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Abstract. We introduce the notion of factorized ramified structure on a generic ramified
irregular singular connection on a smooth projective curve. By using the deformation theory
of connections with factorized ramified structure, we construct a canonical 2-form on the
moduli space of ramified connections. Since the factorized ramified structure provides a du-
ality on the tangent space of the moduli space, the 2-form becomes nondegenerate. We prove
that the 2-form on the moduli space of ramified connections is d-closed via constructing an
unfolding of the moduli space. Based on the Stokes data, we introduce the notion of local
generalized isomonodromic deformation for generic unramified irregular singular connections
on a unit disk. Applying the Jimbo-Miwa—Ueno theory to generic unramified connections,
the local generalized isomonodromic deformation is equivalent to the extendability of the
family of connections to an integrable connection. We give the same statement for ramified
connections. Based on this principle of Jimbo-Miwa—Ueno theory, we construct a global
generalized isomonodromic deformation on the moduli space of generic ramified connections
by constructing a horizontal lift of a universal family of connections. As a consequence of the
global generalized isomonodromic deformation, we can lift the relative symplectic form on
the moduli space to a total closed form, which is called a generalized isomonodromic 2-form.
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1 Introduction

Let C be a complex smooth projective curve and D be an effective divisor on C. Consider
an algebraic vector bundle £ on C of rank r and a rational connection V: E — E ® Q¢(D)
admitting poles along D. The connection V is said to be logarithmic at « € D if it has at
most a simple pole at z. The notion of logarithmic connection is well formulated in [24] by
adding parabolic structure on the underlying vector bundle. In [24], C.T. Simpson established
the Riemann—Hilbert correspondence as an isomorphism between parabolic logarithmic connec-
tions and filtered local systems. The most important point of [24] is the non-abelian Hodge
theory, which connects parabolic logarithmic connections with parabolic Higgs bundles through
a harmonic metric. Its effect on the geometry of the corresponding two algebraic moduli spaces
seems mysterious to the author.

The connection V is said to be irregular singular at x € D, if it cannot be reduced to
a logarithmic connection via a meromorphic transform around x. So the order of pole of V at z
is at least two. An irregular singular connection V is locally written V|y = d + A(z)dz/2™ for
a matrix A(z) of holomorphic functions in z, where m is the order of pole of V at x and z is a local
holomorphic coordinate on a neighborhood U of z. We say that V is generic unramified at z
if the leading term A(0) has r distinct eigenvalues. Among the irregular singular connections,
a generic unramified connection is of most generic type. The next generic irregular singular
connections are generic ramified connections. In this paper, we say that a connection (E, V) is
generic v-ramified at z if the formal completion (E , @) at x is isomorphic to (C[[w]], V, ), where

w=zr, v(w) € S Cwldw/w™ =1, the formal connection V, is defined by

Viw): Clw] 3 f(w) = df(w) + f(w)r(w) € Cllw]] j% (1.1)
and the wdw /w™ ~"*+1_coefficient of v(w) does not vanish.

The moduli space of logarithmic connections is well formulated by adding the parabolic
structure and it is smooth and has a symplectic structure. It is constructed in the work with
K. Iwasaki and M.-H. Saito in [11, 14]. For unramified irregular singular connections, the moduli
space is analytically constructed by O. Biquard and P. Boalch in [2] together with establishing the
non-abelian Hodge theory. The algebraic construction of the moduli space of generic unramified
irregular singular connections was done in the work with Masa-Hiko Saito in [15] by using
the same method as in the logarithmic case. Compared with the unramified connections, it is
a more difficult task to construct the moduli space of ramified connections. Over the trivial
bundle on P!, Bremer and Sage construct, in [9], the moduli space of ramified connections
via a careful consideration of the formal ramified structure from a viewpoint of representation
theory. In a higher genus case, the moduli space of ramified connections of generic ramified
type is constructed by the author in [13]. T. Pantev and B. Toén introduce in [22] the derived
geometric approach to the moduli space of connections in a general abstract setting.

Both in logarithmic and unramified irregular singular cases, the moduli space of connections
has a natural symplectic structure. Roughly speaking, the moduli space of parabolic logarithmic
connections is a torsor over the moduli space of parabolic bundles, which is locally isomorphic
to the cotangent bundle. So the moduli space has a natural symplectic structure, though we
precisely need a more careful consideration to the locus of non-simple underlying parabolic
bundles. The method of parabolic structure is also valid for the construction of symplectic
form on the moduli space of unramified irregular singular connections. However, in the case of
ramified irregular singular connections, the method of parabolic structure does not go well with
the construction of symplectic form. In [13, Theorem 4.1], we proved the existence of a symplectic
form on the moduli space of ramified connections, but the proof of nondegeneracy was not given
directly. It is reduced to the nondegeneracy in the case of logarithmic or unramified irregular
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singular connections by using an argument of codimension. So, in [13], we could not find a duality
on the tangent space like in logarithmic or unramified irregular singular case. In this paper,
we introduce the notion of factorized ramified structure, which supplies the place of parabolic
structure. It induces a canonical duality on the tangent space of the moduli space of ramified
connections which was not done in [13]. In order to see it easily, we adopt a simpler setting
than [13], while we follow almost the same formulation of the moduli space constructed in [13].

Let us see a rough idea of factorized ramified structure. Assume that a rank r irregular sin-
gular connection (£, V) is formally isomorphic to (C[[w]], V() at  for V) defined in (1.1).
Let N be the endomorphism of E|,,,, which corresponds to the action of w on Clw]/(w™").
Then we can consider the Oy, [T]-module structure on El,,, defined by P(T)v := P(N)v for
a polynomial P(T) in Op.[T]. By the elementary linear algebra, we can see that there is an
isomorphism O,,,[T]/(T" —2) = E|ma of Opme[T]-modules. The dual E|Y, . also has the O,,,[T]-
module structure via the map ‘N and we have an isomorphism E|Y,. ~ On.[T]/(T" — z) of
Oz [T]-modules. Composing these isomorphisms, we get an isomorphism 6: E|Y, . — E|;, of
Opmz[T)-modules. Set k := 0~ o N. Then @ induces a perfect pairing 9: E|Y,. x E|V., — Oz
which becomes symmetric and x induces a pairing »: El|pnz X Elme — Opme which is also
symmetric. Roughly speaking, a factorized ramified structure on (E, V) at x is given by (6, k)
or (¥, »).

The purpose of introducing factorized ramified structure is to construct a duality on the
tangent space of the moduli space. So we require it to go well with the deformation theory. In
that context, all the conditions for the connection (¥, V) should be given only by the restriction
(E, V)|me to the divisor ma and the rational one form v(w) should be considered modulo holo-
morphic forms in w. Under such setting, the endomorphism N on E|,,, in fact has an ambiguity
in 2™~ -term, while the restriction N|(;,_1), is uniquely determined from V|, and v(w). We
take account of this ambiguity in the precise formulation of factorized v-ramified structure in
Definition 3.1.

In Section 2, we introduce the notion of logarithmic A-parabolic structure and that of generic
unramified p-parabolic structure, which locally characterize the parabolic connections intro-
duced in [11] and the unramified parabolic connections introduced in [15], respectively. We also
recall the notion of generic v-ramified structure given in [13]. In Section 3, we introduce the
notion of factorized v-ramified structure and prove that it is equivalent to the generic v-ramified
structure given in Section 2. In Section 4, we see that a generic v-ramified structure enables us to
recover a formal isomorphism to the connection V,, in (1.1). In Section 5, we give a construction
of the moduli space of connections with (A, u, v)-structure (Theorem 5.1) using an embedding to
the moduli space of parabolic triples constructed in [14]. It is a variant of the standard method of
the GIT-construction of the moduli space established by C.T. Simpson in [25, 26]. The following
is an important property of the moduli space (see Theorem 8.1 in a precise setting).

Theorem 1.1. There exists a canonical symplectic form on the moduli space of connections
with (X, p, v)-structure.

For the construction of the canonical 2-form in Theorem 1.1 (or Theorem 8.1 precisely), we
describe the tangent space of the moduli space using the hypercohomology of a complex defined
in Section 6. In Section 7, we see that this tangent space has a canonical duality (Proposition 7.2)
coming from the factorized ramified structure, which gives a canonical nondegenerate 2-form.
This duality is also of benefit to prove the smoothness of the moduli space. We also need to prove
that the canonical 2-form is d-closed. For its proof, we construct an unfolding of the moduli
space of connections with (A, p, v)-structure in Section 8. An unfolding means a deformation of
the moduli space to logarithmic moduli spaces. A factorized ramified structure enables us to
construct such an unfolding in an easy way. By reducing to the fact that the canonical 2-form
on the logarithmic moduli space is d-closed, we can complete the proof of Theorem 1.1.
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The main aim of considering the moduli space of connections with (A, u, v)-structure is to
construct the generalized isomonodromic deformation that fits in with our setting of the moduli
space. In the logarithmic case, the isomonodromic deformation naively means that the mon-
odromy representation corresponding to the connection is constant. Over the trivial bundle
on P!, the isomonodromic deformation is classically known as the Schlesinger equation. The
formulation of isomonodromic deformation in a higher genus case requires an appropriate setting
of the moduli space of connections, which is done in the work with K. Iwasaki and M.-H. Saito
in [14] and in [11]. A cohomological description of the isomonodromic deformation on the moduli
space is also established by I. Biswas, V. Heu, J. Hurtubise and A. Komyo in [3, 4, 18]. Con-
ceptually, the isomonodromic deformation is obtained by pulling back, via the Riemann—Hilbert
morphism, the local trivial foliation on the family of character varieties.

For irregular singular connections, we cannot recover a meromorphic connection from the
naive monodromy data and we need to consider the Stokes data. By virtue of the theorem
of Deligne, Malgrange and Sibuya [1, Theorems 4.5.1 and 4.7.3], there is a bijective corre-
spondence between the local meromorphic connections and the Stokes data on a punctured
disk. The generalized isomonodromic deformation means a family of irregular singular con-
nections, whose corresponding monodromy representation equipped with the Stokes data is
locally constant. In [16], M. Jimbo, T. Miwa and K. Ueno established the formulation of gen-
eralized isomonodromic deformation of generic unramified irregular singular connections over
the trivial bundle on P' and described its differential equation completely. The generalized
isomonodromic deformation was also introduced by B. Malgrange in [20]. The purpose of this
paper is to extend this theory to higher genus case including generic ramified connections. In
order to realize the formulation of generalized isomonodromic deformation in such a general
setting, we need the moduli space of connections with (A, u, v)-structure constructed in Sec-
tion 5.

In [5], P. Boalch constructs the moduli space of unramified connections over the trivial bundle
on P! and describes the generalized isomonodromic deformation in [16] through the correspon-
dence with the wild character variety which is the moduli space of monodromy Stokes data.
P. Boalch extends the framework of wild character variety to the higher genus case in [6]. In [27],
M. van der Put and M.-H. Saito gives another construction of the moduli space of monodromy
Stokes data, which includes all possible singularities, and provides the explicit descriptions of
the moduli spaces in the case of Painlevé equations. I.Krichever also extends the argument by
Jimbo, Miwa and Ueno in [16] to the higher genus case and describes the generalized isomon-
odromic 2-form in [19]. Placing importance on the Simpson’s framework of Betti and de Rham
correspondence in [26], the generalized isomonodromic deformation is formulated via the full
moduli space of generic unramified connections on curves of general genus in the work with
M.-H. Saito in [15] and in [12]. C. Bremer and D. Sage establish the generalized isomonodromic
deformation of ramified connections over the trivial bundle on P! in [8] and they prove the
integrability condition of the generalized isomonodromic deformation via examining a property
of the corresponding differential ideal. Their work is based on the construction of the moduli
space in [9], which partially uses the method by P. Boalch in [5].

In Section 9, we recall a brief sketch of the local analytic theory of ramified irregular singular
connections. First we consider the pullback of a generic ramified connection to a local analytic
ramified cover. After applying an elementary transform of vector bundle to the pullback of
the ramified connection, we get an unramified irregular connection. Such a process is called
a shearing transformation method [28, Section 19.3]. Its description is given by K. Diarra,
F. Loray and A. Komyo in [10, 17] for rank 2 ramified connections on P1. On the other hand,
we give a brief idea of producing the Stokes data corresponding to the unramified connection on
the local analytic ramified cover. Then we give a definition of local generalized isomonodromic
deformation of generic unramified irregular singular connections on a unit disk in Definition 9.4.
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Applying the Jimbo-Miwa—Ueno theory in [16] to the local setting, we get the following theorem
(see Theorem 9.7 precisely).

Theorem 1.2 (Jimbo, Miwa and Ueno). A family of generic unramified irreqular singular
connections on a unit disk is a local generalized isomonodromic deformation if and only if it can
be extended to an integrable connection.

Precisely, there are ambiguities in the asymptotic solutions in our setting and our proof
of Theorem 1.2 (Theorem 9.7 precisely) follows from the asymptotic property of flat solutions,
which is essentially the result by T. Mochizuki in [21, Chapter 20]. Using Theorem 1.2 (precisely
Theorem 9.7), we get a similar statement for local ramified connections in Corollary 9.11, which
is a main consequence of Section 9.

Based on the viewpoint of Theorem 1.2 (precisely Theorem 9.7 and its consequence Corol-
lary 9.11), we formulate the generalized isomonodromic deformation on the moduli space of
ramified connections in Section 11. For the construction, we introduce in Section 10 the notion
of horizontal lift (Definition 10.1) of the universal family of connections on the moduli space. The
horizontal lift is locally a restriction of the family of integrable connections, given in Theorem 1.2
(precisely Corollary 9.11), to a first order infinitesimal neighborhood of the base parameter space.
Nevertheless, it is defined purely algebraically. In the case of logarithmic or unramified irregular
singular connections, the notion of horizontal lift is introduced in [11, 12, 15]. We can prove the
existence and the uniqueness of the horizontal lift in Propositions 10.7 and 10.10, whose proof
needs an isomorphism (E, V)|gz = (C[[w]], V,)|gz in deep order (for ¢ = 2m —1 or ¢ = 3m — 1),
that is proved in Proposition 4.1. The existence of horizontal lift in Proposition 10.7 produces
a tangent splitting ¥: 7517 — TMng(A,;],D) in Section 11, equation (11.2), where MCOfD()\, f, D)
is a family of moduli spaces of a-stable connections with (A, fi, 7)-structure and 7 is the space
of time variables parameterizing local exponents and curves with divisors. We call the subbun-
dle Im¥ C TMé’fD(/\»ﬂvﬁ) the generalized isomonodromic subbundle (Definition 11.3). The main

purpose of this paper is the following theorem (see Theorem 11.6 precisely).

Theorem 1.3. The generalized isomonodromic subbundle Im W of TMg‘D(A,ﬁ,f/) satisfies the in-
tegrability condition [Im ¥, Im ¥] C Im .

In the proof of the above theorem, we need the uniqueness of the horizontal lift with respect
to two deformation parameters €1, €2, which is proved in Proposition 10.10. We can prove the
integrability condition of Theorem 1.3 by looking at the €jea-term of the horizontal lift.

By Theorem 1.3 (or Theorem 11.6), the generalized isomonodromic subbundle Im ¥ deter-
mines a foliation on the moduli space Mng()\, fi, ), which we call the generalized isomonodromic
foliation (Definition 11.7). We regard the generalized isomonodromic subbundle or the induced
foliation as the generalized isomonodromic deformation. However, our construction of general-
ized isomonodromic deformation is not complete, because we do not establish the generalized
Riemann—Hilbert correspondence between the moduli space of connections and the wild char-
acter variety. The construction of wild character variety in [7] will be a key work in that
framework.

The generalized isomonodromic deformation is known to be characterized by a canonical 2-
form, which is introduced in [16] and extended to higher genus case in [19]. The works [5, §]
are also based on this principle. By means of the generalized isomonodromic subbundle Im ¥
constructed in Theorem 1.3, we can extend the relative symplectic form given in Theorem 1.1 to
a total 2-form (Definition 11.4), which we call the generalized isomonodromic 2-form. Using the
generalized isomonodromic foliation produced by Theorem 1.3, we can prove in Corollary 11.8
that the generalized isomonodromic 2-form is d-closed.
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2 Logarithmic, unramified irregular singular
or ramified irregular singular structure on a connection

Let C' be a complex smooth projective curve of genus g. We consider an effective divisor
D = Dyog + Dyn + Dyam on C, where Dy, Dyy and Dy are mutually disjoint, Dy is a reduced
divisor, Dyn = >, Dy Ma® and Dyam = Y oz Dyan, Ma® are multiple divisors with m, > 2 for
T € Dyn U Dram .

For each point x € Djog, we fix a tuple (Af,...,A7_;) € C" and put A\* := (A})o<k<r—1 and
A= ()\x)meDlog.
For x € Dy, we take ug,...,us_; € Q};(mxaz) ‘m , Whose leading terms are mutually distinct.

In other words, py — puf, is a generator of the Oy, ,-module Qlc(mx:zzﬂm , for k # k. We write
pe = (i )o<k<r—1 and p = (U*)zeDyy-

Let E be an algebraic vector bundle on C of rank r and let V: E — E ® QL(D) be an
algebraic connection admitting poles along D.

Definition 2.1. We say that [* is a logarithmic A*-parabolic structure on (£, V) at & € Diqg,
if it is a filtration El, = I§ D --- D I7_; D Iy = 0 satisfying (res, (V) — A{id)(lf) C lj,, for
k=0,...,r—1, where res;(V): E|, — E|; is the linear map determined by taking the residue
at x.

Definition 2.2. We say that ¢* is a generic unramified p*-parabolic structure on (F,V) at
T € Dy, if it is a filtration E|p,. = €5 D - D £7_1 D €7 = 0 satisfying £7 /67| = Opp,e and
(Vimgz — pfid)(65) C €5, for k=0,...,r — 1, where V| o Elm,e — E @ Q% (D)|m,« is the
Om,z-homomorphism given by the restriction of V to the finite subscheme myx C X.

For each € Dyam, we take a generator z of the maximal ideal of the local ring O¢ ;. Assume
that

Véc(z) S QlC(Dram)’mx% Vic(z)7 R Vﬁ—l(z) S QlC(Dram)’(mz—l)x

are given and that the leading term of v (2) does not vanish. In other words, v{(z) is a generator
of the O¢ z-module Q& (Dyram)|(m, —1).- We take a variable w with w” = z and put

v (w) = vE(2) + vi(2)w 4 - + 7 (2)w"

We write v = (v*(w))zep,.,,- Furthermore, we assume the following

Assumption 2.3. We assume that

r—1 r—1
d = — Z Z)\ﬁ— Z Zresx(u}’é)— Z (Tresx(ug)+7;1>

2E€D)og k=0 € Dyn k=0 € Dyam
is an integer.

Next we recall the formulation of ramified connection given in [13]. In this paper, we give
a simplified version, since the formulation in [13] is somewhat complicated. Before stating the
precise definition, we will see the reason why we introduce a filtration on E|,,,,. What we want
to consider is a connection (F, V) on C' with a formal isomorphism (E, V)®(/9\C,m = (Cl[w]], Vyz).
However, it is difficult to treat the formal isomorphism in the construction of the moduli space
and also in the deformation theory. It is rather convenient to formulate the ramified condition
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only by the data of the restriction (£, V)|m,2. With respect to the frame of E|,,, . corresponding

to 1,w,...,w" !, the representation matrix of V|, is
() () i (2)
vi(z)  vg(z) + 2 2y (2)
via(z) via(x) e n(e) T

However, the assumption on V|, . by the above matrix is too strict and that does not go well
with the formulation of the moduli space. It is rather better to allow ambiguities in V|, which
is given by

v (2) 2y (2) 2Vf(2)
vi(z) + a1,o% vi(z) + % 218 (2) -
VE 1 (2) +ar10% v ,(2) tar—11E o BB (2) + @

where a;; € C for r —1 > i > j > 0. Indeed, if V|, . is given by the above matrix with
ambiguities, there is a formal isomorphism (E, @) = (C[[w]], Vy=) (which will follow from [13,
Proposition 1.3] or Corollary 4.3 later). In order to allow the ambiguities of V|, . as above,
we introduce a filtration E|,, ., = V§ D V¥ D --- D V¥, D V. If we identify E|,,
with C[[w]]/(w™=") via the formal isomorphism, then we set V& := (w")/(w™=") and L¢ :=
(wF)/ (wm=r=r TR “where (w”) the ideal of Clw] generated by w*. Then all the conditions in
the following definition will be obvious.

Definition 2.4 ([13, Definitions 1.2 and 2.1]). Let (E,V) be a pair of an algebraic vector
bundle F of rank r» on C' and an algebraic connection V on E. We say that a tuple V* =
((ka, Ly, ﬂlf)0<k<r_1, (¢£)1<k<r) is a generic v-ramified structure on (F, V) at © € Dyap,, if

(i) Elpez =VF&F DO VFE D - DVE, DVF =2V is a filtration by O,,,,-submodules which
satisfies length(V*/Vi%, 1) = 1 and V|p,2(Vi¥) C ViF @ QG(D)|mye for 0 <k <r—1,

(ii) 7¥: VE@Clw]/(w™="="t1) — L¥ is a quotient free Clw]/(w™="""*1)-module of rank one

for 0 < k < r — 1 such that the restrictions 7f|y=: Vi’ < V¥ @ Clw]/(w™=" ") LN Lf
are surjective and that the diagrams

T

ViE @ Clw]/ (w™="="+1) —F L
Vioas | |t
Vi ©QL(D) ® Clu)/ (wmr—+1) 2% [F @ QL(D)

are commutative for 0 < k <r —1,

(iil) @p: L —> wli_; for 1 <k <r—1and ¢%: (2)/(2™ ") @ L§ — wL®_, are surjective
C[w]-homomorphisms such that the diagrams

V¥ @ Clw]/(w™="—"+1) —1’“1—» LY

l [

VP ®(C[w]/(wm”*’"“) BN Ly
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are commutative for 1 < k <r — 1 and that the diagram

(2)/ (z+1) @ Vg @ Clu]/ (wmer—r+1) =275,

l J»

V;"x—l ® C[w]/(wmzrfrJrl) T——1> Lm—l

is commutative,
(iv) there are isomorphisms ¢f: LY = (w)/(w™""2) @ L{_, of C[w]-modules for 1 < k <

.- v ..
r — 1 such that the composition L — (w)/(w™"™ ") @ L¥_; — wL§_, coincides
with ¢7 and that the composition

(2)/ (™) @ L8 O 12 U () (0 @ L

r—1 N

x
r—2

S () () T e L S (w7 () © L

~ ~

coincides with the C[w]-homomorphism obtained by tensoring L to the canonical map
(Z>/(wmzr+1) N (wr—l)/(wmir)'

Two ramified structures (V#, L, wf, %) and (V) L, 7, ¢/F) on (E,V) at @ € Dyam are
equivalent if V¥ = V/* for 0 < k < r, there are isomorphisms oj: L} = L} of Clw]-modules for
0 <k <r —1 such that the diagrams

Vk —_— Lk‘ k ” k—1
I glo’k 0<k<r-1) oklg gl%& (1<k<r-1)
ﬂ';f ‘ vE , e d);cm Iz

and the diagram

(2)/(wmsr+l) @ L —2y Lo

id®o‘0l% %J/UT71
/T
(2)/ (wmer+l) @ Lie 2 [fw
are commutative.

Remark 2.5. In the condition (iv) of Definition 2.4, the composition { o --- o ¢F_; o ¢F is
independent of the choices of the lifts ¢ of ¢, taken for 1 < k < r — 1. In particular, the
condition (iv) is independent of the choices of 1.

Example 2.6. Let us consider the typical case (F,V)® 50,95 = (C[[w]], V), where z € Oc is
a generator of the maximal ideal, w = 2+ and the connection V, is given by

Vi: Cllw]] 5 f(w) = df(w) + f(w)v EC[[MH®%~

In this case, a generic v-ramified structure in Definition 2.4 is given in the following way. We
consider the filtration C[[w]]/z"C[[w]] D (w)/(w™) > - > (w"1)/(w™) D 2C[[w]]/z"C[[w]]



Moduli Space of Factorized Ramified Connections 9

and put Vj, := (w®)/(w™) for 0 < k <r —1. We put Ly, := (w")/(w™ "k+1) and regard it
as a Clw]/(w™ ~"*!)-module. The canonical surjection

Vi = (W) /(w™) — (k) /(™) = L,
induces a surjective homomorphism

Tk Vi ®clz)/(zm) C[w]/(wmriwl) — Ly
of C[w]/(w™ ~"*!)-modules. Then the conditions (i), (iii), (iv) of Definition 2.4 are obvious for
such data. Since the restriction

Vo w'Cl[w]] — w*Cllw)] @ —
satisfies the equality

Vo (w* f(w)) = kw*dw f(w) + whd f(w) + w* f(w)v

=k f() S 4wk df () + f(w)v),

we can also see the commutativity of the diagrams in Definition 2.4 (ii).
We will see later in Corollary 4.3 that any connection with generic v-ramified structure at z
is in fact isomorphic to the one given in this example.

Definition 2.7. We say that (E,V,[,¢,V) is a connection with (A, u, v)-structure, if
(i) E is an algebraic vector bundle of rank r on C' of degree d,
(i) V: E — E®Q} ¢(D) is an algebraic connection admitting poles along D,
(iii) I = (I*)zeD,,, s a tuple of logarithmic A®-parabolic structures [* on (E, V) at x € Diog,
) £

= ({*)zeD,, is a tuple of generic unramified p*-parabolic structures ¢* on (E,V) at
€ Dyn,

(iii

(iv) V = (V*)zeD,.n is a tuple of generic v*-ramified structures V* on (E,V) at € Dyam.

We take a tuple o = (ai)féfgr

for any 2 € D and that of # of, for (z,k) # («/, k).
For a non-zero subbundle F' of F, we write

of positive rational numbers such that 0 < af < --- <af <1

pardeg®(F) = deg F + Y > aflength((Fl. NI _1)/(Fl.NIF))
a;EDlog k=1

+ Y > aflength((Flu,e N €_)/(Fln.a N )
TE€Dun k=1

Y S alength (Floe 0 Ve 1)/ (Flanse N V)
€ Dram k=1

Definition 2.8. We say that a connection (E,V,[,¢,V) with (A, u,v)-structure is a-stable

(resp. a-semistable) if the inequality

pardeg®(F) - pardeg®(FE) res pardeg®(F) < pardeg®(E)
rank F' rank £ P Tank F = rankE

holds for any subbundle 0 # F C E satisfying V(F) C F ® QL(D).

Remark 2.9. If Dy, # 9, then we can see (E, V)®(’3Qx = (Cl[w]], V,) by Corollary 4.3, which
will be proved later. Since (C[[w]], V,) is irreducible, (F, V) is also irreducible and (E, V,1,¢,V)
is automatically a-stable for any parabolic weight ¢ in this case.
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3 Factorized ramified structure

In this section, we introduce the notion of factorized ramified structure which is a rephrasing
of generic v-ramified structure in Definition 2.4. This notion is useful for the description of
symplectic form later. In the Introduction, we saw a rough idea of factorized ramified structure.
Before giving the precise definition of factorized ramified structure, we will see another aspect
of the ambiguity in (2.1), which affects the definition of factorized ramified structure.

Let (E,V) be a connection on C' with a formal isomorphism (F,V) ® @c,x = (Cl[w]], V.),
where z is a generator of the maximal ideal of O¢;, w" = z and V), is the connection defined
n (1.1). Write v(w) = S 5_p cx(2)whdz/ 2% with co(2), ..., cr_1(2) € O, and ¢1(2) € Oz
There is in fact an ambiguity coming from the choice of z, but it can be expressed by a modifica-
tion of v and we do not pursue this point any more. Recall that the endomorphism N on E|,,, 4
corresponds to the action of w via the isomorphism Ely,,, — Clw]/(w™=). Since c1(2) is
invertible, there is a polynomial P(T) € Oy,,»[T] satisfying the equality

w=P(co(z) +c1(z)w+--+ cr,lwr_l)

in the ring O, [w]/(w" — z). Since the equality V|, —1)2 = V(V)|(m,—1)e holds, N, 1) 18
uniquely determined from V|, ., by substitution to P(T"). However, N always has an ambiguity
in the 2=~ 1_coefficients. This ambiguity causes the ambiguity in the matrix (2.1) of V|, -

In order to see more precisely, consider the filtration E|,,, = Vo D V1 D --- D V,_1 DV, =2V}
given in Definition 2.4 (i). Since this filtration is determined by N(V;) = V41, it is uniquely
determined from V|, ,. Then the restriction N|y; induces an endomorphism on V;/ zmz_l‘/;H,
which is uniquely determined from V|, . So the factorization N = 6 o k will be justified
when we replace it with the induced maps on V;/2™=~1V;,; or on its dual. Although we need a
careful consideration for the expression of these induced maps, all the conditions in the following
definition will be natural.

Let C, Diog, Dun, Dram, v, 2z, w be as in Section 1 and let (E,V) be a pair of an algebraic
vector bundle E of rank r on C and an algebraic connection V on E with poles along D.

Definition 3.1. We say that a tuple (Vj, Vg, 2 )o<k<r—1 is a factorized v-ramified structure on
(E,V) at € Dyap, if

(i) Elmpe =Vo D Vi D+ DV,1 DV, =2V is a filtration by O,,,,-submodules satisfying
Vmez (Vi) C Vi ® Q5(D) and length(Vy/Viq1) =1 for 0 < k <r—1,

(ii) for Vk = Vk/zm”‘_lvk_;,_l and Wk = (Vr_k_l)v == HOHI(’)MM (V'r—k—la Omzx),
Uy Wk X Wr—k—l — Omxm

is an O, -bilinear pairing for 0 < k < r—1 such that the equality dy(v,v") = 9, _x_1 (v, v)
holds for v € W, and v € W,_j_; and that the induced homomorphisms

Hk: Wk L> HOm(WT_k_l, Omzx) = Vk (0 < k <r-— 1)

are isomorphisms, which make the diagrams

Wi, —— Wi (2)/(z™) @ Wy —— W,y
le% 9k71l':“ (I1<k<r-1) 1®90l§ 97»71l%
Vi —— Vi (Z)/(Zm””H) ® Vo — Vi

commutative, where the horizontal arrow W — Wp,_; is the dual of V,_), — V,_r_1
and the horizontal arrow (z)/(z™= ™) @ Wy — W,_; is induced by tensoring (z)/(z™="!)
to Wo = Hom(V,_1, Opm,e) — Hom((2)/ (2™ )@V, Omya) = ((z)/(zm“”'l))v@Wr_l,
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(iii) for 0 <k <r-—1,
A Vk X Vr—k—l — Omzx

is an Oy, ,-bilinear pairing such that the equality s (v,v") = 34._,_1(v',v) holds for
v € Vg, v € V,_i_1 and that the induced homomorphisms

Kk : Vk — Hom@mzz (VT—k—la Omla:) = Wk (O <k<Zr-— 1)

make the diagrams

Vi —— Vi (2)/(z"=) @V —— Vo
nkl Iik—ll (1 < k <r-— 1) 1®n0l mrfll
Wk  — Wk—l (z)/(zmzﬂ) ®W0 — Wr—l
commutative,

(iv) the composition Ny := (9, 2e,) = Opoky: Vi, — V. satisfies the equalities (Ng)" = zidy,
and (N3)™="~"+1 = 0, from which the injective ring homomorphism

(C[w]/(wm”_rﬂ) > f(w) = f(Ny) € Endo,, , (Vk) (3.1)
is induced and the diagrams

Vi M Vi ® Qé(D)

! !

_ v(N kdz
7, R e oL (D)

are commutative for k =0,1,...,r — 1,

(v) with respect to the C[w]-module structure on V', defined by the ring homomorphism (3.1),
there are C[w]-isomorphisms ¢ : Vi, = (w)/(w™"""2)®V_; such that the composition

Vk wN—k> (w)/(wmzr—r-i—Q) ®Vk_1 — ka—l — Vk—l
coincides with the homomorphism Vj, — Vj,_; induced by the inclusion Vj, < Vj,_; and

that the composition

(2)/ (z™Y) © Vo = Voot 25 (w)/ (0™ 7+2) @ Vyy

1#:2 % (wrfl)/(,wmzr) ®Vo
coincides with the homomorphism (z)/(z"=*1) ® Vo — (w"!)/(w™") ® V; obtained

by tensoring V to the canonical homomorphism (2)/ (™) — (w"1)/(w™").

Two factorized ramified structures (V, Uk, s) and (V)V}, ».) are equivalent if V;, =V} and

O, 25) = Ny = NI = (9, 5,) for any k and there are isomorphisms ¢;: W} — W), satisfying
k k' "k

'Ny_k—106 =t 0 'Ny_g_1, 0}, =0 ogk, K= glzl o ki and the commutative diagrams

(Z)/(me—i_l) ®W0 —_— Wr—l Wk — Wk,1
1®<0l5 <r71lg cklg §k—1l% (1<k<r-1).

(2)/(z™) @ Wy —— W, Wi —— Wi
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Remark 3.2. The condition 9 (v,v") = ¥, _p_1(v',v) for v € Wy, v/ € W,«_k_lj Defini-
tion 3.1 (ii) is equivalent to the condition !(6;) = 6,_x_1 under the identifications W,_j_1 =
(Vk)v and (Wk)i: Vg1 for 0 < k <r—1. Similarly, the condition s (v, w) = »_p_1(w,v)

for v € Vi, w € V,_;_1 in Definition 3.1 (ii) is equivalent to the condition ‘xy = k,_j_1 under
the identifications (I/Vk)v =V,_k_1, (Vk)v =W,_p,

For a factorized v-ramified structure (Vi, 9, ;) on (E, V), we can regard the Oy, ,-module
Vi = Vi/2™= 1V, 4q as a C[w]-module by using the ring homomorphism in Definition 3.1 (iv),
(3.1) and we have V; = C[w]/(w™ " "1). The canonical surjection V;; — V} induces
a surjection mp: Vi @cp)/(zmay Clw]/(w™ ="+ — Vi of Clw]/(w™*"~"*1)-modules. For
1 < k < r—1, the canonical inclusion ¢j: V3 < Vi_; induces a homomorphism 73,: Vj, — Vi1
and the canonical homomorphism (z)/(z™ ') ® Vy — 2zVy < V,—; induces a homomorphism
Ir: (z)/(zm“H) ® Vo — V,_1. Then (Vk,Vk,wk,Zk) becomes a generic v-ramified structure
on (E,V) at © € Dyapy, in the sense of Definition 2.4.

Proposition 3.3. The correspondence (Vi, O, 1) — (Vk,vk,wk,Zk) gives a bijection between
the set of equivalence classes of factorized v-ramified structures on (E,V) at * € Dyam and the
set of isomorphism classes of generic v-ramified structures on (E,V) at © € Dyap,.

Proof. We will construct the inverse correspondence. Let (V, L, 7k, ¢ ) be a generic v-ramified
structure on (E,V) at & € Dyam. By Definition 2.4 (ii), the restriction mg|y, : Vi — Ly is
a surjection, which induces the isomorphism Vj = V;/2™+~'V, .1 = L;. Take a generator &g
of Ly as a Clw]-module. Let é; be the element of Ly which corresponds to wkF @ ey via the
isomorphism

Ly Y (w) @ Loy 275 - B (wF) @ Lo.

~

Since m|y, is surjective, we can take an element e, € Vi satisfying mi(ex) = é€;. Then
€0, €1,-..,6r—1 is a basis of the free O, ,~-module E|,,,, and we have

mr(er) = (Prgr1 0 -0 @) (m(er)) = wlfkﬂ'k(ek) fk<i<r-—1,
Te(z€)) = (g1 0+ 0 dr) (2 @ mo(er)) = w"Fmy(e) ito<i<k.

Furthermore, Vj, is generated by ex, ex+1,...,€r—1, 2€0, ..., 2ex_1. If we define a homomorphism
N: E|m,z — E|m,z by

N(ex) epr1 HO0<k<r-—2
e o
F zeg ifk=r-—1,

then N preserves Vj, and the diagram

Tr|v,
Vi —= Ly

vakl lw
Vi —>ﬂk‘vk Ly

is commutative. By the definition, we have the equality N" = z -idg,, .. The induced ring
homomorphism

(’)mzz[w]/(wT - z) > f(w) = f(N) € Endo,,,, (E|m,z)
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endows El,,, . with a structure of Oy, »[w]-module. Since the minimal polynomial of N|, is w"
whose degree is , we can see F|,; = Clw]/(w") by elementary linear algebra. By Nakayama’s
lemma, we can extend it to an isomorphism

Elp,z = (’)mxx[w]/(wT — z) (3.2)

of Op,z[w]-modules. Similarly, the endomorphism ‘N on El), . induces a structure of Op,, 5 [w]-
module and we have an isomorphism

El 2 = Opolw]/ (W — 2). (3.3)
Combining (3.2) and (3.3), we get an isomorphism

0: El.. — Elmea
of Op,,z[w]-modules. Let

O Ele X By o — Omga (3.4)

be the corresponding bilinear pairing defined by J(v*, w*) = w*(6(v*)) for v*,w* € E|, .. Take
a generator e* of E|y, . as an Oy, [w]-module. Then any element v*,w* € E|y, . can be written
v* = P('N)e*, w* = Q("N)e* for polynomials P(w), Q(w) € Om,z[w] in w. So we have

(v, w) = w*(0(v)) = (Q('N)e") (0(P(*N)e))

= ("o Q(N))(P(N)(6(e)))
= (€70 Q(N) o P(N) o 0)(e")
=(e" o P(N)oQ(N)o0)(e*) = (w*,v"). (3.5)

In other words, the pairing ¢ defined in (3.4) is symmetric, which is also equivalent to ‘6 = 6.
If we put

k:=0"1oN: Elpn,.— E]Yvnﬂ,
then we have § o k = N. By the similar calculation to (3.5), we can see that the bilinear pairing
st Bl X Elmge — Omga,

determined by »(v, w) = x(v)(w) is also symmetric, which is equivalent to ‘x = k.
Now we put

Wi = {v" € Bl , | v* (2" 7V, _y) = 0} = ker (2"~} ('N)" ")

for 0 < k < r. Then we get the exact commutative diagram

e Wy = 2y
0 —— Wi —  El.., —— @™V )V—0

0 — V:Lk,l — VY, —— @™V )V—0
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So we have an isomorphism
Wi/ W1 =5V, =W
Using W), = ker (2= 1 (tN)Tfk), we can see
B(Wi) = 0(ker (2= L('N)" %)) = ker (2" 'N"7F) =V},
So 0w, induces an isomorphism 6y : Wi = V), which makes the diagram

Olw
Wk —k> Vk

I

R 9 R
Wk—’“>Vk

commutative. By the equality x = 67!N, we have x(V;) € Wy for 0 < k < r and get the
commutative diagram

Klv;
Vk —k> Wk

| !

— 5 _

We can associate (U, ») to (0, k) and the conditions (ii) and (iii) of Definition 3.1 follow
from the properties of 6, k. The other conditions (i), (iv) and (v) of Definition 3.1 are satisfied
by that of (Vi, L, 7k, ¢r). So we get a factorized v(w)-ramified structure (Vi, g, s).

Assume that there is another factorized ramified structure (Vj, 9}, 5¢,) which gives the same
generic v-ramified structure (Vg, Ly, g, ¢). Recall that Vi, = Lj. So we have 0} o k), = Nj, =
0 o ki, because both sides correspond to the multiplication by w on Lg. Since the diagram

_ o _
Wi —r Vi
tNk:ln;COO;C Nklzeéon;c

N 4 —
Wk —k> Vk

is commutative, 6, : W), = V is an isomorphism of free C[w]/ (wm”_rﬂ)-modules of rank one.

So there is an element S (w) € Clw]/(w™="~"*1)" such that 6}, = 6} o B(*Ny). Then we also
have kp = B (1’/]\7}?)_1 o k). Taking account of the compatibility of (6},x})) with (6;_,,x}_;),
we can see fi(w) = fr—1(w) (mod w™ ") for k =1,...,r — 1. Thus we have (Vj, V), ) ~
(Vk, Ok, ). In other words, the equivalence class of factorized v-ramified structure (Vj, 0, ki)
is uniquely determined by the generic v-ramified structure (Vi, Ly, 7k, ). So we can define
a correspondence

(Vka Lk7 T, ¢k) = (Vk> 9167 K:k’)
and it is the inverse to the correspondence stated in the proposition. |

Example 3.4. We will see what the factorized ramified structure is in the typical case ex-
plained in Example 2.6. We have (E,V)® Oc, = (C[[w]], V,) in that case and the filtration in
Definition 3.1 (i) is given by Vi = (w”)/(w™") for 0 < k < r. Consider the trace map

Tr: Clw]] — C[[z]]-
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For f(w) € C[[w]], Tr(f(w)) is defined as the trace of the endomorphism C|[w]] S, C[[w]] on

the free C[[z]]-module C[[w]] of rank r. By construction, we have Tr (2!) = rz" and Tr (w*z!) =0
for 1 < k < r—1. So the above map induces a homomorphism Tr: Clw]/(w™ 1) — C[z]/(z™),
which also induces

Tr ®id

Tr: (w')/(w™)® Q<1C[[w]]/<c = Clw)/(w™ ") © Q(1C[[z]]/(3 ——Clz]/ (") ® Qé[[zﬂ/@'

Then we can define a pairing
@k: (wk)/(wmr7r+k+1) % (wrfkfl)/(wmrfk) N (C[Z]/(Zm)
by setting

O (f(w), g(w))dz = Tr(f(w)g(w)dw)

for f(w) € (w”)/(w™="+k+1) and g(w) € (w"*71)/(w™ ~*). By the construction, the induced
C[z]/(z™)-homomorphism (w*)/(w™ —rh+1) — ((w"_k_l)/(wm’"_k))v is an isomorphism. If
we denote the inverse of this homomorphism by

Qk: ((wr—k’—l)/(wmr—k‘))\/ 1> (wk)/(wmr—r-l—k—i—l),
then 0 induces a pairing
e (w570 / (@™ F)) s () / () — €/ (27)

satisfying 9k (v,v') = 9, _p_1(v',v) forve ((wr—k—l)/(wmr—k))v and v’ € ((wk)/(wmr—wkﬂ))\{
We can also define a pairing

P (wk)/(wmr—r+k+l) > (wr—k—l)/(wmr—k) N (C[Z]/(Zm)
by setting

7 (f(w), g(w)) = Op(wf(w)g(w))

for f(w) € (w*)/(w™ 1) and g(w) € (w""')/(w™*). We can see that the filtra-
tion C[[w]]/z™Cllw]] D (w)/(wmr) D (w2)/(wmr) DD (wT_l)/(me) D zC[[w]]/z™C][w]]
together with (U, ¢ )o<k<r—1 gives a factorized v-ramified structure on (E,V) at z.

Remark 3.5. We can extend the notion of generic v-ramified structure or that of factorized
v-ramified structure in a relative setting. So, if S is a noetherian scheme (or a noetherian ring)
and if (E, V) is a pair of a vector bundle F on C x S and a connection V on E, we can mention
about a generic v-ramified structure on (E, V).

4 Recovery of formal structure from a generic ramified
structure

In this section, we will see in Corollary 4.4 that the generic ramified condition given in the
Introduction is equivalent to the generic ramified structure (Definition 2.4) or the factorized v-
ramified structure (Definition 3.1). The most essential point is to recover a formal isomorphism
from a generic ramified structure or a factorized v-ramified structure (in Corollary 4.3). In
fact, we proved it in [13, Proposition 1.3] by using the Hukuhara—Levert—Turrittin theorem (see
[1, Proposition 1.4.1] or [23, Theorem 6.8.1] for example). In this paper, we will examine it
by a direct computation only by using regular formal transforms rather than formal Laurent
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transforms in the Hukuhara—Levert—Turrittin theorem. It has the advantage of applying to (9.5)
or (9.10) later. For such applications, we actually require a formal isomorphism in a relative
setting in Corollary 4.3.

Let A be a noetherian ring over C. Take a flat family U — Spec A of smooth affine curves
over Spec A and let  be a section of U over Spec A. We can take a local defining equation
z € Op of Z. Let w be a variable satisfying w” = z. We take an integer m with m > 2. Choose

@, d@ ) e an, (@, ) e A (=1, 1) (@)

with the condition aél) € A*. Using the data (4.1), we put

m—1 m—2
_ N 0,92 _ N k092 _ _
vo(z) = Z a2 vp(z) = a7 (k=1,...,7r—1) (4.2)
=0 =0
and set
v(w) == vo(2) +v1(2)w + -+ vp_1(2)w L (4.3)

For an integer ¢ with ¢ > m, we can regard A[w]/(w?") as a free A[z]/(z?)-module of rank r.
Define the A-linear homomorphism

Vilgz: Alw]/(w®) — Afw]/(w®) @ Q) (mt) gz

by setting V, lga(f(w)) = df(w) + f(w)w(w) for f(w) € Afuw]/(wm).
We need the following proposition in the construction of generalized isomonodromic defor-
mation later in Sections 10 and 11.

Proposition 4.1. Let the notations be as in (4.1), (4.2) and (4.3) with the assumption that the

leading coefficient a(()l) of v1(2) is invertible in A. Take a vector bundle E on U of rank r and a
connection V: E — E® Q%]/A(m:%) with a generic v-ramified structure

((Viey T, » LiJoksr—1, (k) 1<k<r)
at . Then, for any integer q with ¢ > m, there is an isomorphism
o1 Elgg = (Alz]/(29))[w]/(w" — 2) = Aw]/(w")

which makes the diagram

Elg ——  Afw]/(w®)

~

vml vuml

- o®1 T z
Eloz ® Q4 (mi) |z ——— Alw]/(w?) ® %

commutative.

Proof. Let f/k be the pullback of Vj via the canonical surjection E|gz — El|pz for 0 < k <
r — 1. We take a generator e, € Lo as an Aw]/(w™ "*1)-module. By the condition (iv) of
Definition 2.4, there is a composition of isomorphisms

Lk % (w) & Lk—l ¢__>k71 tee ﬂ) (wk) ® LQ.

~
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|
Let eﬁc € Lj be the element corresponding to wk ®e(, via this isomorphism. Since Tlv : Vi G

Ly, is surjective, we can take ey € Vj, satisfying mj(ex) = €},. Then we have

Wk(ék+l):wlﬂk(ék) for0<I<r—k-—1,

m(28) = W' * . (E) for 0 <I<k-1.

We take lifts eg, €1, ..., e,—1 € Elgz of €, €1, ..., €1 € E|nz. The commutativity of the diagram
in Definition 2.4 (ii) yields the equality

r—1 k—1
kdz dz
Vgz(er) = <I/o(z) + rz) er + Z vi—k(2)e; + lz; 2k (2)eg <mod 2 1Vk+1 )

l=k+1

for k=0,1,...,r — 1. Applying the following lemma to the cases
(q,8) = (m,1),(m,2),...,(m,r),(m+1,1),(m+1,2),...,(¢,1),..., (g7 — 1)
successively, we get the proposition. |

Lemma 4.2. Let ¢/, s be integers with m < ¢’ < q and 1 < s <r. Assume that the equalities

r—1 k—1

kd - d
Vgaler) = <V0 + Z) er + Z vi_re; + ZVT_H L2e] <m0d 24 Vk+ Z) (4.4)

I=k+1
hold for 0 < k < r — s and the equalities

r—1 k—1

kdz dz
Vgz(er) = <Vo + ) ek+ Y Viige+ ZWH kel <m0d 2 Vs r2m> (4.5)

I=k+1
hold for r — s < k <r —1. Then there exist c,by,...,b._1 € A such that the replacement
5 eo—f-czq,_mes ifl1<s<r-—1,
€y = ’ 1 3
eq +cz? MTley  ifs=r,

er + czq/*me;ﬁs =+ bkqufle;ﬁs,l ifk+s<randl <k<r-—1,
€ = ek + czq'_m“ekﬂ_r + bkzq/_lekﬂ_l ifk+s=randl <k<r-—1, (4.6)
er + CZq,_erle]H—s—T + bkzq,eHS_l_T ifk+s>randl <k<r-—1

leads to the equalities
~ kdz /1~ dz
Vg (ér) = (1/0 + ) ek + Z ViK€ +ZVT+Z 1 2€1 <m0d 21 1Vk+s+lzm> (4.7)
I=k+1
for 0 <k <r—s—1 and the equalities
~ ’ dz
Vl0gi(€x) = <VO + ) e + Z Vi_i€; + ZVTH L2€] <m0d 22 V’f+5+17“2m> (4.8)
I=k+1

forr—s—1<k<r-—1.
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Proof. By the assumption (4.4), we can find no,...,9—s—1 € zq/_lﬁllj/A(D)m satisfying the
equalities

r—1

kdz
V|qu(ek) = <V0 + 7’2’) er + Z V_L€]

I=k+1
k—1

15 dZ
+ Z Vrl—kZ€l + MkChs <m0d 2T Vst Zm>
1=0

for 0 < k <r —s—1 and the equality

kds r—1 k—1 - da
Vigz(er) = (Vo + m) ex + lzk-i:-l vi_ker + lz(; Vpyl—k2e] + Niger—1 (mod 21 Vozm>

for K+ s = r — 1. By the assumption (4.5), we can find n,_s,..., -1 € zq’_lQllj/A(D)]qi,
satisfying the equalities

r—1
kdz
V’qj(ek) = <I/0 + 7“Z) e + Z V_L€]

I=k+1
k—1
q/ ~ dz
+ Z Vpyl—k2€] + NpZekts—r mod 2 Vk+s+1—r27n
1=0

for r —s < k <r —1. We will determine ¢, by,...,b,—1 € A so that the substitution of (4.6)
enables the equalities (4.7) and (4.8) to hold.
Consider the substitution of € for 0 < k < r — s. In that case, we have

Vgz (&) = Viga(er) + (¢ —m)ez? "™ dzeprs + 27 ™V (egss)
(¢ — Dbz 2dzep g1 + bz "IV (eppso1)-
If we put by := 0 and b, := 0, then we can calculate the above substitution in the following, while

using bkquilyl,kferlel =0 (mod zq/*lffkﬂﬂdz/zm) for I > k + s + 1 in the second equality;

~ ! n— ’_ kdz
V|qi(€k) = (q/ —m)ez? ™™ ldzek+8 + (q' — 1)bg2? 2dZ€k:+s—1 + <I/0 + 7"z> ek + Vieky1

— = i (k+ s) dz
+ Z Vi—ge; + Z Vpyl—k2€) + Cz <1/o + . ?)ek+s
1=0

I=k+2
r—1 k+s—1
!/ __ !/ _ /_
+ 2T veg s + Z cz? My _p_ser + Z cz? m+1V7~+l—k—s€l
l=k+s+2 =0
r—1
b q -1 b q -1 b q -1
+ 0p2t Vp€kys—1 T 0p2T T Vi€pys + k2" Vi—k—s+1€l
l=k+s+1
k+s—2
/
+ Z bez? Vrgi—k—st1€1 + Mrys
=0
kdzy ((¢=m)r+s)z7""c 1.
= <1/0—|— e+ |vs +np + — dz 4 (bp— brs1)2? 1oy | Epps
rz rz
k—1
~ ~ - 17 dz
+ V1€k+1 + Z Vi_ke; + ZVT_H_kzel mod z Vk+5+1zim .

k+2<i<r—1,l#k+s =0



Moduli Space of Factorized Ramified Connections 19

We can similarly calculate the substitution of é; for r — s < k <r — 1 and we have

- kdz\ _
V|ga(ér) = <V0 + rz) €x

‘—m)r + s)z7 ¢ - N
+ (Vs + e + g )mm ) dz + (b — beg1)2? ' | 28kgsmr
k—1 1
+ Z Vg€ + Z Vr41—kZ€ <H10d 24 Vk+s+1—7~zm> :
k+1<I<r—1,l£k+s 1=0
So it is sufficient to solve the equation
(¢/=m)r+s)=7""1 '—1
e —dz =217y 0 e 0 c —no
((q’—mlzjnS)ZN/‘l dz 2071y —p01y 0 by —m
- be —12
/_ q — / . —
(g’ =m)rts)2t = mzzj,rf)z dz 0 2y 0 A : ’
: : 01y, br_2 — T2
(g=mrs)= g " o 0 a1y, ) O —Nr-1
which is possible because the r x r matrix of the left hand side is invertible. |

Under the setting (4.1), (4.2) and (4.3), let V,,: A[[w]] — A[[w]] ®Q%]/A (mt) be the relative

formal connection defined by V,(f(w)) = df(w) + f(w)v for f(w) € A[[w]]. If we take the
inverse limit of the isomorphisms (E,V) ® A[z]/(29) — (A[[w]]/(w?"),V,|4z) constructed in
Proposition 4.1, we get the following corollary.

Corollary 4.3. Under the same assumption as Proposition 4.1, there is an isomorphism
(E,V) @ Al[z]] = (A[[w]], V.).

If a connection (F,V) has a formal isomorphism (£, V) ® @o@ = (C[[w]], Vy) at z, then it
induces a generic v-ramified structure as in Example 2.6. Conversely, the above corollary enables
us to recover a formal isomorphism from a v-ramified structure in Definition 2.4 or a factorized
v-ramified structure in Definition 3.1. So we have the following corollary.

Corollary 4.4. Let (E, V) be a pair of a vector bundle E of rank r on a curve C and a connection
Vi E — E® Qlc(D) with poles along the divisor D whose multiplicity at = is m. Take
a generator z of the mazximal ideal of Ox , and a variable w with w" = z. Consider a rational
one form v(w) = vo(2) + vi(2)w + - -+ vr_1 (2)w" " such that vy(z) € Y7, C2mdz, vy (2) €
22162 Cz'=™dz for 1 <k <r —1 and that the leading term of v1(z) does not vanish. Then the
following conditions are equivalent.

(1) (E,V) is generic v-ramified at x, that is, (E, @) =~ (Cl[w]], V).
(2) There is a generic v-ramified structure on (E,V) at x in the sense of Definition 2.4.

(3) There is a factorized v-ramified structure on (E,V) at x in the sense of Definition 3.1.

5 Construction of the moduli space of connections

The moduli space of ramified connections is constructed in [13]. Since some notations in this
paper are different from those in [13], we recall the construction of the moduli space in our
setting.
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Let niog, Mun, Nram be non-negative integers and put n = njg + Nun + Nram. Consider the

moduli stack M, , of n-pointed curves (C’,x&log), . ,xggi),argun), - ,x%‘iﬁ),xgam), .. ,:1:5{3?)

of genus g over Spec C. We can take a smooth algebraic scheme H over Spec C with a smooth
surjective morphism H — M, ,,. Indeed, we can take a subscheme H’ of Hilbp. parameterizing
the I-th canonical embeddings C' — P(H O(wlc)) of smooth projective curves C of genus g for
a fixed large [ if g > 2. If g = 1, we take H’ as the open subset of P, (H°(Op2(3))) parameterizing
the smooth cubic curves in P2. If g = 0, we take H’ as a point. In any case, there is a universal
family Z c PL x H' of curves over H'. Then the open subscheme # of the fiber product of n
copies of Z over H' parameterizing the distinct n points on the curves satisfies our request. We

3 ; ~log sun . S.ram . fats
can take a universal family (C x H, (&, )ISiSnlog’ (ZM™)1<i<nun» (F5™)1<i<nram ) consisting of flat

family of curves of genus g over H and sections fviog (1 <i < npg), T (1 <4 < ngn), T2
(1 <@ < ngam) of C over H. We denote the ideal sheaf of 2} (resp. Z;"™) by Izmn (resp. Ij;am).

Assume that integers m/™ > 2 are given for 1 <7 < ny, and integers m;*™ > 2 are given for
1 <i<nram. We put

Tog Nun Tram

. ~log X un ~un . ram ~ram
Doy 1= g z;°, Dun = E m; T, Dram = E m; T
=1 i=1 =1

D .= Dlog + Dun + Dram-

Let X be the maximal open subset of

NMun Mram
SpeC Sym@H <'HOIH@H <@ Ij;ln/([j;m)m?n—’—l D @ Ii.;arn/(Ij;anl)mj +1’ OH))
j=1

=1

such that the restriction z of the universal section to X gives a generator of (I@m /1 gﬁnﬂ) ®0yO0x

am 1
)

~ my
at each Z™ (resp. a generator of (Ijzam /1 :i;ém ram),

®o, Ox at each T}

Fix complex numbers

A= (Al(;))lgigmog,ogkfr—l € Cios,
™= (Ciu,rl;)gignun,ogkgrq € Cm,
¢ = (szm)gignmn € Chram,
which satisfy the equality
Nlog r—1 Nun 7—1 Nram
d+ZZ)\,(;) +ZZCEI,;+ Z (rcgam+ 7“51) =0
i=1 k=0 i=1 k=0 i=1

for an integer d. We set
Tun 1 Mram @( ram 1)
un __ m — '
V = Spec | Symg,, (@ (’)?é(ml & @ Oy’ >
i=1 j=1

and take universal sections

Mun i
~un
(ai,k,j)1§i§nun,03k§r—1,0§j§myﬂ—2 € @ Ov,
i=1 k=0 j=0
Nram T—1 mgam_Q
~Tram
(ai,k,j)1§i§nram,ogkgrfl,ogjgmgam—z € @ Oyv.
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Let T be the Zariski open subset of V defined by

T:{teV

for each 1 <4 < nyn, @ (t) # afy o(t) for k # K/,
and &gi%(t) # 0 for any 1 < i < nyam '

We take a lift z of Z as a local algebraic function in a neighborhood of D and rephrase the above
universal sections by setting

n
f(z) = E (af%o+--+ a;l,rli,myn—2 Zm T 4 CipZ ") oy 0<k<r-1),
i=1 200 dmyn (@)

Nram
~ (3 — ~ram ~ram ~ram Fm;m—2 ram zm;*™—1 dz
(z) = E (ai,0,0 T a1 2+ F Gy pram g 2 +o ) e

m
i Z Impam @)y
Nram
~ (= ~ram ~ram ~ram smim—2 dz
(2) = E (@ +asnz+--+ Qj o mram g 2 )ngam (1<k<r—1),
mien @)y
T

i=
-1

1
ﬁ(w) =1 2) + 51<2)w + -4+ 177,_1(5)11}7"

and we write i := (fix)o<k<r—1 and 7 := U(w). Note that the restriction of the differential forms

T‘in| wn(a T‘im’ ram/~ +_ are independent of the choice of the representative z of Z and are
2 MmN (&) T mi(Z;) T

uniquely determined by Z.

We fix a parabolic weight a@ = ((a}fg)

tion 2.8.

lgigmog,( “n)lgign““,( 1”""“m)ISZ'S””““) as in Defini-

1<k<r k) 1<k<r ik J1<k<r

Theorem 5.1 ([13, Theorem 2.1]). There exists a relative coarse moduli space MEp (A, fi, V) —
T of a-stable connections with (A, fi, 0)-structure on (C,D). Furthermore, M&p (A, ft,7) — T
18 a quasi-projective morphism.

Proof. We use the same argument as in the proof of [15, Theorem 2.1] and [13, Theorem 2.1].
Consider the moduli functor M of tuples (E, V,[, ¢, (V})) consisting of rank r vector bundles F,
connections V admitting poles along D and parabolic structure ¢,1,(Vy) along D satisfying
a-stability. Then we can embed M to a locally closed subfunctor of the moduli functor of
stable parabolic triples (E1, Ea, ¢, V, Fy(E1)), whose existence is proved in [14, Theorem 5.1].
So we can get a moduli space M which represents the étale sheafification of M and M is quasi-
projective over 7. We can construct a quasi-projective scheme M) ; over M which parameterizes
(A, fi)-structure on (E,V) compatible with [, ¢ as in the proof of [11, Theorem 2.1] and [15,
Theorem 2.1].

We only have to construct a parameter space of 7-ramified structure over M) ; such that the
filtration in Definition 2.4 (i) coincides with the given filtration (Vj). There is an étale surjective
morphism M’ — M), ; with a universal family (E, AN (f/k)) on Cppr over M'. We set

Ay = H Oppw]/ (W™ =1,
Since A, is a finite module over M’, we can construct a locally closed subscheme @ of a product

of Quot-schemes over M’ such that the set of S-valued points of @ is

e T Ly is a quotient A, module of Vj, ® (Ay)s and
Q) = {(Vk @ (Aw)s = Lk)oﬁkﬁ’”*l Ly, is a locally free (A4, )s-module of rank one |
Let m: Vi ® (Aw)g — Lj, be the universal quotient sheaf. There exists a maximal locally
closed subscheme ¥ C @ such that the restrictions (Wk)g‘ RARE (Vk)z — (Lk)2 are surjective,
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the diagrams

¥ 6|('Drabm) g
(Vk)E — (Vk)z ®Q(112/2((Dram)2)

Tk J/ lwk ®id

- v(w)+ ke
(Lk)z - ( ) ®QCE/2(( Dram)s)

are commutative for 0 < k < r — 1, each composition (f/k)z — (Vk,l)z SLaEN (ﬂk,l)z
factors through an (A, )y-homomorphism b (Ek)z — ([ka—l)z whose image is w(ik_l)z for
1 <k <r—1and the composition (2) ® (Vo)z — (Vo_1)y —— (f/r_l)z factors thorough
an (Ay)s-homomorphism by : () ® (I:o)E — (EH)E whose image is w(f/r,l)g. We denote
the free (Ay)y-module @5 (wk) /(wh ™™ r=m+1) simply by (w*). Consider the affine space
bundle

V), = Spec Symg,_ (Homoy, (Homa, )y, (Li) ., (0) ® Ay ® Ly_1)s),0x)) — =
for k =1,...,7 — 1 and take a universal section

vns D)y, — (@) ® Aw @ L)y,
There is a morphism

e Vi — SpecSymo, (Homoy (Hom(a, ), (L), (wli-1)y), Os))
over ¥ defined by the composition

(L ) — ((w) ® Ay, ®Ek*1)vk - (“’Ekfl)vk'

Over the fiber ¢ 1( k:) C Vg, the composition
~ w ~ ~
(Lk)0;1((£k) —k> ((w) & Aw & Lk_l)clzl(fl;k) — (ka_1)0;1((£k)

coincides with (d)k)c;l(d;k): (Lk)c,glw (ka 1) (i)’ which i~s surjective. So, we can see
by the Nakayama’s lemma, that (W)cgl(mr (Lk)cgl(gbk) — (w )®(L’f—1)c,§1(¢3k)

then (¢) e (60) is isomorphic because it is a surjection between locally free (A,,) e 4, modules

is surjective and

of rank one. Consider the group scheme G over ¥ whose set of S-valued points is

Nram

G(S) =[] (1 + H°(0s)z"" 1),

=1

where each component (1+H%(Og)z™"" 1) is regarded as a subgroup of the group of invertible

elements of H%((Ay)s). Then there is a canonical action of G on the product Y := []}_ -t ;! (gbk)

and

r—1
V=[] () — =
k=1

is a G-torsor. Consider the composition

browotrioo ()@ (Lo)y 2 (Brr)y 25
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Then there exists a maximal closed subscheme Z C Y such that the composition (1/11 0---0_q10
QNST)Y coincides with the canonical homomorphism (z) ® (io)y — (wr_l) ® (f/o)y induced by
the inclusion (z) < (w"'). By the construction, Z is invariant under the action of G. So Z
descends to a closed subscheme ¥; C 3. We can see that the quasi-projective scheme 5
over M’ descends to a quasi-projective scheme M, (A, fi,7) over M)y ; which is the desired
moduli space. ’ |

6 Tangent space of the moduli space
using factorized ramified structure

The aim of introducing the factorized ramified structure is to construct a duality on the tangent
space of the moduli space, which was not achieved in [13]. We will first describe the tangent
space of the moduli space by the infinitesimal deformation of factorized ramified structure.

Let the notation be as in Section 5. Take a point ¢ € 7. We will describe the tangent space of
the fiber Mé’fp()\,ﬂ, ) of the moduli space over t. We write C' := C;, D := Dy, Diog = (Diog)t,
Dyn = (Dun)t; Dram = (Dram): and (p,v) = (@1, 2);. We put my := m™ for x = |, and
my = mi*™ for x = Z*™|,.

Let (E,V,1,¢,V) be a connection on (C, D) with (A, u, v)-structure. If we put

k=P 8. = 4,
xEDlog € Duyn
then we get filtrations E\Dlog =loD>UL>D> - DlL_1DlL,=0,FEp, =02l D Dl_1D
l; = 0 such that ly/lx+1 = Op,,, and £/l = Op,, for 0 <k <r — 1. If we put

Vi = @ Vi, Vi = @ Vz, Wy = @ Wi,

TEDram EDram E€Dram

then we get a filtration E|p,, = VoD Vi D+ D Vo1 DV, = 2V} with surjections V} — V,
and isomorphisms Wy, = Homeo,,  (V;—%-1,0p,,,) for 0 <k <r —1.
Define a complex G* of sheaves on C' by setting

go — {U E gnd(E) u’Dlog(lk) C lk‘? u‘Dun(gk’) C gki a’nd u|Dram(Vk) C Vk} ,

for0<k<r-1

V| Dy () C i1 ® QE(D), v|p,, (k) C L1 ® QE(D)
and v|p,... (Vi) CVp @ QL(D) for 0< k <r—1 ’

(6.1)

Gl = {v € End(E) ® QL(D)

and by defining the homomorphism
d: G"3ur Vou—(u®1)oVegh (6.2)

The meaning of the hypercohomology H!(G*®) is the tangent space of the moduli space of connec-

tions (F, V) on C equipped with logarithmic A-parabolic structure along D)o, generic unramified

p-parabolic structure along Dy, and a filtration E|p,,, = Vo D Vi D - D V1 DV, = 21}

preserved by V. For the description of the tangent space of the moduli space MgD()\, [, V)¢, we

will construct the data of deformation of factorized ramified structure in addition to H'(G*).
For (v;) € @}_ Hom (Vi, Vi ® Q4(D)), consider the diagrams

ZODmm & Vo L ZODram (= V() X QIC(D)

l |

I7 Vg—1

Vi1 e Vrfl X QlC(D),
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l l (1<k<r—1). (6.3)
Vih 5% Vi ® QL(D)

If we put

are commutative

r—1
Gl = {(vk) € @ Hom(Vy, Vi @ Q4(D))
k=0

all the diagrams in (6.3)}

then there is a canonical homomorphism
. ol 1
wa Q — G

defined by @ (v) = (v] D) L where v[p, Vi — Vi, ®QL(D) is the homomorphism induced
by v|p,...- We can see the surjectivity of wg by the following lemma, which is often used later.

Lemma 6.1. For any tuple (hy) € Hz;(l) Endo,, (Vk) of endomorphisms satisfying the com-
mutative diagrams

ZODram &® Vo M) ZODram X V() Vk L) Vk
1 R B P
= hr—1 = = hg—1  —
Vi1 — Vi, Vit —— Vi

there exists an endomorphism h € Endo,,  (E|p,...) satisfying h(Vi) C Vi and the commutative
diagrams

Vi —% Vy

hlvkl lhk

for 0 <k <r—1. Moreover, Tr(h) € Op,,,. is uniquely determined by (hi) and independent of
the choice of h.

Proof. Let eg,...,e,—1 be the basis of F|p,, taken in the proof of Proposition 3.3. Then we
can write

hi(ex) = ap ger + Q1 khr1 + -+ Qpo1 k€r—1 + 2ao €1 + - -+ + 2A)_1 p€k—1

for ay ). € Op,,,, and @iy, € Opy,  for | # k, where we put Dy, := > p (m; — 1)z and zayy

is the image of z ® @, under the isomorphism (z) ® Op; — 20p,,, for | < k We can see that
alift h € Endo,,  (E|Dpum) Of (hx) desired in the lemma is given by the matrix

0,0 £ap,1 0 2A0r-1
aio ail ot Rlpr-1
Gr-1,0 Gr-1,1 - Gp_1,r—1
with respect to the basis eq, ..., e,—1, where a; 1, € Op,,,, are lifts of aj; for [ > k. In particular,

we obtain the existence of h. The ambiguities of h are the lower triangular entries a;; with
i > j. So its trace Tr(h) = ago + -+ + ar—1,—1 is independent of the choice of h. [ |
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The trace pairing Tr: ker(wg) ® G 3 v ® u + Tr(v o u) € O} induces an isomorphism
ker wg — (g“)v ® Q}J

For (1) € @}_¢ Hom (W, V), consider the diagrams

Wk — Wk—l ZODram ®W0 E— Wr—l
mi ml 1<k<r—1), id®ml wll (6.4)
Vk E— Vk,1 ZODram ®V0 Em— V'r’—l

and for (&) € @};;é Hom (Vj, W), consider the diagrams

Vk —_— Vk,1 ZODram ®V0 E— Vr—l
& | e (<k<r-u, aseo | & | (6.5)
Wk — Wk,1 ZODram ®W0 — Wr—l-
Then we put
r—1
2 [y — = |the diagrams (6.4) are commutative
Sym? (W) = {(m) € gHom (W, Vi) and 'y =7 for 0<k<r_1 [’
r—1
9 (7 — = | the diagrams (6.5) are commutative
Sym” (V) = {(Sk) € keaoHom (Vie, Wk) and "6, 1 =€ for 0<k<r—1

and put

w (ag(w) — api1 (w)) = o} |

for0<k<r-—2

r—1
AO _ {(ak(w)) c @ H C[w]/(wmmr—r—kl)

€ Dram k=0
1 _ 0
A = Hom@Dram (A ,Opmm).

We need the following lemma which is similar to Lemma 6.1.

Lemma 6.2. Assume that (1) € Sym* (W) and (&) € Sym?* (V) are given. Then there
are homomorphisms 7: E|}, — — E|p,, & Elp., — El}__ satisfying ‘7 = 7, '€ = &,
T(Wg) C Vi, (Vi) C Wi and the commutative diagrams

we oy v
| | |
Wi —2— Vi, V. —E T,

fO?" k - 07 1 ey r— 17 where Wk = ®$€Dram ker(sz*l(tN)T*k) - E’Eram'

Proof. Choose the basis eg,...,e,—1 of E|p,, taken in the proof of Proposition 3.3 and its
dual basis €, ..., ef_;. Since 74(W}) C Vi, we can write

*
ey k1) = 2bor—p—1€0 + -+ + 2bp_1r p—1€k-1 + bpp_k_16k

+ bps1p—k—1€k41 + - F b1 pop—160-1,
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where El,r—k—l € OD;am forl > k+1 and bl,r—k—l S ODmmer [ < k. Take a lift bl,r—k—l S ODram
of Bl’r,k,l for I > k+ 1. Then we have

*

2br—k—1 = Te(er_p_1)(er) = Tr—k—1(€7) (7 _p_1)
=Tr—1—1(e])(ep_p_ )—zbrk” (for I <k—1),
brr—k—1 = Te(er_p—1)(ex) = —1(ep)(er—p—1) = br—k—1,k;,
2by -1 = Tr(er_r—1)(ze]) = Tr—k—1(Z€z)(€:fkf1)
=T —1(ze])(er_p_1) = 2by—j—1, (for I > k+1).

After replacing b,_j_1, for [ > k + 1, we may assume by, ;1 = b,_x—1; for | > k+ 1. Let
T: FE ‘lv)ram — E|p,,,, be the homomorphism given by the matrix

Zb()()(z) s b07r_1(z)

2bok(z) 0 bgpok—1(2) 0 brr-1(2)

bo,r—1(2) e br_1,-1(2)
with respect to the bases (ef,...,e’ ;) and (eq,...,e,—1). Then we have ‘7 = 7 and 7 also
satisfies the other required conditions of the lemma. The same statement holds for (&). [

We define a complex S

ram

= Sym? (W) @ Sym? (V), &2

ram

by setting
SO _ AO 81

ram ? ram

=G'o Al (6.6)
and by setting the homomorphisms

d%: 8% > (ap(w)) — ((0r 0 ar(kk 0 Ok)), (—ak(rx 0 Ok) 0 K)) € Spams
d}S’: Srlam ((Tk)7 (gk’)) = (_(5(Tk,fk))v @(Tk,fk)) € Sramv (67)

where 07, ¢,) € G! and O(r6n) € Al are defined by

r—1 p
5(7%7&) = <Z Z l/p(Z)le_l o (Hk 0+ 1o Hk) o N]i_1>,
O ) (fe(w)) = Tr (fo (0o & +7or)),

where 6, k are lifts of (), (k) chosen as in the proof of Proposition 3.3, 7, £ are lifts of (1),
(&) given by Lemma 6.2 and f € End(E|p,,,,) is a lift of (fx(0x o kx)) given by Lemma 6.1. By
virtue of Lemma 6.1, we can see that O, ¢ is independent of the choices of 0, x, 7, { and f.
We can also check ds. o d%. = 0. The meaning of the cohomology H'(Sy,,,) is the first order
deformation of factorized ramified structure.

We define a homomorphism of complexes v*: G* — S?,,,[1] by

’YO: go 9 u H ((u|Dram © 9k + 91{5 © tu’Dram) (_K‘k © u|Dram - tu‘Dram © /ik)) E Srlam7
Y Gl s v (—we),0) e Gt Al =82, (6.8)

where u|p,, : Vi — V} is the homomorphism induced by u|p,, -
For u € GV, we have

r—1 p
s = (5 SN (o - Nl )
p=1[=1
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= (mV(Nk) - V(Nk)M)

On the other hand, the restriction V|p,,,, induces the homomorphism v/(Ny) + £42id on V.. So

we have 0,0(,) = —wg(Vu —uV). Thus we have dg.[l]yo = 'yld%., where d%,m = —d%.. Set
F* = Cone(G* L S [1])[~1]. (6.9)
So we have

Fo=¢"aA Fl=¢'esym?(V)sSym? (W), F=G'eA
and dy.: FO — F1, dbe: F! — F? are defined by

de (u, (ar(w))) = (Vou — (u®id) o V,—7%(u) + dga ((ar(w))))

d}ﬁ" (v, ((7k), (&k))) = (wG(U) - (5(%,&))’ @(Tk,ﬁk))'

Consider the complexes F§ = [G° @ S8, — Sym? (W)], F? = [G! @ Sym* (V) — SZ..]
defined by
d[])_-o. 0 G0 A 3 (u, (ag(w))) = (—u|p,um © Ok — Ok | Dyo + Ok © ag (ki 0 O5)) € Sym?® (W),
@i '@ Sym? (V) 3 (0, (60)) = (@6(v) — (Bog)): (O g))) € G AL

Then there is an exact sequence of complexes
0— F-1] —F*— F; —0
which is expressed by the diagram

0 — GO'a A° — 5 gY@ A°

| . | ts |

Gl @ Sym? (V) —— G'a Sym? (W) @ Sym? (V) —— Sym*(W)

] o !
Glao Al — Glao Al — 0.

So we get the following exact sequence of hyper cohomologies:

0— HY(F*) - HY () —» HY(F)) —» HY(F*) - HY(F) —» HY(F))
— H*(F*) — 0. (6.10)

Proposition 6.3. The relative tangent space of MgD(A, a,v) over T at (E,V,{l,£,V}) is iso-
morphic to H(F*®).

Proof. Take a point t € T and a point y € M&D(/\, fi, ) over t corresponding to a connection
(E,V,{l,£,V}) with (A, u,v)-structure. Giving a tangent vector v of the fiber Mg (A, i1, )¢
of the moduli space at y is equivalent to giving a flat family (E,V,{l,?,V}) of connections
with (X, u, v)-structure on C x Spec C|e] satistying (E, V, {l: l, V) ®Clel/(€) = (B, V,{L,£,V}),
where Cle] = C[e]/(e?). Take an affine open covering {U,} of C such that Ely, = (’)(EJB: for
any . Put Uyle] :== Uy x SpecCle]. We may assume that for each x € D, there exists exactly
one index « satisfying x € U, and that each U, contains at most one point in D. We can take
alift oo : E®Cle]|y, (g — E|Ua[e] of the given isomorphism E|y, — E® C[e]/(€)|v,. We may
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assume that ¢, preserves [ if Dio, NU, # @ and preserves £ if Dy, NU, # 2. 1f Dram NUaq #+ O,
then we may assume that ¢, sends the filtration {Vi ® C[e]} to the filtration {V;}. Set

€U = walo g — id,
Vo = (Po ® id)_1 oVo va — V ® Cle],
€Na = (80a|51am o ék © t@a|Biam - Hkat‘;pa‘Dmm 0 Fik © Pl Diam — Hk:)-

Then we get a cohomology class [{uas}, {va, (1a)}] € HY(F*®), which can be checked to be
independent of the choice of {Uy, ¢, }.
Conversely, assume that a cohomology class [{uag}, {va}, {na}] € HY(F*) is given. We define

~

08a = id + €uqg: (’)3:6 q O;‘ZBH’
Vo=V +eva: Of 1y — O ®Q(D). (6.11)

If Uy N Diog # @ we put ly = |y, ® Cle] and we put £, := £y, gclq if Ua N Dun # @. Then
we can see that V, preserves l, if Uy N Dioe # @ and preserves £, if U, N Dy, # 9, because v,
preserves l|y, and £|y, by the definition of G.

Consider the case Uy N Dyam = {x}. We can write 1o = (7k, &k )Jo<k<r—1. By the choice of 7,
we have §(7, ¢,) = Va|Dyam and O = 0, which yield the equalities

Tkvé.k)

Tr((fof+70r)oN/) =0, 0<j<r—1,
r—1 p

SO up()NET 0k + Terk)N] T = Valpp, 0<k<r—1, (6.12)
p=1 j=1

where N, 6 and k are lifts of (Ny), (6x) and (k) chosen as in the proof of Proposition 3.3
and 7, £ are lifts of (%), (£x) given by Lemma 6.2.

Since the minimal polynomial w" of N|, is of degree r, we can see from [12, Lemma 1.4].
that

Im(ad(N)) = {f € Endo,,,, (Elm,z) | Tr (f o Nl) =0 for any [ > 0}.

So we can find an endomorphism f € End(FE|,,,,) satisfying o + 70k = fo N —No f.
Now we will construct a factorized ramified structure on ((’)E‘ZM, Va). We take (Vi ®
Cle])o<k<r—1 as the relative version of the filtration in Definition 3.1 (i). The homomorphisms

Qk,e =0 + ey Wk ® Cle] — Vk; ® Clel,
Khe = KE + €€k Vi ®Cle] — W}, @ Cle]

become lifts of 8 and xj, respectively. They determine bilinear pairings

Vet (Wk ® (C[e]) X (Wr—k—l ® C[e]) — O,z @ Clel,
A (Vk & C[G]) X (VT,]C,1 ® C[e]) — Oz @ C[e],

which satisfy the commutative diagrams in (i), (iii) of Definition 3.1. Since N" = 2 -idg,,, .,
the equality

r—1
(N+6(905+7'OK))TZNT—I-EZNjo(005+TO/€)ONT_j_1
j=0
r—1 . .
:NT—FEZNJo(foN—Nof)oNT—J—l
j=0



Moduli Space of Factorized Ramified Connections 29

:NT—FfONT—NTOf:ZidOEBTH
Uqle

holds. By the equality (6.12),

V(N + €(lk o & + T 0 ki) + kdz/rzid
r—1 p
=v(Ny) + kdz/rzid + ¢ Z Z Vp(2)NE ™ (O 0 & + T3 © nk)Ngfl
p=1j=1
= v(Ng) + kdz/rzid + eva|Dyon,

coincides with the map induced by V. So the relative version of the condition (iv) of Defini-
tion 3.1 is satisfied. The endomorphism Ny, + €(6 o §k + 7y 0 ki) defines a Clw] ®@c Cle]-module
structure on V' ® C[e]. Define an isomorphism

Yre: Vi Cld =5 (w)/ (0™ %) 0 Vy_y @ Cld
of Clw] ®c Cle]-modules by setting

Ure(Tr((N + €00+ 70k)e)) =w@ Tt (N +e(Bo+70k) e),
where 7, means 7, ® Cle]. Then the image of z ® my(eg) via the composition

(2) © Vo ®Cld = Vo1 ® Cle] Y% (w) © Vy_p ® Cle]

~

17[}7‘—2,6 . "/)176 (wrfl) ® VO ® (C[f] (613)

~

coincides with (Y1, 0+ 0 ¥p_1.)(m—1 (N + €@ o0&+ To0K))er)) = w" @ mo(ep). Thus the
composition (6.13) coincides with the homomorphism (2) ® Vg — ( ) ® Lo obtained by
tensoring Vo ® C[e] to the canonical homomorphism (z) — (w"!).

If we put V, = (Vk ® C[E],’l?kyg,lik7e)0<k<7dil, then we can see from the above arguments
that (Ogr[ E Va, Va) is a flat family of local connections with v(w),-ramified structure which
is a lift of (E,V,V)|y,. We can patch all the local connections (O(GJBZM,Z&,EQVQ,VQ) with
(A, p, v)-structure via the isomorphisms og, defined in (6.11). Then we obtain a global flat
family of connections (E,V,l,ﬁ, V) with (A, p, v)-structure which gives a tangent vector v €
g niii 7)/7(y) at y. We can see from its construction that the map [{uag}, {va;Na}] = v

gives the desired inverse. |

7 Smoothness of the moduli space

In this section, we assume the same notations as in Sections 5 and 6. Take a connection
(B, VA{l,£,V}) € MEp(A, fi, )¢ with (A, i, v)-structure. We define a pairing

Elram Srlam X Srlam — QlC’(D)’Dram
by setting
Eram((Tk’ sz) (7_]:;7 gllg))

r—=1 p
_ ZZ Vpgz 7_ o INP—I ofoN] 1 _ NP or0tNi—1 ogl) (7.1)
p=1 j=1
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for (1), (77) € Sym* (W) and (&), (&) € Sym® (V), where 7,7 € Hom(E|}, ,FE|p,,,) are
lifts of (74),(r7) and &,&" € Hom (E|p,,,, El}, ) are lifts of (&), (&],) given by Lemma 6.2,
respectively.

Take an affine open covering C' = |, U, for the calculation of the hypercohomologies in Cech
cohomology. We define a bilinear pairing

WE, VLV H'(F*) x H'(F*) — HQ(OC - Q}J(Dram) - Q}J(Dram)‘Dram) =C (72)
by setting
W(E,V.{1,.,V}) ( [{Uaﬂ}7 {va, na}] ’ [{foﬁ}7 {U/ou 77&}])
= [{Tr(uap o ujy)} {— Tr(uap © v — va © Ugg) s {Eram (e, 70} (7.3)
for uap, ug g € GOlUnss Vas Uy € GHUas Tas My € Stamlu., satisfying the cocycle conditions
Viag — gV =05 —va, 7' (va) = dge (1),
Vigg = UV =05 —vh, 7 (Vh) = dse (n),

where ds. and 7! are defined in (6.7) and (6.8). From the following lemma, we can see that
the pairing w(g v (1,60} ([{(Wap}s {va: 1a}]s [{(Us}, {vh:nh}]) in (7.3) depends only on the co-
homology classes [{(uag}, {va,na}], [{(ufw}, {vl,,m}] € HY(F®).

Lemma 7.1. The equality
W(E,V,{l,e,v})([{uaﬂ}7 {va, Ua}]a [{ulaﬂ}v {v/ou 77;}]) =0
holds if there exists {uq, (aro(w))} € CO({Us}, F°) which satisfies the equalities
UpB = UR — Uq,
Vo = Vou, — (ug ®id) o V,
Mo = =7 (ua) + dge ((ax,a(w))),
where Y0: GO — Sk is defined in (6.8) and d%.: SO, — Sk, is defined in (6.7).

Proof. We put cop := Tr(uq 0 ug,5) and by := Tr(uq o v,). It is sufficient to prove the equality

d({cap}, {ba}) = ({Tr(uag o us,)}, {— Tr(uap © v = va © tgp) b {Eram (as 110)})-

We need a certain amount of calculations for checking the above equality, but we can do it in
the same way as that of [12, pp. 37-39]. |

Proposition 7.2. The bilinear pairing wg v (1,e,v}) H!(F*) x HY(F*) — C, defined by the
equality (7.3) in (7.2), is a nondegenerate pairing.

Proof. The bilinear pairing w(g v (1,¢,v}) corresponds to a homomorphism o: H!(F*) —
H!(F*)" which induces the exact commutative diagram

HOR) —— HOF) —— HIF) —— H(R) —— H(
all 02l al ”‘{ o{
HI(F3)Y —— H(F) —— HI(F*)Y —— HO(F)Y —— HOF)".
The homomorphism o9 : HO(F?) — HY(F3)V is given by the pairing

H'(F7) x HY(F5) — H*(O¢ = Q¢(Dram) = Q6(Dram) | Dra) = C,
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({(vas (€ra))} {(uag: (7ha))}) = [{Tr(va 0 1)} {Eram (0, 8x.a); (75 00 0))}]

and o3 is defined similarly. There is an exact commutative diagram

0 —HO(ker(G' - G'))— HY(F}) —  ker (Sym?(V) — A') —H'(ker(G'— G))

ml Uzl ml nal

0—  HYGY)"  —HYF)— coker (A°— Sym? (W))'—  H°(G%)"
whose horizontal sequences are induced by the exact sequences

0— [¢' = G — Ft — [Sym? (V) —» A'] — 0

0 — [A° = Sym* (W)] — F§ — G° — 0.
Since the trace pairing induces an isomorphism ker (g1 — Gl) = (go)v ® QL., we can see by

the Serre duality that n; and n3 are isomorphisms.
The map 7 is induced by the trace pairing

ker (Sym2 (V) — Al) x coker (AO — Sym? (W)) — Qlc( ram )| Dyam s
((&k) (7)) ¥ Eram ((0,&), (7%, 0)) (7.4)

composed with Q(Dram)| Dy — H? (OC — Q4(Dram) — Qlc(Dram)\Dram).

Assume that (&) € ker (Sym*(V) — A!) satisfies Zyam((0, k), (7%,0)) = 0 for any (73) €
Sym? (W) We can take a lift £ of (&) given by Lemma 6.2. For any endomorphism h €
End(E|p,.,), ¥ :=z(ho0+00o'h): E|}, — E|p,,, is a homomorphism satisfying ‘¢) = v
and ¥(W},) C Vi. So 9 induces (1) € Sym? (W) and the equality

0 = 2Eram ((0, &), (¥, 0) ZZVp h09+90 h) oth_jofon_l).

holds by the assumption. Since

M-

p
ZTr (z@othoth_j ogon_l) —
7=1

Tr (thj_l ofoNP T oho 9)

<
Il
-

|
AME

Tr(zhofo'NP ™7 oo NIT1),

7=1
we can deduce Tr (ho 2 D o1 D=1 V ( )§o!NP~JogoNI~1) = 0. Since the usual trace pairing
is nondegenerate, we have z Zp—l _ p(2)INPTI 00 NI7L = 0. Let
2 lagy o 2™ lag,
U =
2" ag,19 0 2" lapi1,
be the symmetric matrix representing Zp_l ? 1 Vp(2) ENP™7 0 £ o N7 with respect to the bases

(€0,...,er—1) and (eg,...,e;_;). Consider the trace pairing Tr(U(E;; + Ej;)) for i +j > r —1,
where Ej; is the matrix whose (7,7) entry is 1 and the other entries are zero. Then E;; + Ej;
becomes a lift of an element of Sym? (W). So we have Tr(U(E;; + Ej;)) = 2™ Y(aij + aj;) = 0.
Since U is symmetric, we have zm_laij =0 for i+ j > r. So we have

r—1 p

DY ()N 0o o NI T =0

p=1j=1
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for each k. By the way, (&) € ker (Sym2 (V) — Al) implies Tr (9 ofo Nl) = 0 for any
0 <1 <r—1. So there is an endomorphism f € End(F|p,,,) satisfying o & = Nf — fN.
Moreover, we have f(V}) C Vj, for any k. Thus we have

r—1 p

0= > "w(2)N 7 o (Nio fu = fro Ni) o N{ 1 = v(Ni) fi — fuv(Ni)
p=1 j5=1

for each 0 < k < r — 1, where f; is the endomorphism of V' induced by f. Since the w%—
coefficient of v(w) does not vanish, we can deduce Ny o fi, — fr o Ny = 0 from the above equality.
Thus we have (§,) = 0. Hence the pairing (7.4) is a perfect pairing of Op,,  -modules, since
length (ker (Sym2 (V — Al))) = length (coker (AO — Sym? (W))) Note that the map

Q6(Dram)| Draw — H*(Oc = Q6 (Dram) = Q6(Dram) | Do) = C
is identified with the residue map. So we can see that the pairing

ker (Sym2 (V) — Al) X coker (AO — Sym? (W)) — C
induced by (7.4) is a perfect pairing of vector spaces, which means that 79 is an isomorphism.

Since 71, n3 and 7 are isomorphic, oo: HY(Fy) = H(FS)Y is an isomorphism by the five
lemma. Then o3: HY(F3) = HO(F})V is also isomorphic because it is the dual of 5.
On the other hand, oq: HY(F}) — H(F?)Y is given by the pairing
H(F3) x H'(F}) — H? (OC — Q6(Dram) — QlC’(Dram)|Dram)>
([{UOH (ak,a(w))}L [{Ua6}7 {(Ek,ow ba)}])
= [{Tr(vag o ug)}, { Tr(va 0 ua) + %‘l(u’(w)ak,a(w))}],

where v/(w) = ZZ;%) kv (2)w*~! and 9, € End(E|p,.,,) is a lift of (U4 ,) given by Lemma 6.1.
We have the exact commutative diagram

0= ker(A = Sym?((W))) — HO(FS) —»  HYGY)  —scoker(A®— Sym?((W)))

ol o
0 = coker(Sym?((V)) — A!)"— HY(F$)V—H'(ker (' — G')) "= ker(Sym?((V)) — A")"

and the five lemma implies that o : HO(F3) — HY(F?)V is isomorphic because '3 and iy are
isomorphic.

We can see that o4: HY(FP) — HO(F3)V is also isomorphic since it is the dual of ;. Since
o1, 02, 03, 04 are all isomorphic, o: H(F*) — H!'(F*)Y is isomorphic by the five lemma. M

We define a complex Q° by setting Q0 = O, Q' = Q& (Dram) ® AL, 02 = QL (Dram)| Dyam & AL
and
d%.3 Oc > f = (df,0) € Qé‘(Dram) o A,
dfe: Q6(Dram) © AT 3 (1,0) = (1 Dy — (V' ())), b) € Q&(Dram) | Dy ® AL
where the k-th component of (v/(w)) € A°@QL (Dram)| Dyar 18 given by v/ (w) = Z;;é Jui(2)wi =t
Then we can define a homomorphism of complexes Tr®: F* — Q° by
T FO =G A% 5 (u, (fr(w))) — Tr(u) € Oc,
Tr!l: F!' =G ¢ Sym? (W) @ Sym? (V) > (v, (1), (&k))
— (Tr(v), (@(ﬂmﬁk))) S Qlc(Dram) ) Al,
Tr?: F2 =G '@ A' 5 ((Uk), D)) = (Tr(D),b) € Q&(Dram) | Do © A,
where v € Hom (E|p,,... E ® U} (D)|p,...) is a lift of (v;) given by Lemma 6.1.
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Lemma 7.3. Assume that the endomorphism ring of E, preserving I, £, V and commuting
with V, consists of the scalar multiplications Cidg. Then the map

H?(Tr): H*(F*) — H?*(Q°) 2 H*(Q%) =C
s an isomorphism.

Proof. First note that HY(F*) = C because there are only scalar endomorphisms of E com-

muting with V and preserving the (), i, v)-structure. Under the identification HO(F®) = C =
2/50)V . . .

H (Q ) , there is an exact commutative diagram

HY(F) —— HYF) —— H3((F*) —0

R

H(F?)Y —— HYF)Y —— HY(F*)V— 0.
Since o3 and o4 are isomorphisms, H?(Tr®) is also an isomorphism. |
Remark 7.4. If (E,V,[,¢, F) is a-stable, then the assumption of Lemma 7.3 holds.

Theorem 7.5. The moduli space Mgfp()\, i, V) of connections with (X, fi, U)-structure is smooth
over T. The dimension of the fiber ME'p(A, fi, )¢ overt € T is 2r2(g(Ct) —1)+2+r(r—1) deg D;
if it is non-empty.

Proof. For the proof of the smoothness, take an Artinian local ring A over 7 with the maximal
ideal m and an ideal I of A satisfying m/ = 0. Assume that a flat family (E,V,[,¢,V) of
connections on C® A/I is given. Consider the complex F* determined from (E,V,[,{,V)® A/m
by (6.9). We take an affine open covering {U,} of C ® A as in the proof of Proposition 6.3.
If Uy N (Dram)a = 9, we can easily take a lift (Eqa, Va, {la, o, Vo) of (E,V {6V |v,.0a/1
If Uy N (Dram)a # &, then we may assume that V N U, is given by a factorized r-ramified
structure (Vg, 9k, 7). As in the proof of Proposition 3.3, we can choose an endomorphism N

on F |(Dram) ar inducing 6y, o k; on V}, for 0 < k < r — 1. The representation matrix of N is
given by

0 O 0 z

1 0 00

0O - 1 00

0O -~ 0 10
with respect to the basis eg,...,e,—1 chosen as in the proof of Proposition 3.3. Then we can

give a factorization N = 6 o k by the matrix factorization

0 0 0 0 0 o 1y (00 v Lo
N 00 - 1 00
1 0 00 00 1
0 1 00 01 0 -~ 0 ? L 8 8 8
0 0 10 10 0 0
o0 0 --- 0 z
with respect to the basis eg,...,e,_1 of E|(Dram)A/[ and its dual basis ef,...,ex_;. Let E, be

a free Oy, -module with E, ® A/I = E‘UQ®A/I' Define N: Ea\(pram)AmUa — Ea\(pram)AmUa,
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j. v = v
0' Ea’(Dram)AﬂUa - Ea’(IDYam)AmUa and K: Ea|(Dram)AmU0¢ — Ea|(Dram)AmUa

resentation matrices as N, 6 and k respectively. Then N, 6 and & are lifts of N, 6 and « and
they induce a lift V, = (‘N/k,qgk}tk) of (Vi, Vg, s) over A. We can easily take a relative con-
nection V, on E, which is a lift of V|y, and which is compatible with V,. So we obtain a lift
(Bas Va, {las la, Va}) of (E,V ALV v.a/r when Uy N (Dram)a # 9.

Take an isomorphism 0, : Eulu,, = Eglu,s, where Uap = Uy N Up. If we put

by the same rep-

Uy = 054 0050 05, — id,
Vag = (an & id)fl o Vg o Hﬁa —Va,

then the class [{uap,}, {vas}] € H?(F®) @ I is nothing but the obstruction for the lifting of
(E,V,{l,£,V}) to a flat family of connections on C ® A over A. We can see that the image
H2(Tr*)([{¢apy}, {vas}]) under the isomorphism H?(Tr*): H?(F*) — HQ(QE@)A/m) is nothing
but the obstruction for the lifting of the determinant line bundle det(E, V) with the induced
connection. Consider the moduli space M (> Ak, > pg, (r — 1)dz/2 + rig) of pairs (L, V) of a
line bundle L on the fibers of C over 7 and a connection V, on L admitting poles along D whose
residue along Diog is D 1<, Ak, Whose restriction to Dy, is Y <4<, #x and whose restriction
t0 Dram is Y. ((r — 1)dz/2 + r1p). Then M (> A\, S pig, (r — 1)dz/2 + r149) is smooth over T,
since it is an affine space bundle over the relative Jacobian of C over 7. In particular, we have
H2(Tr*)([{uapy}, {vas}]) = 0 which is equivalent to [{uag,}, {vas}] = 0. Thus Mgp(\, i, D) is
smooth over 7.

By Proposition 6.3, the dimension of the moduli space at (E,V,[,{,V) ® A/m is given by
dim H'(F*). We write D ® A/m = D, Dy, ® A/m = Dy, and so on. Using the exact se-
quence (6.10) and the equality dim H?(F*) = dim H?(F*®) = 1 by Lemma 7.3, we have

dimH'(F®) = x(F}) — x(F3) +2
= X(gl) — dime G' + dimc Sym? (V) — dimg A!
— x(G°) — dim¢ A° + dime Sym? (W) + 2. (7.5)
Since ker (Ql — Gl) = (QO)v ® QL., we have

x(G') = dimc G' = —x(¢°)
=r%(g — 1) + (deg Digg + deg Dyn)r(r — 1)/2+ > r(r—1)/2. (7.6)

T€Dram

By the same method as in the proof of Lemma 6.2, we can see that the elements of Sym? (V)
are given by the data

(ar—k—1,6(2))o<k<r—1 € (Clz]/(2™))"  such that za,_g—14 = 2k r—k—1,

2_
(aij(2))oij<r—1,ivjzr—1 € (Cl2]/(2™=71))" 7" such that a;; = a;; (2 € Dyam)
and each &, € Hom (Vk,Wk) |m,z 1S given by the matrix

Eoo(z) cee ZCL07T,1(Z)
r—p—1,0(2) - @ k(2) 0 zape—1(2) |,

Gr—1,0(2) e 2ar—10-1(2)
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where za; ; is the image of 2 ® @; ; by (2) ® O, —1)a = 20,2 So we can see that

dim¢ Sym? (V) = dimg Sym? (W) = Z (7" + %(mx —Dr(r+ 1)> . (7.7)

:DEDram

Finally note that

dime A° = dim¢ A' = Z M. (7.8)

$€Dram

Substituting (7.6), (7.7) and (7.8) to (7.5), we get the desired equality dim H!(F*) = 2r2(g —
1)+2+r(r—1)degD. [ |

8 Symplectic structure on the moduli space

In this section, we assume again the same notations as in Section 5, Section 6 and Section 7.
There is an étale surjective morphism M’ — Mg, ()\, i, 17), such that there is a universal

family of connections (E, Vv, {l~, l, f/}) on Cppr over M’'. We can define a complex G}, on Cpy

from (E,V,{l,Z,V}) in the same way as G* given by (6.1), (6.2). We can also define a complex

Sy on Cap in the same way as S, given by (6.6), (6.7). Then we can define a complex

]:"j/[/ = Cone(g]'w, — S;am’M/[l])[—l]

in the same way as F* defined in (6.9).
Let ppsr: Cppr — M’ be the projection. Then we can see by Proposition 6.3 that the relative
tangent bundle Ty /7 of M " over T is isomorphic to Rlpyr, (.7-" ’ ) We can define a pairing

Erz?,rr'l: SrlamM/ X Srlam,M/ — QéM//M’ (Dmr)|(Dram) s 10 the same way as (7.1). Consider the
pairing

Wi RlpM/* (J%]T/[/) X RlpM’*(ﬁ].\I’) -
RQPM’* [OC — Qé/T(Dram) — Qé/T(Dram”Dram]M’ = RQPM/*QEM//M' =0 (8.1)

defined by

WM’ ( [{uaﬁ}a {Um 7704}] ) [{ulaﬁ}v {U:)n 77&}])
= [{Tr(uag o ujgy)} {— Tr(uas 0 v — va 0 ugg) b, {Zram (M, 7a) }]

in the same way as (7.3). We can check wyy (v,v) = 0 for v € R'ppp.(Fty) and wyp descends
to a T-relative 2-form WME (A7) O MCOfD()\, f, ).

Theorem 8.1. The 2-form WAIE L (A fi,7) defined by (8.1) is a T -relative symplectic form on the

)‘7)&7
moduli space M§p(A, i, ) of a-stable connections on (C,D) with (A, fi, V)-structure.

The restriction wye 7 lp at each point p € MEp(A, i, 7) is nondegenerate by Proposi-

A,
tion 7.2. It remains to prove that dwpre (7,5 = 0. Since MEp (A, fi,7) is smooth over T, we
only have to show the vanishing de&pkAvﬂvﬁ)t = 0 of the restriction to the fiber MCOfD()\, f, V)¢
over t € T. For its proof we use a construction of an unfolding of the moduli space.

Put C; = C, Dy = D, (Dun)t = Dun, (Dram)t = Dram and (A, u,v) = (A, i, 7);. For each
x € D, choose a defining equation z of D;,q on an affine open neighborhood of =, which is a
lift of Z. Take distinct complex numbers s{,... sy, _,s5, € C. Let Dy , be the divisor on
C x Spec C[h] defined by the equation (z—hs{) - -- (z—hsj, ) = 0 and put Dur;h = venw, Pi

un,h*



36 M.-a. Inaba

For each @ € Diam, take distinct complex numbers ¢f,...,q;, 1,45, € C with ¢, = 1. Let
Dy, be the divisor on C x Spec C[h] defined by the equation (z —h"qy) -+ (2 — h"qy, _1)(z —
h") =0 and put Dyamp := ZmeDmm Dfam’h. We set

Dh = Dlog + Dun,h + Dram,h-

Note that Dy, is a reduced divisor for generic h and it coincides with D if h = 0. So we can take
a Zariski open subset H° of Spec C[h] containing 0 such that Dj is a reduced divisor for any
h € H°\ {0}.

For x € Dy,, we can write

dz

zma’

:uk:|mzx = (bk,O + bk,lz 4+ bk7mz_1zmw—1)

We define py, 5, € QchSpocC[h]/Spoc(C[h](Dunvh)’Dun,h by

o bgotbrazt b, 12"
Dunn = (z—hs7)---(z — hsZ, )

Hk,h dz, k=0,...,r—1.

We can write

dz
x _ x T x My —2 x me—1
vp(2) = (ao,o tap1z+ -t ag,, 22" T a0, 12" )zmm’
x _ x x x My —2 dz E=1 1
ve(2) = (ak,o T a2+t Ay, 9% )me ; =1...,r—

Then we define vy 5 (2) € Qéxspecc[h]/specc[h](Dram,h)‘Dram’h for 0 <k <r—1by

Vo, (2)| _ oot agart T T o L
0,\Z)| Dram,n (z—hrqf)---(z—h"g%, _)(z—h")

my—2

dz,

vkn(2)|p _ apotag izt tag,, oz
i vam,h (z—hrqf)"‘(z_hrqqfhfl)(z_hr)

dz, k=1,...,r—1,

and we set

vn(w) := v p(2) + via(z)w + - + v p(z)w"

Consider the moduli space
Mpe = {(E,V, 1, (lr)o<k<r—1, (Vi Uk, 2 )o<k<r—1) ) —> H°,
where

(i) E is an algebraic vector bundle on C' of rank r and degree d,

(iii) [ is a logarithmic A-parabolic structure on (E, V) along Dj,g,

)
(ii) V: E — E®QL(Dy) is a connection admitting poles along Dy,
)
(iv) Elpy, =% D -+ D lr—1 D £ = 0 is a filtration such that ¢ /lx11 = Op
and that (V|p,,, — tknid)(€r) C ler1 @ Qf(Dun,p) for any k,
(v) E\Dmm,h =VWoWViD--DV,_1 DV, =(z—h")V is a filtration by Op -submodules

ram,h

such that V;/V;11 = Op,,,.,/(z—h") and V[pz  (Vk) C Vi ®@QE(Dyam,p) for 0 < k < r—1,

h

for any k

un,h
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);

(Vl) fOI' Vi : Vk|Dfam,h/ H;‘n:zlil(z o hrqf)vk—i_ﬂDfam,h and Wi = HomoD;"am IS (Vf*k*17 OD

T

ram,h
T 7L T1-L

7.9%1 Wk; XWT—k—l —>0D133am, ng‘ﬁr—l,

are O Drzamh—bilinear pairings such that the homomorphisms 67 : W, — (Wf_k_l)v =V,
indui(i by ¥} are isomorphisms, the equalities 97 (v,v") = 97_, ,(v’,v) hold for v €l ?ﬁ,
v € W,_,,_; and that the equalities ¥7_, (vl |V:_k,v2) = Uy (vl, ’U2|Vz) hold for v; € W, =
Hom (Vf_k_l, ODfam,h)’ vy € Wf_k = Hom (Vﬁ_]-’ODfam,h) when 1 < k <r —1 and the
equality ¥,_1((z — h")vy, v2) = Yo(v1, (z — A" )v) holds for vy, ve € W,

(vii) 2 Vi x Vg — Opz . are Opez  -bilinear pairings for 0 < k& < r — 1 such that
the equalities 57 (v,v') = 3%, (v/,v) hold for v € Vi, v' € V,_,_;, the equalities
7y (U1,v2) = . (v1,72) hold for vy € Vi, v2 € V,_; and for the image v7 (resp. U3)
of vy (resp. v2) via the canonical map Vy — Vy_; (resp. V,_, — V,_;_1), the equality
s 1((z = h")v1,v2) = »0(v1, (z — h")va) holds for vy, v2 € Vi and that the equalities
(0F okE)" = (2 —h") - idy hold for the homomorphisms #j : vV — (Vf,kfl)v =W,
induced by s,

(viii) the homomorphism

Op=

ram,h

[w]/(wT —z4+h"(z—h"¢]) (2 — thﬁLz_l)w) — EndODi”am . (Vi),

flw) = f(65 o §)
is injective and the diagrams

Vipx
ram,h

Vk‘D;Eam,h Vk|Dfam,h ® QIC(Dram,h)

! !

=z Vh(eﬁo’ii)ﬂ'gﬁ T
Vi Vi @ Q& (Dram,n)
are commutative for k =0,1,...,7 — 1,

(ix) there is an isomorphism vy: Vi, = (w)/(w?(z — h"qF) -+ (2 — hgs, 1)) ® V., which is
a lift of V), — V;_, such that the composition
(z=h")/(w(z = h'gf) - (z = hgp,_1)(z = h") @ Vg — Vi,

Yt Dy (W) (( = ) (2~ g, 1) (2 — b)) @V

~

coincides with the homomorphism obtained by tensoring Vg to

(w")/(w(z = h"qr) - (z = hqm, 1) (2 — B"))
= (W /((z = Waf) - (2= g, 1) (2 = 1))

for1<k<r-—1and

(x) the ring of endomorphisms of E preserving I, (¢), (Vi, 9, 3) and commuting with V
consists of scalar endomorphisms Cidg.

We can prove that the moduli space Mpgo exists as an algebraic space, by modifying the
proof of Theorem 5.1. The proof is rather easier because we do not need a GIT construction.
So we omit the proof of the following proposition.
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Proposition 8.2. There exists a relative moduli space Mgo — H® as an algebraic space.

Note that the fiber Mo o of the moduli space Mo over h = 0 is the moduli space of simple
connections on (C, D) with (A, p, v)-structure.

There is a scheme Mo of finite type over H° with an étale surjective morphism M go —s
Mpye such that a universal family (EM VM O,ZMHO,KMHO,VMHO) exists over Mpo. We
can define a complex

Ho'

it = G0 @ A% = Gy @ Sym® (W, ) @ Sym? (V)

MHO
1 1
= Gl A

from (E/\?IHO , @MHO ) ZMHO , EMHO , DMHO) in a similar way to (6.9). We can see by the same argu-
ment as Proposition 6.3 and Theorem 7.5 that M po is smooth over H° and R! (p/\;[ ) (.7:' )

~ H° Mo
is the H°-relative tangent bundle of M .. We can define a pairing

it R Pue) (F.) X R ) (P,

— R? (pMHo)* [OCXH" - QlC’><H°/HO (Dram,h) — QéxHo/Ho (Dram,h)

Dranm,h]-/\;lH0
~ 2 (] ~
= BP0, )80 g0 Mg = Ot (8.2)

by the same formula as (8.1). We can see that it defines a relative 2-form way,,, on Mg over H®.
The moduli space Mgy (A, fi, 7); is a Zariski open subset of the fiber (Mgo)g over h = 0 and the

restriction way,,. is nothing but the 2-form wyse (x5, on ME (A, fi,7); defined

Mg (N 2)s
by (8.1). So Theorem 8.1 follows from the following proposition.

Proposition 8.3. The relative 2-form waq,,, on Mpye defined by (8.2) is d-closed: dwpg,,. = 0.

Proof. Let My j, be the fiber of the moduli space Mg over generic h € H° \ {0}.

Consider the point z = hsj in Dy, for generic h € H°. Then V is logarithmic at z = hsy
and the filtration e‘z:hs;‘f is a logarithmic (resZ:hS;c (u’,’;’h)ogkg,l)—parabolic structure at the point
z = hsj.

Consider the point z = h"qj in Dy, for generic h € H°. Then the restriction of 6} o xj to
Vk|z=hrq; = El|.—prqz satisfies the equalities (6} o |-—prqz)" —h"(qf —1) = 0 for 1 < j <my—1.
So it has r distinct eigenvalues Cﬁh(/q;”;—l (s =0,1,...,7 — 1), where (, is a primitive r-th
root of unity. Then

res;—hrqz (V) = res;—prqe (10(2)) + reso—prqz (V1(2)) (0F © KE)[a=hrqz + - -
1 res. g (V1 (2)) (05 0 /) s—prge) "
also has r distinct eigenvalues if h is sufficiently generic. The data of filtration {V}} given in
(v) is equivalent to the filtration E|,—pr = V¥ |o=pr D -+ D V2 |oopr D Vi¥|=pr = 0 satisfying

(resZ:hr (V) — (resZ:hr(VO) + %)id) (ka z:hr) C ka+1|z:hr for 0 < k <r—1 at each z. So the
restriction (V¥|.=nr)o<k<r—1 is a logarithmic parabolic structure on (£, V).

For generic h, we define a complex fd 28*  on the fiber Mo .» by setting

H h

Fdiagd _ yeor (gﬁ)\;lHo,h — coker (A5 on Sym? ((WMHo,h)) @ Sym? ((VMHO b ))),s

MHo,h MH

diag,1 1 1
Fl& —ker (G- — G-

Mo p, (g Mo p, Mpo, h)’

0 0 ) i diag,0 iag,
g =dps gm0 o FRe0 — FREL

MHOh MHoh MHO,}L



Moduli Space of Factorized Ramified Connections 39

Note that F42&0 {5 the sheaf of endomorphisms of E preserving the eigen decomposition of
H° ,h

res,=hrqr (V) at z = h’“qf in Dfam,h for 1 < j < m, — 1, preserving the parabolic structure [*

at each x € Do, preserving the parabolic structure (€£| z:hs;.”) at z = hs;” in Dﬁmh for

0<k<r—1
1 < j < hsy_ and preserving the parabolic structure (Vﬂz:hr) yatz=h"in Dy ;. We

can see that the canonical map

0<k<r—

diag,e .
]:MHO,h — fMHO,h
par o1 C X /\;lHo,h in the
same way as in the proof of [11, Proposition 7.2] by associating the parabolic structure induced
by the eigen decomposition at each point defined by z = hrq;” in Dy n for 1 <j <m*—1.
Then the canonical map

is a quasi-isomorphism. On the other hand, we can define a complex F3,

Fles 7,
is a quasi-isomorphism. We can see that the restriction w Mo to a generic fiber M Heo,p of
the 2-form w Mo coincides with the 2-form constructed in [11, Proposition 7.2], because it is
expressed by the same formula as (8.1). Since the 2-form in [11, Proposition 7.2] is d-closed by
[11, Proposition 7.3], we have dwmpye, =0 for generic h. Thus we can deduce dwpq,,, = 0,
because M go is smooth over H°. |

9 Local generalized isomonodromic deformation
on a ramified covering

In this section, we will consider the pullback of a generic ramified connection via a local analytic
ramified covering map. Furthermore, we will give a brief sketch of the Stokes data of the pullback
and its generalized isomonodromic deformation established by Jimbo, Miwa and Ueno in [16].

Let A, and A, be unit disks equipped with the variables z and w, respectively. Consider
the ramified covering map

p: Ay 2w w =z€eA,. (9.1)

There is a canonical action of the Galois group Gal(A,/A,) = {o¥ | |0 < k < r — 1} which
is generated by the automorphism o: A, 3> w — (w € Ay, where (, = exp (27r\/—1/r) is
a primitive root of unity.
Take vp(z) € (C+Cz+---+Cz™")dz/2™, v1(z) € (C* +Cz+--- +Cz™ "~ 1)dz/2™ and
vo(2)y .. vp—1(2) € (C+Cz+ -+ -+ C2z™ " 1)dz/2™. Then we put
v(w) = vp(2) + vri(2)w+ - + v (2)w" L,
which is said to be a ramified exponent. We define a formal connection V, on C[[w]] by

Vy: Cllw]] 3 f(w) = df (w) + f(w)r(w) € Cllw]] @ &,

Let (E,V) be a meromorphic connection on A, with a formal isomorphism
(E,V) := (E,V) ® Oa, 0 — (C[[w]], V). (9.2)

Consider the pullback (p*E, p*V) of the meromorphic connection (E, V) by the ramified cover p
given in (9.1). The formal isomorphism (9.2) induces a canonical surjection

T pPE® @Aw,O = ¢z Cllw]] — C[[w]]
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which makes the diagram

EoClw] ——  Cluw]
§®idl lvv
EoCuw)] e 29 cfu]] e &

commutative. The Galois transform of m by the element o* of Gal(A,,/A.) is given by

Fomoo: BEeClw] 2227 B e Clul] 5 Cllw]] < Cll]),

~ ~

which makes the diagram

k k

E ® C[[w]] T, Cl[w]]

@@idl lvaky
]

~ koroo—F)®id
EoCull® % 77 %% clu)lo &
commutative, where we put o*v(w) := V(Cffw). So we get a morphism

T

D (Cllwl, Vorow)): (9-3)

k=0

r—1 _k
~ ~\ P o omoa

w: (p*E,p*V)

whose underlying homomorphism on vector bundles over C[[w]] is generically isomorphic. Choose
a generator eg of the underlying bundle C[[w]] of (C[[w]], V,,) (we may choose eg = 1). We denote
the same element of the underlying bundle of (C[[w]], Vx,) by c*(ep). Then we can define an
action of Gal(A,/A;) on the right-hand side of (9.3) by setting

r—1

ka Fleo) ==Y fr(Clw)a* (eo).

k=0

The connection EBZ;%) V&, on the right-hand side of (9.3) commutes with the Galois action.
The morphism w in (9.3) is a C[[w]]-homomorphism, which commutes with the connections and
with the Galois actions on the both sides.

We can see that the image Im w of the homomorphism (9.3) is generated by

{Zg ‘I{:—O,l,...,r—l}

as a C[[w]]-module. Then we can check the inclusion w” ! -@Z;E Cl[w]]o*(ep) € Im . Consider
the restriction

r—1
@]

Zlwr—i=o, Im(w|yr-1—g) C @ (C[w]/(wr_l) . O’k(eo)

k=0

Dlwr1—g: Elyr1—0 ® Clw]/(w" 1)

of the morphism = in (9.3) to the divisor on A,, defined by w"~! = 0. Then the composition

w‘w'rflz()

o1 p*(E) — p*(B)|yr-1—0 = E @ Clw]/(w" ™) T (1)
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commutes with p*(V) and @,y Vi, |wr—1—0- So we have

d
(p*V)(ker p) C ker p ® " v

mr—r+1"°
Consider the line bundle Oa,, ((r — 1) - {0}) on A,, with the connection

V_u(z): Oa,((r=1)-{0}) 3 f(w) = df(w) — f(w)ro(z)
€0p, ((r=1)-{0}) ® ” dw

mr—r+1"°

If we modify (ker ¢, p*V|ier ) by setting

(E', V') := (ker ¢, (p*V)|ker o) @ (Oa, ((r =1)-{0}), V_po(2)), (9.4)

then the order of pole of V' at w = 0 is mr — r. Indeed, the morphism w in (9.3) induces
a formal isomorphism

r—1
(B, V") == D (Clw]l, Vi(ckuw)-vo(z))
0

B
Il

and the matrix of the connection V ¢k of the right-hand side is

—vo(2)

r—1
Z vie(z)w” 0 e 0
k=1
r—1
0 Z v (2)CFw® 0
k=1
r—1
0 0 . Z Up(2) R =1k
k=1

Since the leading terms of the diagonal entries of the above matrix are distinct, (E',V’) is
a generic unramified connection. Furthermore, there is a canonical action of Gal(A,/A;) on
(E', V'), since ¢ and @ (Op,, ((r —1)-{0}),V_,(»)) preserve the Galois action.

Proposition 9.1. The correspondence (E,V) — (E', V') given by the formula (9.4) is a bi-
Jjection between the meromorphic v-ramified connections (E,V) on A, equipped with a formal
isomorphism (E,V) = (C[[w]], V,) and the Gal(A,,/A,)-equivariant (v((Fw) —Vo(Z))0<k<r71—
unramified meromorphic connections (E', V') on Ay, equipped with a Galois equivariant formal
isomorphism (E',¥") = @(C[[w]], Vgi,).

Proof. We have to give the inverse correspondence. If (E', V') is a (v((Fw) — 10(2)) geper 1

unramified meromorphic connection on A,, compatible with an action of Gal(A,/A,), we put

Gal(Aw/As)

E':=ker (E' — coker ((E'|ymr—r—0) ® Clw]/(w™ ") = E'|ymr-r—0)),

where (E’]wmfrzo)Gal(Aw/Az) is the submodule of E’|, mr—r—q consisting of the Gal(A,/A;)-

alAw/82) b the subsheaf of Dx (E’) consisting of Gal(A,/A;)-
Gal(Aw/Az)

invariant sections. Let (E”)G

becomes a locally free sheaf on A, of rank r and
Gal(Aw/A2)
B ® vVO(Z)> i

invariant sections. Then (E’)

the connection V'|z, ® V,(;) on E' descends to a connection (V' on
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Gal(Aw/A>)

Gal(Aw/Az)N .
) Be/B2)) g a meromor-

(E')Gal(Aw/Az). We can check that ((£') (V2 © Vi
phic v-ramified connection on A,. From the construction,

(E/, v/) . ((E,/)Gad(Aw/Az)7 (v/ )Gal(Aw/Az))

i © V(2
gives the inverse to (E,V) — (E',V'). |

Remark 9.2. The process of getting the vector bundle ker ¢ or E’ from p*E is called an
elementary transform or a Hecke modification. The construction of (E’,V’) from (FE,V) is
known [28, Section 19.3] as a shearing transformation method.

We will apply Proposition 9.1 to a family of connections. From now on, let the notations 7,
C, A\, i, v and MED(A,[L, V) be as in Section 5.

We take a point © = (Z;); € (Dram)¢ in the fiber over t € 7. We can take an analytic
open neighborhood 7° of ¢t such that Zyo can be extended to a local holomorphic function
z € Olclglo whose zero set coincides with the section & = (Z;)7-. Precisely, there is an analytic
open immersion

A, x T° < Cro

for a unit disk A, such that the coordinate of A, corresponds to z. We can assume the existence
of a universal family (E, Vv, ¢, V) on some analytic open neighborhood M°C M& (A, fi, 7)) x7T°.
By Corollary 4.3, we may further assume that there is an isomorphism

(E,V)®0¢, ;> (O8[[w]], V5), (9.5)

s

where 6CMO,:2 = lim 021(\)410 /I% > OL[[w]]. Consider a family of ramified covering maps (9.1)
—

pavo: Ay X M° 3 (w,y) — (w",y) € Ay x M°.
We write m := m;*" for simplicity. As in the former argument, the isomorphism (9.5) induces
a canonical surjection

Tare: Pho B ® @cMo,fi — O [[w]],

which also induces a morphism

(O3F=[w]], Viorz) (9.6)
0

\3
|

@Z;é oFom 000k

TIMo - (phoE,pi]kwo @) ® @CMO ,5}

b
Il

between rank r connections over O [[w]]. Let &’ be the divisor on A, x M° defined by the

equation w = 0. The composition
oMo Pare (E’AZXMO) — Phe (E|Az><MO) |(r—1)§:’ — Im (WM°|(7~—1)5;')

is a surjective homomorphism and we have (p}. @) (ker ¢) C ker w@QlAw « Mo /Mo ((mr—r+1)7").
Setting

(E’,@') = (ker go,p?wo@\kew) ® ((’)goixMo((r —1)#),V_z), (9.7)
we get a connection

V': F —FEo QlwaMO/MO ((mr —r)z’).
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The morphism wjse in (9.6) induces an isomorphism

r—1
(E,V)®0s - — (059t [[w]], Vo(chw)—ro(2)) - (9.8)
k=0

The connection Vjcky)—py(z) Of the right-hand side is given by d + A(w, t) with

1

<

(2, t)wk 0 e 0
k=1
r—1
0 (2, 1) CFw® 0
. r—1
0 0 e Y oz )t
k=1
Now we will see the corresponding Stokes data. We set Ef) := ( goulijo)@T and fix a connec-
tion V{: B} — E{® QlwaTO/TO((mr —r)Z') defined by
f1 dfi fi
e + Aw,t) | :
fr dfr fr

We call (Ej), V() a normal form.
It is a general fact [16, Proposition 2.2] that there is a matrix P(w,t) of formal power series
in w with coefficients in (’)}]{/‘[’10, which gives a formal isomorphism

(E), V) ©Op - —L (B, V)04 .. (9.10)

If V' is given by d 4+ A’(w, t)dw/w™ " for a matrix A’(w,t) of holomorphic functions in w, t,
then we have

dw

wmr—r

P(w,t)"'dP(w,t) + P(w,t) LA (w,1) P(w,t) = Aw, t).

In fact, we can give the formal transform P(w,t) as the inverse of (9.8), which is induced by the
formal transform (9.5) over O%%L[[z]]. Indeed, if we denote the inverse formal transform of (9.5)
by

Qz,1): (Ot [[w]], Vi) = (B, V) @ Op . - (9.11)

CMo,l‘
and if we denote the rational gauge transform pj,, (E|AzxM’) < E' by S(w), then we can
give P(w) by

-1

1 w e wr_l
1 Crw . CI—lwr—l

P(w,t) = S(w,t)Q(z,1) . (9.12)
LGt e (e

Remark 9.3. The above procedure is explained in [10, Proposition 10] for the explicit case of
rank 2 connections on P!,
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Take any point u € (A, \{0})xM°. By the fundamental existence theorem [28, Theorem 12.1]
of asymptotic solution, there are a sector I'y, = {w € A, | a < arg(w) < b} in A, \ {0} for
some a,b € R and an open subset M, C M° satisfying u € I, x M, such that there exists
a fundamental solution Y (w,t) = (y1(w,t), ...,y (w,t)) of V' on ¥ = I, x M, satisfying the
asymptotic property

Vs (w, t) exp (/ A(w)> ~ P(w,t)  asw —0on Y =Ty x My, (9.13)

where the path integral of A(w), which is defined in (9.9), is with respect to the w-variable. If
we put P(w,t) = > 32, Pj(t)w?, the asymptotic relation (9.13) means

e e ([ A@) =525, Pyl

w—0,wely, |w| N

(9.14)

for any positive integer N and the convergence in (9.14) is uniform in t € M,,.

Fix a point ¢ € M°. Taking a finite subcover of {¥ = T';, x M, }, we can choose an open
neighborhood Uy of ¢ in M® and a covering {X} of (A, \ {0}) x Uy such that each ¥ is of the
form ¥ =T, x Uy for a sector I';, in A, \ {0}.

If we take another ¥/ = Iy x Uy in the above covering, and if we choose a fundamental
solution Ysy(w,t) on ¥/ with the same asymptotic property as (9.13) on ¥/, we can write

Yg/(w, t) = YE (’LU, t)ngg/ (t) (9.15)
for a matrix Cyx yv(t) constant in w. We call Cx, 5v(t) a Stokes matrix.

Definition 9.4. We say that a family of connections (£, V’)|a, x ¢ over a submanifold £ ¢ M°®
is a local generalized isomonodromic deformation, if for each ' € L, we can take an open
neighborhood Ly of ¢’ in £, a replacement of the formal transform P(w,t) in (9.10) and a covering
{E =Ty x Ly} of (A, \{0}) x Ly for sectors I'y, in Ay, \ {0} such that

(i) there is a fundamental solution Yx(w,t) of V'|s. with the asymptotic property (9.13) and
(ii) all the Stokes matrices Cy; sv(t) defined by (9.15) are constant in t € L.

Remark 9.5.

(1) The ambiguity of the path integral [ A(w) in (9.13) is included in the replacement of the
formal transform P(w,t) in Definition 9.4.

(2) In our definition of Stokes matrices Cx sv(t), there is an ambiguity in the choice of the
fundamental solution Ys(w,t). On the other hand, [16, Proposition 2.4] requires ¥ to be
taken sufficiently large so that there is no ambiguity in Yy (w,t). Due to this difference,
we will need an additional argument later in Proposition 9.6.

Let us recall the argument in the proof of [16, Theorem 3.1]. Assume that £ C M° is
a submanifold, {3} is a covering of (A, \ {0}) x £ as in Definition 9.4 and that Yy (w,t) is
a fundamental solution of V| A xc on each ¥ such that all the matrices Cy; s (t) are constant in
t € L. We choose a local coordinate system (1, ..., t,) of £ around ¢’ € L. Rewriting (9.15), we

have Ys(w, )™ Ysy(w, t) = Cs,sv, which is constant in ¢. Differentiate it in t1,...,,, we have
0Y5 t OYs t
s, P e Uy (0,8 4 Vi, 2D g
ot ot
which is equivalent to the equality
19)% t Y~ t
—72(11]’ )Yg(w,t)_l = —72 (w, )YZ/(w,t)_l (916)
0t Ot
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in End(Og/ sy) ® Q5. So we get a matrix B;(w, t) of single valued functions on (A, \ {0}) x £
by patching the matrices (9.16).

On the other hand, since the convergence in (9.14) is uniform in ¢t € £, the differentiation
of (9.13) in t; provides the asymptotic relation

aYEexp(/A >+Ygexp</A(w)> gﬁ”gf as w — 0 on X.
J j

Multiplying w™ "=t P~1 ~ ™ ""lexp (— fA(w))YE_1 from the right to the above, we get

oYs vy [OP __ oA _
WM 1 wmrT 1 1
ot EDRE <6t po=F (/ 8tj> F > (0.17)

on Y. Note that the right-hand side of the above is a matrix of formal power series in w without

pole. So the left-hand side of (9.17) is bounded on any X. Since —w™ "1 B, is also a matrix of

single valued functions on (A, \ {0}) x L, it is holomorphic on A, x £. In other words, Bj(w,t)

is a matrix of meromorphic functions on A, x £, whose pole is of order at most mr — r — 1.
Recall that the matrix of V' is given by

_wmr—r—lBj —

dw

wmrfr

. aYE (wa t)

—1 Y
D Yy (w,t)dw = A'(w,t)

since Yy, is a fundamental solution of V’. So we obtain a matrix of differential forms

N
dw
Al(w, t) > Bj(w,t)dt;

wmrfr
J=1
which determines a meromorphic connection

(V)™ B ause — B ayxe ® Q4 xe(De 0 (Ay x L)),

w

By the definition, (V') is an extension of the relative connection V’|a, xz-
The curvature form of (V’ )ﬁat is

N
0Ys s, 4
d-Zvgtdw -3 Sy ldty
6w v X 875]- z 7
Jj=1
9, N oy O, N ovy
_Eys valdy | A | -2y tdw - S S vt
"o SR TR ow > T gy

|
plq .

< 82YE aYEY 18YE

Yy tdt
d0w 0w ot ) w dty A dw

1

J

9%Ys, 8Yg y—1 0Ys
Owot; ot; 2w

WE

> Yy tdw A dt
1

<.
Il

N
%Yy, B GRS -
_ZZ (at o1 g, e lat j') MYyl
j=ly'=
CEy o ldw —Y dt;
+ T h at; =

7j=1
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0Ys Y5 190 Y
+z Sytan, n D0yt s 35 Py Doty g =
Jj=1j'=1

So (@’ )ﬂat is an integrable connection which is an extension of V/|a, x.

The following proposition is in fact included in a more general framework by T. Mochizuki
in [21, Section 20.3], which provides the existence of flat solution with asymptotic property in
a general setting.

Proposition 9.6. Let L C M° be a submanifold and let (E', V') awxc be the restriction of the
family of connections constructed in (9.7). Assume that for each point t' € L, there is an open
neighborhood L' of t' in L and a meromorphic integrable connection

= fat | - ~ 5
(V)™ Flagxe — E'layxe @ Qp, p((mr — 1)),

whose associated relative connection coincides with V'|a, xcr. Then (E’,V’)|Aw><£ is a local
generalized isomonodromic deformation.

Proof. We have F'|p, xor & Of;xﬁ, and we can write

N
- fa d
(V’)f1 = d+ A(w,t) wmlf_r + § Bj(w, t)dt;.
j=1

After shrinking £’ if necessary, we can take a covering {% = T'y x L'} of (A, \ {0}) x £ with T,
a sector in A, \ {0} and we can take a fundamental solution Yx(w,t) of V/|s with the uniform
asymptotic relation

Yo (w, t) exp (/ A(w)> ~ P(w,t), w0, we, (9.18)

Since (V)2 is an integrable connection extending V’|a, x o/, we can take a fundamental solution
Yilat (1w, t) of (V/)1at on ¥ satisfying Yt (w, ) = Vs (w,t'). We can write
V¥ (w, 1) = Ya(w,t)C(t),  (w,t) €, (9.19)

for a matrix C'(t) = (¢;;(t)) of holomorphic functions in ¢ € £’ such that C(t') = I, is the identity
matrix. Differentiating (9.19) in t;, we have

oY§* _ OYy
87fj E)t

1,200
2ot

- Ct) +

from which we have

a0 (t)
ot

avat (w, 1)
ot

6Y2 ('IU t)
ot

Y (w, 1) )W (w,8)"! = Yty 1)=1 Ye(w,t)"L. (9.20)

Since Y12t (w, ) is a fundamental solution matrix of (V')2t, we have

oYHat(q, )

o, Vllat ()71 = —Bj(w, t). (9.21)

On the other hand, since the asymptotic relation (9.18) is uniform in ¢ € £, we have the
asymptotic relation

0Yy, oP

0
T o ([ Aw) + 5 exp ([ Aw) 57 (/Aw) ~ 57
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on Y. Multiplying (YE exp (f A(w)))_1 ~ P~ from the right to the above, we have

sy [ OPpy _ p 0 -
o, —Yy o pt-p ot (fA(w)) P (w—0) (9.22)

on Y. Using the equality (9.20) and substituting (9.21) and (9.22), we have the asymptotic

relation
Vexp </A ) Yzagt(t)(;(t)lyglp
J

o (o) %

B 8yﬂat . Vs _ 0P 0
-7 1(@2(’”5” -Gt e -rmr - (fa)

on 3. Sow™ exp (f A(w))_1 agtgt) C(t) ' exp ([ A(w)) is bounded on ¥ for a large N, because B;

is a matrix of meromorphic functions in w,.
Choose a point (wp,t') € X. After replacing a frame of E{, we can write

Aj(w) 0 1 aPw) 0 0
/A(w) = 0 0 =1 Ap(w) = 0 0 )
0 0 As(w) 0 0 af(w)
such that a,(gk) (w) = az(gk) (0)+ b(k)w 4+ 4 B 2,”, WM 24 b 7)7”, ,_ 1wm7"_T_1 log w satisfies

a;,k) (()]2L # a((ll) (0) for (k,p) 75“(7[ ,q) and that p, = Re(w; Gt (k)( 0)) holds for 1 < p < my, at
t' with p1 > p2 > -+ > ps. Write

Cii(t) - Chs(t)
i)y t=Ct) = : : , (9.23)
Ca(t) - Cult)

aC(t)
ot

where Cy(t) is a matrix of size (my,m;). Then we have

o ([ 300) 20 exp 300 020

exp (wmfi 1w )1)011( t)exp (= A1 (w) r) - exp (%ﬂ)éls( ) exp (wﬁi(u;) .
— wN : - : 7
exp (wiméi(@l)éls(t) exp (wﬁﬁ%l) o exp (wnﬁi(r)l)é (t) exp (Wéiigwrll)
which is bounded on X.

Suppose that C(t) # 0 for k > I. Then the growth order of the (k,) minor of (9.24) along
the ray {6wp | 0 < 6 < 1} is the same as

(Owo)™ exp (Re((Bwo) "™ (A (0) — A4(0)))) Cra(t) = ONwd ed =1 C (¢).

Since pr — p; > 0, it is divergent as 8 — 0, which is a contradiction. If we write

~(k ~(k

&y @R (@)
Cri(t) = : : ;

~(k ~(k

a0
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then we have

wN exp (_w—mr—I—H—lAk( ))ékk(t) exp (w—mr-‘rr—I—lAk(w))

k w=mr r+1 (l(k) (Z(k)
& (1 c oW (ay” (w)—am, (w)) gn)%(t)
—mrtr1 () () — (P .
oW T (4 (w)—ay (w)) 7(7’21(,5) Emmy ()

Suppose that cpq ( ) # 0 for p # ¢. Since ap ( ) # a ( ), we can find 0 # 0 with |4| small

Vet a” (0)—ag" (0)
such that {fe wo | 0 < 6 < 1} is contained in T, and that either Re((”ﬁ;ﬁ) >0

a;”) (0) —ag" (0)
(’LU eV — 5)mr r—1
a(k)( )_a(k)(o) .
Re(m) > 0. Then the growth order of the (p,q)-entry of (9.25) is the same as

(k) (k)
(wof)N exp ((w 625)(2)3‘11;%471), which is divergent along {Gev e |0< 6 < 1} as 0 — 0.
0

or Re( ) < 0 holds. After replacing § with +J, we may assume the inequality

Since (9.25) is bounded on T, x £, it is a contradiction. So Cy(t) is a diagonal matrix for any k.

Thus we have proved that the matrix C(t) given in (9.23) is a block upper triangular matrix
in the sense that Cy(t) = 0 for k > [ and that Cy(t) is are diagonal matrices for 1 < k < s.
We will show that C(t) is also a block upper triangular matrix. Consider the Taylor expansion

Y Cipinti -t (9.26)

115N

around ¢ = t'. Suppose that one of Cj, _; is not block upper triangular and put

I=min{i1 + - +in | Ciy,.

in

is not a block upper triangular matrix}.

By the minimality of I, C(¢) (mod (ty,...,t,)'"!) is a block upper triangular matrix and so is
C(t)~! (mod (t1,...,t,)!""). Differentiating (9.26), 25U (mod (t1,...,,)""1) is not a block

upper triangular matrix for some j. So we can see that 6C(t)C’( )1 (mod (t1,...,t,)"" 1) is not

a block upper triangular matrix of the above form, which is a contradiction.
Thus C(t) is also a block upper triangular matrix of the above form. Let Cgiag(t) be the
diagonal part of C(t). Then we have

Yidat (w, ) exp </ A) = Y (w,t) exp (/ A> exp <—/A> C(t) exp (/ A>

~ P(wa t)cdiag (t) (9.27)

on Y. If we take another sector ¥ = I')y x £ and a fundamental solution Yzﬂ,"‘t of (@’ )ﬂat
satisfying Y = Y5, C’(¢) with C'(#') = I, we have

Vi (10, 1) exp < / A) ~ P(w, ) Clng (1) (9.28)

on Y. Since both of YZﬂ‘jlt and Yg,at are fundamental solutions of the integrable connection
(v’ )ﬁat, we can write Y2t = YHat K for a constant matrix K. Combining (9.27) and (9.28), we

have
Cdiag(t)_lc(/iiag(t> ~ exp <— /A> (vilaty=lyflat exp (/ A)
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(- [a) ke ([ 2)

on XN Y. Since the diagonal entries of the right-hand side of the above are those of K, which
are constant in ¢, we can see that the left-hand side of the above is a constant matrix. Since
Cline ) =C"(t") = I, = C(t') = Caiag(t'), we have C(/iiag(t) = Cliag(t)-

diag
Thus, the replacement of the formal transform P(w,t) with P(w,?)Cqiag(t) is independent
of 3. So the replacement of Yy, with Ygat on each ¥ satisfies the condition of Definition 9.4. W

Summarizing the above arguments, we get the following theorem, which is the local version
of a main consequence of the Jimbo-Miwa—Ueno theory. It is the significance of the formulation
of generalized isomonodromic deformation introduced in Section 11 later.

Theorem 9.7 (Jimbo-Miwa-Ueno [16, Theorems 3.1 and 3.3]). For a submanifold L of M°, the
restriction (E’, V’) |Awxr of the family of connections to Ay, x L is a local generalized isomon-
odromic deformation if and only if for each point t' of L, there is a neighborhood L' of t' in L
and a meromorphic integrable connection (@’)ﬁat: E\ayxer — Elaxe @ Qayxo((mr —1r)7)
whose associated relative connection coincides with V' | AL -

Remark 9.8.

(i) In the precise setting of [16], each sector is taken sufficiently large so that the asymptotic
solution Yy is determined uniquely. Furthermore, the choice of formal transforms is also
included in the system of differential equation in [16, Theorems 3.1 and 3.3].

(ii) In our setting of Theorem 9.7, there are ambiguities in the choice of asymptotic solu-
tions Yx(w, t) and in the choice of the formal transforms P(w,t). Our statement of Theo-
rem 9.7 is a consequence of Proposition 9.6, which is essentially the result by T. Mochizuki
in [21].

(iii) We introduce Definition 9.4 based on the naive meaning of Stokes data, but it will be
better to explain the Stokes data by using the notion of local system with Stokes filtration
as in [1, Section 4.6] or [21, Chapter 3].

(iv) Theorem 9.7 is also mentioned in the appendix of [5].

(v) We can see from (9.17) that the dt;-coefficient of (@’ ) flat

has a pole of order mr —r — 1.

Proposition 9.9. For the family of connections (E’, @’) on Ay, X M° which is constructed from
(E,V)|a.xme in (9.7) and for a submanifold £ of M°, (E',V')|a,xc can be evtended to an
integrable connection if and only if (E, @)\Azxg can be extended to an integrable meromorphic
connection on A, x L.

Proof. Assume that V' |a, xc can be extended to an integrable connection (@’ ) ﬂat. Note that
there is a canonical inclusion S(w): p(E|a,xz) <> E'|a,xc which is Galois equivariant and

compatible with the connections. Consider the pullback S(w)* (@’ )ﬂat. If we write

dw al
=7 + Z B; (w)dtj’
j=1

(@/)ﬂa‘c :d+A'(w)

wm

then the connection S(w)*(@’)ﬂat on p (E’AZX£> is given by

dS(w)  A'(w)S(w)

N
d+ S(w)™? ( T )dw +> S(w)! (agg}) + B;-(w)S(w)> dt;. (9.29)

Jj=1
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>~

(O, )", which

Pr
induces a canonical Galois action on End (pf (E|AZX5)) ® PpQUp o (mE). If we denote the
A(z)dz

Note that there is a canonical action of Gal(A,/A;) on p} (E|Azx£)

, then we have

AL ety = sty (B AW,

which is Galois invariant. On the other hand, the dt;-coefficient of (9.29) may not be Galois
invariant. So we put

poe- [0 L s s (B Bwsw)]

ot " reGal(Bu/As)

matrix of V]A < by

Then B; is Gal(A,,/A)-invariant and becomes a matrix of meromorphic functions on A, x L.
If we put

@ﬂat =d

N
z
+ Z Bjdt;,
j=1

then V2t defines a meromorphic integrable connection on F|a_xz. The converse is imme-
diate. m

We can see by a calculation that

1 r—1 —1
1 zr NN 2T
1 r—1
1 (v . 77:*12;7 3
U(z,t) = | . ) ) ) ol P0(zt) exp <—/A(zi,t)> (9.30)
1 Crflz% o y_l)2zr:1

becomes a fundamental solution of

I)O(Z) Zﬂr_l(z) N 2'171(2’)
n(z) bolz)+% - 2a(2)
Up—1(z)  Up_o(z) - p(2)+ %
aitjfﬂo(z) Zw*TJrl 6 fwr Iy, 1(z) - walagfwﬁl (2)
N w2 [wi (2 9 [ i0(z) zw‘2 8 W2
| e k),
Jj=1 N :
_r+15fw Ur_1(z —r+28fw Up_o(z) - 8%_]50(2)

which is a matrix form of the integrable formal connection

Vi w)+3 2 oty Or[[w]] — Or[[w]] ® Qa, x2(m2)

flw) = df(w) +Zat ([ o) | sew)

with respect to the basis 1,w,...,w"~! of the free module O [[w]] over Or[[z]]. On the other
hand, recall that the elementary transform p}(E, V)|a,xc — (E', V') is given by the rational
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gauge transform S(w): p} (E|A2x£) — E'. If we put & := ppro(X), then pyoly: ¥ = % is an
isomorphism if ¥ is sufficiently small. Substituting z = w7 in the solution Yy (w), we can get
a fundamental solution

Ze(z,t) = S(zr, 1) Vy (27, t)el G0

of V|a.xc. Using the asymptotic property Y5 exp ( [ A(w)) ~ P(w) and the equality (9.12), we
get the asymptotic relation

Zs(2)W(2) "' = 5(27) Ve (27)

1 r—1

1 zZr e zr
1 1 Crz% e :712?;1
X exp </A(Zv~)> : : . : ~ Q(z) (9.31)
e e e

n (z,t) € 3. For another &', we have

Zil (Z, t) — ZE(Z7 t)Ci,il (t),

where Cg v (t) = Cxs/(t). So we can in fact describe the Stokes data on A, without using
a ramified cover, in the sense of patching data in [1, Theorem 4.5.1].

Definition 9.10. We say that a family of connections (E, @) |A. xc over a submanifold £ C M°
is a local generalized isomonodromic deformation, if for each ' € L, we can take an open
neighborhood Ly of ¢’ in £, a replacement of the formal transform @Q(z,t) given in (9.11) and
a replacement of the covering {3} of (A, \ {0}) x Ly such that

(i) thereis a fundamental solution Zs(z,t) of V on each ¥ with the asymptotic property (9.31)
and

(ii) all the Stokes matrices Cg s (t) are constant in ¢t € Ly.

Corollary 9.11. For a submanifold L of MP°, the family (E, @)]Azxg is a local isomon-
odromic deformation in the sense of Definition 9.10 if and only if for each point t' of L, there
is a neighborhood L' of t' in L and an integrable meromorphic connection V: E~|AZX£/ —
E]Azxcf ® QlAzxﬁ,(mi‘) whose associated relative connection coincides with (E, @) AL

Proof. Assume that there is an integrable connection viat on B |A, xcr which is an extension
of @] A.xc as in Proposition 9.9. Then there is a canonically induced integrable connection
(@’)ﬂat on E'|a,xrr. If we take a fundamental solution Y12t (w, t) of (@/)ﬂat
Proposition 9.6, then

as in the proof of

Z%at(z) = S(z%)_lYﬂa‘t (z%)ef 7o(2)

is a fundamental solution of V2. Since Yx exp ( [ A(w)) ~ Y8t exp ( [ A(w))Cyiag(t) ™! as in
the proof of Proposition 9.6, we can see from (9.31) that the asymptotic relation

Z52 (2, 6)Caiag () "W (2, )" ~ Q(2, 1)
holds on (z,t) € ¥. Differentiating the above in ¢;, we have

azﬁat ) 5
S (2)71 Q) - Q¥ ) O, )+ QL) T

8tj diag
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n (z,t) € ¥. Note that —8Z (Zﬂat) is Gal(Ay/A;)-invariant because it is the dt;-coeffi-

cient of V2t We can see that —aL(fz)‘Il(z) s also Gal(A, /A )-invariant because it is the dt;-

at,
coefficient of the formal connection V . The transform Q(z) is also Gal(A,/A;)-

w)+> [ 6”0 dt;
invariant as a matrix of formal power series. So, from the asymptotic relation (9.32), we can see

that W(z )60‘31‘ag C’dlag\I/( 2)~tis Gal(A,/A,)-invariant. If the Galois transform o € Gal(A,/A,)

is given by 0( ) = CFw, then the Galois transform by o on ¥(z,t) in (9.30) is given by

1 ckab DR\ T
1 k+1Z$ o C(r—1)(k+1)zr;1
W= |, T R S )
Lo T
1 1 r—1 —1
zr e z T
1 r—1
1 Gzr - r—ly 5
=1 7“' | r ' Pgef VO(z’t)Pa_l exp <_/A(zi7t)> P,,
1ol o Y
T
where P, is the permutation matrix defined by P, = (ext1,€x+2,---,€r,€1,...,€x) for the
canonical basis e, ..., e, of C". So the equation of Galois invariance
aCdlag 86’dlag

V()5 B g (V()7) ™ = W) =5 2O ()™

deduces the equalities

aC'dlag C,_ _1 aC'dlag C_

PU 8 diag U - a diag

for cyclic permutation matrices P, corresponding to o € Gal(A,/A;). Thus all the diagonal

oC,
entries of d‘ag C’dlag

same. After replacmg Q(z) with Q(2)Cgiag(t), we have the asymptotic relation

are the same, which implies that all the diagonal entries of Cgiag(t) are the

Z8 )0 (2) 7~ Q(2) as z — 0 on 2

for all ¥. After replacing Zs(z,t) with Zgat(z t) and shrinking £ if necessary, all the Stokes
matrices {C } become constant. So (E V) |A. xr becomes a local generalized isomonodromic
deformation.

Conversely, assume that (E @) |A. xc is a local generalized isomonodromic deformation. For
the fundamental solution Zs(z,t) of V|5 given in Definition 9.10,

Ya(z,t) = S(w, t) Zg(z,t)e 0D

becomes a fundamental solution of V'|z. So we have Cyx sv(t) = Cs< which is constant in ¢.

B>
Thus @i |a,xc is a local generalized isomonodromic deformation. By Theorem 9L7,~We can
extend V’|a, xc to an integrable connection after shrinking £ at each point. So (E, V)|Azxg
can be extended to an integrable connection by Proposition 9.9. |

Remark 9.12. The achievement of the construction of the generalized isomonodromic defor-
mation by Bremer and Sage in [8] is based on the Jimbo-Miwa-Ueno theory, which becomes
Corollary 9.11 in our setting.
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10 Horizontal lift of a universal family of connections

We will extend the notion of local generalized isomonodromic deformation in Section 9 to a global
setting on the moduli space of connections. Its differential equation is given as a subbundle of
the tangent bundle of the moduli space, which satisfies the integrability condition. For its
construction, we introduce the notion of horizontal lift of a universal family of connections.

Let the notations T, C, A, i, v, M&" »(A, i, 7) be as in Section 5. There is an étale surjective
morphism M — MC,D(/\> i1, ) such that there is a universal family of connections (E, VAN V)
on Cy;. We may assume that the generic 7-ramified structure V is given by a factorized p-ramified
structure (f/k, 19;@, ;fk>0<k<r71'

For a Zariski open subset 77 C T, we put M’ := M x 7'. Take a vector field v €
HO(T',Tr|7). If we put T'[v] := T’ x SpecCle] with €2 = 0, then v is characterized by a
morphism I,: T'[v] — 7" whose restriction to 77 is the identity. Put M’[v] := M’ x Spec Cle]
and consider the fiber product CM/[U] := C x7 (M’ x Spec Cle]) with respect to the projection

C — T and the composition M’ x Spec Cle] — T x Spec C|e] LN N o
We define a divisor D’ on C by setting

Nun NMram
D = Z ( un o un + Z ram _ ~ram'
i=1
Consider the sheaf of differential forms QéM[ |t with respect to the composition of trivial
projections

Ciiprpy = C X7 (M’ x SpecCle]) — M’ x SpecCle] — M.

Take a local section zl»og (resp. z{™, 2;*™) of Oc_, which is a local defining equation of i‘;og (resp.

jun jram)

log
o 2im). We write the induced local section of O¢ by the same symbol 2, (resp. 2",

M’[]

Zram) et (Q, be the coherent subsheaf of Ql 1) which is locally defined by
“ /M Pirw)

]M’[]

reg
~lo
Q, OCM/ log + Oc,,, de around (z,”%) N[>
~ dz"™ de -
Q, = OCM’[u] W + OC]\I’ ()ﬁ around (xl )M’[U]’
d ram d
Qy=0c., — 1O ‘ around (Z*™) i, (10.1)

M/ [v] ( ram)

2] M’ ( ram)mgam—l

Z

Definition 10.1. We say that (£Y,V?,1,£¥, V") is a global horizontal lift of (E,V,1,Z,V)
with respect to v, if

(i) &Y is a vector bundle on Cyppy) of rank r,

(i) VV: EY — £Y ® Q, is a morphism such that VV(fa) = a ® df + fV¥(a) for f € OC}W’ o’
a € £ and that the matrix I'V = A(z)dz 4+ B(z) de corresponding to V? with respect to
a local frame ey, ..., e,—1 of £y, defined by (V¥(eq), ...,V (er—1)) = (€0, .., er—1)I"
satisfies A(z) € My (Op)(Dypp, NU)) and B(z) € M, (Oy(D},, NU))

(iii) VY satisfies the integrability condition dI'V + I'V A T'Y = 0, which means that the equality
9442 A de = dB(2) A de + [A(z), B(2)]dz A de holds,

v v 1 N : v
(iv) for the relative connection V?: £V — & QCM/M/M/[U] (D M’[v}) induced by V,
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(a) IV = (I¥)o<k<r—1 is a logarithmic A-parabolic structure on (£Y,V?) such that the
subsheaf ker (5“ — 5”\(Dlog) /lk) of £V is preserved by VV for 0 < k <r —1,

]W/

(b) €° = (£})o<k<r—1 is a generic unramlﬁed I i-parabolic structure on (€7, V?) such that
the subsheaf ker (8” = & (Dun) )i/fo /6 ) of &Y is preserved by VV for 0 < k <r —1,

(c) VU = (V2,9 %Z)O<k<7’—1 is a factorlzed I}D-ramified structure on (£¥, V) such that
the subsheaf ker (5” — 5”|(Dram)w[v] / Vk,”) of £Y is preserved by V",

(v) (5“,@, l“,€“,V“) ® OM,[U]/(E) = (E,@,ZZ l, f/)M, holds.

We will prove the existence and uniqueness of the horizontal lift in the above definition. For
its proof, we will show the local existence and the uniqueness of the horizontal lift.

Definition 10.2. Let U be an open subset of C,;, such that Ely = OF" and let U[v] be the open
subscheme of C vag whose underlying set is the same as U. We say that (Sg}, Vi g, 4, Vl”]) is

a local horizontal lift of (E|U, V|U, l|U,€|U, V|U) with respect to v, if

(i) & is a vector bundle on Ulv] of rank 7,
(i) Vi & — & ® Qv]UM is an integrable connection in the sense of Definition 10.1 (ii)
and (iii),
(iii) (1¢, 08, Vy) satisfies the same condition as (a), (b), (c) of Definition 10.1 and for the
induced relative connection V? on &£V,

(857ﬁ v VU) ® OM’[U]/( ) = (E’UyﬁyUaﬂU’g’UaplU)
holds.

Lemma 10.3 (logarithmic local horizontal lift). Let U be an affine open subset of Cy;, such that
E]U O%T and that D7, NU = ( I-Og) - MU for some i, which is defined by the equation zy = 0
for a section z of Oc,, on a Zariski open subset of Cr7. Then there exists a local horizontal lift

(5}}, Vi l”) of (E|U, @|U, l~|U) with respect to v, which is unique up to an isomorphism.

Proof. Note that (£|;7, V|i7) is nothing in this case. Put & := (a:l»og) ,NU. For a suitable choice
of a frame eg,...,e,._1 of E|U = O@’" we may assume that I, N U is given by (ek|zy- -y er_1]z)-
With respect to the frame e, ..., e, 1 of E|y, we can write V|y = d 4+ A(z)dz/z, where A(2)
is a matrix with values in Oy such that A(0) is a lower triangular matrix with the diagonal
entries /\(()i), e /\£)1 Take a lift A(z) of A(z) as a matrix with values in Oyyy) such that A(0) is
a lower triangular matrix with the diagonal entries )\[()i), e ,)\5 Y 1
assume that the de-coefficient of each entry of dA(z) in Q!

After replacing A(z), we may
= Oypdz @ Opde vanishes.

5 Ulvl/M’
Then V{, := d+ A(z)dz/z defines an integrable connection on &£ := OU{]’ which preserves the
parabolic structure lf; on & defined by If; ;. = (exlay, - - er—1lzy0)-

Assume that (E’U, Vi, lgj) is another local horizontal lift of (E|U, Vv, l~|U) Then we have
E'y = ngv] and we can write Vi, = d + A’(2)dz/z + B'(z)de. After replacing the frame
€, . .. ,~e7«,1 of &'y = O(GJBE)], we may assume that [j; is given by l’U’k = <€k|fu[v]’ ... ,er,1|5gU[U]>.
Then A’(0) is a lower triangular matrix and B’(0) is also lower triangular by the condition (a)
of Definition 10.1. Since V7, is a lift of V|, we can write A'(z) = A(z) + eC'(z), with C’(0)
a lower triangular matrix whose diagonal entries are zero. The integrability condition of \%
yields C'(z)dz/z = dB'(z) + [A(z), B'(z)]dz/z. Applying the transform I, — eB’(z) to the
connection V7, the matrix of connection becomes

(I + €B'(2))d(I, — €B'(2)) + (I + €B'(2)) ((A(2) + €C'(2))dz/z + B'(2)de) (I, — eB'(2))
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= Adz/z + ¢(C'(2)dz/z — dB'(z) — [A(z), B'(2)]dz/2) — B'(z)de + B'(z)de = A(2)dz/z.

So I, —eB'(z) transforms (E'y, Vi, 1) to (4, VY, 1¥). The transform I, —eB’(z) also preserves
the parabolic structures on the both sides. Since the transform is uniquely determined by the
de-coefficient, we can see the uniqueness of the transform. |

The following lemma is essentially given in [15, Theorem 6.2].

Lemma 10.4 (unramified irregular singular local horizontal lift). Let U be an affine open subset
of Cy7/ such that E|y = O;‘?T, Dy NU = mi" (:E;-m)]\;[, NU for some i and that (:i;‘n)M, NU is
defined by the equation zy = 0 for a section z of Oc , on a Zariski open subset of Cy+. Then
there exists a local horizontal lift (El”], [ 1{]) of (E\U,WU,EIU) with respect to v, which is
unique up to an isomorphism.

Proof. We put 7 := (is»un)M, NU and m := mj*". Write

1

; m2 dz dz
) =3 a1 (2) S+ en -
j=0

We can write
I;j(aw) = ag,j + by j € OT’[v} = OT’xSpec(C[e} = O5 & eO7r.

We express the above equality by
7,0 () — 4, (i) _ ;dz
o (2) = " (2) + E,Ukﬂ;(z)v e, (2) = Z br,jz om

Take a local frame eg,...,e,_1 of E|U such that ¢, N U is given by (ek|zy- -+ er—1]z). After

a suitable replacement of the frame eg,...,e,_1, we can write @]U =d+ A(z)dz/z"™ such that
A(z)dz/z™ (mod z?™~1dz/2™) is the diagonal matrix with the diagonal entries ,u[(f), . 7#5121-
We can take a matrix A(z) with entries in Oufy) which is a lift of A(2) such that DA/de = 0 and

that /Nl(z)dz / zm‘zm_lzo is a diagonal matrix with the diagonal entries uéi), e ,u,(le. Set

Hz) 00
B(z) := / 0 0 , C(z)dz/z™ :=dB + [A, B|
0 0 40

r—

dz

zm’

Then Vi, := d + (A(z) + €C(2))dz/2™ 4+ Bde defines an integrable connection on & = (’)E‘?Tv].
By construction, the connection V7, preserves the parabolic structure £7; on & induced lby
€o,---,€er—1. S0 we can see the existence of the local horizontal lift (5“, V“,E”).

Assume that (8{], ’U,E’U) is another local horizontal lift of (E|U,@|U,E\U). Note that

&y = O(G?{U]. So we may write Vi, = d + (A(z) 4+ €C’(2))dz/z™ + B'(z)de with C'(z) = C(z)
(mod z™). The integrability condition

d
C'(2)dz/z™ = dB' + [A, B']Z—i (10.2)
yields [A, 2™ 1B'] = 0 (mod 2™ !). Since A(z)],2m-1—¢ is a diagonal matrix whose constant
term A(0) has distinct eigenvalues, we can see that 2™ !B’|,m-1_, is also a diagonal matrix.

Looking at (10.2) again and using C(z) = C'(z) (mod 2™), we can see that B'(z2)|,2m-1_¢ is
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also a diagonal matrix with the diagonal entries ,u(()g, e MS}ZLU. So B(z) — B'(z) is a matrix of
regular functions on U, whose constant term is diagonal. We can see by the same calculation as
in the proof of Lemma 10.3 that the automorphism I, + €(B — B’) transforms V7, to V{; and it
also preserves the parabolic structures on the both sides. We can see that such an automorphism
is unique, because it is determined by the de-coefficient of Vy;. |

Lemma 10.5 (existence of ramified irregular singular local horizontal lift). Let U be an affine
open subset of Cy;, such that E|y = OE‘?T, Dy NU = m*™ (a?r»am)M/ NU for some i and that

]

of Crr. Then there exists a local horizontal lift (£5, V7, V) of (E]U,@|U,V]U) with respect
to v.

(i“fam)M, NU is defined by the equation zy = 0 for a section z of Oc., on a Zariski open subset

Proof. Write z = (i’gam) i MU and m = m;*™. We denote the pullback of v via the trivial
first projection T'[v] — T’ < T by the same symbol v. As in the proof of Lemma 10.4, we
express

r—1m—1 r—1m—2

. o dz oo dz
Lv(w) =v(w) + evy(w), v(w)= Z Zak,jzjwkz—m, vy(w) = Z wazjwkz—m,

k=0 j=0 k=0 j=0

where a1 € (’);\;[ and a1 =0for 1 <k <r—1.

We choose a local frame e, ...,e,—1 of E|y whose restriction to (2m — 1)Z corresponds to
1,w,...,w" ! via the isomorphism Elm-1): = Oy [w]/(w@m_l)’”) given by Proposition 4.1 in
the case ¢ = 2m — 1. Let

’

N: E|U—>E|U

be the homomorphism defined by the representation matrix

0 0 0 z
1 0 0 0
: (10.3)
0 1 00
0 0 1 0
with respect to the basis eg,...,e._1 of E’\U. As in the proof of Theorem 7.5, we can construct

homomorphisms 6: F, s — Ea|m5c and k: Eolmz — Eal),; which satisfy 0 = 6, 'x = k and
N|mz = 0 o k. We may assume that () and (Fj) are induced by 6 and x, respectively.

Write @|Ua = d + A(2)% with respect to the frame ep,...,e,—1 of Ely = OF". Since
(E\(Qm,l)j, w(gm,l)j) =~ (O [w]/(w(mel)T),Vl,) as in Proposition 4.1, we can write

r—1m-—1

A2) =) a2 NF 4+ 2R, + 27 A () (10.4)
k=0 [=0

for some matrix A’(2) of regular functions, where we are putting

0

)
R, = | . ) |- (10.5)

jam)
S= O

T
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Set & := ng] with the identification £ @Oy, /(€) = E|y. Define the Oy [y-homomorphism

N: & — &

by the same matrix (10.3) as N. Then (5{},]([) becomes a lift of (E|U,N). Define matrices
A(z), B(z), C(2) by setting

— Z amzl](fk + 2" R, + z2m_1/~1’(z),
=0

Tbkl <k
B = ’ N
(2) (—mr +1Ir +r+k)zm—i=1"" "~
dz dz
z :

zm’

where R, is the endomorphisms of &l whose representation matrix with respect to the basis

€0, ..., €1 is the same as that of R, in (10.5) and A’(z) is a lift of A’(z) such that aA (z) =0.
Using the calculations
0 0 z 0 0 0 ="z 0
0 00 z ~ 0 0 0 —=£2
k _ k1l _ r
M= 00 of  BEN= k 0 0 0o |’
0O --- 1.0 --- 0 0o --- § 0 e 0
we can check the equality
- ~ dz - k ~.d
dN* + [RTZ,N'“] = SNREE (10.6)
z r z

Then we can see

<dB(z) + [A(2), B(z)]j,i> ‘(Qm—l)fc

r—1
b -
TOk1 d 1 Nk, i erz, 1 Nk ’
—mr+ir+r+k zm—i-1 z gm—i-l (2m—1)&

5

N

3

(]

k=0 =0
r—1m;—2
: b [+1 1 k5pd

-3 et (T e e )|
o o —mr+ir+r+ z r (2m—1)
r—1m—2

- I+1)+Fk by - -

- Tmff lT—:- r) J—L k zmkle s = (M) am-1ya-

k=0 1=0 (2m-1)z

So the matrix
N d
(A(z) + €C(2)) ij + B(z)de

determines an integrable connection Vﬂa[t] ngv] — (’)U{v] ®0u Q, such that the induced

relative connection Vﬂaﬁ o — (9@7"

Ulv] Ul © QU[U] /T[] (D N U) satisfies

Vfllja[itJ”(Qm—l)i = Lv(N) }(Qm—l)i"'
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We can give a filtration O?‘;(v] =Vio D Vg1 D DV, DV, = 2V, by setting

‘DM’[v]
Vi ==1Im (Nk|DM/[v]) fork=0,1,...,7. Sowe can see that {V{7, } induces Vl{]’k, WI{M and that

the homomorphism N lvg, - Vl&k — V&k induced by the restriction N \Vka has a factorization

v
QU,k

v
= —v ”U,k\ —v —v
Nlvg,: Vi Wik Vi

Then (VUU,kﬁqL)f,k’“TL}f,k) induces a factorized ramified structure (VUv,k719%,k’ %&k) on (sg,vﬂat ),

Ulv]
where Vgatg] is the relative connectNiori in(%uce~d by V(ﬂ]a[f)}. Thus (&f,, V%a[f)], {V(}’7k,197(’]7k, %}}]k})
becomes a local horizontal lift of (E, VAV, Ok, ffk}) {U' [ |

Lemma 10.6 (uniqueness of ramified irregular singular local horizontal lift). Under the same
assumption as Lemma 10.5, a local horizontal lift (5}}, V}’],V}}) of (E|U, V|U,V|U) with respect
to v is unique up to an isomorphism.

Proof. Let (5}}, Vga[f)], {Vﬁ’ K VU ke 20, k}) be the local horizontal}if‘i c0n~str1~1cted in Lemma 10.5.
Take another local horizontal lift (O[?:[v}’ V' AV, 9, 54.}) of (E,V,{Vi, Uk, 5%})|,,. The con-

nection V’: (9[6%)] — O;‘;{v] ® QIIJ[U] M (m(Z)p) can be given by

v

fi dfi fi
Vil =1 ¢ | + <([l(z) + EC/(Z))% + B'(z)de) :

5 \dp 5

with B’(z) a rational function on U admitting a pole at z = 0 of order at most m — 1. Note
that V' satisfies the integrability condition
!/ dZ / /
C'(z) 5 = dB'(2) + [A(2), B'(2)]

Zm

dz
zm’

(10.7)

Now we apply Proposition 4.1 in the case ¢ = 2m — 1 to the relative connection V’ on (’)E‘?E’U]

induced by V’. Then, after applying an automorphism of O?]va] of the form I, + eh, we may
assume that

dz

()

(2m—1)z =W (N) ‘(Qm—l)i" (108)

V} =1Im (N*|,,z) and that 8}, o s} is induced by the restriction N|Vk/ for 0 <k<r-—1.

By the equality (10.7), we have [A(z), 2™ 'B'(z)] =0 (mod 2™ !). Note that A(z) satisfies
the equality (10.4) with a10 € OF and B'(2) € M;(Ouy(D',, NU)) by the condition (ii) of
Definition 10.1. So we can find co(2), ..., c—1(2) € Oy satisfying

r—1
melB/(Z) = Z Ck(Z)Nk (II]Od mel End (O;‘]):;[U]))
k=0

since the equality ker (ad(N | zzo)) = Oy [N | zzo] holds. Then we can write
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with By, (2) a matrix of regular functions. Furthermore, we can see that B, (0) is a lower
triangular matrix, since V¥ = d + (A(z) + eC’(z))% + B'(z)de preserves the filtration (V}?).
Looking at the equality (10.7) again, we can see that

C'(e)ds = = (4B ) + [ B'(9) )

z

= [A(2) — 2™ 'R, B'(2)]d»

s cr(2) -~
= ap 12 N* + 22m=14 szn(_sz—i—Bm(z) dz
=0 1=0 k=0
r—1 m—1
= [zmck ay lz Nk] dz € ad( )d (mod Z2m 1dz)
k=0 1=0

In particular, we have

z

Tr (NZ <C"(z)dz — (dB’( )+ [Ry, B' (= )]d'z))) =0 (mod 2" 'dz) (10.9)

for 0 <1 <r—1. Since

(a8 + (e )Y

z

= Szm <d <z’;(f3> + k;’;fj) dz> N* 4 2" UR,, Bp(2)Jdz  (mod 2™dz)

k=0

and since [R;, Bp]|.=0 is lower triangular nilpotent matrix, we can see that the condition (10.9)
implies

2 (4(S5) - ma) =0 (moa =),

L (d <C”(Z)> pr=leaz) g, ur_l,,,(z)> =0 (modz™) (1<I<r—1).

zm—1 rzm

In other words, we have

d C%”Zi) | = 00 <d (2’,‘;523) + k:’;ff) dz) )(m_l)j = v (15

for 1 < k <r — 1, which implies that

becomes a matrix of regular functions. Furthermore, (10.7) and (10.8) implies the equality

dQ(z) + [A(2), Q(z)]% =0 (mod z2m_1dz/zm),

ZTTL
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from which we can see Q(2)|mi € Oma []\7] If we apply the transform I, + eQ(z) to the
connection V', then the consequent connection has the matrix form

(I + eQ(2))'d(I, + eQ(2)) + (I, + eQ(2)) ! <(f1(z) + eC’(z))j—;—&— B’(z)de) (I,+ €Q(2))
= (I, — €Q(2))(edQ(2) + Q(2)de) + A(z)j—j + €e([A(2),Q(2)] + c’(z))j—j + B/(2)de

= A5 + e (ABG) — B () + (4(), BE) - B + C”(z))ji)
+(Q(2) + B'(2))de

= () 5+ ¢ (ABG) + AG) B - dBG) - A6 B )5 + O 5 )
+ B(2))de

which means that ((’)?}T[ D V') is isomorphic to ((’)GUB:[U], Vgit[v}) via I, + €Q(z). Since Q(2)|ma

belongs to O,z [N |mz], we can see that I, + eQ(z) induces an isomorphism which transforms
((’)@r V' AV, O, %, }) to (O[%J], Vﬂat AV, 99,540 }). We can see that such an isomorphism
is unlque because it is determined by the coefficient of de. |

Proposition 10.7. For any vector field v € HO(T', Tr), there is a unique global horizontal lift
(E°, VY, 1°,0°,V") of (E,V,1,4,V)

Proof. We take an affine open covering Cy;, = J, Ua such that Ely, = (’)3: for each a. We
may assume that #{a | Uy D a?} = 1 for each 7 = (@iog)M,, T = (i?n)M, and T = (:igam)M,.
We may further assume that, for each o, Uy, N Dy, = @ holds or U, N Dy, = T holds for some

&= (28) o T = (T) 01 & = (T7) -

Let Uy [v] be the open subscheme of C,, (] whose underlying set is U,. If Uy, NDy;, = @, then
we can write V|, = d+ Aq(2)dz for a matrix A, with values in Op,. We can take a matrix A,
with values in Oy, [v] which is a lift of A,. After adding an element of €M, (OUQ) we can assume
that A, /0e =0. Then V, =d + A,dz is an integrable connection and ((9 Ul Va) is a local

horizontal lift of (E U, s V|Ua). Furthermore, we can prove the uniqueness of the local horizontal
lift by the same proof as Lemma 10.3.

If o satisfies Uy, N Dy, = & for some T = (icliog)]\;[,, T = (i‘lf“)M, or & = (:cz )M” we can
take a local horizontal lift (€7, , V¢, 1 €% V. ) of (E|u., V|va,llv.. v, Vlu,) by Lemmas
10.3, 10.4 and 10.5. Since the local horizontal lifts are unique up to unique isomorphisms, we
can patch them and get a global horizontal lift (5”, A\VA ZU,KU,V”) of (E, Vv, Z, 57, f)) J7» Which is
unique up to an isomorphism. |

v’

F.ram

For a Zariski open subset 7' C T, consider a morphism
u: Spec Orler, e2]/ (€5, 63) — T
such that u|7 = idy. Let
uw: Spec O [61,62]/(6%,6162,62) — T’
be the induced morphism which corresponds to a pair (u1,ug) of vector fields. We write

T'[a) := T x Spec Cle1, e2]/ (€1, €1€2, €3), T'[u] := T x Spec Clet, €2]/ (€, €3)
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with the structure morphisms 77[a@] 2 77 and T'[u] % T, respectively. We further set
M'[u] := M' 7 T'lal,  Cappag := C x M'[a],

N'u] = B X7 T[], Cawpy = C x70 M.

We define a coherent subsheaf ,, of Qé B (DM/[u}) in the same way as in (10.1) and define
B M/ [u]
a coherent subsheaf Qg of O (D M'[a]) similarly.

Covpr g/ M

Definition 10.8. We say that (£, V" [“ %, V") (resp. (€%, V¥ 1% (%, V")) is a horizontal
lift of (E,@,Z, l, 9)1\7[' with respect to w (resp. @) if the conditions (i), (ii), (iii), (iv) and (v)
of Definition 10.1 are satisfied after replacing M'[v] with M'[u] (vesp. M'[a]), replacing Q,
with @, (resp. Qg), replacing (A, I fi, ID)-structure in (vi) with (A, I} fi, [D)-structure (resp.
(A, It i, Irv)-structure) and replacing the equality of integrability condition in (iii) with

%dz Ader + %dz A deg + %dég A der + @del A deog

861 362 862 861

=dBj ANdey + [A, Bl]dz Adey +dBs Adep + [A, Bg]dz A deg + [Bl, Bg]dél A desy

for T = Adz + Bide; + Badey (resp. replacing with

A A
gdz Ader + gdz A dey = dB71 A dep + [A, Bl]dz A dep +dBy A deyp + [A, Bg]dz A deg
€1 €9

for I'% = Adz + Byde; + Bades).

The following proposition can be proved in the same way as Proposition 10.7. So we omit its
proof.

Proposition 10.9. There exists a unique horizontal lift (€%, V™ 1" (", V") of ( VAN ]})M'
with respect to u: T'[u] = Spec Ov[e1, €3]/ (€1, €162, €3) — T.

If a horizontal lift (8“, VAN A AN V“) of (E, v,1, ¢, f/) i With respect to u exists, it can be
obtained as a lift of (€%, V¥, 1%, (% V") whose existence is ensured by Proposition 10.9.

Proposition 10.10. There exists a unique horizontal lift (8“, AN CWAS V“) of (E, v, ZN, 42 )}) r
with respect to u: T'[u] = Spec O e, 62]/(6%7 6%) — T

Proof. By Proposition 10.9, there is a unique horizontal lift (€% V% % ¢% V") of (E, VAN f/) i
with respect to @: Spec O7leq, 62]/(6%, €1€9, e%) — T'. So we only have to show the existence
and the uniqueness of a lift of (€%, V¥, 1% (" V%), which is a horizontal lift of (E, VAN l}) i
with respect to the morphism u: T'[u] = Spec O7[e1, €2]/ (€7, €3) — T'. The method of the
proof is similar to that of Proposition 10.7.

We take an affine open covering C x7 M’ = |J U, as in the proof of Proposition 10.7. If U, is
an open neighborhood of (J?Z“n) j7/» then the existence and the uniqueness of the local horizontal
lift with respect to w is given in the proof of [12, Lemma 5.5]. If U, is an open neighborhood of
(a?iog) 7+ then it is much easier to prove the existence and the uniqueness of a logarithmic local
horizontal lift.

So assume that T := (i’;am) -, is contained in U,. If u is given by

i
u* (v(w))

v(w) + €10y, (W) + €avy, (W) + €162, (W)
1

— m—2
-1 A"
§ <ak,mlzm + § (ap + €1b1 kg + €2b iy + €1€2b1 2 11)% ) w”,
k=0 1=0

<
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then, by the proof of Proposition 10.7, the restriction of V* to Uy [t] = Ua[u] ® O7/[y)/(e1e,) can
be given by

dz dz dz
A(z)z—m + 6101(2’)2771 —+ 6202('2)27,1 + Bi(z)der + Ba(z)dey

0A(z)

where 836(12) = e = 0 and
r—1m-—1 ~
Az) = ap 2 N* + 2" IR, + 22 A (2), (10.10)
k=0 1=0
r—1m-—2 Tbl .
B = il NE
1(2) kzo lz; (—mr +1Ir+r+k)zm—i=1"" "~
r—1m—2 (%)
Bo(2) = 705 e <k
— (—=mr +1lr+r+k)zml=170 7
dz dz dz dz
CDE = dBI(2) + AR, B S, o) = dBa(E) + [A() Ba(e))

Then we can see by the above equality that

r—1m—2

Ci(2)lamz =D > bk N¥ama

k=0 1=0
for j =1,2. So we have [C}(2), B2(2)], [Ca(2), B1(2)] € 2™t End(E|y,).
Claim 10.11. [C}(z), B2(2)] = [Ca(z), B1(z)].

Proof. First notice that we can check the equality

IR 3okt L
using (10.6). So we have
4B, (2), Ba(2)] = [1B(2), ) Bal))
= [(Ba(2), R Ba(2)] Z 4 [[Bu(2), Ba(e)) ] &
= By (2), Bi(2)],
because [Bi(2), Ba(2)] = 0. Thus we have
L)% Ba2)| = |41+ 14) B Balo)
= [AB1(2), Ba()] + [[A:), Bi(2)] Bal))
— B, B (2] + [AG) B B = o) G Ba2) |

We put

—1
A(z) == Z ap 2 NF 4+ 2R, 4 23m LA (),
k=0 1

—_

ﬁ
3

Il
o
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— b1 2.kl <k
B 2k, N
12( kzo lz; (—mr +1Ir+r+k)zm—i=1"" "~
dz dz
Cra2(2) o = dBia(2) + ([A(2), Bi2(2)] + [C1(2), B2(2)])
where A’(2) is a lift of A’(2) as a matrix with coefficients in Oy (v Such that 8:946(5) = aée(;) =0.
Define a connection V§: O@r[ | — OETM ® Q}ZM/[“]/M, (Dyprjy) by setting

- d
Ve =d+ (A+eCi +eCr + 61626’1,2)2% + Bidey + Badeg + B 2(e1deg + exdeq).
Then V{ is an integrable connection because its curvature form becomes
d d
(Cl + 6201,2)(161 AN 2’7:1 + (02 + 6101’2)(162 VAN Zijb + (dBl + EQdBLQ) A dey
+ (dBQ + 61dBLQ) A deg + Blygdq A des + B1’2d62 A dep
dz dz dz
+ [A, B + 62312]% AN der + [A, By + 61312]% A des + 62[02, Bl]ﬁ A dey
d
+ € [Cl, BQ]Z% A dey + [Bl, Bg]del A deg
dz dz
= (dBl+( Cl—l—[A Bl]) > Adep + (dBQ"’( 02+[A BQ]) > A deg

dz
+ €9 <dBl72 + (—0172 -+ [A, Bl,z] [02, Bl]) > A deq

dz
+ € (dBLQ + (—0172 + [A, BLQ] [Cl, BQ]) ) A deg = 0.

We can define V', ¥}, », on O “ in the same way as in the proof of Lemma 10.5. So

we can get a local horizontal lift ((9?]97"[ ],Vg, (qufa,ﬂzva, %%,a)oskgr—l)a which is a lift of the
restriction (%, V¥, 1% 0%, V") |y, 1a]-

Let ((’)gr[u], A (Vkl,av 192706, %k,a)OSkSTfl) be another local horizontal lift with respect to wu,
which is a lift of (£, V%, 1", £%,V")|y;, - Then we can write

~ dz
V,=d+ (A +€61C1 + €0 + 61620{72)z—m + Bide; + Badea + 317261(162 + Bé,lezdﬁl-

The integrability condition of V’ implies the equalities

dz dz
Cla(2) % = 4Bl y(2) + ([A(2). Biale)] + (1), Ba(2))
dz
= dB}(2) + ([A(), By ()] + [C1(2), Ba(:))) (10.11)
and B}, = By ;. Since V' has the property of local horizontal lift, we have
r—1m—2
Cl )2 Z bl 2,k ZZ ma":'
k=0 1=0
/

We can see that [A(z), B 5(2)] is regular from the equality (10.11). Since A(z) satisfies (10.10),

we can first verify 2™~ 1332( ) € Om—1)z [N| (m—1) z]. Combining with the condition (c) of
Definition 10.1 (iv), we can take Bk, such that
—1

m—1

172(/2) — ﬂk,lzl_m_lNk € End (E’Ua)

%
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is a matrix of regular functions whose constant term is a lower triangular matrix. Using the
same argument as in the proof of Lemma 10.6, we can see

Tb1,2.k,1
—mr+1l+r+k

Br =

So Bia(z) — Bl5(2) becomes a matrix of regular functions and I, + €1€2(B12(2) — Biy(z)) gives an
automorphism of (’)@r ] which transform V/, to V¥ and which sends Vk to V!, Furthermore,
we can see that 5uch a transform is uniquely determined by the coefficient of €9 de1. Thus the
existence and the uniqueness of a ramified local horizontal lift with respect to u is proved.
Patching the local horizontal lifts together, we get a unique horizontal lift (87], VNN AR Vﬂ)

of (E, AN ]})M' on C x7 Spec O/ [e1, 62]/(6%, e%) with respect to u. |

11 Global generalized isomonodromic deformation

Definition 11.1. For each vector field v € T, the relative connection (Ev,ﬁ, l“,ﬁ”,V”)
induced by the global horizontal lift (5 VAN LA V”) (which exists by Proposition 10.7) defines
a morphism

LR M’ x SpecCle]/(e*) — M’
which makes the diagram

Iy -~
M’ x SpecCle]/(€?) SaICR Vi

lexidl l”’ (11.1)
T’ x SpecCl — —2s T7

commutative. We can see by the uniqueness of the horizontal lift that the morphism Ig )
descends to a morphism Mg (A, fi, 7)1 X Cle] — M (A, i, 7)1 which corresponds to a vector
field

®(v) € HO(MEp(\, i, D) 77, Thig i)y

We call this vector field ®(v) a generalized isomonodromic vector field.

Proposition 11.2. The map
©: HYT', Tr) 3 v @(v) € HY(MEp(A i, 7)1 Trig (3 i) )

is a homomorphism of HY(T', Or1)-modules.

Proof. Take vector fields vy, vy € H(T’, Tr/). Then (vq,v2) corresponds to a morphism
u: T’ x Spec (C[Gl,fQ]/(G%,ElEQ,EQ) — T’

such that the composition 7’ x Spec Cle;]/ (€7) < T’ x Spec Cley, €2]/ (€1, €1€2, €3) 2 T coincides
with the morphism I, for : = 1,2. Let

Arr: T’ x Spec (C[e]/(eg) — T’ x Spec C[El,ég]/(E%,Eleg,E%)
be the morphism corresponding to the ring homomorphism

O [61, 62]/(6%, €1€9, 6%) S a+ brer + boeg — a + bie + boe € O [6]/(62).
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Then the composition

ioAp: T' x SpecClel/(€2) s T x Spec Cley, 2]/ (€2, erea, ) % T’

coincides with the morphism I, 4., corresponding to the vector field v; 4+ ve. By virtue of
Proposition 10.9, there exists a horizontal lift (£%, V¥, 1%, (%, V*) of (E, VAN f)) v With respect
to 4. By the same procedure as Definition 11.1, the flat family of connections induced by the
horizontal lift (Sﬂ, \VANAEWAR Vﬂ) provides a morphism Ig g : M’ x Cley, 62]/(6%, €1€2, e%) — M’
such that the right square of the diagram

~ A=, ~ Isa ~
M' x SpecCle]/(e2) — M’ x SpecCley, 2]/ (3, erea, €3) —— M’

! ! l

Ay u
T’ x SpecCle]/(?) —T— T’ x SpecCler, 2]/ (€2, e162,€63) —— T
is commutative. The left square of the above diagram is defined as a Cartesian diagram.

By the definition of horizontal lift, the pullback A*~,(5a,Va,lﬁ,€a,Vﬂ) is a horizontal lift of
(E, @, l~, 57, 17) i With respect to Iy, 4y,. So the composition Ig(y) 0 A7, coincides with the mor-
phism Iy, 44,) determined by the vector field ®(vi+wvz). On the other hand, the morphism Ig )
corresponds to the pair (®(v1), ®(ve)) of vector fields and the composition Iy o Ay, corre-
sponds to the vector field ®(v1) + ®(v2). So we have the equality

I<I>(v1+v2) = I‘I’(Ul)JFq’(UQ)

which means the equality ®(v; + v2) = ®(v1) + P(v2).
Take a vector field v € HY(T’,Ty) and a regular function f € H°(7’,O7). Consider the
morphism

ap: T’ x SpecCle]/(e?) — T’ x SpecCle]/(€?)
corresponding to the ring homomorphism

Or/[el/(€%) 2 a+eb— a+efbe O/ (€%).
Then the composition

T’ x SpecCle]/ (%) <5 77 x SpecCle]/ (¢2) L5 T

coincides with the morphism I, corresponding to the vector field fv. As in Definition 11.1, the
horizontal 1ift (5“, VAR AN V“) induces a morphism Ig,): M’ x Spec (C[e]/(e2) — M’ which
makes the diagram

(af) Yl I@'v
M (v)

M’ x SpecCle]/(€?) M’ x SpecCle]/(€?) M’

! l l

T’ x Spec Cle]/(€?) T x Spec Cle]/(€?) RLEN

commutative, where the right square is Cartesian. By the definition of horizontal lift, the
pullback (ozf)}‘\;[, (£Y,VY,1v,£°,V") is a horizontal lift of (E, VAN fi) i With respect to fv. So
the composition Ig(,) o (ary) 7, coincides with the morphism Ig (s, corresponding to ®(fv). On
the other hand, the composition Ig,) o (ay)yz coincides with the morphism I F®(v) corresponding
to the vector field f®(v). So we have ®(fv) = f®(v). [
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By Proposition 11.2, ® defines a homomorphism
¢: T — (TFT)*TMgD(,\,g,D)
of sheaves of O7-modules. By the adjoint property, ® corresponds to a homomorphism
s ()" Tr — Thg (i) (11.2)

Since the diagram (11.1) in Definition 11.1 is commutative, we can see dmy o ¥ = idp, for the
canonical surjection dmwy: TM&"D( ANiD) (mw7)*Tr. In particular, the image Im ¥ is a subbundle

of Thrg p(\jni)-
Definition 11.3. We call Im ¥ the generalized isomonodromic subbundle of TM&"D( A7)

By using the generalized isomonodromic subbundle Im ¥, we can extend the relative sym-
plectic form WME (A i) constructed in Theorem 8.1 to a total 2-form on the moduli space

Mg p(A, i1, D) in the following.

s

Definition 11.4. We define a 2-form wl(\;/llé\‘/lv(Aﬂﬁ) on ME&p(A, i, 7) by setting

ch\}/}(%)(%ﬂﬁ) (v1,v9) = WM (A7) (v1 = ¥(dmr(v1)),v2 — U(dmr(v2)))

for vy,v9 € TMS‘D( Aji,p) and call it the generalized isomonodromic 2-form.

Remark 11.5. In the logarithmic case, the above formulation of isomonodromic 2-form is given
by A. Komyo in [18]. For a vector field v € Thrg (25,7 we can immediately see the equivalence

GIM
veEImV & WA (i) (v,w) =0 for any w € TM(,?L,D()V/LD)

from the definition of the generalized isomonodromic 2-form. So the generalized isomonodromic
2-form recovers the generalized isomonodromic subbundle.

Theorem 11.6. For any vector fields vi,ve € T, the equality
O([v1, v2]) = [®(v1), P(v2)]

holds, where [v1,va] = vivy —vov1 is the commutator of the vector fields vy, va. In particular, the
generalized isomonodromic subbundle Im ¥ of TM&"D(AJL,D) satisfies the integrability condition

Im W, Im ¥] C Im .

Proof. Take vector fields vy, vy € HO(T’, T'r|7) over a Zariski open subset 77 of 7. Let

I+ T’ x SpecCler, €]/ (€3, €5) — T’ x SpecCler, €2]/ (€1, €3)

be the automorphism corresponding to the ring automorphism 1:;‘1 of O7leq, €2]/ (€7, €3) defined
by

j:I (a + bre1 + boes + 66162) =a-+ (Ul(a) + 51)61 + boeg + (’Ul(bQ) + 6)6162.
Similarly, we can define an automorphism I,,, of 77 x Spec Cley, €3]/ (e%, e%) corresponding to vs.
By construction, we can see that I_,, = fv_ll and I_,, = I~U_21. The composition I, 01, 01_y,0l_,,
corresponds to the ring automorphism of O7[e1, €3]/ (€1, €3) determined by

I* o fiw o f;l o f;;(a + brey + baey + cer€2)

—v1
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= ffvl o jiw o I?jl (a+ brer + (va(a) + ba)ea + (¢ + va(by))er€2)

=TI, oI, (a+ (vi(a) + br)er + (va(a) + ba)ez + (v1va(a) + v1(ba) + ¢ + v2(b1))eres)
=1*, (a+ (vi(a) + b1)er + baes + (—vov1(a) + viva(a) + v1(b2) + c)erea)

= a+ bieg + baea + ((viv2 — v2u1)(a) + c)erea.

_|_
+

Let

p: T’ x SpecCle1, e2]/ (€1, €3) — T’ x Spec Cle]/(€?)
be the morphism corresponding to the ring homomorphism p*: O7[e]/(e?) — O7[e1, €2]/ (€1, €3)
determined by p*(a + ce) = a + ce1e2. Then the composition

T’ x Spec (C[el,eg]/(e%,e%) 25 7" x Spec (C[e]/(eQ) Jovazvgu, T (11.3)

coincides with the composition

]~v2 ofvl ofv_;ofv_ll
%

T’ x Spec Cley, e2]/ (€7, €3) T’ x SpecCleq, €2/ (€7, €3)

trivial projection T/
S .

(11.4)

By Proposition 10.9, there exists a horizontal lift (Sf’i,vﬁi,l{’i,ﬁf’i,vﬁi) of (E,@,l: !7, ]})M'
with respect to the morphism

T’ x Spec (C[el,eg]/(e%,e%) — T x Spec Cle, 62]/(6%,6%) {rivial projection, T

For the relative connection V% induced by V%, the flat family (561',%, 1Y, 0%, Vﬁi) determines
a morphism Igg,): M’ x Spec Cley, €3]/ (e%, e%) — M’ which is canonically extended to a mor-
phism

I},({)i): M’ x SpecCler, e2]/ (€3, €3) — M’ x Spec Cleq, 2]/ (€3, €3)

over Spec Cleq, €]/(€7, €3). Furthermore, the diagram

7 7 71
Id>(52)01¢(51)01<1>(132)°

- Ioh  ~
M’ x SpecCley, €3]/ (€3, €3) TN VN Spec Cley, €2]/ (€, €3)

| |

Iy, oly ol Lol !
T x SpecCley, €]/ (€3, €3) i B T x SpecCley, €]/ (€3, €3)

is commutative.
By the definition of horizontal lift, we can see that the pullback
F—1 \*(F-1 \*7* B2 b2 jO2 g2 YU
Taioy) Uany)) Lo (€7, V7,172,072, V7)

becomes a horizontal lift of (E, AN f)) i With respect to the morphism (11.4). On the other
hand, there is a canonical commutative diagram

y ~l 7 [ V1V — V9V ~
M’ x Spec@[eh@]/(e%’eg) __pl/[__> M’ % Spec(C[e]/(EQ) Plorvz—vavn) 4oy

! ! !

7—/ X Spec C[el,fg]/(e%7e%) % 7'/ X Spec(C[e]/(52) IU1U2—v2v1 7_/7
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whose left square is Cartesian. So we can see that the pullback

IO*M/ (Svlvg—vgm’ VUI’U2—U2U1 , lvl’ug—vgv1 , €U1U2—’U2v17v1}1v2—v2’u1)
becomes a horizontal lift of (E,@,l: l, ]})1\2// with respect to the morphism (11.3). Since the
morphism (11.4) coincides with the morphism (11.3), we can deduce an isomorphism
(o) (o) Togo (€72,972, 172, 72, y72)
‘1)(171) CD(IN)Q) CI)(Ul) ? ) ’ )
o~ pj\]/ (gmvg—vzvl , vvlvz—vzm , lvlvz—vgvl,gvlvz—vgvl , V’U1’U2—’UQU1)
by the uniqueness of horizontal lift proved in Proposition 10.9. Considering the induced mor-
phism, we have

(trivial projection) o I‘I’(@)Ofé(al)Ofi(lq;Q)Of;(lal) = I (o105 —vav1) © Pajrs

from which we get ®(viva — vov1) = @ (v1)P(v2) — P(v2)P(v1). [

Definition 11.7. Since the subbundle Im ¥ C Thrg (0 i) satisfies the integrability condition

GIM
]:TMaD(A%m

call it the generalized isomonodromic foliation.

by Theorem 11.6, it determines a foliation on the moduli space MCOfD()\, a,v). We

Take a point tg € 7 and a point y of the fiber MCO:D()‘v i, V), over to. Then we can take an
analytic open neighborhood M’ of y in Mgp(A, i, 7) and an analytic open neighborhood T’ of
to in T together with an analytic isomorphism

M = 20 < T’ (11.5)

such that the restriction w7 |y of mr: MSp(A, fi, 7)) — T coincides with the second projection

and that the fibers {{y'} x T/}yleMéo over Mj  are leaves in fﬁ%(&ﬁ’ﬁ).

Take a holomorphic system of coordinates 6 = (61,...,0x) of T'. If we set
T'[06] := T' x SpecCley, ..., en]/(eiej | 1 < 4,5 < N),
then the tuple 90 = (9/961, ...,0/00y) of vector fields on T’ corresponds to a morphism
Isg: T'[00) — T,

whose restriction to 7' C T'[00] is the identity morphism.

By the same proof as Proposition 10.9, we can construct a horizontal lift (
Vae) of the universal family (E,V,[,£,V) on C x7 M’ with respect to the morphism I39. On
a small open subset U C Cx7M/’, we may assume E|y & O Then we can write V|y = d+Adz
where z is a holomorphic coordinate on C x7 M’ over M’ and A is a matrix of meromorphic
functions in z. Let U[90] C C x5 M’'[06] be the open subscheme whose underlying set is U.
Then we have &|y(gg = 016]9{89] and we can write V% = d + A(e)dz + Zévzl Bjdej, where A(e) is

a lift of A. By the integrability condition of V??, we have the equality

586’ v897 l@@) 589’

N N N
0A(e) 0B;
> e, de; /\dz—i—za—;dz/\dq +Z[A, Bjldz Ade; = 0.
j=1 7=1 7=1
Take a holomorphic coordinate system x4, ..., x5 of Mgo. With respect to the coordinate system

2,21,...,%5,01,...,0N, the partial derivative 9/00; coincides with the vector field ®(9/06;) and
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the partial derivative 0A/00; coincides with 0A(e)/0¢;. So the above integrability condition
of V9 is the same as the integrability condition

N
——do, /\dz+z a;dz/\de +) [A,Bjldz Adf; =0
7j=1

0A
< 90,

of the connection
N
Vit =d+ Adz + ) B;do;
j=1

on E|y relative to the composition

7TM/

U CxgM — MM, x T —2% M,

where M, M= M x T' — Mj, is the first projection. So we can see from Theorem 9.7

and Corollary 9.11 that V| is a local generalized isomonodromic deformation in the sense of
Definition 9.4 or Definition 9.10.

We can patch V[ﬂ]at together to get a global connection on F. Indeed, take another open
subset U’ C C x7 M’ and write V|y» = d + A'dz. Then we have P~'dP + P71 AdzP = A'dz
for a transition matrix P. There is a local horizontal lift d + A’(e)dz + Zévzl Bide;j of V|yr and
by the uniqueness of the local horizontal lift, we have a uniquely lift P(e) of P satisfying

N
+P(e)' [ A()dz + > Bjde; | Ple)
j=1

P(e)!

.
—de€;
O¢;

N
= A(e)dz + Z Bide;.
j=1

Since OP(€)/0e; = OP/06;, the above equality yields the equality

, [oP N op » al s,
D) 9,00 | + P Adz +3 " Bjdo; | P= A'dz+ Y Bldg.
=1 7=1 7j=1

So we can patch the local connections V[ﬂ]at together to get an integrable connection
fl
vhat, E — E & Qexrpnjaty, (D) (11.6)

relative to the composition C x7 M' — M' = M} x T — M},

Corollary 11.8. The generalized isomonodromic 2-form wGIM

tion 11.4 is d-closed.

S (OMiD) constructed in Defini-

Proof. Under the above notations, we will prove the equality

w](\?g\/[ A f,0) ‘M/ - 7r./\/[’ ( A7) ‘./\/l/ ) (117)

where M, M= M x T" — Mj, corresponds to the first projection with respect to the

isomorphism (11.5). The corollary follows from this equality, since WMS‘D(A,/J,D)| M, is d-closed
by Theorem 8.1.
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Take two tangent vectors v,v" € Ty (y, to) at (y,t) € Mj, x T'. We have the equalities
(mag, )e(0) = (g o0 = DEr (o)) (Tagy 1o (6) = (g, ol — Dlrp )]

because {y x T’} e, are leaves of the foliation .7:]\(;4?/[ (\jz)» Which is determined by the
0 D ad)

subbundle Im ® of Ty (x5 The tangent vector (maq )«(v — @(m77)«(v)) corresponds to
N I ) O

a morphism Spec Cle]/(e?) — M. Let

I,: Spec C[e]/(eQ) XT'h— My xT' =M

be its base change.

We can construct a complex F* of sheaves on C x M’ from the universal family (E, V,[,¢,V)
in the same way as (6.9) in Section 6. Since (id x I,)*(E, V,1,£,V) is a lift of (E,V,1,Z, Ve,
it induces a gluing data {uag,va, N} With respect to an open covering {U,} of Cyuyr :=C X7
(y x T'). as in Proposition 6.3. Set

U= [{Uaﬁavaana}] € Rl(pyXT/)*(f.’CyXT')'

Then we can see from the construction of ¥ that the equalities

,ﬁ’(y,to) = (WM,tO)*(v) € Hl (f.’C(yytO))a
ﬁ|(y,t) = U — @(7’(7—/)*(1}) S Hl (‘F.|C(y,t))'

hold. We can similarly construct an element v’ = {uly5: Vi Mo }] of RY (pyxT/)*(}"'|ch ) from
the tangent vector v'. Recall the construction of the complex F* in (6.9). Since the map
G! — G" is surjective and the map G° — SL _is a surjection to the kernel of the surjection

ram
St — AL, we can replace uqps, vo S0 that 7, = 0 holds. Similarly we may assume 7}, = 0.

Consider the pairing
w(?, 1;/) =[{ Tr(uapuy,), — Tr(uapvg — Valing) }] € ]R2(pyxT,)*(QnyT,/7—,) ~ Op

of % and v’. Then we have the equalities

Tty (@a1g (00 Mg ) (0:0) = Wigg oy (T )« (0), (Taer ) (V) = w(8,0)[(y.40)
GIM -
Witg i) (V) = Waigp (o), (V= P(70)«(v), 0 = @(m7) (V) = w (8, 0) 0
So, in order to prove (11.7), we only have to prove that w(f),ﬁ’) € O is constant on T'. We

may assume that 7’ is isomorphic to a polydisk. Then it is sufficient to show that w(ﬁ,&’)
belongs to the image of the canonical map

C=H2(Oc,, . S0, ., S S0 )
d Il
— RQ(pyxT’)*(OnyT/ - QéyxT’/T/) = O7. (11.8)

Recall that (F, V) can be extended to the family of integrable connections (E , Vﬂat) in (11.6).
Then the pullback (id X fv)* (E , Vﬁat) is a family of integrable connections relative to Spec Cle]
whose induced relative connection is (id X fv) *(E, V). So we can extend the relative meromorphic

differential v, = Badz to a total differential v = B,dz + Zf\il C! df; which satisfies the
patching condition

(id + euqp) o (Vﬂat + evgat) = (Vﬂat + evgat) o (id + euqp)
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on Ely,, ® Cle] and the integrability condition

(Vﬂat + 6v(f)llat) o (vﬂat + G'Ugat) = 0.
Let

Vi End(Eyur) 3w V™ 0w — (u@id) o VI € End(Eyurr) © U,y (Dyscr?)
be the induced connection on End(Ele, , ). Then the above two equalities become

Vi (uap) = vg™ —of™, VI (0g*) =0.

We can check the equalities

Tr (V¥ (uagus,)) = Tr (VI (uag)uf, + uas Vi (uj,))

dTr (uagu,) = Tr (
TI‘( ﬂat ﬂat uﬁ'y + uaﬂ( Mlat v/ﬁﬂat))
(

= Ugat%” gat(“av — Unp) + (Uay — Uﬁw) Jflat ua,BU/Bﬂat)
=Tr ( Uﬁyvlﬂat n Ugatubv) Ty (_ua’yv/ﬂat 4 Uﬂat /M)

T (—tagv 4 ot ),
dTr( uagvﬁﬁat +vﬂat / ) —Tr (Vﬂ t( uaﬁv;gﬂat +Uﬁat /6))
= Tr (- Vﬁ (e )/\Urlgﬂat flat /\vﬂat( aﬁ))
—Tr (( flat gat) A v/ﬁﬂat) Tr ( flat (v/ﬂﬂat _ v'oflat))
=—-"Tr ( flat A v/’Bﬂat) + Tr (vg flat A Ugiat)

and
dTr (Ugat A ,Ugiat) = Tr (v?at (Ugat A Uglat)) —0.

Therefore, [{ Tr(uaguj,), — Tr (uapvf + vg*ul,z), Tr (05" A v)2*) }] defines an element of
H? (Q('j T/) 2 C and its image by the map (11.8) coincides with
yx

w(®,0") = [{ Tr(vagufy,), — Tr(tagvh + vatiyg) -

Thus we have proved the corollary. |
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