk)), (Θ(0,ξk))) ∈ G1 ⊕A1.

Then there is an exact sequence of complexes

0 −→ F•1 [−1] −→ F• −→ F•0 −→ 0

which is expressed by the diagram

0 −−−−→ G0 ⊕A0 −−−−→ G0 ⊕A0y d0F•

y d0F•
0

y
G1 ⊕ Sym2

(
V
)
−−−−→ G1 ⊕ Sym2

(
W
)
⊕ Sym2

(
V
)
−−−−→ Sym2(W )

d0F•
1

y d1F•

y y
G1 ⊕A1 −−−−→ G1 ⊕A1 −−−−→ 0.

So we get the following exact sequence of hyper cohomologies:

0 → H0(F•) → H0(F•0 ) → H0(F•1 ) → H1(F•) → H1(F•0 ) → H1(F•1 )
→ H2(F•) → 0. (6.10)

Proposition 6.3. The relative tangent space of Mα
C,D(λ, µ̃, ν̃) over T at (E,∇, {l, ℓ,V}) is iso-

morphic to H1(F•).

Proof. Take a point t ∈ T and a point y ∈Mα
C,D(λ, µ̃, ν̃) over t corresponding to a connection

(E,∇, {l, ℓ,V}) with (λ, µ, ν)-structure. Giving a tangent vector v of the fiber Mα
C,D(λ, µ̃, ν̃)t

of the moduli space at y is equivalent to giving a flat family (Ẽ, ∇̃, {l̃, ℓ̃, Ṽ}) of connections
with (λ, µ, ν)-structure on C×SpecC[ϵ] satisfying

(
Ẽ, ∇̃,

{
l̃, ℓ̃, Ṽ

})
⊗C[ϵ]/(ϵ) ∼= (E,∇, {l, ℓ,V}),

where C[ϵ] = C[ϵ]/
(
ϵ2
)
. Take an affine open covering {Uα} of C such that E|Uα

∼= O⊕rUα
for

any α. Put Uα[ϵ] := Uα × SpecC[ϵ]. We may assume that for each x ∈ D, there exists exactly
one index α satisfying x ∈ Uα and that each Uα contains at most one point in D. We can take
a lift φα : E⊗C[ϵ]|Uα[ϵ]

∼−→ Ẽ|Uα[ϵ] of the given isomorphism E|Uα

∼−→ Ẽ⊗C[ϵ]/(ϵ)|Uα . We may
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assume that φα preserves l if Dlog ∩Uα ̸= ∅ and preserves ℓ if Dun ∩Uα ̸= ∅. If Dram ∩Uα ̸= ∅,
then we may assume that φα sends the filtration

{
Vk ⊗ C[ϵ]

}
to the filtration {Ṽk}. Set

ϵuαβ = φ−1α ◦ φβ − id,

ϵvα = (φα ⊗ id)−1 ◦ ∇̃ ◦ φα −∇⊗ C[ϵ],
ϵηα =

(
φα|−1Dram

◦ θ̃k ◦ tφα|−1Dram
− θk,

tφα|Dram ◦ κ̃k ◦ φα|Dram − κk
)
.

Then we get a cohomology class [{uαβ}, {vα, (ηα)}] ∈ H1(F•), which can be checked to be
independent of the choice of {Uα, φα}.

Conversely, assume that a cohomology class [{uαβ}, {vα}, {ηα}] ∈ H1(F•) is given. We define

σβα = id + ϵuαβ : O⊕rUαβ [ϵ]

∼−→ O⊕rUαβ [ϵ]
,

∇α = ∇+ ϵvα : O⊕rUα[ϵ]
−→ O⊕rUα[ϵ]

⊗ Ω1
C(D). (6.11)

If Uα ∩ Dlog ̸= ∅ we put lα := l|Uα ⊗ C[ϵ] and we put ℓα := ℓ|Uα⊗C[ϵ] if Uα ∩ Dun ̸= ∅. Then
we can see that ∇α preserves lα if Uα ∩Dlog ̸= ∅ and preserves ℓα if Uα ∩Dun ̸= ∅, because vα
preserves l|Uα and ℓ|Uα by the definition of G1.

Consider the case Uα ∩Dram = {x}. We can write ηα = (τk, ξk)0≤k≤r−1. By the choice of ηα,
we have δ(τk,ξk) = vα|Dram and Θ(τk,ξk) = 0, which yield the equalities

Tr
(
(θ ◦ ξ + τ ◦ κ) ◦N j

)
= 0, 0 ≤ j ≤ r − 1,

r−1∑
p=1

p∑
j=1

νp(z)N
p−j
k (θkξk + τkκk)N

j−1
k = vα|Dram , 0 ≤ k ≤ r − 1, (6.12)

where N , θ and κ are lifts of (Nk), (θk) and (κk) chosen as in the proof of Proposition 3.3
and τ , ξ are lifts of (τk), (ξk) given by Lemma 6.2.

Since the minimal polynomial wr of N |x is of degree r, we can see from [12, Lemma 1.4].
that

Im(ad(N)) =
{
f ∈ EndOmxx(E|mxx)

∣∣Tr (f ◦N l
)
= 0 for any l ≥ 0

}
.

So we can find an endomorphism f ∈ End(E|mxx) satisfying θ ◦ ξ + τ ◦ κ = f ◦N −N ◦ f .
Now we will construct a factorized ramified structure on

(
O⊕rUα[ϵ]

,∇α

)
. We take (Vk ⊗

C[ϵ])0≤k≤r−1 as the relative version of the filtration in Definition 3.1 (i). The homomorphisms

θk,ϵ := θk + ϵτk : W k ⊗ C[ϵ] −→ V k ⊗ C[ϵ],
κk,ϵ := κk + ϵξk : V k ⊗ C[ϵ] −→W k ⊗ C[ϵ]

become lifts of θk and κk, respectively. They determine bilinear pairings

ϑk,ϵ :
(
W k ⊗ C[ϵ]

)
×
(
W r−k−1 ⊗ C[ϵ]

)
−→ Omxx ⊗ C[ϵ],

κk,ϵ :
(
V k ⊗ C[ϵ]

)
×
(
V r−k−1 ⊗ C[ϵ]

)
−→ Omxx ⊗ C[ϵ],

which satisfy the commutative diagrams in (ii), (iii) of Definition 3.1. Since N r = z · idE|mxx
,

the equality

(N + ϵ(θ ◦ ξ + τ ◦ κ))r = N r + ϵ
r−1∑
j=0

N j ◦ (θ ◦ ξ + τ ◦ κ) ◦N r−j−1

= N r + ϵ

r−1∑
j=0

N j ◦ (f ◦N −N ◦ f) ◦N r−j−1
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= N r + f ◦N r −N r ◦ f = z idO⊕r
Uα[ϵ]

holds. By the equality (6.12),

ν(Nk + ϵ(θk ◦ ξk + τk ◦ κk)) + k dz/rz id

= ν(Nk) + k dz/rz id + ϵ
r−1∑
p=1

p∑
j=1

νp(z)N
p−j
k (θk ◦ ξk + τk ◦ κk)N j−1

k

= ν(Nk) + k dz/rz id + ϵvα|Dram

coincides with the map induced by ∇α. So the relative version of the condition (iv) of Defini-
tion 3.1 is satisfied. The endomorphism Nk + ϵ(θk ◦ ξk + τk ◦ κk) defines a C[w]⊗C C[ϵ]-module
structure on V k ⊗ C[ϵ]. Define an isomorphism

ψk,ϵ : V k ⊗ C[ϵ] ∼−→ (w)/
(
wmxr−r+2

)
⊗ V k−1 ⊗ C[ϵ]

of C[w]⊗C C[ϵ]-modules by setting

ψk,ϵ
(
πk
(
(N + ϵ(θ ◦ ξ + τ ◦ κ))ke0

))
= w ⊗ πk−1

(
(N + ϵ(θ ◦ ξ + τ ◦ κ))k−1e0

)
,

where πk means πk ⊗ C[ϵ]. Then the image of z ⊗ π0(e0) via the composition

(z)⊗ V 0 ⊗ C[ϵ] → V r−1 ⊗ C[ϵ]
ψr−1,ϵ−−−−→
∼

(w)⊗ V r−2 ⊗ C[ϵ]
ψr−2,ϵ−−−−→
∼

· · ·
ψ1,ϵ−−→
∼

(wr−1)⊗ V 0 ⊗ C[ϵ] (6.13)

coincides with (ψ1,ϵ ◦ · · · ◦ ψr−1,ϵ)
(
πr−1

(
(N + ϵ(θ ◦ ξ + τ ◦ κ))re0

))
= wr ⊗ π0(e0). Thus the

composition (6.13) coincides with the homomorphism (z) ⊗ V 0 −→
(
wr−1

)
⊗ L0 obtained by

tensoring V 0 ⊗ C[ϵ] to the canonical homomorphism (z) −→
(
wr−1

)
.

If we put Vα :=
(
V k ⊗ C[ϵ], ϑk,ϵ, κk,ϵ

)
0≤k≤r−1, then we can see from the above arguments

that
(
O⊕rUα[ϵ]

,∇α,Vα
)
is a flat family of local connections with ν(w)x-ramified structure which

is a lift of (E,∇,V)|Uα . We can patch all the local connections
(
O⊕rUα[ϵ]

, lα, ℓα∇α,Vα
)
with

(λ, µ, ν)-structure via the isomorphisms σβα defined in (6.11). Then we obtain a global flat
family of connections

(
Ẽ, ∇̃, l̃, ℓ̃, Ṽ

)
with (λ, µ, ν)-structure which gives a tangent vector v ∈

TMα
C,D(λ,µ̃,ν̃)/T (y) at y. We can see from its construction that the map [{uαβ}, {vα, ηα}] 7→ v

gives the desired inverse. ■

7 Smoothness of the moduli space

In this section, we assume the same notations as in Sections 5 and 6. Take a connection
(E,∇, {l, ℓ,V}) ∈Mα

C,D(λ, µ̃, ν̃)t with (λ, µ, ν)-structure. We define a pairing

Ξram : S1
ram × S1

ram −→ Ω1
C(D)|Dram

by setting

Ξram((τk, ξk), (τ
′
k, ξ
′
k))

:=

r−1∑
p=1

p∑
j=1

νp(z)

2
Tr
(
τ ′ ◦ tNp−j ◦ ξ ◦N j−1 −Np−j ◦ τ ◦ tN j−1 ◦ ξ′

)
(7.1)
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for (τk), (τ
′
k) ∈ Sym2

(
W
)
and (ξk), (ξ

′
k) ∈ Sym2

(
V
)
, where τ, τ ′ ∈ Hom(E|∨Dram

, E|Dram) are
lifts of (τk), (τ

′
k) and ξ, ξ′ ∈ Hom

(
E|Dram , E|∨Dram

)
are lifts of (ξk), (ξ

′
k) given by Lemma 6.2,

respectively.
Take an affine open covering C =

⋃
α Uα for the calculation of the hypercohomologies in Čech

cohomology. We define a bilinear pairing

ω(E,∇,{l,ℓ,V}) : H1(F•)×H1(F•) −→ H2
(
OC → Ω1

C(Dram) → Ω1
C(Dram)|Dram

)
= C (7.2)

by setting

ω(E,∇,{l,ℓ,V})
([
{uαβ}, {vα, ηα}

]
,
[
{u′αβ}, {v′α, η′α}

])
=
[
{Tr(uαβ ◦ u′βγ)}, {−Tr(uαβ ◦ v′β − vα ◦ u′αβ)}, {Ξram(ηα, η

′
α)}
]

(7.3)

for uαβ, u
′
αβ ∈ G0|Uαβ

, vα, v
′
α ∈ G1|Uα , ηα, η

′
α ∈ S1

ram|Uα satisfying the cocycle conditions

∇uαβ − uαβ∇ = vβ − vα, γ1(vα) = d1S•(ηα),

∇u′αβ − u′αβ∇ = v′β − v′α, γ1(v′α) = d1S•(η
′
α),

where d1S• and γ1 are defined in (6.7) and (6.8). From the following lemma, we can see that
the pairing ω(E,∇,{l,ℓ,V})

([
{(uαβ}, {vα, ηα}

]
,
[
{(u′αβ}, {v′α, η′α}

])
in (7.3) depends only on the co-

homology classes
[
{(uαβ}, {vα, ηα}

]
,
[
{(u′αβ}, {v′α, η′α}

]
∈ H1(F•).

Lemma 7.1. The equality

ω(E,∇,{l,ℓ,V})
([
{uαβ}, {vα, ηα}

]
,
[
{u′αβ}, {v′α, η′α}

])
= 0

holds if there exists {uα, (ak,α(w))} ∈ C0
(
{Uα},F0

)
which satisfies the equalities

uαβ = uβ − uα,

vα = ∇ ◦ uα − (uα ⊗ id) ◦ ∇,
ηα = −γ0(uα) + d0S•((ak,α(w))),

where γ0 : G0 −→ S1
ram is defined in (6.8) and d0S• : S0

ram −→ S1
ram is defined in (6.7).

Proof. We put cαβ := Tr(uα ◦ u′αβ) and bα := Tr(uα ◦ v′α). It is sufficient to prove the equality

d({cαβ}, {bα}) =
(
{Tr(uαβ ◦ u′βγ)}, {−Tr(uαβ ◦ v′β − vα ◦ u′αβ)}, {Ξram(ηα, η

′
α)}
)
.

We need a certain amount of calculations for checking the above equality, but we can do it in
the same way as that of [12, pp. 37–39]. ■

Proposition 7.2. The bilinear pairing ω(E,∇,{l,ℓ,V}) : H
1(F•) × H1(F•) −→ C, defined by the

equality (7.3) in (7.2), is a nondegenerate pairing.

Proof. The bilinear pairing ω(E,∇,{l,ℓ,V}) corresponds to a homomorphism σ : H1(F•) −→
H1(F•)∨ which induces the exact commutative diagram

H0(F•0 ) −−−−→ H0(F•1 ) −−−−→ H1(F•) −−−−→ H1(F•0 ) −−−−→ H1(F•1 )

σ1

y σ2

y σ

y σ3

y σ4

y
H1(F•1 )∨ −−−−→ H1(F•0 )∨ −−−−→ H1(F•)∨ −−−−→ H0(F•1 )∨ −−−−→ H0(F•0 )∨.

The homomorphism σ2 : H
0(F•1 ) −→ H1(F•0 )∨ is given by the pairing

H0(F•1 )×H1(F•0 ) −→ H2(OC → Ω1
C(Dram) → Ω1

C(Dram)|Dram)
∼= C,
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[{(vα, (ξk,α))}], [{(u′αβ, (τ ′k,α))}]

)
7→
[
{Tr(vα ◦ u′αβ)}, {Ξram((0, ξk,α), (τ

′
k,α, 0))}

]
and σ3 is defined similarly. There is an exact commutative diagram

0 −→H0
(
ker
(
G1→ G1

))
−→ H0(F•1 ) −→ ker

(
Sym2

(
V
)
→ A1

)
−→H1

(
ker
(
G1→ G1

))
η1

y σ2

y η2

y η3

y
0 −→ H1

(
G0
)∨ −→H1(F•0 )∨−→ coker

(
A0→ Sym2

(
W
))∨−→ H0

(
G0
)∨

whose horizontal sequences are induced by the exact sequences

0 −→
[
G1 → G1

]
−→ F•1 −→

[
Sym2

(
V
)
→ A1

]
−→ 0,

0 −→
[
A0 → Sym2

(
W
)]

−→ F•0 −→ G0 −→ 0.

Since the trace pairing induces an isomorphism ker
(
G1 → G1

) ∼−→ (
G0
)∨ ⊗ Ω1

C , we can see by
the Serre duality that η1 and η3 are isomorphisms.

The map η2 is induced by the trace pairing

ker
(
Sym2

(
V
)
→ A1

)
× coker

(
A0 → Sym2

(
W
))

−→ Ω1
C(Dram)|Dram ,

((ξk), (τk)) 7→ Ξram ((0, ξk), (τk, 0)) (7.4)

composed with Ω1
C(Dram)|Dram −→ H2

(
OC → Ω1

C(Dram) → Ω1
C(Dram)|Dram

)
.

Assume that (ξk) ∈ ker
(
Sym2(V ) → A1

)
satisfies Ξram((0, ξk), (τk, 0)) = 0 for any (τk) ∈

Sym2
(
W
)
. We can take a lift ξ of (ξk) given by Lemma 6.2. For any endomorphism h ∈

End(E|Dram), ψ := z
(
h ◦ θ + θ ◦ th

)
: E|∨Dram

−→ E|Dram is a homomorphism satisfying tψ = ψ

and ψ(Wk) ⊂ Vk. So ψ induces (ψk) ∈ Sym2
(
W
)
and the equality

0 = 2Ξram((0, ξk), (ψk, 0)) =

r−1∑
p=1

p∑
j=1

νp(z) Tr
(
z
(
h ◦ θ + θ ◦ th

)
◦ tNp−j ◦ ξ ◦N j−1).

holds by the assumption. Since

p∑
j=1

Tr
(
zθ ◦ th ◦ tNp−j ◦ ξ ◦N j−1) = p∑

j=1

Tr
(
ztN j−1 ◦ ξ ◦Np−j ◦ h ◦ θ

)
=

p∑
j=1

Tr(zh ◦ θ ◦ tNp−j ◦ ξ ◦N j−1),
we can deduce Tr

(
h ◦ z

∑r−1
p=1

∑p
j=1 νp(z)θ ◦ tNp−j ◦ ξ ◦N j−1) = 0. Since the usual trace pairing

is nondegenerate, we have z
∑r−1

p=1

∑p
j=1 νp(z)

tNp−j ◦ ξ ◦N j−1 = 0. Let

U =

 zm−1a0,0 · · · zm−1a0,r−1
...

...
zm−1a0,r−1,0 · · · zm−1ar−1,r−1


be the symmetric matrix representing

∑r−1
p=1

∑p
j=1 νp(z)

tNp−j ◦ ξ ◦N j with respect to the bases
(e0, . . . , er−1) and (e∗0, . . . , e

∗
r−1). Consider the trace pairing Tr(U(Eij + Eji)) for i+ j > r − 1,

where Eij is the matrix whose (i, j) entry is 1 and the other entries are zero. Then Eij + Eji
becomes a lift of an element of Sym2

(
W
)
. So we have Tr(U(Eij +Eji)) = zm−1(aij + aji) = 0.

Since U is symmetric, we have zm−1aij = 0 for i+ j ≥ r. So we have

r−1∑
p=1

p∑
j=1

νp(z)N
p−j
k ◦ θk ◦ ξk ◦N j−1

k = 0
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for each k. By the way, (ξk) ∈ ker
(
Sym2

(
V
)
→ A1

)
implies Tr

(
θ ◦ ξ ◦ N l

)
= 0 for any

0 ≤ l ≤ r − 1. So there is an endomorphism f ∈ End(E|Dram) satisfying θ ◦ ξ = Nf − fN .
Moreover, we have f(Vk) ⊂ Vk for any k. Thus we have

0 =
r−1∑
p=1

p∑
j=1

νp(z)N
p−j
k ◦ (Nk ◦ fk − fk ◦Nk) ◦N j−1

k = ν(Nk)fk − fkν(Nk)

for each 0 ≤ k ≤ r − 1, where fk is the endomorphism of V k induced by f . Since the w dz
zm -

coefficient of ν(w) does not vanish, we can deduce Nk ◦fk−fk ◦Nk = 0 from the above equality.
Thus we have (ξk) = 0. Hence the pairing (7.4) is a perfect pairing of ODram-modules, since
length

(
ker
(
Sym2

(
V → A1

)))
= length

(
coker

(
A0 → Sym2

(
W
)))

. Note that the map

Ω1
C(Dram)|Dram −→ H2(OC → Ω1

C(Dram) → Ω1
C(Dram)|Dram)

∼= C

is identified with the residue map. So we can see that the pairing

ker
(
Sym2

(
V
)
→ A1

)
× coker

(
A0 → Sym2

(
W
))

−→ C

induced by (7.4) is a perfect pairing of vector spaces, which means that η2 is an isomorphism.
Since η1, η3 and η2 are isomorphic, σ2 : H

0(F•1 )
∼−→ H1(F•0 )∨ is an isomorphism by the five

lemma. Then σ3 : H
1(F•0 )

∼−→ H0(F•1 )∨ is also isomorphic because it is the dual of σ2.
On the other hand, σ1 : H

0(F•0 ) −→ H1(F•1 )∨ is given by the pairing

H0(F•0 )×H1(F•1 ) −→ H2
(
OC → Ω1

C(Dram) → Ω1
C(Dram)|Dram

)
,(

[{uα, (ak,α(w))}], [{vαβ}, {(vk,α, bα)}]
)

7→
[
{Tr(vαβ ◦ uβ)},

{
Tr(v̄α ◦ uα) + bα

2 (ν
′(w)ak,α(w))

}]
,

where ν ′(w) :=
∑r−1

k=0 kνk(z)w
k−1 and vα ∈ End(E|Dram) is a lift of (vk,α) given by Lemma 6.1.

We have the exact commutative diagram

0 = ker
(
A0→ Sym2

((
W
)))

→ H0(F•0 ) → H0
(
G0
)

→coker
(
A0→ Sym2

((
W
)))

σ1

y tη3

y tη2

y
0 = coker

(
Sym2

((
V
))

→ A1
)∨→ H1(F•1 )∨→H1

(
ker
(
G1→ G1

))∨→ ker
(
Sym2

((
V
))

→ A1
)∨

and the five lemma implies that σ1 : H
0(F•0 ) −→ H1(F•1 )∨ is isomorphic because tη3 and tη2 are

isomorphic.
We can see that σ4 : H

1(F•1 ) −→ H0(F•0 )∨ is also isomorphic since it is the dual of σ1. Since
σ1, σ2, σ3, σ4 are all isomorphic, σ : H1(F•) −→ H1(F•)∨ is isomorphic by the five lemma. ■

We define a complex Ω̃• by setting Ω̃0 = OC , Ω̃
1 = Ω1

C(Dram)⊕A1, Ω̃2 = Ω1
C(Dram)|Dram⊕A1

and

d0
Ω̃• : OC ∋ f 7→ (df, 0) ∈ Ω1

C(Dram)⊕A1,

d1
Ω̃• : Ω1

C(Dram)⊕A1 ∋ (η, b) 7→ ((η|Dram − b(ν ′(w))), b) ∈ Ω1
C(Dram)|Dram ⊕A1,

where the k-th component of (ν ′(w)) ∈ A0⊗Ω1
C(Dram)|Dram is given by ν ′(w) =

∑r−1
j=0 jνj(z)w

j−1.

Then we can define a homomorphism of complexes Tr• : F• −→ Ω̃• by

Tr0 : F0 = G0 ⊕A0 ∋ (u, (fk(w))) 7→ Tr(u) ∈ OC ,

Tr1 : F1 = G1 ⊕ Sym2
(
W
)
⊕ Sym2

(
V
)
∋ (v, (τk), (ξk))

7→ (Tr(v), (Θ(τk,ξk))) ∈ Ω1
C(Dram)⊕A1,

Tr2 : F2 = G1 ⊕A1 ∋ ((vk), b)) 7→ (Tr(v), b) ∈ Ω1
C(Dram)|Dram ⊕A1,

where v ∈ Hom
(
E|Dram , E ⊗ Ω1

D(D)|Dram

)
is a lift of (vk) given by Lemma 6.1.
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Lemma 7.3. Assume that the endomorphism ring of E, preserving l, ℓ, V and commuting
with ∇, consists of the scalar multiplications CidE. Then the map

H2(Tr) : H2(F•) −→ H2
(
Ω̃•
) ∼= H2(Ω•C)

∼= C

is an isomorphism.

Proof. First note that H0(F•) = C because there are only scalar endomorphisms of E com-
muting with ∇ and preserving the (λ, µ, ν)-structure. Under the identification H0(F•) ∼= C ∼=
H2
(
Ω̃•
)∨

, there is an exact commutative diagram

H1(F•0 ) −−−−→ H1(F•1 ) −−−−→ H2(F•) −→ 0

σ3

y σ4

y H2(Tr•)

y
H0(F•1 )∨ −−−−→ H0(F•0 )∨ −−−−→ H0(F•)∨−→ 0.

Since σ3 and σ4 are isomorphisms, H2(Tr•) is also an isomorphism. ■

Remark 7.4. If (E,∇, l, ℓ,F) is α-stable, then the assumption of Lemma 7.3 holds.

Theorem 7.5. The moduli space Mα
C,D(λ, µ̃, ν̃) of connections with (λ, µ̃, ν̃)-structure is smooth

over T . The dimension of the fiber Mα
C,D(λ, µ̃, ν̃)t over t ∈ T is 2r2(g(Ct)−1)+2+r(r−1) degDt

if it is non-empty.

Proof. For the proof of the smoothness, take an Artinian local ring A over T with the maximal
ideal m and an ideal I of A satisfying mI = 0. Assume that a flat family (E,∇, l, ℓ,V) of
connections on C⊗A/I is given. Consider the complex F• determined from (E,∇, l, ℓ,V)⊗A/m
by (6.9). We take an affine open covering {Uα} of C ⊗ A as in the proof of Proposition 6.3.
If Uα ∩ (Dram)A = ∅, we can easily take a lift (Eα,∇α, {lα, ℓα,Vα}) of (E,∇, {l, ℓ,V})|Uα⊗A/I .
If Uα ∩ (Dram)A ̸= ∅, then we may assume that V ∩ Uα is given by a factorized ν̃-ramified
structure (Vk, ϑk,κk). As in the proof of Proposition 3.3, we can choose an endomorphism N
on E|(Dram)A/I

inducing θk ◦ κk on V k for 0 ≤ k ≤ r − 1. The representation matrix of N is
given by

0 0 · · · 0 z
1 0 · · · 0 0
...

. . .
. . .

...
...

0 · · · 1 0 0
0 · · · 0 1 0

 .

with respect to the basis e0, . . . , er−1 chosen as in the proof of Proposition 3.3. Then we can
give a factorization N = θ ◦ κ by the matrix factorization


0 0 · · · 0 z
1 0 · · · 0 0
...

. . .
. . .

...
...

0 · · · 1 0 0
0 · · · 0 1 0

 =


0 0 · · · 0 1
0 0 · · · 1 0
...

... . .
.

. .
. ...

0 1 0 · · · 0
1 0 0 · · · 0





0 0 · · · 0 1 0
0 0 · · · 1 0 0
...

... . .
.

. .
. ...

...

0 1 0 · · · 0 0
1 0 0 · · · 0 0
0 0 0 · · · 0 z


with respect to the basis e0, . . . , er−1 of E|(Dram)A/I

and its dual basis e∗0, . . . , e
∗
r−1. Let Eα be

a free OUα-module with Eα ⊗ A/I = E|Uα⊗A/I . Define Ñ : Eα|(Dram)A∩Uα
−→ Eα|(Dram)A∩Uα

,
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θ̃ : Eα|∨(Dram)A∩Uα
−→ Eα|(Dram)A∩Uα

and κ̃ : Eα|(Dram)A∩Uα
−→ Eα|∨(Dram)A∩Uα

by the same rep-

resentation matrices as N , θ and κ respectively. Then Ñ , θ̃ and κ̃ are lifts of N , θ and κ and
they induce a lift Vα = (Ṽk, ϑ̃k.κ̃k) of (Vk, ϑk,κk) over A. We can easily take a relative con-
nection ∇α on Eα which is a lift of ∇|Uα and which is compatible with Vα. So we obtain a lift
(Eα,∇α, {lα, ℓα,Vα}) of (E,∇, {l, ℓ,V})|Uα⊗A/I when Uα ∩ (Dram)A ̸= ∅.

Take an isomorphism θβα : Eα|Uαβ

∼−→ Eβ|Uαβ
, where Uαβ = Uα ∩ Uβ. If we put

uαβγ = θ−1γα ◦ θγβ ◦ θβα − id,

vαβ = (θβα ⊗ id)−1 ◦ ∇β ◦ θβα −∇α,

then the class [{uαβγ}, {vαβ}] ∈ H2(F•) ⊗ I is nothing but the obstruction for the lifting of
(E,∇, {l, ℓ,V}) to a flat family of connections on C ⊗ A over A. We can see that the image
H2(Tr•)([{uαβγ}, {vαβ}]) under the isomorphism H2(Tr•) : H2(F•) ∼−→ H2(Ω•C⊗A/m) is nothing

but the obstruction for the lifting of the determinant line bundle det(E,∇) with the induced
connection. Consider the moduli space M(

∑
λk,
∑
µk, (r − 1)dz/2 + rν0) of pairs (L,∇L) of a

line bundle L on the fibers of C over T and a connection ∇L on L admitting poles along D whose
residue along Dlog is

∑
1≤k≤r λk, whose restriction to Dun is

∑
1≤k≤r µk and whose restriction

to Dram is
∑

((r − 1)dz/2 + rν0). Then M(
∑
λk,
∑
µk, (r − 1)dz/2 + rν0) is smooth over T ,

since it is an affine space bundle over the relative Jacobian of C over T . In particular, we have
H2(Tr•)([{uαβγ}, {vαβ}]) = 0 which is equivalent to [{uαβγ}, {vαβ}] = 0. Thus Mα

C,D(λ, µ̃, ν̃) is
smooth over T .

By Proposition 6.3, the dimension of the moduli space at (E,∇, l, ℓ,V) ⊗ A/m is given by
dimH1(F•). We write D ⊗ A/m = D, Dlog ⊗ A/m = Dlog and so on. Using the exact se-
quence (6.10) and the equality dimH0(F•) = dimH2(F•) = 1 by Lemma 7.3, we have

dimH1(F•) = χ(F•1 )− χ(F•0 ) + 2

= χ
(
G1
)
− dimCG

1 + dimC Sym2
(
V
)
− dimCA

1

− χ
(
G0
)
− dimCA

0 + dimC Sym2
(
W
)
+ 2. (7.5)

Since ker
(
G1 → G1

) ∼= (G0
)∨ ⊗ Ω1

C , we have

χ
(
G1
)
− dimCG

1 = −χ
(
G0
)

= r2(g − 1) + (degDlog + degDun)r(r − 1)/2 +
∑

x∈Dram

r(r − 1)/2. (7.6)

By the same method as in the proof of Lemma 6.2, we can see that the elements of Sym2
(
V
)

are given by the data

(ar−k−1,k(z))0≤k≤r−1 ∈
(
C[z]/(zmx)

)r
such that zar−k−1,k = zak,r−k−1,

(āij(z))0≤i,j≤r−1,i+j ̸=r−1 ∈
(
C[z]/

(
zmx−1))r2−r such that āji = āij (x ∈ Dram)

and each ξk ∈ Hom
(
V k,W k

)
|mxx is given by the matrix

a00(z) · · · za0,r−1(z)
... . .

. ...
ar−k−1,0(z) · · · ar−k−1,k(z) · · · zak,r−1(z)

... . .
. ...

ar−1,0(z) · · · zar−1,r−1(z)

 ,
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where zai,j is the image of z ⊗ ai,j by (z)⊗O(mx−1)x
∼−→ zOmxx. So we can see that

dimC Sym2
(
V
)
= dimC Sym2

(
W
)
=

∑
x∈Dram

(
r +

1

2
(mx − 1)r(r + 1)

)
. (7.7)

Finally note that

dimCA
0 = dimCA

1 =
∑

x∈Dram

mxr. (7.8)

Substituting (7.6), (7.7) and (7.8) to (7.5), we get the desired equality dimH1(F•) = 2r2(g −
1) + 2 + r(r − 1) degD. ■

8 Symplectic structure on the moduli space

In this section, we assume again the same notations as in Section 5, Section 6 and Section 7.
There is an étale surjective morphism M ′ −→ Mα

C,D
(
λ, µ̃, ν̃

)
, such that there is a universal

family of connections
(
Ẽ, ∇̃, {l̃, ℓ̃, Ṽ}

)
on CM ′ over M ′. We can define a complex G•M ′ on CM ′

from (Ẽ, ∇̃, {l̃, ℓ̃, Ṽ}) in the same way as G• given by (6.1), (6.2). We can also define a complex
S•ram,M ′ on CM ′ in the same way as S•ram given by (6.6), (6.7). Then we can define a complex

F̃•M ′ := Cone
(
G•M ′ → S•ram,M ′ [1]

)
[−1]

in the same way as F• defined in (6.9).
Let pM ′ : CM ′ −→M ′ be the projection. Then we can see by Proposition 6.3 that the relative

tangent bundle TM ′/T of M ′ over T is isomorphic to R1pM ′∗
(
F̃•M ′

)
. We can define a pairing

Ξram : S1
ram,M ′ × S1

ram,M ′ −→ Ω1
CM′/M ′(DM ′)|(Dram)M′ in the same way as (7.1). Consider the

pairing

ωM ′ : R1pM ′∗
(
F̃•M ′

)
×R1pM ′∗

(
F̃•M ′

)
−→

R2pM ′∗
[
OC → Ω1

C/T (Dram) → Ω1
C/T (Dram)|Dram

]
M ′

∼= R2pM ′∗Ω
•
CM′/M ′ ∼= OM ′ (8.1)

defined by

ωM ′
([
{uαβ}, {vα, ηα}

]
,
[
{u′αβ}, {v′α, η′α}

])
=
[
{Tr(uαβ ◦ u′βγ)}, {−Tr(uαβ ◦ v′β − vα ◦ u′αβ)}, {Ξram(ηα, η

′
α)}
]

in the same way as (7.3). We can check ωM ′(v, v) = 0 for v ∈ R1pM ′∗(F̃•M ′) and ωM ′ descends
to a T -relative 2-form ωMα

C,D(λ,µ̃,ν̃) on M
α
C,D(λ, µ̃, ν̃).

Theorem 8.1. The 2-form ωMα
C,D(λ,µ̃,ν̃) defined by (8.1) is a T -relative symplectic form on the

moduli space Mα
C,D(λ, µ̃, ν̃) of α-stable connections on (C,D) with (λ, µ̃, ν̃)-structure.

The restriction ωMα
C,D(λ,µ̃,ν̃)|p at each point p ∈ Mα

C,D(λ, µ̃, ν̃) is nondegenerate by Proposi-

tion 7.2. It remains to prove that dωMα
C,D(λ,µ̃,ν̃) = 0. Since Mα

C,D(λ, µ̃, ν̃) is smooth over T , we

only have to show the vanishing dωMα
C,D(λ,µ̃,ν̃)t = 0 of the restriction to the fiber Mα

C,D(λ, µ̃, ν̃)t
over t ∈ T . For its proof we use a construction of an unfolding of the moduli space.

Put Ct = C, Dt = D, (Dun)t = Dun, (Dram)t = Dram and (λ, µ, ν) = (λ, µ̃, ν̃)t. For each
x ∈ D, choose a defining equation z of Dred on an affine open neighborhood of x, which is a
lift of z. Take distinct complex numbers sx1 , . . . , s

x
mx−1, s

x
mx

∈ C. Let Dx
un,h be the divisor on

C×SpecC[h] defined by the equation (z−hsx1) · · · (z−hsxmx
) = 0 and putDun,h =

∑
x∈Dun

Dx
un,h.
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For each x ∈ Dram, take distinct complex numbers qx1 , . . . , q
x
mx−1, q

x
mx

∈ C with qxmx
= 1. Let

Dx
ram,h be the divisor on C × SpecC[h] defined by the equation (z − hrqx1 ) · · · (z − hrqxmx−1)(z −

hr) = 0 and put Dram,h :=
∑

x∈Dram
Dx

ram,h. We set

Dh := Dlog +Dun,h +Dram,h.

Note that Dh is a reduced divisor for generic h and it coincides with D if h = 0. So we can take
a Zariski open subset H◦ of SpecC[h] containing 0 such that Dh is a reduced divisor for any
h ∈ H◦ \ {0}.

For x ∈ Dun, we can write

µk|mxx =
(
bk,0 + bk,1z + · · ·+ bk,mx−1z

mx−1) dz

zmx
, k = 0, . . . , r − 1.

We define µk,h ∈ Ω1
C×SpecC[h]/SpecC[h](Dun,h)|Dun,h

by

µk,h|Dun,h
=
bk,0 + bk,1z + · · ·+ bk,mx−1z

mx−1

(z − hsx1) · · · (z − hsxmx
)

dz, k = 0, . . . , r − 1.

We can write

νx0 (z) =
(
ax0,0 + ax0,1z + · · ·+ ax0,mx−2z

mx−2 + ax0,mx−1z
mx−1) dz

zmx
,

νxk (z) =
(
axk,0 + axk,1z + · · ·+ axk,mx−2z

mx−2) dz

zmx
, k = 1, . . . , r − 1.

Then we define νk,h(z) ∈ Ω1
C×SpecC[h]/ SpecC[h](Dram,h)|Dram,h

for 0 ≤ k ≤ r − 1 by

ν0,h(z)|Dram,h
=
ax0,0 + ax0,1z + · · ·+ ax0,mx−2z

mx−2 + ax0,mx−1z
mx−1

(z − hrqx1 ) · · · (z − hrqxmx−1)(z − hr)
dz,

νk,h(z)|Dram,h
=

axk,0 + axk,1z + · · ·+ axk,mx−2z
mx−2

(z − hrqx1 ) · · · (z − hrqxmx−1)(z − hr)
dz, k = 1, . . . , r − 1,

and we set

νh(w) := ν0,h(z) + ν1,h(z)w + · · ·+ νr−1,h(z)w
r−1.

Consider the moduli space

MH◦ = {(E,∇, l, (ℓk)0≤k≤r−1, (Vk, ϑk,κk)0≤k≤r−1)} −→ H◦,

where

(i) E is an algebraic vector bundle on C of rank r and degree d,

(ii) ∇ : E −→ E ⊗ Ω1
C(Dh) is a connection admitting poles along Dh,

(iii) l is a logarithmic λ-parabolic structure on (E,∇) along Dlog,

(iv) E|Dun,h
= ℓ0 ⊃ · · · ⊃ ℓr−1 ⊃ ℓr = 0 is a filtration such that ℓk/ℓk+1

∼= ODun,h
for any k

and that (∇|Dun,h
− µk,hid)(ℓk) ⊂ ℓk+1 ⊗ Ω1

C(Dun,h) for any k,

(v) E|Dram,h
= V0 ⊃ V1 ⊃ · · · ⊃ Vr−1 ⊃ Vr = (z − hr)V0 is a filtration by ODram,h

-submodules
such that Vj/Vj+1

∼= ODram,h
/(z−hr) and∇|Dx

ram,h
(Vk) ⊂ Vk⊗Ω1

C(Dram,h) for 0 ≤ k ≤ r−1,
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(vi) for V
x
k : Vk|Dx

ram,h

/∏mx−1
j=1 (z − hrqxj )Vk+1|Dx

ram,h
and W

x
k = HomODx

ram,h
(V

x
r−k−1,ODx

ram,h
),

ϑxk : W
x
k ×W

x
r−k−1 −→ ODx

ram
, 0 ≤ k ≤ r − 1,

are ODx
ram,h

-bilinear pairings such that the homomorphisms θxk : W
x
k −→

(
W

x
r−k−1

)∨
= V

x
k

induced by ϑxk are isomorphisms, the equalities ϑxk(v, v
′) = ϑxr−k−1(v

′, v) hold for v ∈ W
x
k,

v′ ∈W
x
r−k−1 and that the equalities ϑxk−1

(
v1|V x

r−k
, v2
)
= ϑk

(
v1, v2|V x

k

)
hold for v1 ∈W

x
k =

Hom
(
V
x
r−k−1,ODx

ram,h

)
, v2 ∈ W

x
r−k = Hom

(
V
x
k−1,ODx

ram,h

)
when 1 ≤ k ≤ r − 1 and the

equality ϑr−1((z − hr)v1, v2) = ϑ0(v1, (z − hr)v2) holds for v1, v2 ∈W
x
0 ,

(vii) κxk : V
x
k × V

x
r−k−1 −→ ODx

ram,h
are ODx

ram,h
-bilinear pairings for 0 ≤ k ≤ r − 1 such that

the equalities κxk (v, v′) = κxr−k−1(v′, v) hold for v ∈ V
x
k, v

′ ∈ V
x
r−k−1, the equalities

κxk−1(v1, v2) = κxk (v1, v2) hold for v1 ∈ V k, v2 ∈ V r−k and for the image v1 (resp. v2)

of v1 (resp. v2) via the canonical map V
x
k → V

x
k−1 (resp. V

x
r−k → V

x
r−k−1), the equality

κr−1((z − hr)v1, v2) = κ0(v1, (z − hr)v2) holds for v1, v2 ∈ V
x
0 and that the equalities

(θxk ◦ κxk)r = (z − hr) · idV x
k
hold for the homomorphisms κxk : V

x
k −→

(
V
x
r−k−1

)∨
= W

x
k

induced by κxk ,
(viii) the homomorphism

ODx
ram,h

[w]
/(
wr − z + hr, (z − hrqx1 ) · · · (z − hrqxmx−1)w

)
−→ EndODx

ram,h

(
V
x
k

)
,

f(w) 7→ f
(
θxk ◦ κxk

)
is injective and the diagrams

Vk|Dx
ram,h

∇|Dx
ram,h−−−−−−→ Vk|Dx

ram,h
⊗ Ω1

C(Dram,h)y y
V
x
k

νh(θ
x
k◦κ

x
k)+

k
r

dz
z−hr−−−−−−−−−−−−→ V

x
k ⊗ Ω1

C(Dram,h)

are commutative for k = 0, 1, . . . , r − 1,

(ix) there is an isomorphism ψk : V
x
k
∼−→ (w)

/(
w2(z − hrqx1 ) · · · (z − hrqxmx−1)

)
⊗ V

x
k−1 which is

a lift of V
x
k −→ V

x
k−1 such that the composition

(z − hr)
/(
w(z − hrqx1 ) · · · (z − hrqxmx−1)(z − hr)

)
⊗ V

x
0 −→ V

x
r−1,

ψr−1−−−→
∼

· · · · · · ψ1−→
∼

(
wr−1

)/(
(z − hrqx1 ) · · · (z − hrqxmx−1)(z − hr)

)
⊗ V

x
0

coincides with the homomorphism obtained by tensoring V
x
0 to

(wr)
/(
w(z − hrqx1 ) · · · (z − hrqxmx−1)(z − hr)

)
→ (wr−1)

/(
(z − hrqx1 ) · · · (z − hrqxmx−1)(z − hr)

)
for 1 ≤ k ≤ r − 1 and

(x) the ring of endomorphisms of E preserving l, (ℓk), (Vk, ϑk,κk) and commuting with ∇
consists of scalar endomorphisms CidE .

We can prove that the moduli space MH◦ exists as an algebraic space, by modifying the
proof of Theorem 5.1. The proof is rather easier because we do not need a GIT construction.
So we omit the proof of the following proposition.
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Proposition 8.2. There exists a relative moduli space MH◦ −→ H◦ as an algebraic space.

Note that the fiber MH◦,0 of the moduli space MH◦ over h = 0 is the moduli space of simple
connections on (C,D) with (λ, µ, ν)-structure.

There is a scheme M̃H◦ of finite type over H◦ with an étale surjective morphism M̃H◦ −→
MH◦ such that a universal family

(
ẼM̃H◦ , ∇̃M̃H◦ , l̃M̃H◦ , ℓ̃M̃H◦ , ṼM̃H◦

)
exists over M̃H◦ . We

can define a complex

F•M̃H◦
=
[
G0
M̃H◦

⊕A0
M̃H◦

→ G1
M̃H◦

⊕ Sym2
((
W M̃H◦

))
⊕ Sym2

((
V M̃H◦

))
→ G1

M̃H◦
⊕A1

M̃H◦

]
from

(
ẼM̃H◦ , ∇̃M̃H◦ , l̃M̃H◦ , ℓ̃M̃H◦ , ṼM̃H◦

)
in a similar way to (6.9). We can see by the same argu-

ment as Proposition 6.3 and Theorem 7.5 that MH◦ is smooth over H◦ and R1
(
pM̃H◦

)
∗
(
F•M̃H◦

)
is the H◦-relative tangent bundle of M̃H◦ . We can define a pairing

ωM̃H◦ : R1
(
pM̃H◦

)
∗
(
F•M̃H◦

)
×R1

(
pM̃H◦

)
∗
(
F•M̃H◦

)
−→ R2

(
pM̃H◦

)
∗
[
OC×H◦ → Ω1

C×H◦/H◦(Dram,h)→ Ω1
C×H◦/H◦(Dram,h)

∣∣
Dram,h

]
M̃H◦

∼= R2(pM̃H◦ )∗Ω
•
C×M̃H◦/M̃H◦

∼= OM̃H◦ (8.2)

by the same formula as (8.1). We can see that it defines a relative 2-form ωMH◦ onMH◦ overH◦.
The moduli spaceMα

C,D(λ, µ̃, ν̃)t is a Zariski open subset of the fiber (MH◦)0 over h = 0 and the

restriction ωMH◦

∣∣
Mα

C,D(λ,µ̃,ν̃)t
is nothing but the 2-form ωMα

C,D(λ,µ̃,ν̃)t on Mα
C,D(λ, µ̃, ν̃)t defined

by (8.1). So Theorem 8.1 follows from the following proposition.

Proposition 8.3. The relative 2-form ωMH◦ on MH◦ defined by (8.2) is d-closed: dωMH◦ = 0.

Proof. Let MH◦,h be the fiber of the moduli space MH◦ over generic h ∈ H◦ \ {0}.
Consider the point z = hsxj in Dx

un,h for generic h ∈ H◦. Then ∇ is logarithmic at z = hsxj
and the filtration ℓ|z=hsxj is a logarithmic (resz=hsxj (µ

x
k,h)0≤k≤r−1)-parabolic structure at the point

z = hsxj .
Consider the point z = hrqxj in Dx

ram,h for generic h ∈ H◦. Then the restriction of θxk ◦ κxk to

V
x
k|z=hrqxj = E|z=hrqxj satisfies the equalities (θxk ◦κxk|z=hrqxj )

r−hr(qxj −1) = 0 for 1 ≤ j ≤ mx−1.

So it has r distinct eigenvalues ζsrh r
√
qxj − 1 (s = 0, 1, . . . , r − 1), where ζr is a primitive r-th

root of unity. Then

resz=hrqxj (∇) = resz=hrqxj (ν0(z)) + resz=hrqxj (ν1(z))(θ
x
k ◦ κxk)|z=hrqxj + · · ·

+ resz=hrqxj (νr−1(z))((θ
x
k ◦ κxk)|z=hrqxj )

r−1

also has r distinct eigenvalues if h is sufficiently generic. The data of filtration {Vk} given in
(v) is equivalent to the filtration E|z=hr = V x

0 |z=hr ⊃ · · · ⊃ V x
r−1|z=hr ⊃ V x

r |z=hr = 0 satisfying(
resz=hr(∇) −

(
resz=hr(ν0) +

k
r

)
id
)(
V x
k

∣∣
z=hr

)
⊂ V x

k+1

∣∣
z=hr

for 0 ≤ k ≤ r − 1 at each x. So the
restriction (V x

k |z=hr)0≤k≤r−1 is a logarithmic parabolic structure on (E,∇).

For generic h, we define a complex Fdiag•
M̃H◦,h

on the fiber M̃H◦,h by setting

Fdiag,0

M̃H◦,h
= ker

(
G0
M̃H◦,h

−→ coker
(
A0
M̃H◦,h

→ Sym2
((
W M̃H◦,h

))
⊕ Sym2

((
V M̃H◦,h,h

)))
,

Fdiag,1

M̃H◦,h
= ker

(
G1
M̃H◦,h

→ G1
M̃H◦,h

)
,

d0Fdiag,•
M̃H◦,h

= d0F•
M̃H◦,h

∣∣
Fdiag,0

M̃H◦,h

: Fdiag,0

M̃H◦,h
−→ Fdiag,1

M̃H◦,h
.
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Note that Fdiag,0

M̃H◦,h
is the sheaf of endomorphisms of E preserving the eigen decomposition of

resz=hrqxj (∇) at z = hrqxj in Dx
ram,h for 1 ≤ j ≤ mx − 1, preserving the parabolic structure lx

at each x ∈ Dlog, preserving the parabolic structure
(
ℓxk|z=hsxj

)
0≤k≤r−1 at z = hsxj in Dx

un,h for

1 ≤ j ≤ hsxnx
and preserving the parabolic structure

(
V
x
k|z=hr

)
0≤k≤r−1 at z = hr in Dx

ram,h. We
can see that the canonical map

Fdiag,•
M̃H◦,h

−→ F•M̃H◦,h

is a quasi-isomorphism. On the other hand, we can define a complex F•par on C ×M̃H◦,h in the
same way as in the proof of [11, Proposition 7.2] by associating the parabolic structure induced
by the eigen decomposition at each point defined by z = hrqxj in Dx

ram,h for 1 ≤ j ≤ mx − 1.
Then the canonical map

Fdiag,•
M̃H◦,h

−→ F•par

is a quasi-isomorphism. We can see that the restriction ωM̃H◦,h
to a generic fiber M̃H◦,h of

the 2-form ωM̃H◦ coincides with the 2-form constructed in [11, Proposition 7.2], because it is

expressed by the same formula as (8.1). Since the 2-form in [11, Proposition 7.2] is d-closed by
[11, Proposition 7.3], we have dωMH◦,h = 0 for generic h. Thus we can deduce dωMH◦ = 0,
because MH◦ is smooth over H◦. ■

9 Local generalized isomonodromic deformation
on a ramified covering

In this section, we will consider the pullback of a generic ramified connection via a local analytic
ramified covering map. Furthermore, we will give a brief sketch of the Stokes data of the pullback
and its generalized isomonodromic deformation established by Jimbo, Miwa and Ueno in [16].

Let ∆z and ∆w be unit disks equipped with the variables z and w, respectively. Consider
the ramified covering map

p : ∆w ∋ w 7→ wr = z ∈ ∆z. (9.1)

There is a canonical action of the Galois group Gal(∆w/∆z) = {σk | |0 ≤ k ≤ r − 1} which
is generated by the automorphism σ : ∆w ∋ w 7→ ζrw ∈ ∆w, where ζr = exp

(
2π

√
−1/r

)
is

a primitive root of unity.
Take ν0(z) ∈ (C+Cz+ · · ·+Czmr−r)dz/zm, ν1(z) ∈ (C×+Cz+ · · ·+Czmr−r−1)dz/zm and

ν2(z), . . . , νr−1(z) ∈ (C+ Cz + · · ·+ Czmr−r−1)dz/zm. Then we put

ν(w) := ν0(z) + ν1(z)w + · · ·+ νr−1(z)w
r−1,

which is said to be a ramified exponent. We define a formal connection ∇ν on C[[w]] by

∇ν : C[[w]] ∋ f(w) 7→ df(w) + f(w)ν(w) ∈ C[[w]]⊗ dz

zm
.

Let (E,∇) be a meromorphic connection on ∆z with a formal isomorphism(
Ê, ∇̂

)
:= (E,∇)⊗ Ô∆z ,0

∼−→ (C[[w]],∇ν). (9.2)

Consider the pullback (p∗E, p∗∇) of the meromorphic connection (E,∇) by the ramified cover p
given in (9.1). The formal isomorphism (9.2) induces a canonical surjection

π : p∗E ⊗ Ô∆w,0 = Ê ⊗C[[z]] C[[w]] −→ C[[w]]
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which makes the diagram

Ê ⊗ C[[w]] π−−−−→ C[[w]]

∇̂⊗id
y y∇ν

Ê ⊗ C[[w]]⊗ dz
zm

π⊗id−−−−→ C[[w]]⊗ dz
zm

commutative. The Galois transform of π by the element σk of Gal(∆w/∆z) is given by

σk ◦ π ◦ σ−k : Ê ⊗ C[[w]]
id

Ê
⊗σ−k

−−−−−−→
∼

Ê ⊗ C[[w]] π−→ C[[w]] σk

−→
∼

C[[w]],

which makes the diagram

Ê ⊗ C[[w]] σk◦π◦σ−k

−−−−−−→ C[[w]]

∇̂⊗id
y y∇σkν

Ê ⊗ C[[w]]⊗ dz
zm

(σk◦π◦σ−k)⊗id−−−−−−−−−−→ C[[w]]⊗ dz
zm

commutative, where we put σkν(w) := ν
(
ζkrw

)
. So we get a morphism

ϖ :
(
p∗Ê, p∗∇̂

) ⊕r−1
k=0 σ

k◦π◦σ−k

−−−−−−−−−−→
r−1⊕
k=0

(C[[w]],∇σkν(w)), (9.3)

whose underlying homomorphism on vector bundles over C[[w]] is generically isomorphic. Choose
a generator e0 of the underlying bundle C[[w]] of (C[[w]],∇ν) (we may choose e0 = 1). We denote
the same element of the underlying bundle of (C[[w]],∇σkν) by σ

k(e0). Then we can define an
action of Gal(∆w/∆z) on the right-hand side of (9.3) by setting

σl ·
r−1∑
k=0

fk(w)σ
k(e0) :=

r−1∑
k=0

fk
(
ζ lrw

)
σk+l(e0).

The connection
⊕r−1

k=0∇σkν on the right-hand side of (9.3) commutes with the Galois action.
The morphism ϖ in (9.3) is a C[[w]]-homomorphism, which commutes with the connections and
with the Galois actions on the both sides.

We can see that the image Imϖ of the homomorphism (9.3) is generated by{
r−1∑
l=0

ζklr w
kσl(e0)

∣∣∣∣ k = 0, 1, . . . , r − 1

}

as a C[[w]]-module. Then we can check the inclusion wr−1 ·
⊕r−1

k=0C[[w]]σk(e0) ⊂ Imϖ. Consider
the restriction

ϖ|wr−1=0 : Ê|wr−1=0 ⊗ C[w]/
(
wr−1

) ϖ|wr−1=0−−−−−−→ Im(ϖ|wr−1=0) ⊂
r−1⊕
k=0

C[w]/
(
wr−1

)
· σk(e0)

of the morphism ϖ in (9.3) to the divisor on ∆w defined by wr−1 = 0. Then the composition

φ : p∗(E) −→ p∗(E)|wr−1=0 = Ê ⊗ C[w]/
(
wr−1

) ϖ|wr−1=0−−−−−−→ Im(ϖ|wr−1=0)
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commutes with p∗(∇) and
⊕r−1

k=0∇σkν |wr−1=0. So we have

(p∗∇)(kerφ) ⊂ kerφ⊗ dw

wmr−r+1
.

Consider the line bundle O∆w

(
(r − 1) · {0}

)
on ∆w with the connection

∇−ν0(z) : O∆w

(
(r − 1) · {0}

)
∋ f(w) 7→ df(w)− f(w)ν0(z)

∈ O∆w

(
(r − 1) · {0}

)
⊗ dw

wmr−r+1
.

If we modify (kerφ, p∗∇|kerφ) by setting

(E′,∇′) :=
(
kerφ, (p∗∇)|kerφ

)
⊗
(
O∆w

(
(r − 1) · {0}

)
,∇−ν0(z)

)
, (9.4)

then the order of pole of ∇′ at w = 0 is mr − r. Indeed, the morphism ϖ in (9.3) induces
a formal isomorphism

(
Ê′, ∇̂′

) ∼−→
r−1⊕
k=0

(
C[[w]],∇ν(ζkrw)−ν0(z)

)
and the matrix of the connection ∇ν(ζkrw)−ν0(z) of the right-hand side is

r−1∑
k=1

νk(z)w
k 0 · · · 0

0
r−1∑
k=1

νk(z)ζ
k
rw

k 0

...
. . .

...

0 0 · · ·
r−1∑
k=1

νk(z)ζ
k(r−1)
r wk


.

Since the leading terms of the diagonal entries of the above matrix are distinct, (E′,∇′) is
a generic unramified connection. Furthermore, there is a canonical action of Gal(∆w/∆z) on
(E′,∇′), since φ and ⊗

(
O∆w

(
(r − 1) · {0}

)
,∇−ν0(z)

)
preserve the Galois action.

Proposition 9.1. The correspondence (E,∇) 7→ (E′,∇′) given by the formula (9.4) is a bi-
jection between the meromorphic ν-ramified connections (E,∇) on ∆z equipped with a formal
isomorphism

(
Ê, ∇̂

) ∼−→ (C[[w]],∇ν) and the Gal(∆w/∆z)-equivariant
(
ν
(
ζkrw

)
−ν0(z)

)
0≤k≤r−1-

unramified meromorphic connections (E′,∇′) on ∆w equipped with a Galois equivariant formal

isomorphism
(
Ê′, ∇̂′

) ∼−→⊕
(C[[w]],∇σkν).

Proof. We have to give the inverse correspondence. If (E′,∇′) is a
(
ν
(
ζkrw

)
− ν0(z)

)
0≤k≤r−1-

unramified meromorphic connection on ∆w compatible with an action of Gal(∆w/∆z), we put

Ẽ′ := ker
(
E′ −→ coker

((
E′|wmr−r=0

)Gal(∆w/∆z) ⊗ C[w]/(wmr−r) → E′|wmr−r=0

))
,

where
(
E′|wmr−r=0

)Gal(∆w/∆z) is the submodule of E′|wmr−r=0 consisting of the Gal(∆w/∆z)-

invariant sections. Let
(
Ẽ′
)Gal(∆w/∆z) be the subsheaf of p∗

(
Ẽ′
)
consisting of Gal(∆w/∆z)-

invariant sections. Then
(
Ẽ′
)Gal(∆w/∆z) becomes a locally free sheaf on ∆z of rank r and

the connection ∇′
∣∣
Ẽ′ ⊗ ∇ν0(z) on Ẽ′ descends to a connection

(
∇′
∣∣
Ẽ′ ⊗ ∇ν0(z)

)Gal(∆w/∆z) on
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Ẽ′
)Gal(∆w/∆z). We can check that

((
Ẽ′
)Gal(∆w/∆z),

(
∇′
∣∣
Ẽ′ ⊗∇ν0(z)

)Gal(∆w/∆z)) is a meromor-
phic ν-ramified connection on ∆z. From the construction,

(E′,∇′) 7→
((
Ẽ′
)Gal(∆w/∆z),

(
∇′
∣∣
Ẽ′ ⊗∇ν0(z)

)Gal(∆w/∆z))
gives the inverse to (E,∇) 7→ (E′,∇′). ■

Remark 9.2. The process of getting the vector bundle kerφ or E′ from p∗E is called an
elementary transform or a Hecke modification. The construction of (E′,∇′) from (E,∇) is
known [28, Section 19.3] as a shearing transformation method.

We will apply Proposition 9.1 to a family of connections. From now on, let the notations T ,
C, λ, µ̃, ν̃ and Mα

C,D(λ, µ̃, ν̃) be as in Section 5.
We take a point x = (x̃i)t ∈ (Dram)t in the fiber over t ∈ T . We can take an analytic

open neighborhood T ◦ of t such that z̄T ◦ can be extended to a local holomorphic function
z ∈ Ohol

CT ◦ whose zero set coincides with the section x̃ = (x̃i)T ◦ . Precisely, there is an analytic
open immersion

∆z × T ◦ ↪→ CT ◦

for a unit disk ∆z, such that the coordinate of ∆z corresponds to z. We can assume the existence
of a universal family

(
Ẽ, ∇̃, l̃, ℓ̃, Ṽ

)
on some analytic open neighborhoodM◦⊂Mα

C,D(λ, µ̃, ν̃)×T T ◦.
By Corollary 4.3, we may further assume that there is an isomorphism(

Ẽ, ∇̃
)
⊗ ÔC̃M◦ ,x̃

∼−→
(
Ohol
M◦ [[w]],∇ν̃

)
, (9.5)

where ÔCM◦ ,x̃ = lim
←−

Ohol
CM◦/I

j
x̃
∼= Ohol

M◦ [[w]]. Consider a family of ramified covering maps (9.1)

pM◦ : ∆w ×M◦ ∋ (w, y) 7→ (wr, y) ∈ ∆z ×M◦.

We write m := mram
i for simplicity. As in the former argument, the isomorphism (9.5) induces

a canonical surjection

πM◦ : p∗M◦Ẽ ⊗ ÔCM◦ ,x̃ −→ Ohol
M◦ [[w]],

which also induces a morphism

ϖM◦ :
(
p∗M◦Ẽ, p∗M◦∇̃

)
⊗ ÔCM◦ ,x̃

⊕r−1
k=0 σ

k◦πM◦◦σ−k

−−−−−−−−−−−−→
r−1⊕
k=0

(
Ohol
M◦ [[w]],∇σkν̃

)
(9.6)

between rank r connections over Ohol
M◦ [[w]]. Let x̃′ be the divisor on ∆w ×M◦ defined by the

equation w = 0. The composition

φM◦ : p∗M◦
(
Ẽ|∆z×M◦

)
−→ p∗M◦

(
Ẽ|∆z×M◦

)
|(r−1)x̃′ −→ Im

(
ϖM◦ |(r−1)x̃′

)
is a surjective homomorphism and we have

(
p∗M◦∇̃

)
(kerφ) ⊂ kerφ⊗Ω1

∆w×Mo/Mo((mr−r+1)x̃′).
Setting(

Ẽ′, ∇̃′
)
:=
(
kerφ, p∗M◦∇̃|kerφ

)
⊗
(
Ohol

∆w×M◦((r − 1)x̃′),∇−ν̃0
)
, (9.7)

we get a connection

∇̃′ : Ẽ′ −→ Ẽ′ ⊗ Ω1
∆w×M◦/M◦

(
(mr − r)x̃′

)
.
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The morphism ϖM◦ in (9.6) induces an isomorphism

(
Ẽ′, ∇̃′

)
⊗ ÔC̃M◦ ,x̃

∼−→
r−1⊕
k=0

(
Ohol
M◦ [[w]],∇ν̃(ζkrw)−ν̃0(z)

)
. (9.8)

The connection ∇ν̃(ζkrw)−ν̃0(z) of the right-hand side is given by d+ Λ(w, t) with

Λ(w, t) :=



r−1∑
k=1

ν̃k(z, t)w
k 0 · · · 0

0

r−1∑
k=1

ν̃k(z, t)ζ
k
rw

k 0

...
. . .

...

0 0 · · ·
r−1∑
k=1

ν̃k(z, t)ζ
k(r−1)
r wk


. (9.9)

Now we will see the corresponding Stokes data. We set E′0 :=
(
Ohol

∆w×T ◦
)⊕r

and fix a connec-
tion ∇′0 : E′0 −→ E′0 ⊗ Ω1

∆w×T ◦/T ◦((mr − r)x̃′) defined byf1...
fr

 7→

df1
...

dfr

+ Λ(w, t)

f1...
fr

 .

We call (E′0,∇′0) a normal form.
It is a general fact [16, Proposition 2.2] that there is a matrix P (w, t) of formal power series

in w with coefficients in Ohol
M◦ , which gives a formal isomorphism

(E′0,∇′0)⊗ ÔC̃M◦ ,x̃

P (w,t)−−−−→
∼

(
Ẽ′, ∇̃′

)
⊗ ÔC̃M◦ ,x̃. (9.10)

If ∇̃′ is given by d + A′(w, t)dw/wmr−r for a matrix A′(w, t) of holomorphic functions in w, t,
then we have

P (w, t)−1dP (w, t) + P (w, t)−1A′(w, t)
dw

wmr−r
P (w, t) = Λ(w, t).

In fact, we can give the formal transform P (w, t) as the inverse of (9.8), which is induced by the
formal transform (9.5) over Ohol

M◦ [[z]]. Indeed, if we denote the inverse formal transform of (9.5)
by

Q(z, t) :
(
Ohol
M◦ [[w]],∇ν̃

) ∼−→
(
Ẽ, ∇̃

)
⊗ ÔC̃M◦ ,x̃ (9.11)

and if we denote the rational gauge transform p∗M ′
(
Ẽ|∆z×M ′

)
↪→ Ẽ′ by S(w), then we can

give P (w) by

P (w, t) = S(w, t)Q(z, t)


1 w · · · wr−1

1 ζrw · · · ζr−1r wr−1

...
...

. . .
...

1 ζr−1r w · · · ζ
(r−1)2
r wr−1


−1

. (9.12)

Remark 9.3. The above procedure is explained in [10, Proposition 10] for the explicit case of
rank 2 connections on P1.
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Take any point u ∈ (∆w\{0})×M◦. By the fundamental existence theorem [28, Theorem 12.1]
of asymptotic solution, there are a sector Γu = {w ∈ ∆w | a < arg(w) < b} in ∆w \ {0} for
some a, b ∈ R and an open subset Mu ⊂ M◦ satisfying u ∈ Γu ×Mu such that there exists
a fundamental solution YΣ(w, t) = (y1(w, t), . . . , yr(w, t)) of ∇̃′ on Σ = Γu ×Mu satisfying the
asymptotic property

YΣ(w, t) exp

(∫
Λ(w)

)
∼ P (w, t) as w → 0 on Σ = Γu ×Mu, (9.13)

where the path integral of Λ(w), which is defined in (9.9), is with respect to the w-variable. If
we put P (w, t) =

∑∞
j=0 Pj(t)w

j , the asymptotic relation (9.13) means

lim
w→0,w∈Γu

∥∥YΣ(w, t) exp ( ∫ Λ(w)
)
−
∑N

j=0 Pj(t)w
j
∥∥

|w|N
= 0 (9.14)

for any positive integer N and the convergence in (9.14) is uniform in t ∈Mu.
Fix a point t′ ∈ M◦. Taking a finite subcover of {Σ = Γu ×Mu}, we can choose an open

neighborhood Ut′ of t
′ in M◦ and a covering {Σ} of (∆w \ {0})× Ut′ such that each Σ is of the

form Σ = Γu × Ut′ for a sector Γu in ∆w \ {0}.
If we take another Σ′ = Γu′ × Ut′ in the above covering, and if we choose a fundamental

solution YΣ′(w, t) on Σ′ with the same asymptotic property as (9.13) on Σ′, we can write

YΣ′(w, t) = YΣ(w, t)CΣ,Σ′(t) (9.15)

for a matrix CΣ,Σ′(t) constant in w. We call CΣ,Σ′(t) a Stokes matrix.

Definition 9.4. We say that a family of connections (Ẽ′, ∇̃′)|∆w×L over a submanifold L ⊂M◦

is a local generalized isomonodromic deformation, if for each t′ ∈ L, we can take an open
neighborhood Lt′ of t′ in L, a replacement of the formal transform P (w, t) in (9.10) and a covering
{Σ = Γu × Lt′} of (∆w \ {0})× Lt′ for sectors Γu in ∆w \ {0} such that

(i) there is a fundamental solution YΣ(w, t) of ∇̃′|Σ with the asymptotic property (9.13) and

(ii) all the Stokes matrices CΣ,Σ′(t) defined by (9.15) are constant in t ∈ Lt′ .

Remark 9.5.

(1) The ambiguity of the path integral
∫
Λ(w) in (9.13) is included in the replacement of the

formal transform P (w, t) in Definition 9.4.

(2) In our definition of Stokes matrices CΣ,Σ′(t), there is an ambiguity in the choice of the
fundamental solution YΣ(w, t). On the other hand, [16, Proposition 2.4] requires Σ to be
taken sufficiently large so that there is no ambiguity in YΣ(w, t). Due to this difference,
we will need an additional argument later in Proposition 9.6.

Let us recall the argument in the proof of [16, Theorem 3.1]. Assume that L ⊂ M◦ is
a submanifold, {Σ} is a covering of (∆w \ {0}) × L as in Definition 9.4 and that YΣ(w, t) is
a fundamental solution of ∇̃′|∆w×L on each Σ such that all the matrices CΣ,Σ′(t) are constant in
t ∈ L. We choose a local coordinate system (t1, . . . , tn) of L around t′ ∈ L. Rewriting (9.15), we
have YΣ(w, t)

−1 YΣ′(w, t) = CΣ,Σ′ , which is constant in t. Differentiate it in t1, . . . , tn, we have

−YΣ(w, t)−1
∂YΣ(w, t)

∂tj
YΣ(w, t)

−1 YΣ′(w, t) + YΣ(w, t)
−1 ∂YΣ′(w, t)

∂tj
= 0,

which is equivalent to the equality

−∂YΣ(w, t)
∂tj

YΣ(w, t)
−1 = −∂YΣ

′(w, t)

∂tj
YΣ′(w, t)−1 (9.16)
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in End(O⊕rΣ∩Σ′)⊗Ω1
Σ∩Σ′ . So we get a matrix Bj(w, t) of single valued functions on (∆w \{0})×L

by patching the matrices (9.16).
On the other hand, since the convergence in (9.14) is uniform in t ∈ L, the differentiation

of (9.13) in tj provides the asymptotic relation

∂YΣ
∂tj

exp

(∫
Λ(w)

)
+ YΣ exp

(∫
Λ(w)

)∫
∂Λ

∂tj
∼ ∂P

∂tj
as w → 0 on Σ.

Multiplying wmr−r−1P−1 ∼ wmr−r−1 exp
(
−
∫
Λ(w)

)
Y −1Σ from the right to the above, we get

−wmr−r−1Bj = wmr−r−1
∂YΣ
∂tj

Y −1Σ ∼ wmr−r−1
(
∂P

∂tj
P−1 − P

(∫
∂Λ

∂tj

)
P−1

)
(9.17)

on Σ. Note that the right-hand side of the above is a matrix of formal power series in w without
pole. So the left-hand side of (9.17) is bounded on any Σ. Since −wmr−r−1Bj is also a matrix of
single valued functions on (∆w \{0})×L, it is holomorphic on ∆w×L. In other words, Bj(w, t)
is a matrix of meromorphic functions on ∆w × L, whose pole is of order at most mr − r − 1.

Recall that the matrix of ∇̃′ is given by

−∂YΣ(w, t)
∂w

YΣ(w, t)
−1dw = A′(w, t)

dw

wmr−r

since YΣ is a fundamental solution of ∇̃′. So we obtain a matrix of differential forms

A′(w, t)
dw

wmr−r
+

N∑
j=1

Bj(w, t)dtj

which determines a meromorphic connection(
∇̃′
)flat

: Ẽ′|∆w×L −→ Ẽ′|∆w×L ⊗ Ω1
∆w×L(DL ∩ (∆w × L)).

By the definition, (∇̃′)flat is an extension of the relative connection ∇̃′|∆w×L.

The curvature form of
(
∇̃′
)flat

is

d

−∂YΣ
∂w

Y −1Σ dw −
N∑
j=1

∂YΣ
∂tj

Y −1Σ dtj


+

−∂YΣ
∂w

Y −1Σ dw −
N∑
j=1

∂YΣ
∂tj

Y −1Σ dtj

 ∧

−∂YΣ
∂w

Y −1Σ dw −
N∑
j=1

∂YΣ
∂tj

Y −1Σ dtj


= −

N∑
j=1

(
∂2YΣ
∂tj∂w

− ∂YΣ
∂w

Y −1Σ

∂YΣ
∂tj

)
Y −1Σ dtj ∧ dw

−
N∑
j=1

(
∂2YΣ
∂w∂tj

− ∂YΣ
∂tj

Y −1Σ

∂YΣ
∂w

)
Y −1Σ dw ∧ dtj

−
N∑
j=1

N∑
j′=1

(
∂2YΣ
∂tj′∂tj

dtj′ −
∂YΣ
∂tj

Y −1Σ

∂YΣ
∂tj′

dtj′

)
∧ Y −1Σ dtj

+
∂YΣ
∂w

Y −1Σ dw ∧
N∑
j=1

∂YΣ
∂tj

Y −1Σ dtj
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+

N∑
j=1

∂YΣ
∂tj

Y −1Σ dtj ∧
∂YΣ
∂w

Y −1Σ dw +

N∑
j=1

N∑
j′=1

∂YΣ
∂tj

Y −1Σ

∂YΣ
∂tj′

Y −1Σ dtj ∧ dtj′ = 0.

So
(
∇̃′
)flat

is an integrable connection which is an extension of ∇̃′|∆w×L.
The following proposition is in fact included in a more general framework by T. Mochizuki

in [21, Section 20.3], which provides the existence of flat solution with asymptotic property in
a general setting.

Proposition 9.6. Let L ⊂M◦ be a submanifold and let
(
Ẽ′,∇′

)
|∆w×L be the restriction of the

family of connections constructed in (9.7). Assume that for each point t′ ∈ L, there is an open
neighborhood L′ of t′ in L and a meromorphic integrable connection(

∇̃′
)flat

: Ẽ′|∆w×L′ −→ Ẽ′|∆w×L′ ⊗ Ω1
∆w×L′((mr − r)x̃′),

whose associated relative connection coincides with ∇̃′|∆w×L′. Then
(
Ẽ′,∇′

)
|∆w×L is a local

generalized isomonodromic deformation.

Proof. We have Ẽ′|∆w×L′
∼= O⊕r∆w×L′ and we can write

(
∇̃′
)flat

= d +A′(w, t)
dw

wmr−r
+

N∑
j=1

Bj(w, t)dtj .

After shrinking L′ if necessary, we can take a covering {Σ = Γu×L′} of (∆w \ {0})×L′ with Γu
a sector in ∆w \ {0} and we can take a fundamental solution YΣ(w, t) of ∇̃′|Σ with the uniform
asymptotic relation

YΣ(w, t) exp

(∫
Λ(w)

)
∼ P (w, t), w → 0, w ∈ Σ. (9.18)

Since (∇′)flat is an integrable connection extending ∇̃′|∆w×L′ , we can take a fundamental solution
Y flat
Σ (w, t) of (∇′)flat on Σ satisfying Y flat

Σ (w, t′) = YΣ(w, t
′). We can write

Y flat
Σ (w, t) = YΣ(w, t)C(t), (w, t) ∈ Σ, (9.19)

for a matrix C(t) = (cij(t)) of holomorphic functions in t ∈ L′ such that C(t′) = Ir is the identity
matrix. Differentiating (9.19) in tj , we have

∂Y flat
Σ

∂tj
=
∂YΣ
∂tj

C(t) + YΣ
∂C(t)

∂tj
,

from which we have

YΣ(w, t)
∂C(t)

∂tj
C(t)−1YΣ(w, t)

−1 =
∂Y flat

Σ (w, t)

∂tj
Y flat(w, t)−1 − ∂YΣ(w, t)

∂tj
YΣ(w, t)

−1. (9.20)

Since Y flat(w, t) is a fundamental solution matrix of (∇′)flat, we have

∂Y flat
Σ (w, t)

∂tj
Y flat
Σ (w, t)−1 = −Bj(w, t). (9.21)

On the other hand, since the asymptotic relation (9.18) is uniform in t ∈ L, we have the
asymptotic relation

∂YΣ
∂tj

exp
(∫

Λ(w)
)
+ YΣ exp

(∫
Λ(w)

) ∂

∂tj

(∫
Λ(w)

)
∼ ∂P

∂tj
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on Σ. Multiplying
(
YΣ exp

(∫
Λ(w)

))−1 ∼ P−1 from the right to the above, we have

∂YΣ
∂tj

Y −1Σ ∼ ∂P

∂tj
P−1 − P

∂

∂tj

(∫
Λ(w)

)
P−1 (w → 0) (9.22)

on Σ. Using the equality (9.20) and substituting (9.21) and (9.22), we have the asymptotic
relation

exp

(∫
Λ(w)

)−1 ∂C(t)
∂tj

C(t)−1 exp

(∫
Λ(w)

)
∼ P−1YΣ

∂C(t)

∂tj
C(t)−1Y −1Σ P

= P−1
(
∂Y flat

Σ

∂tj
(Y flat

Σ )−1 − ∂YΣ
∂tj

Y −1Σ

)
P ∼ −P−1BjP − P−1

∂P

∂tj
+

∂

∂tj

(∫
Λ(w)

)
on Σ. So wN exp

( ∫
Λ(w)

)−1 ∂C(t)
∂tj

C(t)−1 exp
( ∫

Λ(w)
)
is bounded on Σ for a largeN , becauseBj

is a matrix of meromorphic functions in w,.
Choose a point (w0, t

′) ∈ Σ. After replacing a frame of E′0, we can write

∫
Λ(w) =

A1(w) 0 0

0
. . . 0

0 0 As(w)

 1

wmr−r−1
, Ak(w) =


a
(k)
1 (w) 0 0

0
. . . 0

0 0 a
(k)
mk(w)

 ,

such that a
(k)
p (w) = a

(k)
p (0) + b

(k)
p,1w+ · · ·+ b

(k)
p,mr−r−2w

mr−r−2 + b
(k)
p,mr−r−1w

mr−r−1 logw satisfies

a
(k)
p (0) ̸= a

(l)
q (0) for (k, p) ̸= (l, q) and that ρk = Re

(
w−mr+r+1
0 a

(k)
p (0)

)
holds for 1 ≤ p ≤ mk at

t′ with ρ1 > ρ2 > · · · > ρs. Write

∂C(t)

∂tj
C(t)−1 =: C̃(t) =

C̃11(t) · · · C̃1s(t)
...

. . .
...

C̃s1(t) · · · C̃ss(t)

 , (9.23)

where C̃kl(t) is a matrix of size (mk,ml). Then we have

wN exp

(∫
Λ(w)

)−1 ∂C(t)
∂tj

C(t)−1 exp

(∫
Λ(w)

)
(9.24)

= wN


exp

( −A1(w)
wmr−r−1

)
C̃11(t) exp

( A1(w)
wmr−r−1

)
· · · exp

( −A1(w)
wmr−r−1

)
C̃1s(t) exp

( As(w)
wmr−r−1

)
...

. . .
...

exp
( −As(w)
wmr−r−1

)
C̃1s(t) exp

( A1(w)
wmr−r−1

)
· · · exp

( −As(w)
wmr−r−1

)
C̃ss(t) exp

( As(w)
wmr−r−1

)
 ,

which is bounded on Σ.
Suppose that C̃kl(t) ̸= 0 for k > l. Then the growth order of the (k, l) minor of (9.24) along

the ray {θw0 | 0 < θ ≤ 1} is the same as

(θw0)
N exp

(
Re
(
(θw0)

−mr+r+1(Ak(0)−Al(0))
))
C̃k,l(t) = θNwN0 e

ρk−ρl
θmr−r−1 C̃kl(t).

Since ρk − ρl > 0, it is divergent as θ → 0, which is a contradiction. If we write

C̃kk(t) =


c̃
(k)
11 (t) · · · c̃

(k)
1mk

(t)
...

. . .
...

c̃
(k)
mk1

· · · c̃
(k)
mkmk(t)

 ,



48 M.-a. Inaba

then we have

wN exp
(
−w−mr+r+1Ak(w)

)
C̃kk(t) exp

(
w−mr+r+1Ak(w)

)
= wN


c̃
(k)
11 (t) · · · ew

−mr+r+1(a
(k)
1 (w)−a(k)mk

(w))c̃
(k)
1mk

(t)
...

. . .
...

ew
−mr+r+1(a

(k)
mk

(w)−a(k)1 (w))c̃
(k)
mk1

(t) · · · c̃mkmk
(t)

 . (9.25)

Suppose that c̃
(k)
pq (t) ̸= 0 for p ̸= q. Since a

(k)
p (0) ̸= a

(k)
q (0), we can find δ ̸= 0 with |δ| small

such that
{
θe
√
−1δw0 | 0 < θ ≤ 1

}
is contained in Γu and that either Re

( a
(k)
p (0)−a(k)q (0)

(w0e
√
−1δ)mr−r−1

)
> 0

or Re
( a

(k)
p (0)−a(k)q (0)

(w0e
√
−1δ)mr−r−1

)
< 0 holds. After replacing δ with ±δ, we may assume the inequality

Re
( a

(k)
p (0)−a(k)q (0)

(w0e
√
−1δ)mr−r−1

)
> 0. Then the growth order of the (p, q)-entry of (9.25) is the same as

(w0θ)
N exp

( a
(k)
p (0)−a(k)q (0)

(w0e
√
−1δ)mr−r−1θmr−r−1

)
, which is divergent along

{
θe
√
−1δw0 | 0 < θ ≤ 1

}
as θ → 0.

Since (9.25) is bounded on Γu×L, it is a contradiction. So C̃kk(t) is a diagonal matrix for any k.

Thus we have proved that the matrix C̃(t) given in (9.23) is a block upper triangular matrix
in the sense that C̃kl(t) = 0 for k > l and that C̃kk(t) is are diagonal matrices for 1 ≤ k ≤ s.
We will show that C(t) is also a block upper triangular matrix. Consider the Taylor expansion

C(t) =
∑

i1,...,iN

Ci1,...,int
i1
1 · · · tinn (9.26)

around t = t′. Suppose that one of Ci1,...,in is not block upper triangular and put

l = min
{
i1 + · · ·+ in | Ci1,...,in is not a block upper triangular matrix

}
.

By the minimality of l, C(t) (mod (t1, . . . , tn)
l−1) is a block upper triangular matrix and so is

C(t)−1 (mod (t1, . . . , tn)
l−1). Differentiating (9.26), ∂C(t)

∂tj
(mod (t1, . . . , tn)

l−1) is not a block

upper triangular matrix for some j. So we can see that ∂C(t)
∂tj

C(t)−1 (mod (t1, . . . , tn)
l−1) is not

a block upper triangular matrix of the above form, which is a contradiction.

Thus C(t) is also a block upper triangular matrix of the above form. Let Cdiag(t) be the
diagonal part of C(t). Then we have

Y flat
Σ (w, t) exp

(∫
Λ

)
= YΣ(w, t) exp

(∫
Λ

)
exp

(
−
∫

Λ

)
C(t) exp

(∫
Λ

)
∼ P (w, t)Cdiag(t) (9.27)

on Σ. If we take another sector Σ′ = Γu′ × L and a fundamental solution Y flat
Σ′ of

(
∇̃′
)flat

satisfying Y flat
Σ′ = YΣ′C ′(t) with C ′(t′) = Ir, we have

Y flat
Σ′ (w, t) exp

(∫
Λ

)
∼ P (w, t)C ′diag(t) (9.28)

on Σ′. Since both of Y flat
Σ and Y flat

Σ′ are fundamental solutions of the integrable connection(
∇̃′
)flat

, we can write Y flat
Σ′ = Y flat

Σ K for a constant matrix K. Combining (9.27) and (9.28), we
have

Cdiag(t)
−1C ′diag(t) ∼ exp

(
−
∫

Λ

)
(Y flat

Σ )−1Y flat
Σ′ exp

(∫
Λ

)
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= exp

(
−
∫

Λ

)
K exp

(∫
Λ

)
on Σ ∩ Σ′. Since the diagonal entries of the right-hand side of the above are those of K, which
are constant in t, we can see that the left-hand side of the above is a constant matrix. Since
C ′diag(t

′) = C ′(t′) = Ir = C(t′) = Cdiag(t
′), we have C ′diag(t) = Cdiag(t).

Thus, the replacement of the formal transform P (w, t) with P (w, t)Cdiag(t) is independent
of Σ. So the replacement of YΣ with Y flat

Σ on each Σ satisfies the condition of Definition 9.4. ■

Summarizing the above arguments, we get the following theorem, which is the local version
of a main consequence of the Jimbo–Miwa–Ueno theory. It is the significance of the formulation
of generalized isomonodromic deformation introduced in Section 11 later.

Theorem 9.7 (Jimbo–Miwa–Ueno [16, Theorems 3.1 and 3.3]). For a submanifold L of M◦, the
restriction

(
Ẽ′, ∇̃′

)
|∆w×L of the family of connections to ∆w × L is a local generalized isomon-

odromic deformation if and only if for each point t′ of L, there is a neighborhood L′ of t′ in L
and a meromorphic integrable connection

(
∇̃′
)flat

: Ẽ′|∆w×L′ −→ Ẽ′|∆×L′ ⊗Ω∆w×L′((mr− r)x̃′)

whose associated relative connection coincides with ∇̃′|∆w×L′.

Remark 9.8.

(i) In the precise setting of [16], each sector is taken sufficiently large so that the asymptotic
solution YΣ is determined uniquely. Furthermore, the choice of formal transforms is also
included in the system of differential equation in [16, Theorems 3.1 and 3.3].

(ii) In our setting of Theorem 9.7, there are ambiguities in the choice of asymptotic solu-
tions YΣ(w, t) and in the choice of the formal transforms P (w, t). Our statement of Theo-
rem 9.7 is a consequence of Proposition 9.6, which is essentially the result by T. Mochizuki
in [21].

(iii) We introduce Definition 9.4 based on the naive meaning of Stokes data, but it will be
better to explain the Stokes data by using the notion of local system with Stokes filtration
as in [1, Section 4.6] or [21, Chapter 3].

(iv) Theorem 9.7 is also mentioned in the appendix of [5].

(v) We can see from (9.17) that the dtj-coefficient of
(
∇̃′
)flat

has a pole of order mr − r − 1.

Proposition 9.9. For the family of connections
(
Ẽ′, ∇̃′

)
on ∆w×M◦ which is constructed from(

Ẽ, ∇̃
)
|∆z×M◦ in (9.7) and for a submanifold L of M◦,

(
Ẽ′, ∇̃′

)
|∆w×L can be extended to an

integrable connection if and only if
(
Ẽ, ∇̃

)
|∆z×L can be extended to an integrable meromorphic

connection on ∆z × L.

Proof. Assume that ∇̃′|∆w×L can be extended to an integrable connection
(
∇̃′
)flat

. Note that

there is a canonical inclusion S(w) : p∗L
(
Ẽ|∆z×L

)
↪→ Ẽ′|∆w×L which is Galois equivariant and

compatible with the connections. Consider the pullback S(w)∗
(
∇̃′
)flat

. If we write

(
∇̃′
)flat

= d +A′(w)
dw

wmr−r
+

N∑
j=1

B′j(w)dtj ,

then the connection S(w)∗
(
∇̃′
)flat

on p∗L
(
Ẽ|∆z×L

)
is given by

d + S(w)−1
(
∂S(w)

∂w
+
A′(w)S(w)

wmr−r

)
dw +

N∑
j=1

S(w)−1
(
∂S(w)

∂tj
+B′j(w)S(w)

)
dtj . (9.29)
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Note that there is a canonical action of Gal(∆w/∆z) on p∗L
(
Ẽ|∆z×L

) ∼= p∗L
(
Ohol

∆z×L
)⊕r

, which

induces a canonical Galois action on End
(
p∗L
(
Ẽ|∆z×L

))
⊗ p∗LΩ

1
∆z×L(mx̃). If we denote the

matrix of ∇̃|∆z×L by A(z)dz
zm , then we have

A(z)dz

zm
− ν̃0(z)Ir = S(w)−1

(
∂S(w)

∂w
+
A′(w)S(w)

wmr−r

)
dw,

which is Galois invariant. On the other hand, the dtj-coefficient of (9.29) may not be Galois
invariant. So we put

Bj := −
∫
∂ν̃0(z)

∂tj
Ir +

1

r

∑
σ∈Gal(∆w/∆z)

[
S(w)−1

(
∂S(w)

∂tj
+B′j(w)S(w)

)]σ
.

Then Bj is Gal(∆w/∆z)-invariant and becomes a matrix of meromorphic functions on ∆z × L.
If we put

∇̃flat := d +
A(z)dz

zm
+

N∑
j=1

Bjdtj ,

then ∇̃flat defines a meromorphic integrable connection on Ẽ|∆z×L. The converse is imme-
diate. ■

We can see by a calculation that

Ψ(z, t) :=


1 z

1
r · · · z

r−1
r

1 ζrz
1
r · · · ζr−1r z

r−1
r

...
...

. . .
...

1 ζr−1r z
1
r · · · ζ

(r−1)2
r z

r−1
r


−1

e
∫
ν̃0(z,t) exp

(
−
∫

Λ
(
z

1
r , t
))

(9.30)

becomes a fundamental solution of

d +


ν̃0(z) zν̃r−1(z) · · · zν̃1(z)

ν̃1(z) ν̃0(z) +
dz
rz · · · zν̃2(z)

...
...

. . .
...

ν̃r−1(z) ν̃r−2(z) · · · ν̃0(z) +
(r−1)dz
rz



+

N∑
j=1


∂
∂tj

∫
ν̃0(z) zw−r+1 ∂

∂tj

∫
wr−1ν̃r−1(z) · · · zw−1 ∂

∂tj

∫
wν̃1(z)

w−1 ∂
∂tj

∫
wν̃1(z)

∂
∂tj

∫
ν̃0(z) · · · zw−2 ∂

∂tj

∫
w2ν̃2(z)

...
...

. . .
...

w−r+1 ∂
∂tj

∫
wr−1ν̃r−1(z) w−r+2 ∂

∂tj

∫
wr−2ν̃r−2(z) · · · ∂

∂tj

∫
ν̃0(z)

 dtj

which is a matrix form of the integrable formal connection

∇ν̃(w)+
∑ ∂

∂tj
(
∫
ν̃)dtj

: OL[[w]] −→ OL[[w]]⊗ Ω∆z×L(mx̃)

f(w) 7→ df(w) +

ν̃(w) + N∑
j=1

∂

∂tj

(∫
ν̃(w)

)
dtj

 f(w)

with respect to the basis 1, w, . . . , wr−1 of the free module OL[[w]] over OL[[z]]. On the other
hand, recall that the elementary transform p∗L

(
Ẽ, ∇̃

)
|∆w×L 7→

(
Ẽ′, ∇̃′

)
is given by the rational
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gauge transform S(w) : p∗L
(
Ẽ|∆z×L

)
↪→ Ẽ′. If we put Σ := pM◦(Σ), then pM◦ |Σ : Σ

∼−→ Σ is an

isomorphism if Σ is sufficiently small. Substituting z = w
1
r in the solution YΣ(w), we can get

a fundamental solution

ZΣ(z, t) := S
(
z

1
r , t
)−1

YΣ
(
z

1
r , t
)
e
∫
ν̃0(z,t)

of ∇̃|∆z×L. Using the asymptotic property YΣ exp
( ∫

Λ(w)
)
∼ P (w) and the equality (9.12), we

get the asymptotic relation

ZΣ(z)Ψ(z)−1 = S
(
z

1
r
)−1

YΣ
(
z

1
r
)

× exp

(∫
Λ(z

1
r )

)
1 z

1
r · · · z

r−1
r

1 ζrz
1
r · · · ζr−1r z

r−1
r

...
...

. . .
...

1 ζr−1r z
1
r · · · ζ

(r−1)2
r z

r−1
r

 ∼ Q(z) (9.31)

on (z, t) ∈ Σ. For another Σ
′
, we have

Z
Σ

′(z, t) = ZΣ(z, t)CΣ,Σ
′(t),

where C
Σ,Σ

′(t) = CΣ,Σ′(t). So we can in fact describe the Stokes data on ∆z, without using

a ramified cover, in the sense of patching data in [1, Theorem 4.5.1].

Definition 9.10. We say that a family of connections
(
Ẽ, ∇̃

)
|∆z×L over a submanifold L ⊂M◦

is a local generalized isomonodromic deformation, if for each t′ ∈ L, we can take an open
neighborhood Lt′ of t′ in L, a replacement of the formal transform Q(z, t) given in (9.11) and
a replacement of the covering {Σ} of (∆z \ {0})× Lt′ such that

(i) there is a fundamental solution ZΣ(z, t) of ∇̃ on each Σ with the asymptotic property (9.31)
and

(ii) all the Stokes matrices C
Σ,Σ

′(t) are constant in t ∈ Lt′ .

Corollary 9.11. For a submanifold L of M◦, the family
(
Ẽ, ∇̃

)
|∆z×L is a local isomon-

odromic deformation in the sense of Definition 9.10 if and only if for each point t′ of L, there
is a neighborhood L′ of t′ in L and an integrable meromorphic connection ∇̃ : Ẽ|∆z×L′ −→
Ẽ|∆z×L′ ⊗ Ω1

∆z×L′(mx̃) whose associated relative connection coincides with
(
Ẽ, ∇̃

)
|∆z×L′.

Proof. Assume that there is an integrable connection ∇̃flat on Ẽ|∆z×L′ which is an extension
of ∇̃|∆z×L′ as in Proposition 9.9. Then there is a canonically induced integrable connection(
∇̃′
)flat

on Ẽ′|∆w×L′ . If we take a fundamental solution Y flat(w, t) of
(
∇̃′
)flat

as in the proof of
Proposition 9.6, then

Zflat
Σ

(z) := S
(
z

1
r
)−1

Y flat
(
z

1
r
)
e
∫
ν̃0(z)

is a fundamental solution of ∇̃flat. Since YΣ exp
( ∫

Λ(w)
)
∼ Y flat exp

( ∫
Λ(w)

)
Cdiag(t)

−1 as in
the proof of Proposition 9.6, we can see from (9.31) that the asymptotic relation

Zflat
Σ

(z, t)Cdiag(t)
−1Ψ(z, t)−1 ∼ Q(z, t)

holds on (z, t) ∈ Σ. Differentiating the above in tj , we have

∂Zflat
Σ

∂tj

(
Zflat
Σ

)−1
Q(z)−Q(z)Ψ(z)

∂Cdiag

∂tj
C−1diagΨ(z)−1 +Q(z)

∂Ψ(z)

∂tj
Ψ(z)−1 ∼ ∂Q(z)

∂tj
(9.32)
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on (z, t) ∈ Σ. Note that −∂Z
flat

Σ

∂tj

(
Zflat
Σ

)−1
is Gal(∆w/∆z)-invariant because it is the dtj-coeffi-

cient of ∇̃flat. We can see that −∂Ψ(z)
∂tj

Ψ(z)−1 is also Gal(∆w/∆z)-invariant because it is the dtj-

coefficient of the formal connection ∇
ν(w)+

∑∫ ∂ν0
∂tj

dtj
. The transform Q(z) is also Gal(∆w/∆z)-

invariant as a matrix of formal power series. So, from the asymptotic relation (9.32), we can see

that Ψ(z)
∂Cdiag

∂tj
C−1diagΨ(z)−1 is Gal(∆w/∆z)-invariant. If the Galois transform σ ∈ Gal(∆w/∆z)

is given by σ(w) = ζkrw, then the Galois transform by σ on Ψ(z, t) in (9.30) is given by

Ψ(z, t)σ =


1 ζkz

1
r · · · ζ(r−1)kz

r−1
r

1 ζk+1
r z

1
r · · · ζ

(r−1)(k+1)
r z

r−1
r

...
...

. . .
...

1 ζr−1+kr z
1
r · · · ζ

(r−1)(r−1+k)
r z

r−1
r


−1

e
∫
ν0(z,t) exp

(
−
∫

Λ(ζkr z
1
r , t)

)

=


1 z

1
r · · · z

r−1
r

1 ζrz
1
r · · · ζr−1r z

r−1
r

...
...

. . .
...

1 ζr−1r z
1
r · · · ζ

(r−1)2
r z

r−1
r


−1

Pσe
∫
ν0(z,t)P−1σ exp

(
−
∫

Λ(z
1
r , t)

)
Pσ,

where Pσ is the permutation matrix defined by Pσ = (ek+1, ek+2, . . . , er, e1, . . . , ek) for the
canonical basis e1, . . . , er of Cr. So the equation of Galois invariance

Ψ(z)σ
∂Cdiag

∂tj
C−1diag

(
Ψ(z)σ

)−1
= Ψ(z)

∂Cdiag

∂tj
C−1diagΨ(z)−1

deduces the equalities

Pσ
∂Cdiag

∂tj
C−1diag P

−1
σ =

∂Cdiag

∂tj
C−1diag

for cyclic permutation matrices Pσ corresponding to σ ∈ Gal(∆w/∆z). Thus all the diagonal

entries of
∂Cdiag

∂tj
C−1diag are the same, which implies that all the diagonal entries of Cdiag(t) are the

same. After replacing Q(z) with Q(z)Cdiag(t), we have the asymptotic relation

Zflat
Σ (z)Ψ(z)−1 ∼ Q(z) as z → 0 on Σ

for all Σ. After replacing ZΣ(z, t) with Zflat
Σ (z, t) and shrinking L if necessary, all the Stokes

matrices
{
C
Σ,Σ

′
}
become constant. So

(
Ẽ, ∇̃

)
|∆z×L becomes a local generalized isomonodromic

deformation.
Conversely, assume that

(
Ẽ, ∇̃

)
|∆z×L is a local generalized isomonodromic deformation. For

the fundamental solution ZΣ(z, t) of ∇̃|Σ given in Definition 9.10,

YΣ(z, t) = S(w, t)ZΣ(z, t)e
−

∫
ν0(z,t)

becomes a fundamental solution of ∇̃′|Σ. So we have CΣ,Σ′(t) = C
Σ,Σ

′ which is constant in t.

Thus ∇̃′|∆w×L is a local generalized isomonodromic deformation. By Theorem 9.7, we can
extend ∇̃′|∆w×L to an integrable connection after shrinking L at each point. So

(
Ẽ, ∇̃

)
|∆z×L

can be extended to an integrable connection by Proposition 9.9. ■

Remark 9.12. The achievement of the construction of the generalized isomonodromic defor-
mation by Bremer and Sage in [8] is based on the Jimbo–Miwa–Ueno theory, which becomes
Corollary 9.11 in our setting.
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10 Horizontal lift of a universal family of connections

We will extend the notion of local generalized isomonodromic deformation in Section 9 to a global
setting on the moduli space of connections. Its differential equation is given as a subbundle of
the tangent bundle of the moduli space, which satisfies the integrability condition. For its
construction, we introduce the notion of horizontal lift of a universal family of connections.

Let the notations T , C, λ, µ̃, ν̃, Mα
C,D(λ, µ̃, ν̃) be as in Section 5. There is an étale surjective

morphism M̃ −→Mα
C,D(λ, µ̃, ν̃) such that there is a universal family of connections

(
Ẽ, ∇̃, l̃, ℓ̃, Ṽ

)
on CM̃ . We may assume that the generic ν̃-ramified structure Ṽ is given by a factorized ν̃-ramified

structure
(
Ṽk, ϑ̃k, κ̃k

)
0≤k≤r−1.

For a Zariski open subset T ′ ⊂ T , we put M̃ ′ := M̃ ×T T ′. Take a vector field v ∈
H0(T ′, TT |T ′). If we put T ′[v] := T ′ × SpecC[ϵ] with ϵ2 = 0, then v is characterized by a
morphism Iv : T ′[v] −→ T ′ whose restriction to T ′ is the identity. Put M̃ ′[v] := M̃ ′ × SpecC[ϵ]
and consider the fiber product CM̃ ′[v] := C ×T (M̃ ′ × SpecC[ϵ]) with respect to the projection

C −→ T and the composition M̃ ′ × SpecC[ϵ] −→ T ′ × SpecC[ϵ] Iv−→ T ′ ↪→ T .
We define a divisor D′ on C by setting

D′ :=
nun∑
i=1

(
mun
i − 1

)
x̃uni +

nram∑
i=1

(
mram
i − 1

)
x̃rami .

Consider the sheaf of differential forms Ω1
CM̃′[v]/M̃′

with respect to the composition of trivial

projections

CM̃ ′[v] = C ×T
(
M̃ ′ × SpecC[ϵ]

)
−→ M̃ ′ × SpecC[ϵ] −→M ′.

Take a local section zlogi (resp. zuni , zrami ) of OCT ′ which is a local defining equation of x̃logi (resp.

x̃uni , x̃rami ). We write the induced local section of OCM̃′[v]
by the same symbol zlogi (resp. zuni ,

zrami ). Let Ω̃v be the coherent subsheaf of Ω1
C
M̃′[v]/M̃

′(DM̃ ′[v]) which is locally defined by

Ω̃v = OCM̃′[v]

dzregi

zlogi
+OCM̃′dϵ around (x̃logi )M̃ ′[v],

Ω̃v = OCM̃′[v]

dzuni
(zuni )m

un
i

+OCM̃′
dϵ

(zuni )m
un
i −1

around (x̃uni )M̃ ′[v],

Ω̃v = OCM̃′[v]

dzrami

(zrami )m
ram
i

+OCM̃′
dϵ

(zrami )m
ram
i −1 around (x̃rami )M̃ ′[v]. (10.1)

Definition 10.1. We say that
(
Ev,∇v, lv, ℓv,Vv

)
is a global horizontal lift of

(
Ẽ, ∇̃, l̃, ℓ̃, Ṽ

)
M̃ ′

with respect to v, if

(i) Ev is a vector bundle on CM̃ ′[v] of rank r,

(ii) ∇v : Ev −→ Ev ⊗ Ω̃v is a morphism such that ∇v(fa) = a⊗ df + f∇v(a) for f ∈ OC
M̃′[v]

,

a ∈ Ev and that the matrix Γv = Ã(z)dz + B(z) dϵ corresponding to ∇v with respect to
a local frame e0, . . . , er−1 of Ev|U [v] defined by (∇v(e0), . . . ,∇v(er−1)) = (e0, . . . , er−1)Γ

v

satisfies Ã(z) ∈Mr(OU [v](DM̃ ′[v] ∩ U)) and B(z) ∈Mr(OU (D′M̃ ′ ∩ U))

(iii) ∇v satisfies the integrability condition dΓv + Γv ∧ Γv = 0, which means that the equality
∂Ã
∂ϵ dz ∧ dϵ = dB(z) ∧ dϵ+ [Ã(z), B(z)]dz ∧ dϵ holds,

(iv) for the relative connection ∇v : Ev −→ Ev ⊗ Ω1
CM̃′[v]/M̃′[v]

(
DM̃ ′[v]

)
induced by ∇v,
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(a) lv = (lvk)0≤k≤r−1 is a logarithmic λ-parabolic structure on
(
Ev,∇v

)
such that the

subsheaf ker
(
Ev → Ev|(Dlog)M̃′[v]

/lvk
)
of Ev is preserved by ∇v for 0 ≤ k ≤ r − 1,

(b) ℓv = (ℓvk)0≤k≤r−1 is a generic unramified I∗v µ̃-parabolic structure on
(
Ev,∇v

)
such that

the subsheaf ker
(
Ev → Ev|(Dun)M̃′[v]

/ℓvk
)
of Ev is preserved by ∇v for 0 ≤ k ≤ r − 1,

(c) Vv =
(
V v
k , ϑ

v
k,κvk

)
0≤k≤r−1 is a factorized I∗v ν̃-ramified structure on

(
Ev,∇v

)
such that

the subsheaf ker
(
Ev → Ev|(Dram)M̃′[v]

/V v
k

)
of Ev is preserved by ∇v,

(v)
(
Ev,∇v, lv, ℓv,Vv

)
⊗OM̃ ′[v]/(ϵ)

∼=
(
Ẽ, ∇̃, l̃, ℓ̃, Ṽ

)
M̃ ′ holds.

We will prove the existence and uniqueness of the horizontal lift in the above definition. For
its proof, we will show the local existence and the uniqueness of the horizontal lift.

Definition 10.2. Let U be an open subset of CM̃ ′ such that Ẽ|U ∼= O⊕rU and let U [v] be the open
subscheme of CM̃ ′[v] whose underlying set is the same as U . We say that

(
EvU ,∇v

U , l
v
U , ℓ

v
U ,VvU

)
is

a local horizontal lift of
(
Ẽ|U , ∇̃|U , l̃|U , ℓ̃|U , Ṽ|U

)
with respect to v, if

(i) EvU is a vector bundle on U [v] of rank r,

(ii) ∇v
U : EvU −→ EvU ⊗ Ω̃v|U [v] is an integrable connection in the sense of Definition 10.1 (ii)

and (iii),

(iii)
(
lvU , ℓ

v
U ,VvU

)
satisfies the same condition as (a), (b), (c) of Definition 10.1 and for the

induced relative connection ∇v on Ev,(
EvU ,∇v

U , l
v
U , ℓ

v
U ,VvU

)
⊗OM̃ ′[v]/(ϵ)

∼=
(
Ẽ|U , ∇̃|U , l̃|U , ℓ̃|U , Ṽ|U

)
holds.

Lemma 10.3 (logarithmic local horizontal lift). Let U be an affine open subset of CM̃ ′ such that

Ẽ|U ∼= O⊕rU and that DM̃ ′ ∩U =
(
x̃logi

)
M̃ ′ ∩U for some i, which is defined by the equation zU = 0

for a section z of OCT ′ on a Zariski open subset of CT ′. Then there exists a local horizontal lift(
EvU ,∇v

U , l
v
U

)
of
(
Ẽ|U , ∇̃|U , l̃|U

)
with respect to v, which is unique up to an isomorphism.

Proof. Note that
(
ℓ̃|U , Ṽ|U

)
is nothing in this case. Put x̃ :=

(
x̃logi

)
M̃ ′∩U . For a suitable choice

of a frame e0, . . . , er−1 of Ẽ|U ∼= O⊕rU , we may assume that l̃k ∩ U is given by ⟨ek|x̃, . . . , er−1|x̃⟩.
With respect to the frame e0, . . . , er−1 of Ẽ|U , we can write ∇̃|U = d + A(z)dz/z, where A(z)
is a matrix with values in OU such that A(0) is a lower triangular matrix with the diagonal

entries λ
(i)
0 , . . . , λ

(i)
r−1. Take a lift Ã(z) of A(z) as a matrix with values in OU [v] such that Ã(0) is

a lower triangular matrix with the diagonal entries λ
(i)
0 , . . . , λ

(i)
r−1. After replacing Ã(z), we may

assume that the dϵ-coefficient of each entry of dÃ(z) in Ω1
U [v]/M̃ ′ = OU [v]dz ⊕ OUdϵ vanishes.

Then ∇v
U := d+ Ã(z)dz/z defines an integrable connection on EvU := O⊕rU [v], which preserves the

parabolic structure lvU on EvU defined by lvU,k = ⟨ek|x̃U [v]
, . . . , er−1|x̃U [v]

⟩.
Assume that

(
E ′U ,∇′U , l′U

)
is another local horizontal lift of

(
Ẽ|U , ∇̃|U , l̃|U

)
. Then we have

E ′U ∼= O⊕rU [v] and we can write ∇′U = d + Ã′(z)dz/z + B′(z)dϵ. After replacing the frame

e0, . . . , er−1 of E ′U ∼= O⊕rU [v], we may assume that l′U is given by l′U,k = ⟨ek|x̃U [v]
, . . . , er−1|x̃U [v]

⟩.
Then Ã′(0) is a lower triangular matrix and B′(0) is also lower triangular by the condition (a)
of Definition 10.1. Since ∇′U is a lift of ∇̃|U , we can write Ã′(z) = Ã(z) + ϵC ′(z), with C ′(0)
a lower triangular matrix whose diagonal entries are zero. The integrability condition of ∇′
yields C ′(z)dz/z = dB′(z) + [Ã(z), B′(z)]dz/z. Applying the transform Ir − ϵB′(z) to the
connection ∇′U , the matrix of connection becomes

(Ir + ϵB′(z))d(Ir − ϵB′(z)) + (Ir + ϵB′(z))
(
(Ã(z) + ϵC ′(z))dz/z +B′(z)dϵ

)
(Ir − ϵB′(z))
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= Ãdz/z + ϵ
(
C ′(z)dz/z − dB′(z)− [Ã(z), B′(z)]dz/z

)
−B′(z)dϵ+B′(z)dϵ = Ã(z)dz/z.

So Ir−ϵB′(z) transforms
(
E ′U ,∇′U , l′U

)
to
(
EvU ,∇v

U , l
v
U

)
. The transform Ir−ϵB′(z) also preserves

the parabolic structures on the both sides. Since the transform is uniquely determined by the
dϵ-coefficient, we can see the uniqueness of the transform. ■

The following lemma is essentially given in [15, Theorem 6.2].

Lemma 10.4 (unramified irregular singular local horizontal lift). Let U be an affine open subset
of CM̃ ′ such that Ẽ|U ∼= O⊕rU , DM̃ ′ ∩ U = mun

i

(
x̃uni
)
M̃ ′ ∩ U for some i and that

(
x̃uni
)
M̃ ′ ∩ U is

defined by the equation zU = 0 for a section z of OCT ′ on a Zariski open subset of CT ′. Then

there exists a local horizontal lift
(
EvU ,∇v

U , ℓ
v
U

)
of
(
Ẽ|U , ∇̃|U , ℓ̃|U

)
with respect to v, which is

unique up to an isomorphism.

Proof. We put x̃ :=
(
x̃uni
)
M̃ ′ ∩ U and m := mun

i . Write

µ
(i)
k (z) =

m−2∑
j=0

ak,j(z)
dz

zm
+ ck

dz

z
.

We can write

I∗v (ak,j) = ak,j + ϵbk,j ∈ OT ′[v] = OT ′×SpecC[ϵ] = OT ′ ⊕ ϵOT ′ .

We express the above equality by

I∗vµ
(i)
k (z) = µ

(i)
k (z) + ϵµ

(i)
k,v(z), µk,v(z) =

m−2∑
j=0

bk,jz
j dz

zm
.

Take a local frame e0, . . . , er−1 of Ẽ|U such that ℓ̃k ∩ U is given by ⟨ek|x̃, . . . , er−1|x̃⟩. After
a suitable replacement of the frame e0, . . . , er−1, we can write ∇̃|U = d + A(z)dz/zm such that

A(z)dz/zm (mod z2m−1dz/zm) is the diagonal matrix with the diagonal entries µ
(i)
0 , . . . , µ

(i)
r−1.

We can take a matrix Ã(z) with entries in OU [v] which is a lift of A(z) such that ∂Ã/∂ϵ = 0 and

that Ã(z)dz/zm
∣∣
z2m−1=0

is a diagonal matrix with the diagonal entries µ
(i)
0 , . . . , µ

(i)
r−1. Set

B(z) :=

∫ 
µ
(i)
0,v(z) 0 0

0
. . . 0

0 0 µ
(i)
r−1,v(z)

 , C(z)dz/zm := dB + [A,B]
dz

zm
.

Then ∇v
U := d + (Ã(z) + ϵC(z))dz/zm + Bdϵ defines an integrable connection on EvU = O⊕rU [v].

By construction, the connection ∇v
U preserves the parabolic structure ℓvU on EvU induced by

e0, . . . , er−1. So we can see the existence of the local horizontal lift
(
Ev,∇v, ℓv

)
.

Assume that
(
E ′U ,∇′U , ℓ′U

)
is another local horizontal lift of

(
Ẽ|U , ∇̃|U , ℓ̃|U

)
. Note that

E ′U ∼= O⊕rU [v]. So we may write ∇′U = d + (Ã(z) + ϵC ′(z))dz/zm + B′(z)dϵ with C ′(z) ≡ C(z)

(mod zm). The integrability condition

C ′(z)dz/zm := dB′ + [A,B′]
dz

zm
(10.2)

yields
[
A, zm−1B′

]
≡ 0 (mod zm−1). Since A(z)|z2m−1=0 is a diagonal matrix whose constant

term A(0) has distinct eigenvalues, we can see that zm−1B′|zm−1=0 is also a diagonal matrix.
Looking at (10.2) again and using C(z) ≡ C ′(z) (mod zm), we can see that B′(z)|z2m−1=0 is
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also a diagonal matrix with the diagonal entries µ
(i)
0,v, . . . , µ

(i)
r−1,v. So B(z)−B′(z) is a matrix of

regular functions on U , whose constant term is diagonal. We can see by the same calculation as
in the proof of Lemma 10.3 that the automorphism Ir + ϵ(B −B′) transforms ∇′U to ∇v

U and it
also preserves the parabolic structures on the both sides. We can see that such an automorphism
is unique, because it is determined by the dϵ-coefficient of ∇′U . ■

Lemma 10.5 (existence of ramified irregular singular local horizontal lift). Let U be an affine
open subset of CM̃ ′ such that Ẽ|U ∼= O⊕rU , DM̃ ′ ∩ U = mram

i

(
x̃rami

)
M̃ ′ ∩ U for some i and that(

x̃rami
)
M̃ ′ ∩U is defined by the equation zU = 0 for a section z of OCT ′ on a Zariski open subset

of CT ′. Then there exists a local horizontal lift
(
EvU ,∇v

U ,VvU
)
of
(
Ẽ|U , ∇̃|U ,V|U

)
with respect

to v.

Proof. Write x̃ =
(
x̃rami

)
M̃ ′ ∩ U and m = mram

i . We denote the pullback of ν via the trivial
first projection T ′[v] −→ T ′ ↪→ T by the same symbol ν. As in the proof of Lemma 10.4, we
express

I∗vν(w) = ν(w) + ϵνv(w), ν(w) =

r−1∑
k=0

m−1∑
j=0

ak,jz
jwk

dz

zm
, νv(w) =

r−1∑
k=0

m−2∑
j=0

bk,jz
jwk

dz

zm
,

where a1,0 ∈ O×
M̃ ′ and ak,m−1 = 0 for 1 ≤ k ≤ r − 1.

We choose a local frame e0, . . . , er−1 of Ẽ|U whose restriction to (2m − 1)x̃ corresponds to
1, w, . . . , wr−1 via the isomorphism Ẽ|(2m−1)x̃ ∼= OM̃ ′ [w]/

(
w(2m−1)r) given by Proposition 4.1 in

the case q = 2m− 1. Let

N : Ẽ|U −→ Ẽ|U

be the homomorphism defined by the representation matrix
0 0 · · · 0 z
1 0 · · · 0 0
...

. . .
. . .

...
...

0 · · · 1 0 0
0 · · · 0 1 0

 (10.3)

with respect to the basis e0, . . . , er−1 of Ẽ|U . As in the proof of Theorem 7.5, we can construct
homomorphisms θ : Ẽα|∨mx̃ −→ Ẽα|mx̃ and κ : Eα|mx̃ −→ Eα|∨mx̃ which satisfy tθ = θ, tκ = κ and
N |mx̃ = θ ◦ κ. We may assume that (θ̃k) and (κ̃k) are induced by θ and κ, respectively.

Write ∇̃|Ūα
= d + A(z) dz

zm with respect to the frame e0, . . . , er−1 of Ẽ|U ∼= O⊕rU . Since(
Ẽ|(2m−1)x̃, ∇̃|(2m−1)x̃

) ∼= (OM̃ ′ [w]/
(
w(2m−1)r),∇ν

)
as in Proposition 4.1, we can write

A(z) =

r−1∑
k=0

m−1∑
l=0

ak,lz
lNk + zm−1Rr + z2m−1A′(z) (10.4)

for some matrix A′(z) of regular functions, where we are putting

Rr :=


0 0 · · · 0
0 1

r · · · 0
...

...
. . .

...
0 0 · · · r−1

r

 . (10.5)
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Set EvU := O⊕rU [v] with the identification EvU⊗OU [v]/(ϵ) = Ẽ|U . Define theOU [v]-homomorphism

Ñ : EvU −→ EvU

by the same matrix (10.3) as N . Then
(
EvU , Ñ

)
becomes a lift of

(
Ẽ|U , N

)
. Define matrices

Ã(z), B(z), C(z) by setting

Ã(z) :=
r−1∑
k=0

m−1∑
l=0

ak,lz
lÑk + zm−1R̃r + z2m−1Ã′(z),

B(z) :=

r−1∑
k=0

m−2∑
l=0

rbk,l
(−mr + lr + r + k)zm−l−1

Ñk,

C(z)
dz

zm
:= dB(z) + [A(z), B(z)]

dz

zm
,

where R̃r is the endomorphisms of EvU whose representation matrix with respect to the basis

e0, . . . , er−1 is the same as that of Rr in (10.5) and Ã′(z) is a lift of A′(z) such that ∂Ã′(z)
∂ϵ = 0.

Using the calculations

Ñk =



0 · · · 0 z · · · 0
...

. . .
...

...
. . .

...
0 · · · 0 0 · · · z
1 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
0 · · · 1 0 · · · 0


,

[
R̃r, Ñ

k
]
=



0 · · · 0 − r−k
r z · · · 0

...
. . .

...
...

. . .
...

0 · · · 0 0 · · · − r−k
r z

k
r · · · 0 0 · · · 0
...

. . .
...

...
. . .

...

0 · · · k
r 0 · · · 0


,

we can check the equality

dÑk +

[
R̃r

dz

z
, Ñk

]
=
k

r
Ñk dz

z
. (10.6)

Then we can see(
dB(z) + [A(z), B(z)]

dz

zm

) ∣∣∣
(2m−1)x̃

=
r−1∑
k=0

m−2∑
l=0

rbk,l
−mr + lr + r + k

(
d

(
1

zm−l−1
Ñk

)
+

[
R̃r

dz

z
,

1

zm−l−1
Ñk

]) ∣∣∣
(2m−1)x̃

=

r−1∑
k=0

mi−2∑
l=0

rbk,l
−mr + lr + r + k

(
−m+ l + 1

zm−l
Ñkdz +

1

zm−l−1
k

r
Ñk dz

z

) ∣∣∣
(2m−1)x̃

=
r−1∑
k=0

m−2∑
l=0

r(−m+ l + 1) + k

−mr + lr + r + k

bk,l
zm−l

Ñkdz

∣∣∣∣
(2m−1)x̃

= νv(Ñ)
∣∣
(2m−1)x̃.

So the matrix(
Ã(z) + ϵC(z)

) dz
zm

+B(z)dϵ

determines an integrable connection ∇flat
U [v] : O

⊕r
U [v] −→ O⊕rU [v] ⊗OU [v]

Ω̃v such that the induced

relative connection ∇flat
U [v] : O

⊕r
U [v] −→ O⊕rU [v] ⊗ Ω1

U [v]/T ′[v](DT ′ ∩ U) satisfies

∇flat
U [v]

∣∣
(2m−1)x̃ = I∗vν

(
Ñ
)∣∣

(2m−1)x̃.
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We can give a filtration O⊕rU [v]

∣∣
DM̃′[v]

= V v
U,0 ⊃ V v

U,1 ⊃ · · · ⊃ V v
U,r−1 ⊃ V v

U,r = zV v
U,0 by setting

V v
U,k := Im

(
Ñk
∣∣
DM̃′[v]

)
for k = 0, 1, . . . , r. So we can see that {V v

U,k} induces V
v
U,k,W

v
U,k and that

the homomorphism Ñ |V v
U,k

: V
v
U,k −→ V

v
U,k induced by the restriction Ñ |V v

U,k
has a factorization

Ñ |V v
U,k

: V
v
U,k

κvU,k−−−→W
v
U,k

θvU,k−−→
∼

V
v
U,k.

Then
(
V v
U,k, θ

v
U,k, κ

v
U,k

)
induces a factorized ramified structure

(
V v
U,k, ϑ

v
U,k,κvU,k

)
on
(
EvU ,∇flat

U [v]

)
,

where ∇flat
U [v] is the relative connection induced by ∇flat

U [v]. Thus
(
EvU , ,∇flat

U [v],
{
V v
U,k, ϑ

v
U,k,κvU,k

})
becomes a local horizontal lift of

(
Ẽ, ∇̃, {Ṽk, ϑ̃k, κ̃k}

)∣∣
U
. ■

Lemma 10.6 (uniqueness of ramified irregular singular local horizontal lift). Under the same
assumption as Lemma 10.5, a local horizontal lift

(
EvU ,∇v

U ,VvU
)
of
(
Ẽ|U , ∇̃|U ,V|U

)
with respect

to v is unique up to an isomorphism.

Proof. Let
(
EvU ,∇flat

U [v],
{
V v
U,k, ϑ

v
U,k,κvU,k

})
be the local horizontal lift constructed in Lemma 10.5.

Take another local horizontal lift
(
O⊕rUα[v]

,∇′,
{
V ′k, ϑ

′
k,κ′k

})
of
(
Ẽ, ∇̃,

{
Ṽk, ϑ̃k, κ̃k

})∣∣
U
. The con-

nection ∇′ : O⊕rU [v] −→ O⊕rU [v] ⊗ Ω1
U [v]/M ′(m(x̃)M ′) can be given by

∇′

f1...
fr

 =

df1
...

dfr

+

((
Ã(z) + ϵC ′(z)

) dz
zm

+B′(z)dϵ

)f1...
fr


with B′(z) a rational function on U admitting a pole at z = 0 of order at most m − 1. Note
that ∇′ satisfies the integrability condition

C ′(z)
dz

zm
= dB′(z) + [A(z), B′(z)]

dz

zm
. (10.7)

Now we apply Proposition 4.1 in the case q = 2m− 1 to the relative connection ∇′ on O⊕rU [v]

induced by ∇′. Then, after applying an automorphism of O⊕rU [v] of the form Ir + ϵh, we may
assume that

C ′(z)
dz

zm

∣∣∣
(2m−1)x̃

= νv
(
Ñ
)∣∣

(2m−1)x̃, (10.8)

V ′k = Im
(
Ñk|mx̃

)
and that θ′k ◦ κ′k is induced by the restriction Ñ |V ′

k
for 0 ≤ k ≤ r − 1.

By the equality (10.7), we have
[
A(z), zm−1B′(z)

]
≡ 0 (mod zm−1). Note that A(z) satisfies

the equality (10.4) with a1,0 ∈ O×T and B′(z) ∈ Mr(OU (D′M̃ ′ ∩ U)) by the condition (ii) of
Definition 10.1. So we can find c0(z), . . . , cr−1(z) ∈ OU [v] satisfying

zm−1B′(z) ≡
r−1∑
k=0

ck(z)Ñ
k
(
mod zm−1 End

(
O⊕rUα[v]

))
since the equality ker

(
ad
(
Ñ |z=0

))
= OU [v]

[
Ñ |z=0

]
holds. Then we can write

B′(z) =

r−1∑
k=0

ck(z)

zm−1
Ñk +Bm(z).
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with Bm(z) a matrix of regular functions. Furthermore, we can see that Bm(0) is a lower
triangular matrix, since ∇v = d +

(
Ã(z) + ϵC(z)

)
dz
zm + B′(z)dϵ preserves the filtration (V v

k ).
Looking at the equality (10.7) again, we can see that

C ′(z)dz − zm
(
dB′(z) + [Rr, B

′(z)]
dz

z

)
=
[
Ã(z)− zm−1Rr, B

′(z)
]
dz

=

[
r−1∑
k=0

m−1∑
l=0

ak,lz
lÑk + z2m−1Ã′,

r−1∑
k=0

ck(z)

zm−1
Ñk +Bm(z)

]
dz

≡
r−1∑
k=0

[
zmck(z)Ã

′(z)−
m−1∑
l=0

ak,lz
lBm(z), Ñ

k

]
dz ∈ ad

(
Ñ
)
dz

(
mod z2m−1dz

)
.

In particular, we have

Tr

(
Ñ l

(
C ′(z)dz − zm

(
dB′(z) + [Rr, B

′(z)]
dz

z

)))
≡ 0

(
mod z2m−1dz

)
(10.9)

for 0 ≤ l ≤ r − 1. Since

zm
(
dB′(z) + [Rr, B

′(z)]
dz

z

)
≡

r−1∑
k=0

zm
(
d

(
ck(z)

zm−1

)
+
kck(z)

rzm
dz

)
Ñk + zm−1[Rr, Bm(z)]dz

(
mod zmdz

)
and since [Rr, Bm]|z=0 is lower triangular nilpotent matrix, we can see that the condition (10.9)
implies

zm
(
d

(
c0(z)

zm−1

)
− ν0,v(z)

)
≡ 0 (mod zm),

zm+1

(
d

(
cr−l(z)

zm−1

)
+

(r − l)cr−l(z)

rzm
dz − νr−l,v(z)

)
≡ 0 (mod zm) (1 ≤ l ≤ r − 1).

In other words, we have

d

(
c0(z)

zm−1

) ∣∣∣
mx̃

= ν0,v(z)
∣∣
mx̃
,

(
d

(
ck(z)

zm−1

)
+
kck(z)

rzm
dz

) ∣∣∣
(m−1)x̃

= νk,v(z)
∣∣
(m−1)x̃

for 1 ≤ k ≤ r − 1, which implies that

ck(z) ≡
m−2∑
l=0

rbk,l
−mr + lr + r + k

zl
(
mod zm−1

)
.

Thus

Q(z) := B(z)−B′(z)

becomes a matrix of regular functions. Furthermore, (10.7) and (10.8) implies the equality

dQ(z) + [A(z), Q(z)]
dz

zm
≡ 0

(
mod z2m−1dz/zm

)
,
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from which we can see Q(z)|mx̃ ∈ Omx̃

[
Ñ
]
. If we apply the transform Ir + ϵQ(z) to the

connection ∇′, then the consequent connection has the matrix form

(Ir+ ϵQ(z))−1d(Ir + ϵQ(z)) + (Ir+ ϵQ(z))−1
((
Ã(z) + ϵC ′(z)

) dz
zm

+B′(z)dϵ

)
(Ir+ ϵQ(z))

= (Ir − ϵQ(z))(ϵdQ(z) +Q(z)dϵ) + Ã(z)
dz

zm
+ ϵ([A(z), Q(z)] + C ′(z))

dz

zm
+B′(z)dϵ

= Ã(z)
dz

zm
+ ϵ

(
dB(z)− dB′(z) +

(
[A(z), B(z)−B′(z)] + C ′(z)

) dz
zm

)
+ (Q(z) +B′(z))dϵ

= Ã(z)
dz

zm
+ ϵ

(
dB(z) + [A(z), B(z)]

dz

zm
− dB′(z)− [A(z), B′(z)]

dz

zm
+ C ′(z)

dz

zm

)
+B(z))dϵ

=
(
Ã(z) + ϵC(z)

) dz
zm

+B(z)dϵ,

which means that
(
O⊕rUα[v]

,∇′
)
is isomorphic to

(
O⊕rUα[v]

,∇flat
Uα[v]

)
via Ir + ϵQ(z). Since Q(z)|mx̃

belongs to Omx̃[Ñ |mx̃], we can see that Ir + ϵQ(z) induces an isomorphism which transforms(
O⊕rU [v],∇

′, {V ′k, ϑ′k,κ′k}
)
to
(
O⊕rU [v],∇

flat
U [v],

{
V v
k , ϑ

v
k,κvk

})
. We can see that such an isomorphism

is unique, because it is determined by the coefficient of dϵ. ■

Proposition 10.7. For any vector field v ∈ H0(T ′, TT ′), there is a unique global horizontal lift(
Ev,∇v, lv, ℓv,Vv

)
of
(
Ẽ, ∇̃, l̃, ℓ̃, Ṽ

)
M̃ ′.

Proof. We take an affine open covering CM̃ ′ =
⋃
α Uα such that Ẽ|Uα

∼= O⊕rUα
for each α. We

may assume that #
{
α | Uα ⊃ x̃

}
= 1 for each x̃ =

(
x̃logi

)
M̃ ′ , x̃ =

(
x̃uni
)
M̃ ′ and x̃ =

(
x̃rami

)
M̃ ′ .

We may further assume that, for each α, Uα ∩ DM̃ ′ = ∅ holds or Uα ∩ DM̃ ′ = x̃ holds for some

x̃ =
(
x̃logi

)
M̃ ′ , x̃ =

(
x̃uni
)
M̃ ′ or x̃ =

(
x̃rami

)
M̃ ′ .

Let Uα[v] be the open subscheme of CM̃ ′[v] whose underlying set is Uα. If Uα∩DM̃ ′ = ∅, then

we can write ∇̃|Uα = d+Aα(z)dz for a matrix Aα with values in OUα . We can take a matrix Ãα
with values in OUα [v] which is a lift of Aα. After adding an element of ϵMr(OUα), we can assume
that ∂Ãα/∂ϵ = 0. Then ∇α = d + Ãαdz is an integrable connection and

(
O⊕rUα[v]

,∇α

)
is a local

horizontal lift of
(
Ẽ|Uα , ∇̃|Uα

)
. Furthermore, we can prove the uniqueness of the local horizontal

lift by the same proof as Lemma 10.3.
If α satisfies Uα ∩ DM̃ ′ = x̃ for some x̃ =

(
x̃logi

)
M̃ ′ , x̃ =

(
x̃uni
)
M̃ ′ or x̃ =

(
x̃rami

)
M̃ ′ , we can

take a local horizontal lift
(
EvUα

,∇v
Uα
, lvUα

, ℓvUα
,VvUα

)
of
(
Ẽ|Uα , ∇̃|Uα , l̃|Uα , ℓ̃|Uα , Ṽ|Uα

)
by Lemmas

10.3, 10.4 and 10.5. Since the local horizontal lifts are unique up to unique isomorphisms, we
can patch them and get a global horizontal lift

(
Ev,∇v, lv, ℓv,Vv

)
of
(
Ẽ, ∇̃, l̃, ℓ̃, Ṽ

)
M̃ ′ , which is

unique up to an isomorphism. ■

For a Zariski open subset T ′ ⊂ T , consider a morphism

u : SpecOT ′ [ϵ1, ϵ2]/
(
ϵ21, ϵ

2
2

)
−→ T ′

such that u|T ′ = idT ′ . Let

ū : SpecOT ′ [ϵ1, ϵ2]/
(
ϵ21, ϵ1ϵ2, ϵ

2
2

)
−→ T ′

be the induced morphism which corresponds to a pair (u1, u2) of vector fields. We write

T ′[ū] := T ′ × SpecC[ϵ1, ϵ2]/
(
ϵ21, ϵ1ϵ2, ϵ

2
2

)
, T ′[u] := T ′ × SpecC[ϵ1, ϵ2]/

(
ϵ21, ϵ

2
2

)
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with the structure morphisms T ′[ū] ū−→ T ′ and T ′[u] u−→ T ′, respectively. We further set

M̃ ′[ū] := M̃ ′ ×T ′ T ′[ū], CM′[ū] := C ×T ′ M′[ū],

M̃ ′[u] := M̃ ′ ×T ′ T ′[u], CM′[u] := C ×T ′ M′[u].

We define a coherent subsheaf Ω̃u of Ω1
CM̃′[u]/M̃

′

(
DM̃ ′[u]

)
in the same way as in (10.1) and define

a coherent subsheaf Ω̃ū of Ω1
CM̃′[ū]/M̃

′

(
DM̃ ′[ū]

)
similarly.

Definition 10.8. We say that
(
Eu,∇u, lu, ℓu,Vu

) (
resp.

(
E ū,∇ū, lū, ℓū,V ū

))
is a horizontal

lift of
(
Ẽ, ∇̃, l̃, ℓ̃, Ṽ

)
M̃ ′ with respect to u (resp. ū) if the conditions (i), (ii), (iii), (iv) and (v)

of Definition 10.1 are satisfied after replacing M̃ ′[v] with M̃ ′[u] (resp. M̃ ′[ū]), replacing Ω̃v
with Ω̃u (resp. Ω̃ū), replacing (λ, I∗v µ̃, I

∗
v ν̃)-structure in (vi) with (λ, I∗uµ̃, I

∗
uν̃)-structure (resp.

(λ, I∗ūµ̃, I
∗
ūν̃)-structure) and replacing the equality of integrability condition in (iii) with

∂A

∂ϵ1
dz ∧ dϵ1 +

∂A

∂ϵ2
dz ∧ dϵ2 +

∂B1

∂ϵ2
dϵ2 ∧ dϵ1 +

∂B2

∂ϵ1
dϵ1 ∧ dϵ2

= dB1 ∧ dϵ1 + [A,B1]dz ∧ dϵ1 + dB2 ∧ dϵ1 + [A,B2]dz ∧ dϵ2 + [B1, B2]dϵ1 ∧ dϵ2

for Γu = Adz +B1dϵ1 +B2dϵ2 (resp. replacing with

∂A

∂ϵ1
dz ∧ dϵ1 +

∂A

∂ϵ2
dz ∧ dϵ2 = dB1 ∧ dϵ1 + [A,B1]dz ∧ dϵ1 + dB2 ∧ dϵ1 + [A,B2]dz ∧ dϵ2

for Γū = Adz +B1dϵ1 +B2dϵ2).

The following proposition can be proved in the same way as Proposition 10.7. So we omit its
proof.

Proposition 10.9. There exists a unique horizontal lift
(
E ū,∇ū, lū, ℓū,V ū

)
of
(
Ẽ, ∇̃, l̃, ℓ̃, Ṽ

)
M̃ ′

with respect to ū : T ′[ū] = SpecOT ′ [ϵ1, ϵ2]/
(
ϵ21, ϵ1ϵ2, ϵ

2
2

)
−→ T ′.

If a horizontal lift
(
Eu,∇u, lu, ℓu,Vu

)
of
(
Ẽ, ∇̃, l̃, ℓ̃, Ṽ

)
M̃ ′ with respect to u exists, it can be

obtained as a lift of
(
E ū,∇ū, lū, ℓū,V ū

)
whose existence is ensured by Proposition 10.9.

Proposition 10.10. There exists a unique horizontal lift
(
Eu,∇u, lu, ℓu,Vu

)
of
(
Ẽ, ∇̃, l̃, ℓ̃, Ṽ

)
M̃ ′

with respect to u : T ′[u] = SpecOT ′ [ϵ1, ϵ2]/
(
ϵ21, ϵ

2
2

)
−→ T ′.

Proof. By Proposition 10.9, there is a unique horizontal lift
(
E ū,∇ū, lū, ℓū,V ū

)
of
(
Ẽ, ∇̃, l̃, ℓ̃, Ṽ

)
M̃ ′

with respect to ū : SpecOT ′ [ϵ1, ϵ2]/
(
ϵ21, ϵ1ϵ2, ϵ

2
2

)
→ T ′. So we only have to show the existence

and the uniqueness of a lift of
(
E ū,∇ū, lū, ℓū,V ū

)
, which is a horizontal lift of

(
Ẽ, ∇̃, l̃, ℓ̃, Ṽ

)
M̃ ′

with respect to the morphism u : T ′[u] = SpecOT ′ [ϵ1, ϵ2]/
(
ϵ21, ϵ

2
2

)
−→ T ′. The method of the

proof is similar to that of Proposition 10.7.
We take an affine open covering C ×T M̃ ′ =

⋃
Uα as in the proof of Proposition 10.7. If Uα is

an open neighborhood of
(
x̃uni
)
M̃ ′ , then the existence and the uniqueness of the local horizontal

lift with respect to u is given in the proof of [12, Lemma 5.5]. If Uα is an open neighborhood of(
x̃logi

)
M̃ ′ , then it is much easier to prove the existence and the uniqueness of a logarithmic local

horizontal lift.
So assume that x̃ :=

(
x̃rami

)
M̃ ′ is contained in Uα. If u is given by

u∗(ν(w)) = ν(w) + ϵ1νu1(w) + ϵ2νu2(w) + ϵ1ϵ2νu12(w)

=

r−1∑
k=0

(
ak,m−1z

m−1 +
m−2∑
l=0

(ak,l + ϵ1b1,k,l + ϵ2b2,k,l + ϵ1ϵ2b1,2,k,l)z
l

)
wk,
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then, by the proof of Proposition 10.7, the restriction of ∇ū to Uα[ū] = Uα[u]⊗OT ′[u]/(ϵ1ϵ2) can
be given by

A(z)
dz

zm
+ ϵ1C1(z)

dz

zm
+ ϵ2C2(z)

dz

zm
+B1(z)dϵ1 +B2(z)dϵ2

where ∂A(z)
∂ϵ1

= ∂A(z)
∂ϵ2

= 0 and

A(z) =

r−1∑
k=0

m−1∑
l=0

ak,lz
lÑk + zm−1Rr + z3m−1A′(z), (10.10)

B1(z) =

r−1∑
k=0

m−2∑
l=0

rb1,k,l
(−mr + lr + r + k)zm−l−1

Ñk,

B2(z) =
r−1∑
k=0

m−2∑
l=0

rb
(i)
2,k,l

(−mr + lr + r + k)zm−l−1
Ñk,

C1(z)
dz

zm
= dB1(z) + [A(z), B1(z)]

dz

zm
, C2(z)

dz

zm
= dB2(z) + [A(z), B2(z)]

dz

zm
.

Then we can see by the above equality that

Cj(z)|2mx̃ =
r−1∑
k=0

m−2∑
l=0

bj,k,lz
lÑk|2mx̃

for j = 1, 2. So we have [C1(z), B2(z)], [C2(z), B1(z)] ∈ zm+1 End(Ẽ|Uα).

Claim 10.11. [C1(z), B2(z)] = [C2(z), B1(z)].

Proof. First notice that we can check the equality

dB1(z) =
r−1∑
k=0

m−2∑
l=0

r(−m+ l + 1) + k

−mr + lr + r + k

b1,k,l
zm−l

Ñkdz + [B1(z), Rr]
dz

z

using (10.6). So we have

[dB1(z), B2(z)] = [[B1(z), Rr] , B2(z)]
dz

z

= [[B2(z), Rr] , B1(z)]
dz

z
+ [[B1(z), B2(z)], Rr]

dz

z
= [dB2(z), B1(z)],

because [B1(z), B2(z)] = 0. Thus we have[
C1(z)

dz

zm
, B2(z)

]
=

[
dB1(z) + [A(z), B1(z)]

dz

zm
, B2(z)

]
= [dB1(z), B2(z)] + [[A(z), B1(z)], B2(z)]

dz

zm

= [dB2(z), B1(z)] + [[A(z), B2(z)], B1(z)]
dz

zm
=

[
C2(z)

dz

zm
, B1(z)

]
. ■

We put

Ã(z) :=

r−1∑
k=0

m−1∑
l=0

ak,lz
lÑk + zm−1Rr + z3m−1Ã′(z),
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B1,2(z) :=

r−1∑
k=0

m−2∑
l=0

rb1,2,k,l
(−mr + lr + r + k)zm−l−1

Ñk,

C1,2(z)
dz

zm
:= dB1,2(z) + ([A(z), B1,2(z)] + [C1(z), B2(z)])

dz

zm
,

where Ã′(z) is a lift of A′(z) as a matrix with coefficients in OUα[u] such that ∂Ã(z)
∂ϵ1

= ∂Ã(z)
∂ϵ2

= 0.

Define a connection ∇u
α : O⊕rUα[u]

−→ O⊕rUα[u]
⊗ Ω1

CM̃′[u]/M̃′
(DM̃ ′[u]) by setting

∇u
α = d +

(
Ã+ ϵ1C1 + ϵ2C2 + ϵ1ϵ2C1,2

) dz
zm

+B1dϵ1 +B2dϵ2 +B1,2(ϵ1dϵ2 + ϵ2dϵ1).

Then ∇u
α is an integrable connection because its curvature form becomes

(C1 + ϵ2C1,2)dϵ1 ∧
dz

zm
+ (C2 + ϵ1C1,2)dϵ2 ∧

dz

zm
+ (dB1 + ϵ2dB1,2) ∧ dϵ1

+ (dB2 + ϵ1dB1,2) ∧ dϵ2 +B1,2dϵ1 ∧ dϵ2 +B1,2dϵ2 ∧ dϵ1

+ [A,B1 + ϵ2B1,2]
dz

zmi
∧ dϵ1 + [A,B2 + ϵ1B1,2]

dz

zmi
∧ dϵ2 + ϵ2[C2, B1]

dz

zm
∧ dϵ1

+ ϵ1[C1, B2]
dz

zm
∧ dϵ2 + [B1, B2]dϵ1 ∧ dϵ2

=

(
dB1 + (−C1 + [A,B1])

dz

zm

)
∧ dϵ1 +

(
dB2 + (−C2 + [A,B2])

dz

zm

)
∧ dϵ2

+ ϵ2

(
dB1,2 + (−C1,2 + [A,B1,2] + [C2, B1])

dz

zm

)
∧ dϵ1

+ ϵ1

(
dB1,2 + (−C1,2 + [A,B1,2] + [C1, B2])

dz

zm

)
∧ dϵ2 = 0.

We can define V u
k,α, ϑ

u
k,α, κuk,α on O⊕rD[u] in the same way as in the proof of Lemma 10.5. So

we can get a local horizontal lift
(
O⊕rUα[u]

,∇u
α, (V

u
k,α, ϑ

u
k,α,κuk,α)0≤k≤r−1

)
, which is a lift of the

restriction
(
E ū,∇ū, lū, ℓū,V ū

)
|Uα[ū].

Let
(
O⊕rUα[u]

,∇′α, (V ′k,α, ϑ′k,α,κ′k,α)0≤k≤r−1
)
be another local horizontal lift with respect to u,

which is a lift of
(
E ū,∇ū, lū, ℓū,V ū

)
|Uα[ū]. Then we can write

∇′α = d +
(
Ã+ ϵ1C1 + ϵ2C2 + ϵ1ϵ2C

′
1,2

) dz
zm

+B1dϵ1 +B2dϵ2 +B′1,2ϵ1dϵ2 +B′2,1ϵ2dϵ1.

The integrability condition of ∇′ implies the equalities

C ′1,2(z)
dz

zm
= dB′1,2(z) +

(
[A(z), B′1,2(z)] + [C1(z), B2(z)]

) dz
zm

= dB′2,1(z) +
(
[A(z), B′2,1(z)] + [C1(z), B2(z)]

) dz
zm

(10.11)

and B′1,2 = B′2,1. Since ∇′ has the property of local horizontal lift, we have

C ′1,2(z)
∣∣
mx̃

=
r−1∑
k=0

m−2∑
l=0

b1,2,k,lz
l
(
Ñ
)k∣∣

mx̃
.

We can see that [A(z), B′1,2(z)] is regular from the equality (10.11). Since A(z) satisfies (10.10),

we can first verify zm−1B′1,2(z) ∈ O(m−1)x̃
[
Ñ |(m−1)x̃

]
. Combining with the condition (c) of

Definition 10.1 (iv), we can take βk,l such that

B′1,2(z)−
r−1∑
k=0

m−1∑
l=0

βk,lz
l−m−1Ñk ∈ End

(
Ẽ|Uα

)
.
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is a matrix of regular functions whose constant term is a lower triangular matrix. Using the
same argument as in the proof of Lemma 10.6, we can see

βk,l =
rb1,2,k,l

−mr + l + r + k
.

So B12(z)−B′12(z) becomes a matrix of regular functions and Ir+ϵ1ϵ2(B12(z)−B′12(z)) gives an
automorphism of O⊕rUα[u]

which transform ∇′α to ∇u
α and which sends V ′k,α to V u

k,α. Furthermore,
we can see that such a transform is uniquely determined by the coefficient of ϵ2 dϵ1. Thus the
existence and the uniqueness of a ramified local horizontal lift with respect to u is proved.

Patching the local horizontal lifts together, we get a unique horizontal lift
(
E ū,∇ū, lū, ℓū,V ū

)
of
(
Ẽ, ∇̃, l̃, ℓ̃, Ṽ

)
M̃ ′ on C ×T SpecOM̃ ′ [ϵ1, ϵ2]/

(
ϵ21, ϵ

2
2

)
with respect to u. ■

11 Global generalized isomonodromic deformation

Definition 11.1. For each vector field v ∈ TT ′ , the relative connection
(
Ev,∇v, lv, ℓv,Vv

)
induced by the global horizontal lift

(
Ev,∇v, lv, ℓv,Vv

)
(which exists by Proposition 10.7) defines

a morphism

IΦ(v) : M̃ ′ × SpecC[ϵ]/
(
ϵ2
)
−→ M̃ ′

which makes the diagram

M̃ ′ × SpecC[ϵ]/
(
ϵ2
) IΦ(v)−−−−→ M̃ ′

πT ′×id
y yπT ′

T ′ × SpecC[ϵ] Iv−−−−→ T ′

(11.1)

commutative. We can see by the uniqueness of the horizontal lift that the morphism IΦ(v)

descends to a morphismMα
C,D(λ, µ̃, ν̃)T ′×C[ϵ] −→Mα

C,D(λ, µ̃, ν̃)T ′ which corresponds to a vector
field

Φ(v) ∈ H0
(
Mα
C,D(λ, µ̃, ν̃)T ′ , TMα

C,D(λ,µ̃,ν̃)T ′

)
.

We call this vector field Φ(v) a generalized isomonodromic vector field.

Proposition 11.2. The map

Φ: H0(T ′, TT ′) ∋ v 7→ Φ(v) ∈ H0
(
Mα
C,D(λ, µ̃, ν̃)T ′ , TMα

C,D(λ,µ̃,ν̃)T ′

)
is a homomorphism of H0(T ′,OT ′)-modules.

Proof. Take vector fields v1, v2 ∈ H0(T ′, TT ′). Then (v1, v2) corresponds to a morphism

ū : T ′ × SpecC[ϵ1, ϵ2]/
(
ϵ21, ϵ1ϵ2, ϵ

2
2

)
−→ T ′

such that the composition T ′×SpecC[ϵi]/
(
ϵ2i
)
↪→ T ′×SpecC[ϵ1, ϵ2]/

(
ϵ21, ϵ1ϵ2, ϵ

2
2

) ū−→ T ′ coincides
with the morphism Ivi for i = 1, 2. Let

∆T ′ : T ′ × SpecC[ϵ]/
(
ϵ2
)
−→ T ′ × SpecC[ϵ1, ϵ2]/

(
ϵ21, ϵ1ϵ2, ϵ

2
2

)
be the morphism corresponding to the ring homomorphism

OT ′ [ϵ1, ϵ2]/
(
ϵ21, ϵ1ϵ2, ϵ

2
2

)
∋ a+ b1ϵ1 + b2ϵ2 7→ a+ b1ϵ+ b2ϵ ∈ OT ′ [ϵ]/

(
ϵ2
)
.
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Then the composition

ū ◦∆T ′ : T ′ × SpecC[ϵ]/
(
ϵ2
) ∆T ′−−→ T ′ × SpecC[ϵ1, ϵ2]/

(
ϵ21, ϵ1ϵ2, ϵ

2
2

) ū−→ T ′

coincides with the morphism Iv1+v2 corresponding to the vector field v1 + v2. By virtue of
Proposition 10.9, there exists a horizontal lift

(
E ū,∇ū, lū, ℓū,V ū

)
of
(
Ẽ, ∇̃, l̃, ℓ̃, Ṽ

)
M̃ ′ with respect

to ū. By the same procedure as Definition 11.1, the flat family of connections induced by the
horizontal lift

(
E ū,∇ū, lū, ℓū,V ū

)
provides a morphism IΦ(ū) : M̃ ′×C[ϵ1, ϵ2]/

(
ϵ21, ϵ1ϵ2, ϵ

2
2

)
−→ M̃ ′

such that the right square of the diagram

M̃ ′ × SpecC[ϵ]/
(
ϵ2
) ∆

M̃′−−−−→ M̃ ′ × SpecC[ϵ1, ϵ2]/
(
ϵ21, ϵ1ϵ2, ϵ

2
2

) IΦ(ū)−−−−→ M̃ ′y y y
T ′ × SpecC[ϵ]/

(
ϵ2
) ∆T ′−−−−→ T ′ × SpecC[ϵ1, ϵ2]/

(
ϵ21, ϵ1ϵ2, ϵ

2
2

) ū−−−−→ T ′

is commutative. The left square of the above diagram is defined as a Cartesian diagram.
By the definition of horizontal lift, the pullback ∆∗

M̃ ′

(
E ū,∇ū, lū, ℓū,V ū

)
is a horizontal lift of(

Ẽ, ∇̃, l̃, ℓ̃, Ṽ
)
M̃ ′ with respect to Iv1+v2 . So the composition IΦ(ū) ◦∆M̃ ′ coincides with the mor-

phism IΦ(v1+v2) determined by the vector field Φ(v1+v2). On the other hand, the morphism IΦ(ū)

corresponds to the pair (Φ(v1),Φ(v2)) of vector fields and the composition IΦ(ū) ◦ ∆M̃ ′ corre-
sponds to the vector field Φ(v1) + Φ(v2). So we have the equality

IΦ(v1+v2) = IΦ(v1)+Φ(v2)

which means the equality Φ(v1 + v2) = Φ(v1) + Φ(v2).
Take a vector field v ∈ H0(T ′, TT ′) and a regular function f ∈ H0(T ′,OT ′). Consider the

morphism

αf : T ′ × SpecC[ϵ]/
(
ϵ2
)
−→ T ′ × SpecC[ϵ]/

(
ϵ2
)

corresponding to the ring homomorphism

OT ′ [ϵ]/
(
ϵ2
)
∋ a+ ϵb 7→ a+ ϵfb ∈ OT ′ [ϵ]/

(
ϵ2
)
.

Then the composition

T ′ × SpecC[ϵ]/
(
ϵ2
) αf−→ T ′ × SpecC[ϵ]/

(
ϵ2
) Iv−→ T ′

coincides with the morphism Ifv corresponding to the vector field fv. As in Definition 11.1, the
horizontal lift

(
Ev,∇v, lv, ℓv,Vv

)
induces a morphism IΦ(v) : M̃

′ × SpecC[ϵ]/
(
ϵ2
)
−→ M̃ ′ which

makes the diagram

M̃ ′ × SpecC[ϵ]/
(
ϵ2
) (αf )M̃′−−−−→ M̃ ′ × SpecC[ϵ]/

(
ϵ2
) IΦ(v)−−−−→ M̃ ′y y y

T ′ × SpecC[ϵ]/
(
ϵ2
) αf−−−−→ T ′ × SpecC[ϵ]/

(
ϵ2
) Iv−−−−→ T ′

commutative, where the right square is Cartesian. By the definition of horizontal lift, the
pullback (αf )

∗
M̃ ′

(
Ev,∇v, lv, ℓv,Vv

)
is a horizontal lift of

(
Ẽ, ∇̃, l̃, ℓ̃, Ṽ

)
M̃ ′ with respect to fv. So

the composition IΦ(v) ◦ (αf )M̃ ′ coincides with the morphism IΦ(fv) corresponding to Φ(fv). On
the other hand, the composition IΦ(v)◦(αf )M̃ ′ coincides with the morphism IfΦ(v) corresponding
to the vector field fΦ(v). So we have Φ(fv) = fΦ(v). ■
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By Proposition 11.2, Φ defines a homomorphism

Φ: TT −→ (πT )∗TMα
C,D(λ,µ̃,ν̃)

of sheaves of OT -modules. By the adjoint property, Φ corresponds to a homomorphism

Ψ: (πT )
∗TT −→ TMα

C,D(λ,µ̃,ν̃) (11.2)

Since the diagram (11.1) in Definition 11.1 is commutative, we can see dπT ◦ Ψ = idTT for the
canonical surjection dπT : TMα

C,D(λ,µ̃,ν̃) −→ (πT )
∗TT . In particular, the image ImΨ is a subbundle

of TMα
C,D(λ,µ̃,ν̃).

Definition 11.3. We call ImΨ the generalized isomonodromic subbundle of TMα
C,D(λ,µ̃,ν̃).

By using the generalized isomonodromic subbundle ImΨ, we can extend the relative sym-
plectic form ωMα

C,D(λ,µ̃,ν̃) constructed in Theorem 8.1 to a total 2-form on the moduli space

Mα
C,D(λ, µ̃, ν̃) in the following.

Definition 11.4. We define a 2-form ωGIM
Mα

C,D(λ,µ̃,ν̃) on M
α
C,D(λ, µ̃, ν̃) by setting

ωGIM
Mα

C,D(λ,µ̃,ν̃)(v1, v2) = ωMα
C,D(λ,µ̃,ν̃)

(
v1 −Ψ(dπT (v1)), v2 −Ψ(dπT (v2))

)
for v1, v2 ∈ TMα

C,D(λ,µ̃,ν̃) and call it the generalized isomonodromic 2-form.

Remark 11.5. In the logarithmic case, the above formulation of isomonodromic 2-form is given
by A. Komyo in [18]. For a vector field v ∈ TMα

C,D(λ,µ̃,ν̃) we can immediately see the equivalence

v ∈ ImΨ ⇔ ωGIM
Mα

C,D(λ,µ̃,ν̃)(v, w) = 0 for any w ∈ TMα
C,D(λ,µ̃,ν̃)

from the definition of the generalized isomonodromic 2-form. So the generalized isomonodromic
2-form recovers the generalized isomonodromic subbundle.

Theorem 11.6. For any vector fields v1, v2 ∈ TT , the equality

Φ([v1, v2]) = [Φ(v1),Φ(v2)]

holds, where [v1, v2] = v1v2−v2v1 is the commutator of the vector fields v1, v2. In particular, the
generalized isomonodromic subbundle ImΨ of TMα

C,D(λ,µ̃,ν̃) satisfies the integrability condition

[ImΨ, ImΨ] ⊂ ImΨ.

Proof. Take vector fields v1, v2 ∈ H0(T ′, TT |T ′) over a Zariski open subset T ′ of T . Let

Ĩv1 : T ′ × SpecC[ϵ1, ϵ2]/
(
ϵ21, ϵ

2
2

)
−→ T ′ × SpecC[ϵ1, ϵ2]/

(
ϵ21, ϵ

2
2

)
be the automorphism corresponding to the ring automorphism Ĩ∗v1 of OT ′ [ϵ1, ϵ2]/

(
ϵ21, ϵ

2
2

)
defined

by

Ĩ∗v1 (a+ b1ϵ1 + b2ϵ2 + c ϵ1ϵ2) = a+ (v1(a) + b1)ϵ1 + b2ϵ2 + (v1(b2) + c)ϵ1ϵ2.

Similarly, we can define an automorphism Ĩv2 of T ′× SpecC[ϵ1, ϵ2]/
(
ϵ21, ϵ

2
2

)
corresponding to v2.

By construction, we can see that Ĩ−v1 = Ĩ−1v1 and Ĩ−v2 = Ĩ−1v2 . The composition Ĩv2◦Ĩv1◦Ĩ−v2◦Ĩ−v1
corresponds to the ring automorphism of OT ′ [ϵ1, ϵ2]/

(
ϵ21, ϵ

2
2

)
determined by

Ĩ∗−v1 ◦ Ĩ
∗
−v2 ◦ Ĩ

∗
v1 ◦ Ĩ

∗
v2(a+ b1ϵ1 + b2ϵ2 + c ϵ1ϵ2)
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= Ĩ∗−v1 ◦ Ĩ
∗
−v2 ◦ Ĩ

∗
v1(a+ b1ϵ1 + (v2(a) + b2)ϵ2 + (c+ v2(b1))ϵ1ϵ2)

= Ĩ∗−v1 ◦ Ĩ
∗
−v2(a+ (v1(a) + b1)ϵ1 + (v2(a) + b2)ϵ2 + (v1v2(a) + v1(b2) + c+ v2(b1))ϵ1ϵ2)

= Ĩ∗−v1(a+ (v1(a) + b1)ϵ1 + b2ϵ2 + (−v2v1(a) + v1v2(a) + v1(b2) + c)ϵ1ϵ2)

= a+ b1ϵ1 + b2ϵ2 + ((v1v2 − v2v1)(a) + c)ϵ1ϵ2.

Let

ρ : T ′ × SpecC[ϵ1, ϵ2]/
(
ϵ21, ϵ

2
2

)
−→ T ′ × SpecC[ϵ]/

(
ϵ2
)

be the morphism corresponding to the ring homomorphism ρ∗ : OT ′ [ϵ]/
(
ϵ2
)
→ OT ′ [ϵ1, ϵ2]/

(
ϵ21, ϵ

2
2

)
determined by ρ∗(a+ cϵ) = a+ cϵ1ϵ2. Then the composition

T ′ × SpecC[ϵ1, ϵ2]/
(
ϵ21, ϵ

2
2

) ρ−→ T ′ × SpecC[ϵ]/
(
ϵ2
) Iv1v2−v2v1−−−−−−−→ T ′ (11.3)

coincides with the composition

T ′ × SpecC[ϵ1, ϵ2]/
(
ϵ21, ϵ

2
2

) Ĩv2◦Ĩv1◦Ĩ
−1
v2
◦Ĩ−1

v1−−−−−−−−−−−→ T ′ × SpecC[ϵ1, ϵ2]/
(
ϵ21, ϵ

2
2

)
trivial projection−−−−−−−−−−→ T ′. (11.4)

By Proposition 10.9, there exists a horizontal lift
(
E ṽi ,∇ṽi , lṽi , ℓṽi ,V ṽi

)
of
(
Ẽ, ∇̃, l̃, ℓ̃, Ṽ

)
M̃ ′

with respect to the morphism

T ′ × SpecC[ϵ1, ϵ2]/
(
ϵ21, ϵ

2
2

) Ĩvi−−→ T ′ × SpecC[ϵ1, ϵ2]/
(
ϵ21, ϵ

2
2

) trivial projection−−−−−−−−−−→ T ′.

For the relative connection ∇ṽi induced by ∇ṽi , the flat family
(
E ṽi ,∇ṽi , lṽi , ℓṽi ,V ṽi

)
determines

a morphism IΦ(ṽi) : M̃
′ × SpecC[ϵ1, ϵ2]/

(
ϵ21, ϵ

2
2

)
−→ M̃ ′ which is canonically extended to a mor-

phism

ĨΦ(ṽi) : M̃ ′ × SpecC[ϵ1, ϵ2]/
(
ϵ21, ϵ

2
2

)
−→ M̃ ′ × SpecC[ϵ1, ϵ2]/

(
ϵ21, ϵ

2
2

)
over SpecC[ϵ1, ϵ2]/

(
ϵ21, ϵ

2
2

)
. Furthermore, the diagram

M̃ ′ × SpecC[ϵ1, ϵ2]/
(
ϵ21, ϵ

2
2

) ĨΦ(ṽ2)
◦ĨΦ(ṽ1)

◦Ĩ−1
Φ(ṽ2)

◦Ĩ−1
Φ(ṽ1)−−−−−−−−−−−−−−−−−→ M̃ ′ × SpecC[ϵ1, ϵ2]/

(
ϵ21, ϵ

2
2

)y y
T ′ × SpecC[ϵ1, ϵ2]/

(
ϵ21, ϵ

2
2

) Ĩv2◦Ĩv1◦Ĩ
−1
v2
◦Ĩ−1

v1−−−−−−−−−−−→ T ′ × SpecC[ϵ1, ϵ2]/
(
ϵ21, ϵ

2
2

)
is commutative.

By the definition of horizontal lift, we can see that the pullback(
Ĩ−1Φ(ṽ1)

)∗(
Ĩ−1Φ(ṽ2)

)∗
Ĩ∗Φ(ṽ1)

(
E ṽ2 ,∇ṽ2 , lṽ2 , ℓṽ2 ,V ṽ2

)
becomes a horizontal lift of

(
Ẽ, ∇̃, l̃, ℓ̃, Ṽ

)
M̃ ′ with respect to the morphism (11.4). On the other

hand, there is a canonical commutative diagram

M̃ ′ × SpecC[ϵ1, ϵ2]/
(
ϵ21, ϵ

2
2

) ρ
M̃′−−−−→ M̃ ′ × SpecC[ϵ]/

(
ϵ2
) IΦ(v1v2−v2v1)−−−−−−−−−→ M̃ ′y y y

T ′ × SpecC[ϵ1, ϵ2]/
(
ϵ21, ϵ

2
2

) ρ−−−−→ T ′ × SpecC[ϵ]/
(
ϵ2
) Iv1v2−v2v1−−−−−−−→ T ′,
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whose left square is Cartesian. So we can see that the pullback

ρ∗
M̃ ′

(
Ev1v2−v2v1 ,∇v1v2−v2v1 , lv1v2−v2v1 , ℓv1v2−v2v1 ,Vv1v2−v2v1

)
becomes a horizontal lift of

(
Ẽ, ∇̃, l̃, ℓ̃, Ṽ

)
M̃ ′ with respect to the morphism (11.3). Since the

morphism (11.4) coincides with the morphism (11.3), we can deduce an isomorphism(
Ĩ−1Φ(ṽ1)

)∗(
Ĩ−1Φ(ṽ2)

)∗
Ĩ∗Φ(ṽ1)

(
E ṽ2 ,∇ṽ2 , lṽ2 , ℓṽ2 ,V ṽ2

)
∼= ρ∗

M̃ ′

(
Ev1v2−v2v1 ,∇v1v2−v2v1 , lv1v2−v2v1 , ℓv1v2−v2v1 ,Vv1v2−v2v1

)
by the uniqueness of horizontal lift proved in Proposition 10.9. Considering the induced mor-
phism, we have

(trivial projection) ◦ ĨΦ(ṽ2)◦ĨΦ(ṽ1)
◦Ĩ−1

Φ(ṽ2)
◦Ĩ−1

Φ(ṽ1)
= IΦ(v1v2−v2v1) ◦ ρM̃ ′ ,

from which we get Φ(v1v2 − v2v1) = Φ(v1)Φ(v2)− Φ(v2)Φ(v1). ■

Definition 11.7. Since the subbundle ImΨ ⊂ TMα
C,D(λ,µ̃,ν̃) satisfies the integrability condition

by Theorem 11.6, it determines a foliation FGIM
TMα

C,D(λ,µ̃,ν̃)
on the moduli space Mα

C,D(λ, µ̃, ν̃). We

call it the generalized isomonodromic foliation.

Take a point t0 ∈ T and a point y of the fiber Mα
C,D(λ, µ̃, ν̃)t0 over t0. Then we can take an

analytic open neighborhood M′ of y in Mα
C,D(λ, µ̃, ν̃) and an analytic open neighborhood T ′ of

t0 in T together with an analytic isomorphism

M′ ∼= M′
t0 × T ′ (11.5)

such that the restriction πT |M′ of πT : M
α
C,D(λ, µ̃, ν̃) −→ T coincides with the second projection

and that the fibers {{y′} × T ′}y′∈M′
t0

over M′
t0 are leaves in FGIM

Mα
C,D(λ,µ̃,ν̃).

Take a holomorphic system of coordinates θ = (θ1, . . . , θN ) of T ′. If we set

T ′[∂θ] := T ′ × SpecC[ϵ1, . . . , ϵN ]
/(
ϵiϵj | 1 ≤ i, j ≤ N

)
,

then the tuple ∂θ = (∂/∂θ1, . . . , ∂/∂θN ) of vector fields on T ′ corresponds to a morphism

I∂θ : T ′[∂θ] −→ T ′,

whose restriction to T ′ ⊂ T ′[∂θ] is the identity morphism.
By the same proof as Proposition 10.9, we can construct a horizontal lift

(
E∂θ,∇∂θ, l∂θ, ℓ∂θ,

V∂θ
)
of the universal family (E,∇, l, ℓ,V) on C ×T M′ with respect to the morphism I∂θ. On

a small open subset U ⊂ C×TM′, we may assume E|U ∼= O⊕rU . Then we can write∇|U = d+Adz
where z is a holomorphic coordinate on C ×T M′ over M′ and A is a matrix of meromorphic
functions in z. Let U [∂θ] ⊂ C ×T M′[∂θ] be the open subscheme whose underlying set is U .
Then we have E|U [∂θ]

∼= O⊕rU [∂θ] and we can write ∇∂θ = d+A(ϵ)dz+
∑N

j=1Bjdϵj , where A(ϵ) is

a lift of A. By the integrability condition of ∇∂θ, we have the equality

N∑
j=1

∂A(ϵ)

∂ϵj
dϵj ∧ dz +

N∑
j=1

∂Bj
∂z

dz ∧ dϵj +
N∑
j=1

[A,Bj ]dz ∧ dϵj = 0.

Take a holomorphic coordinate system x1, . . . , xδ of M′
t0 . With respect to the coordinate system

z, x1, . . . , xδ, θ1, . . . , θN , the partial derivative ∂/∂θj coincides with the vector field Φ(∂/∂θj) and
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the partial derivative ∂A/∂θj coincides with ∂A(ϵ)/∂ϵj . So the above integrability condition
of ∇∂θ is the same as the integrability condition

N∑
j=1

∂A

∂θj
dθj ∧ dz +

N∑
j=1

∂Bj
∂z

dz ∧ dθj +

N∑
j=1

[A,Bj ]dz ∧ dθj = 0

of the connection

∇flat
U = d +Adz +

N∑
j=1

Bjdθj

on E|U relative to the composition

U ↪→ C ×T M′ −→ M′ ∼= M′
t0 × T ′

πM′
t0−−−→ M′

t0 ,

where πM′
t0
: M′ ∼= M′

t0 × T ′ −→ M′
t0 is the first projection. So we can see from Theorem 9.7

and Corollary 9.11 that ∇|U is a local generalized isomonodromic deformation in the sense of
Definition 9.4 or Definition 9.10.

We can patch ∇flat
U together to get a global connection on E. Indeed, take another open

subset U ′ ⊂ C ×T M′ and write ∇|U ′ = d + A′dz. Then we have P−1dP + P−1AdzP = A′dz
for a transition matrix P . There is a local horizontal lift d +A′(ϵ)dz +

∑N
j=1B

′
jdϵj of ∇|U ′ and

by the uniqueness of the local horizontal lift, we have a uniquely lift P (ϵ) of P satisfying

P (ϵ)−1

∂P (ϵ)
∂z

dz +
N∑
j=1

∂P (ϵ)

∂ϵj
dϵj

+ P (ϵ)−1

A(ϵ)dz + N∑
j=1

Bjdϵj

P (ϵ)

= A′(ϵ)dz +

N∑
j=1

B′jdϵj .

Since ∂P (ϵ)/∂ϵj = ∂P/∂θj , the above equality yields the equality

P−1

∂P
∂z

dz +
N∑
j=1

∂P

∂θj
dθj

+ P−1

Adz + N∑
j=1

Bjdθj

P = A′dz +
N∑
j=1

B′jdθj .

So we can patch the local connections ∇flat
U together to get an integrable connection

∇flat : E −→ E ⊗ ΩC×TM′/M′
t0
(DM′) (11.6)

relative to the composition C ×T M′ −→ M′ ∼= M′
t0 × T ′ −→ M′

t0 .

Corollary 11.8. The generalized isomonodromic 2-form ωGIM
Mα

C,D(λ,µ̃,ν̃) constructed in Defini-

tion 11.4 is d-closed.

Proof. Under the above notations, we will prove the equality

ωGIM
Mα

C,D(λ,µ̃,ν̃)

∣∣
M′ = π∗M′

t0

(
ωMα

C,D(λ,µ̃,ν̃)

∣∣
M′

t0

)
(11.7)

where πM′
t0
: M′ ∼= M′

t0 × T ′ −→ M′
t0 corresponds to the first projection with respect to the

isomorphism (11.5). The corollary follows from this equality, since ωMα
C,D(λ,µ̃,ν̃)|M′

t0
is d-closed

by Theorem 8.1.
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Take two tangent vectors v, v′ ∈ TM′(y, t0) at (y, t) ∈ M′
t0 × T ′. We have the equalities

(πM′
t0
)∗(v) = (πM′

t0
)∗(v − Φ(πT ′)∗(v)), (πM′

t0
)∗(v

′) = (πM′
t0
)∗(v − Φ(πT ′)∗(v

′))

because {y × T ′}y∈M′
t0

are leaves of the foliation FGIM
Mα

C,D(λ,µ̃,ν̃), which is determined by the

subbundle ImΦ of TMα
C,D(λ,µ̃,ν̃). The tangent vector (πM′

t0
)∗(v − Φ(πT ′)∗(v)) corresponds to

a morphism SpecC[ϵ]/
(
ϵ2
)
−→ M′

t0 . Let

Ĩv : SpecC[ϵ]/
(
ϵ2
)
× T ′ −→ M′

t0 × T ′ ∼= M′

be its base change.
We can construct a complex F• of sheaves on C×TM′ from the universal family (E,∇, l, ℓ,V)

in the same way as (6.9) in Section 6. Since (id× Ĩv)∗(E,∇, l, ℓ,V) is a lift of (E,∇, l, ℓ,V)|Cy×T ′ ,
it induces a gluing data {uαβ, vα, ηα} with respect to an open covering {Uα} of Cy×T ′ := C ×T
(y × T ′). as in Proposition 6.3. Set

ṽ := [{uαβ, vα, ηα}] ∈ R1(py×T ′)∗
(
F•|Cy×T ′

)
.

Then we can see from the construction of ṽ that the equalities

ṽ|(y,t0) = (πM′
t0
)∗(v) ∈ H1

(
F•|C(y,t0)

)
,

ṽ|(y,t) = v − Φ(πT ′)∗(v) ∈ H1
(
F•|C(y,t)

)
.

hold. We can similarly construct an element ṽ′ = [{u′αβ, v′α, η′α}] of R1(py×T ′)∗
(
F•|Cy×T ′

)
from

the tangent vector v′. Recall the construction of the complex F• in (6.9). Since the map
G1 −→ G1 is surjective and the map G0 −→ S1

ram is a surjection to the kernel of the surjection
S1
ram −→ A1, we can replace uαβ, vα so that ηα = 0 holds. Similarly we may assume η′α = 0.
Consider the pairing

ω
(
ṽ, ṽ′

)
:=
[{

Tr(uαβu
′
βγ),−Tr(uαβvβ − vαu

′
αβ)
}]

∈ R2(py×T ′)∗
(
Ω•Cy×T ′/T ′

) ∼= OT ′

of ṽ and ṽ′. Then we have the equalities

π∗M′
t0

(
ωMα

C,D(λ,µ̃,ν̃)|M′
t0

)
(v, v′) = ωMα

C,D(λ,µ̃,ν̃)t0

(
(πM′

t0
)∗(v), (πM′

t0
)∗(v

′)
)
= ω

(
ṽ, ṽ′

)
|(y,t0),

ωGIM
Mα

C,D(λ,µ̃,ν̃)(v, v
′) = ωMα

C,D(λ,µ̃,ν̃)t

(
v − Φ(πT ′)∗(v), v

′ − Φ(πT ′)∗(v
′)
)
= ω

(
ṽ, ṽ′

)
|(y,t).

So, in order to prove (11.7), we only have to prove that ω
(
ṽ, ṽ′

)
∈ OT ′ is constant on T ′. We

may assume that T ′ is isomorphic to a polydisk. Then it is sufficient to show that ω
(
ṽ, ṽ′

)
belongs to the image of the canonical map

C ∼= H2
(
OCy×T ′

d−→ Ω1
Cy×T ′

d−→ · · · d−→ ΩN+1
Cy×T ′

)
↪→ R2(py×T ′)∗

(
OCy×T ′

d−→ Ω1
Cy×T ′/T ′

) ∼= OT ′ . (11.8)

Recall that (E,∇) can be extended to the family of integrable connections
(
E,∇flat

)
in (11.6).

Then the pullback
(
id× Ĩv

)∗(
E,∇flat

)
is a family of integrable connections relative to SpecC[ϵ]

whose induced relative connection is
(
id×Ĩv

)∗
(E,∇). So we can extend the relative meromorphic

differential vα = Bαdz to a total differential vflatα = Bαdz +
∑N

i=1C
i
αdθi which satisfies the

patching condition

(id + ϵuαβ) ◦
(
∇flat + ϵvflatβ

)
=
(
∇flat + ϵvflatα

)
◦ (id + ϵuαβ)
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on E|Uαβ
⊗ C[ϵ] and the integrability condition(

∇flat + ϵvflatα

)
◦
(
∇flat + ϵvflatα

)
= 0.

Let

∇flat
† : End(Ey×T ′) ∋ u 7→ ∇flat ◦ u− (u⊗ id) ◦ ∇flat ∈ End(Ey×T ′)⊗ Ω1

C×T (y×T ′)(Dy×T ′)

be the induced connection on End(E|Cy×T ′ ). Then the above two equalities become

∇flat
† (uαβ) = vflatβ − vflatα , ∇flat

†
(
vflatα

)
= 0.

We can check the equalities

dTr
(
uαβu

′
βγ

)
= Tr

(
∇flat
† (uαβu

′
βγ)
)
= Tr

(
∇flat
† (uαβ)u

′
βγ + uαβ∇flat

† (u′βγ)
)

= Tr
(
(vflatβ − vflatα )u′βγ + uαβ(v

′flat
γ − v′flatβ )

)
= Tr

(
vflatβ u′βγ − vflatα (u′αγ − u′αβ) + (uαγ − uβγ)v

′flat
γ − uαβv

′flat
β

)
= Tr

(
−uβγv′flatγ + vflatβ u′βγ

)
− Tr

(
−uαγv′flatγ + vflatα u′αγ

)
+Tr

(
−uαβv′flatβ + vflatα u′αβ

)
,

dTr
(
−uαβv′flatβ + vflatα u′αβ

)
= Tr

(
∇flat
†
(
−uαβv′flatβ + vflatα u′αβ

))
= Tr

(
−∇flat

† (uαβ) ∧ v′flatβ − vflatα ∧∇flat
† (u′αβ)

)
= Tr

((
vflatα − vflatβ

)
∧ v′flatβ

)
− Tr

(
vflatα ∧

(
v′flatβ − v′flatα

))
= −Tr

(
vflatβ ∧ v′flatβ

)
+Tr

(
vflatα ∧ v′flatα

)
and

dTr
(
vflatα ∧ v′flatα

)
= Tr

(
∇flat
†
(
vflatα ∧ v′flatα

))
= 0.

Therefore,
[{

Tr(uαβu
′
βγ),−Tr

(
uαβv

′flat
β + vflatα u′αβ

)
,Tr

(
vflatα ∧ v′flatα

)}]
defines an element of

H2
(
Ω•Cy×T ′

) ∼= C and its image by the map (11.8) coincides with

ω
(
ṽ, ṽ′

)
=
[{

Tr(uαβu
′
βγ),−Tr(uαβv

′
β + vαu

′
αβ)
}]
.

Thus we have proved the corollary. ■
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