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Abstract. In this paper we revisit the subject of stationary flows of Lax hierarchies of
a coupled KdV class. We explain the main ideas in the standard KdV case and then
consider the dispersive water waves (DWW) case, with respectively 2 and 3 Hamiltonian
representations. FEach Hamiltonian representation gives us a different form of stationary
flow. Comparing these, we construct Poisson maps, which, being non-canonical, give rise to
bi-Hamiltonian representations of the stationary flows. An alternative approach is to use the
Miura maps, which we do in the case of the DWW hierarchy, which has two “modifications”.
This structure gives us 3 sequences of Poisson related stationary flows. We use the Poisson
maps to build a tri-Hamiltonian representation of each of the three stationary hierarchies.
One of the Hamiltonian representations allows a multi-component squared eigenfunction
expansion, which gives N degrees of freedom Hamiltonians, with first integrals. A Lax
representation for each of the stationary flows is derived from the coupled KdV matrices. In
the case of 3 degrees of freedom, we give a generalisation of our Lax matrices and Hamiltonian
functions, which allows a connection with the rational Calogero-Moser (CM) system. This
gives a coupling of the CM system with other potentials, along with a Lax representation.
We present the particular case of coupling one of the integrable Hénon—Heiles systems to CM.

Key words: KAV hierarchy; stationary flows; bi-Hamiltonian; complete integrability; Hénon—
Heiles; Calogero—Moser
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1 Introduction

It has long been known [6] that the stationary flows of nonlinear evolution equations of “KdV-
type” are themselves (finite-dimensional) completely integrable Hamiltonian systems. Specifi-
cally, [6] considered the KdV hierarchy, with its first Hamiltonian structure:

ut,, = 8905an+1, (1.1)

where H,, are the KdV Hamiltonian densities. Setting u;, = 0 leads to an ODE in (generalised)
Lagrangian form, with £,41 = H,t1 — au. The (generalised) Legendre transformation then
leads to canonical variable, in which the stationary flow takes Hamiltonian form. The lower
flows wg,,, m = 1,...,n — 1, then restrict to this finite-dimensional manifold, forming a system
of commuting Hamiltonian flows, corresponding to Hamiltonian functions which are derived
from the fluxes of the lower KdV densities.

In [3], it was shown that each of these stationary flows is bi- Hamiltonian on an extended space,
with additional dynamical variable cc. This was derived by using the Miura map, which also
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gave a bi-Hamiltonian formulation of the stationary MKdV equation. This should be compared
with the full MKdV equation, with only one local Hamiltonian structure.

In [12], the 3 known integrable cases of the Hénon-Heiles equation were shown to be re-
lated to the stationary reductions of the 3 known fifth order (single component) nonlinear
evolution equations with a Lax representation. Omne of these is in the KdV hierarchy, but
not in the canonical coordinates derived from (1.1). In this calculation the fourth order sta-
tionary flow (for one coordinate q;) is derived as a consequence of the coupled second order
system, by differentiation and elimination, so the relation to canonical variables is not ad-
dressed. In [4], these canonical variables are directly constructed by using the second Hamilto-
nian structure of the KdV hierarchy. Indeed, in [4] a general approach, using squared eigen-
function coordinates, was introduced, relating several well-known completely integrable, finite-
dimensional Hamiltonian systems to the stationary flows of various well-known Lax hierar-
chies.

In this paper we revisit this subject, bringing together the ideas of [3] and [4], enabling us to
build bi- and tri-Hamiltonian representations of a number of interesting systems. The approach
also allows us to build Lax representations for these. These systems are certainly completely
integrable, but some are superintegrable [8, 11, 16].

Since many of our formulae follow from those of coupled KdV hierarchies, associated with
“energy-dependent” Schrodinger operators [1, 2], we give a brief overview of these in Sec-
tion 2.

Our main explanation of stationary reductions is given in Section 3, in the context of the
KdV hierarchy. The two Hamiltonian representations of each PDE flow give us two station-
ary manifolds with different coordinates. This can be compared with the approach of [3],
which used the Miura map and the “modified” equation. The second of the Hamiltonian
representations in this paper has a multi-component generalisation which gives some super-
integrable systems, such as the Garnier system (3.5b) and a generalised Hénon-Heiles sys-
tem (3.12b) (both with N-components). Choosing N so that the stationary manifolds of
the two representations have the same dimension, allows us to build Poisson maps between
these manifolds, giving us a bi-Hamiltonian representation of the stationary flows (see Sec-
tions 3.1.1 and 3.2.1). The Lax representations of these stationary flows are discussed in Sec-
tion 3.3.

We discuss the stationary flows of the DWW hierarchy in Section 4. Following the ideas
of Section 3, we find N-component, superintegrable systems (4.4c) and (4.8a), with (respec-
tively) sextic and quartic potentials. Again, choosing N so that the stationary manifolds of
the two representations have the same dimension, allows us to build Poisson maps, giving us
bi-Hamiltonian representations (see Sections 4.1.1 and 4.2.1). Lax representations are presented
in Section 4.3.

In Section 5, we use the Miura maps of Section 2.2.1 to construct a tri-Hamiltonian formu-
lation of the stationary flows of the DWW hierarchy and the two modified hierarchies, depicted
in Figure 1. As this figure indicates, there are six local Hamiltonian operators (for the PDEs),
arranged in a triangular array. In the stationary coordinates, we build a square array of nine
Poisson matrices, so each of the stationary hierarchies is tri- Hamiltonian.

Some of the Lax representations of Sections 3.3 and 4.3 can be generalised to incorporate an
arbitrary function, which enable us to couple some of our potentials to the rational Calogero—
Moser system [7, 17]. This is discussed in Section 6, where we specifically generalise the Gar-
nier system (3.5b), the generalised Hénon—Heiles system (3.12b) and the system with Hamilto-
nian (4.8a). Using the approach of [13], these can all be canonically transformed to the rational
Calogero-Moser Hamiltonian, with additional potential terms. These are all completely inte-
grable and have a Lax representation. To illustrate this, we explicitly present the Hénon—Heiles
case.
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2 Lax representation of coupled KdV equations

In [1, 2] a detailed analysis was given of coupled KdV equations, associated with “energy de-
pendent” Schrodinger operators. Here we give a very brief review to present a few facts which
we use in this paper.

The “energy dependent” Schrédinger equation is

M-1
Ly = (8% +u) =0, where u = Z w Nt — MM (2.1a)
i=0

such that w; are functions of z and some “time” parameters t,. Suppose for one of these
(denoted “t”), we have

Y = A = (2P0, — P). (2.1)
From (2.1a) and (2.1b) we can obtain two formulae for ., which, when equated, lead to
up = (82 + 4udy, + 2ugy) P. (2.1c)

The coupled KdV hierarchy is given by the polynomial expansion
n
P = an—kpk, with Py =1. (2.1d)
k=0

Substituting this into (2.1c¢) and equating coefficients of powers of A gives us a recursive formula
for P, and then the formulae for w;,, which can be written in matrix form to give the Hamilto-
nian formulation. In this paper we only consider the KdV (M = 1) and DWW (M = 2) cases,
S0 just describe the Hamiltonian formulations for these specific cases.

This differential operator Lax pair is rewritten in “zero-curvature” form

1y _ (0 1\ [v1) _ (R —P 2P\ (1) _
(), = (o) ()=o), = (ourp ) () =voe 2

with integrability condition
U — Vo +[U,V]=0, (2.2b)

which again leads to (2.1c). For a specific hierarchy, we must substitute the correct form of w.
For the specific t,, flow, we must also use P(™ of (2.1d) in V, leading to

Uy, — V™ + [U,v™] = 0. (2.2¢)

We then have a direct construction of a Lax pair for the stationary flow Uz, = 0, by rewriting 124
in terms of the coordinates being used on the stationary manifold. This will be explained in
more detail in Section 3.

2.1 The KdV hierarchy and conservation laws

The KdV hierarchy corresponds to choosing M = 1 in (2.1a), so u = ug — \. The coefficients Py
in (2.1d) are constructed recursively, the first few being

1
P0:17 Pl:*’LL[), PQ:

5 (u()m + 3ug).

|
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The flows are given by (2.1c), with P = P(™ and can be written in bi-Hamiltonian form

uot,, = B10u, Hyn = BodyyHp+1, n >0, (2.3a)
with

By = 82 + 4ugdy, + 2uge,  By=40, and P, = 6,,H,, (2.3b)

where ¢, denotes the variational derivative with respect to uo.
In particular,

1 1 1
Ho = ug, H1 = Zug, H2 = — <’U,g — 2’11,330) y

Hj 5ug — 10uou, + ug,,)- (2.3c)

:@(

Corresponding to these densities, we have an array of flures Fj,,,, in local conservation laws,
given by the t,, evolution of H,,:

O, Hy = O Fun. (2.3d)

In particular, we have

1 1
Fip = §(U0mm + 3U(2))7 Fi = 8 (2U()u0x;p o U(2)x + 4’11,3),

1
F20 = g (10u8 + 5u(2)w + 10uougzs + qu:p:px)»

1
Fy = ﬁ (15u3 + QOU%UQxx + U(2)m — Uz U0zzs + 2u0u0mm). (2.3e)

2.2 The DWW hierarchy and conservation laws

The DWW hierarchy corresponds to choosing M = 2 in (2.1a), so u = ug + usA — A2, The
coefficients Py in (2.1d) are constructed recursively, the first few being

1 1 1
R=1,  P=guw, P=(du+ 3ui), P3= 15 (12uour + 53 + 2u1ay).
The general recursion, defined by (2.1c) is
J()Pm—Q + lem—l + J2Pm = 0, (24&)

with
Jo = 82 + 4ug0y + 2ugy, J1 = 4uq10; + 2uqy, Jo = —40,.
For P = P, we have
uot, + Auir, = JoPn + A(JoPr—1 + J1 Py), (2.4b)

which can be written in vector form

u\ _ (0 Jo\ (FPoa)\_(Jo O Py _ (=1 —J2\ (Pana (2.4¢)
u), Jo 1 P, 0 —J2) \Pas1 —-Jo 0 Po2)’ '
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with the first being given directly by (2.4b). The general recursion (2.4a) then gives the second
two representations. These matrix operators are the 3 compatible Hamiltonian operators of the
DWW hierarchy, labelled respectively as By, By and By. Defining

Pn—l _ _ 5U0Hn
(P =, = (. 259
we have
Uy, = BQ(San = Bl5an+1 = Boéan_i_Q, for n > 0, (25b)

where u = (ug,u1)T. This is the construction given in [1, 2]. An r-matrix formulation was given
in [20].

The above construction gives an infinite sequence of Hamiltonian functions, H,,, the first few
of which are

1 1 1
Hy = uy, Hy = ug + ~ui, Hy = -uy <u0 + u%) ;

4 2 4
1 3 5) 1
Hs = 1 (u% + §u0u% + 1—6u111 - 4u%m) . (2.5¢)
We have
BoduHo = BodyHy = B16,Hy = 0, (2.5d)

meaning that By has two local Casimir functions Ho, Hy, whilst By has one local Casimir
function Hy.
We define fluzes Fy, by the same formula (2.3d), giving

3 1
Fio = 2ug + Eu%’ Fi1 = 7(411,0161 + U? + Ula:x)y

2
1 Y 1
Fi9 = 5(1616(2) + 4OUOU% + 9’11111’L — 4“’%:): + 8’U/1U1m;), Foy = 3uguy + Zu‘i’ + iulm,
1 2 2 4 2
Fy = 5 (48ug + T2uoui + 15u] + 20ui, + 16ugze + 32u1tigg),
1
Fyy = 5 (48uur + 9uf — Bupzuts + SutUoze + 18UTUILy + Sug (6uf + Uizs))- (2.5¢)

2.2.1 Miura maps

In [2], Miura maps were presented for the entire class of systems described by the Lax op-
erator (2.1a). In the DWW case, there are 3 sets of variables (ug,u1), (wo,w1) and (vg,v1),
related by

ug = —wWog — w%, U = W1 and wo = Vo, wp = —Vig — 2’00’01
= Uy = —Vor — ’US’ Ul = —Vig — 2UOU]_. (26)
In the u-space we have the 3 local Hamiltonian operators B = B;, i = 0, 1,2 given by (2.4c),

with 2 local operators BY', B}’ in the w-space and just 1 local operator B3 in the v-space. These
are depicted in Figure 1 and related by

Du Du f Dw Dw f
u_ _— _Rw _— f = 1 w_ _ _RBY _
By Dw Bi; (Dw) ’ or k 2y and By Dv B ( Dv > ’
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Figure 1. Hamiltonian operators in the 3 spaces.

Du
where D and

Bw . 0 —Gx(&r — 2w0)
2 (8$ + 2’[1)0)83; 4w18x + 2w1x ’

0 -0 -0 0
v o T w o __ T
B2_<—ax 0)’ Bl_(o 4696)'
We have built a sequence of Hamiltonians H}! = H}![ug, u1], as functions of ug, w1 and their

x-derivatives. The Miura maps then define H;” and H}, by substituting the formulae (2.6)
into H}'. The flow uy,, defined by (2.5b), gives rise to the flows:

DY are the Jacobians of the maps (2.6), with

wi, = BYS,HY = BY6,HY,, and v, = B, HY, (2.7)

where w = (wg, w1)T and v = (vg,v1)".

3 KdV stationary flows

In this section we discuss the two different canonical representations of the stationary flows,
related to the two Hamiltonian representations of the KdV hierarchy. This gives us a new way
of constructing a bi-Hamiltonian representation of the stationary flows. We also discuss the Lax
formulation of the derived systems.

A stationary flow (for t,) means that we reduce to a finite-dimensional space with wug, = 0.
The “time” variable for this system is x, which is the variable which appears in the Lagrangians,
given below.

This gives an ODE, defined by one of the two representations given in (2.3a):

1. Using By with the Bogoyavlensky—Novikov coordinates [6], we build the first Lagrangian:
B05u0Hn+1 =0 = 5u0 (Hn—H — OéU()) =0 = ﬁn—‘rl = Hn+1 — aug. (31)

We then use the (generalised) Legendre transformation to find canonical coordinates (g;, p;)
and the Hamiltonian function.

2. Using Bj and the squared eigenfunction representation (following [4]):
Suo Hy = agp?, (3.2a)
and since By is skew symmetric, we can show
0*(B19®) = (20° (Ve T u09)), =0 = 20°(pew + uop) = 48. (3.2b)

Equations (3.2a) and (3.2b) can then be written as variational derivatives of a single
Lagrangian function
1

1 1
Ly =—H, — ~ugp® + =2 —
n 2. 2“090 +2(px

52. (3.2¢)

Again, the (generalised) Legendre transformation gives canonical coordinates (Q;, P;) and
the Hamiltonian function.
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Remark 3.1. Clearly, the algorithm for constructing the H,, of (2.3¢c) leads to awkward looking
overall factors. In the above formulae for £, and £,11, we always choose convenient multiples
of Hy, and Hy41.

Remark 3.2. In equation (3.2a), the parameter a is arbitrary, but we can always rescale ¢, so
1

choose a = 3.

Each of the above representations gives an n-degrees of freedom canonical Hamiltonian system
for the stationary flow wg;,, = 0. We can extend the spaces to 2n 4+ 1 dimensions, by adding
the arbitrary constants v and 5 as dynamical variables, which are just Casimir functions of the
respective extended canonical brackets.

Poisson map. We can then write g;, p;, o in terms of ug(x) and its derivatives, which in turn
can be written in terms of @Q);, P;, § and vice versa, thus giving us a Poisson map between the
two systems. We emphasise that this is not a canonical transformation, so generates a second
Poisson bracket for each of the systems. We give a more detailed description of the procedure
for the simplest case of the t1 flow.

First integrals. Setting ug;, = 0 in (2.3d) means that the fluxes F,,, are first integrals. On
this (extended) stationary manifold, the n + 1 functions {F,;}}_, are independent.

Multi-component squared eigenfunctions. Since B is a linear operator, we can extend
the squared eigenfunction representation (3.2a) to include multiple eigenfunctions, with

1
Ouo . = 5 > gl (3.3a)
%

The first option is to repeat the calculation (3.2a) for each ¢;, to obtain 290?(90ixx + uop;) =
443;, giving

1 1 Bi
) 7
For the second option we first define ? = > ¢?. We then consider
PBip* =0 = Y 0i(Piaa +u0pi) + Y (9ipje — Pia)’ = const. (3.3c)
i i<j
If we now set

2 .
Pizz + Ui = ifz’ then  ¢* Y " @i(iax + topi) = 28, (3.3d)

7

Furthermore, (¢;pjz —@jPiz)z = 0, for each i < j, so the expression in (3.3c) really is a constant.
Therefore, (3.3d) is a solution to our problem. We then have

1

1 B
L, =H,+ B ZZ: o §u0@2 — (3.3e)

It can be seen that this Lagrangian is rotationally invariant in the ¢ space and that the expres-
sions (pijz — @;piz) are just the angular momenta, which are constants of the motion.

3.1 The t; flow

We build 3 different Hamiltonians.
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The Lagrangian (3.1), using 8 Hy and labelling —Ly as L, gives
1 1
L= uox ud + o = pl= §p% + ¢ — aq. (3.4)

The Lagrangians (3.3b) and (3.3e) are degenerate, since H; is independent of ug,. Choosing
—H; in (3.3b) gives

N

.1 28\ 1

L= (90121 — uogog — 21> — Zu% (3.5a)
=1 ¥

i

\)

We find 6uO£~ = —%(Z -1 cpl + uo) = 0, so substitute ug = — Z - gpl, to obtain the Garnier
system (see [22])

1 i
i=1 1= 180Z
N
NN (o) %Z <Pf 2Bz> 1 (ZQ ) , (3.5b)

=1

A similar calculation for the case (3.3e) leads to

N
L@ EZ _1 (Z Q2> n @, (3.5¢)

=1

where Q? = Zi:l Q3.

First integrals for the Hamiltonian h(?) of (3.5b). The fluxes (2.3¢) give us two
integrals for this Hamiltonian, one of which is h(?) itself. The other is a deformation of the
rotational Casimir in N dimensions. To describe this, we define

02 .02
hi= @b - QP2 (B2 B o isicisn (3.62)
@
We then have
Fio= 2@, = Zhw + Zﬁz (3.6b)
z<]

We see from (3.6b) that his is an integral when N = 2. In fact, for arbitrary N, each h;j is
a first integral, for all ¢ < j, so for N > 3, this system is superintegrable, as is known [5, 22].

The Poisson relations for h;; are particularly simple when N = 3. We first define a cubic
element hqo3:

hi2z = (Q1 P2 — Q2P1)(Q2P3 — Q3P»)(Q3P1 — Q1P3)
(51@2@3(@2133— Q3Ps) 52@1@3(@3131 Q1P3) 53@1@2(@1&- Q2P1)>
Q3 Q3 Q3

We then have
{h12, has} = —{h12, hi3} = —{h13, haz} = 4h123,
and
{h12, h123} = 2 (h12(h13 — hos) — 451ha3 + 452h13) ,
{ha3, h123} = 2 (hoz(hi2 — hi13) — 452h13 + 453h12) ,
{h13, h123} = 2 (h13(hog — hi12) — 453h12 + 451 ho3) .
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Remark 3.3 (rotationally symmetric case). The Hamiltonian h(?) of (3.5¢) is clearly rotation-
ally invariant, so the integrals (3.6a) are replaced by the angular momenta and ®@ just gives
the rotational Casimir in N dimensions.

3.1.1 Bi-Hamiltonian formulation when N =1

Here we have

B

Q

The Hamiltonian formulations (3.4) and (3.7) give coordinates q=(q1,p1, @) and Q=(Q1, P1, 5),
respectively. From the definitions of the canonical coordinates, we have

1 1
K@ = —p2 ZQ% + (3.7)

2

@ =up = —Q7, p1 = ugzr = —2Q1 P, a = Uggy + 3ud = —4h(@). (3.8)

In the 3D space with coordinates q, we introduce the degenerate extension of the canonical
Poisson tensor:

Cwith 4 _py,

@ _ | _
PO N dtf

S = O
o O O

1
0
0

for any function f(q). The formulae (3.8) represent a mapping from the Q space to the q space,
with Jacobian g—g. We use the inverse map to construct a Poisson tensor PO(Q) in the Q space.

The Jacobian of this inverse is just the inverse matrix of g—g, which is conveniently written in
terms of the Q coordinates:

-1 -\ T
@ _ (94 ONNEL! o dQ . Qo 7

where f(Q) = f(q(Q)). From (3.8), we find (up to numerical factor)

0 Qi% —P
6
PO=|-2 0 5|, with a=-4r@, 1@ =_4p.
P 2 0
&

This is compatible with the canonical bracket on the Q space:
010
PO =[-10 0],
0 00

which in turn allows us to construct a Poisson tensor 73@, using (%)PfQ)(%)T = —473@,

which should be written in terms of the q variables:
@ 0 ¢ P1
,qu =11 —¢ 0 a— SQ%
—p1 3q% -« 0

We use the two independent fluxes from (2.3e):

Fio = %Oé = —2h(@), Fi = —%h@ =0,
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to build the bi-Hamiltonian ladders, which satisfy
POV,a=0,  ay =P V=PV,  POYHOD =
POV @ =0,  Q, =PPVoh@ =PPvo(-8), PYVes=0.

Whereas o and 8 were chosen to be the Casimirs of the canonical brackets, we see that h(%
and A9 are the Casimirs of the “second” brackets.

3.2 The t; flow

We build 3 different Hamiltonians.
The Lagrangian (3.1), with 32H3 and labelling £3 as L, gives

1
L= 3 (5ug — 10ugud, + ugm) — oy

1
= 19D =p2+ qgp+5a@ —

5
5 S4qi + g, (3.10)

2

where we have used the generalised Legendre transformation

oL d oL
q1 = uo, 42 = UQz, 1= - = = —10upuoz — Uozzx,
Oupy OUoze
oL

OUz

Dy = R (3.11)

The Lagrangian (3.3b), with —8Hj, gives

S IGELI R TR (3120

Defining Q1 = ug, P1 = woz, Qit1 = i, Pit1 = @iz, ¢ = 1,..., N — 1, we obtain a generalised
Hénon—Heiles system

N
W = ZPQ + Q1 (2621 +ZQ > Zg- (3.12b)
1=2

1=2

The fluxes (2.3e) then give three integrals

N
1
4F = —h\9,  16Fy = f9 = p Z QiP; —2Q1h( @ + g(16@‘1l +12Q1Q% + QY),
64Fpy = Z hij + Z B;, (3.12¢)
2<z<]<N

where h;; are given by (3.6a) and Q? = ZfVZQ Q2. Again, each h;; is a first integral.
For the case (3.3e), an identical calculation leads to

1 1 N 8
WO =23 P45 (262? - ZQ?) o
i=1 =2

This Hamiltonian is clearly rotationally invariant (in Q2, ..., QN space), so the integrals (3.6a)
are replaced by the angular momenta and Fyy just gives the rotational Casimir in (N — 1)
dimensions.
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3.2.1 Bi-Hamiltonian formulation when N = 2

Here we have the usual 2 degrees of freedom Hénon—Heiles Hamiltonian

B
Q3
The Hamiltonian formulations (3.10) and (3.13) gave coordinates q = (¢;,pi,) and Q =

(Qi, P, B), respectively. From the definitions of the canonical coordinates, we have (3.11) and
a= 10u8+5u(2)$+10u0u0m+u0mm. Since ug = @1, we can use h(@) to calculate all z-derivatives:

1 1
hQ) = 5(Pl2 +P}) + 5 (2Q7 + Q3) + (3.13)

uémH) = {uém), h(Q)}, where u((f) is the i*M derivative of ug with respect to z, giving

@ = @1, @ =P, p1=-4Q1P+ Q2P  py=-3QF - %Q%

o= —24h@Q. (3.14)
The three independent fluxes from (2.3e) give

APy = %a — —h@, 16Fy = h@ = f@ 64F, = —%f(q) =0, (3.15a)
where

£ = p +4q1p5 + 8q1q2p1 +2(10gF — ¢3)p2 + 247 (1245 +53) — 2a(p2 + 3q7),  (3.15b)

f@Mﬂﬂ@ﬂ—Qﬁm+;@@m+Q@_%§l
2

In the 5D space with coordinates q, we introduce a degenerate extension of the canonical
).

. (3.15¢)

Poisson tensor and use (3.14) as a Poisson map to obtain PSQ

0 0 0 a; W5
0 0100 0 0 L
0 0O 010 Q2 Q% azs
PV=|-1 000 0| = PY=] 0o -& 0o L ayl,
0 -1 00 0 1 20, p 02
0 0000 e Q3 2 445

—ai5 —ass —agzs —ags 0

where the column (a5, ass, ass, ass,0)T = —Pl(Q)VQf(Q), with 791(@) being the compatible canon-
ical bracket on the Q space, which is similarly transformed to the q space:

0 01 00
0 00 10
P@D=1-1 00 0 0
0O -1 0 0 O
0 00 0O

0 1 —4(]1 0 b15

-1 0 4q2 6q1 bas

= PU=| dn —dg 0 —30¢} —2p2 bss |,
0 —6g1 30qf + 2py 0 bas
—bis  —bas —b3s —bys 0

where the column (b15, bas, bss, bys, O)T = —2Péq)vqh@.
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The Hamiltonian ladders are
P(gq)vqa =0, Pl(q)vq(_%) = P(gQ)vqh(q)’
Pl(q)vqh(q) _ PSQ)Vq(%f(Q)), 73{‘1)vqf(q) -0,
POV =0,  POVohQ = P9V @,
POV @ =PVa(-),  P¥Vap=0.

The two nontrivial flows correspond to the two lower commuting flows of the KdV hierarchy.
We see this by looking at the ug (= g1 = Q1) component of the flows.

In the q space, the flows Péq)th(q) and Péq)Vq(—%f(Q)) give

Oh(@) o

=gy, — BT M0 Tm(—%f(Q)) = —p1 — 401G2 = Qizzz + 601¢12. (3.162)

In the Q space, the flows P{Q)VQh(Q) and PI(Q)VQ (—f(Q)) give

Oh(@) f(@)

Qlth = Qa5 Pl = le’7 Qltf = _TP]_

oP, = —Q2Ps = (Quzz +3Q7) - (3.16b)

3.3 The Lax representation

As we previously said, to obtain a Lax representation for stationary flows, we use the zero
curvature representation, given in (2.2a) and (2.2c), with Uy, = 0. When written in terms of
the coordinates on the stationary manifold, the characteristic equation, det (zI — L(”)) =0, is
A-dependent, giving the same integrals as derived from the fluxes Fj;.

3.3.1 The t; flow

In this case our matrices are

. 0 1 1) _ 1 — U0y 4\ 4 2ug
V= (A — o 0) A S VTS W2 — Ugee  Uow ) (3.17)
Using the coordinates of (3.4), we define
1) = _oy (M) — p1 =222+ q1)
t 2 (0‘ — ¢ +2Aq1 — 4N° —D1

= 22 -2h9 £ 40X —16)3 =0,

where o and h(@ are constants of the motion. The Lax representation of the equation generated
by h(® is

L;l) - {L(l)’ h(q)} - [U, L(l)],

using the canonical Poisson bracket, acting componentwise on the matrix.
Using the coordinates of (3.5b), we have

N
> QP 2\ — Q?
! N

N 25;
Z(Pf + QQ>+ A2A+ Q%) =) QP
1 7

1
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= 22— @4 26@ 43 =, (3.18a)
where Q? = Zfil 2 with (@ and ®@ as given in (3.5b) and (3.6b). The Lax equations

79

generated by h(@) and ®@ are
1) — {L(l), h(Q)} — [U, L(l)], {L(l),(I)(Q)} - 0. (3.18D)

In fact, {L(l), h,;j} = 0, for each of the functions h;; of (3.6a).
When N = 1, the function ®@ is replaced by 5.

Remark 3.4 (rotationally symmetric case). Similar equations hold for the case (3.5¢), with

Zf[ % replaced by % and the integral ®(@ by the rotational Casimir.

3.3.2 The t; flow

In this case our principal matrix is proportional to V(2), which is to be written in terms of
appropriate coordinates.
Using the coordinates from (3.10), we define

1@ — _gy® — <4>\CI2 —p1—4qqe —2(8N*+4Aq1 +p2 + 361%))
as 1+ 49192 — 4Ag2 ’

where ag) = o — 2q1p2 — 4¢3 + ¢3 + 2\ (pg + q%) + 8¢1 A2 — 16A3. The characteristic equation is
22 — 256A° + 16a\? + 8ALD — f(@) = g
with (9 and f@ given by (3.10) and (3.15b). We have
2 — (1@ p@) = [U,L?)], Lg? — {L®, f@} = [1V), L],
with

U — 0 1 L(l) _ 2qs —4(2)\ + q1)
A=q 0)’ 2(p2 + 27 + 221 —4N?)  —2¢2 )’

where L) is derived from V(1) of (3.17).
Using the coordinates of (3.12b), we define

N
3 QiP —4AP 16)2 +8)Q1 — Q2
L@? =gy = | 2 N : (3.19a)

as 4Py — Z QiP;
2

where

N N N 2B
Q*=> 0l am=16A3—8Q1A2+A<4Q%+ZQ?>+Z< >
2 5 D)

The characteristic equation is

22 = 256\° + 321 @)\ — g F(Q)\ — 20(@), (3.19h)
where f(@) and ®(@) are given in (3.12c). We have
D (L@ @) = [U,L®], L ={1® f@} = [LO, 1?],
{L® h;;} =0, (3.19¢)

for 2 <i < j < N, and where

(. 0 1 (1) _ P, —22\ + Q1)
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4 DWW stationary flows

We can follow the approach of Section 3 in the context of the DWW hierarchy. We have three
representations of uy,, given by (2.5b), with a stationary flow being the reduction to a finite-
dimensional space with u;, = 0. The “time” variable for this flow is z. In the KdV case the
Casimir of By was just Hp, which gave us the « term in (3.1), whilst, for the DWW operator By,
we have two Casimirs, Hy, H;. The DWW operator B; has one Casimir Hy, corresponding to the
first order part, but we also have the squared eigenfunctions for Jy. We leave the operator By to
a later discussion of the Miura maps in Section 5, so now consider the two operators By and By:
1. Using By, we have

Bo(san+2 =0 = (Su(Hn+2 — Ck()Ho — 40(1H1) = 0, (4.1&)
giving the Lagrangian
Lyio = Hpyo — aguy — ay (dug + ui). (4.1b)

Again, we use the (generalised) Legendre transformation to find canonical coordinates (g;, p;)
and the Hamiltonian function.
2. Using Bj, we have

1
5u0Hn+1 = 5@27 6u1Hn+1 = -«

1 1
= Lpi1=Hp1 +aoup + 5@% — iuoch — 52 (4.2)

Again, the extensions (3.3b) and (3.3e) can be introduced here.

4.1 The t; flow

We build 3 different Hamiltonians.
The Lagrangian (4.1b), using 8 Hs and labelling —L3 as L, gives

1 )
L= 5“@ - gu‘f + aguy + agui 4 ug (4a — 3u%) — 2ud. (4.3a)

This Lagrangian is degenerate, but d,,£ = 0 gives ugp = oy — %u%, after which

1 1
L= iu%“ + §u‘1l — 201u} + apuy + 203
oot o 2n (4.3b)
= 2171 2(]1 a1q; — @oq1- .

The fluxes (2.5¢) give

1 1 1
FlO = 2041, F11 = —Qp, F12 == —*h(q) + *OZ%. (4.30)
2 4 2
The Lagrangian (4.2), using —H> in the first multicomponent version of (4.2) (see (3.3b)),
we find

~ N 1 2 1 2 Bz 1 2
L= Z 5Piw — FUoP; — ? +aup — g (4“0 + ul) : (4.42)
K3

=1
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This is also degenerate, but 5UOE~ =0 and 6u1£~ =0giveu; =—), gp? and ug = 200 — %(Z @?)2,
after which

Ny 8 N 3
£=3 (3ot 4) i (Tt) s
i=1 Spi i=1

Defining Q; = ;, P; = @iz, we obtain the Hamiltonian

N

hQ) = %Z <P2 +2aQ7 + 25, > 1 (ZQ ) (4.4¢)

=1

The fluxes (2.5¢) give (compare with (3.6b))

Fio=4a, Fn=-209,  Fp-22=0@ =2 > n;+ Z B;. (4.4d)
1<Z<j<N

Since h;; are a deformation of the (squares of) angular momenta, it is straightforward to build
an involutive set of integrals, so (4.4c) defines a superintegrable system (for N > 3).

When N =1, Fis = 2a% + 8. When N = 2, we have 2 integrals h(9), his. When N = 3, we
have 4 integrals h(@), hij, with h(@), hyy and ®@ in involution. This and the Hamiltonian (3.5b)
(for N = 3) are particular cases of the first potential in Table IT of [11].

Remark 4.1 (rotationally invariant case). The extension (3.3¢) gives a similar result, with

1Y 1 (Y g
=3 > (P?+20Q7) - 5 <Z Q?) +Q (4.5)
i=1 =1

where Q% = Q2 The integrals h;; are just replaced by the rotation algebra.
=1 J

4.1.1 Bi-Hamiltonian formulation when N =1

Here we have

B

1 1
@ — —p2_ —b 2, C 4.6
9 1 8Q1+QQ1+ Q% ( )

The Hamiltonian formulations (4.3b) and (4.6) give coordinates q = (q1,p1, @p, 1) and Q =
(Q1, P1, B, ), respectively. From the definitions of the canonical coordinates, we have

o =-Q1, p1 = —2Q1 P, ap = —4h 9, a1 = 2a.

Following the same procedure as Section 3.1.1, we introduce a degenerate extension of the canon-

ical Poisson tensor in the 4D space with coordlnates q and then define ( )Péq) (aQ) = P(Q) ,
giving
0100 0 g a3 0
— 1
P[gq) _ 1 0 00 and 7)(()Q) _ 2 0 a3 O 7
O 0 0 0 —0,13 —a23 0 0
00 00 0 0 0 0
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where (a13,as3,0,0)T = _pl(Q)th(Q) and 771( ) is the compatible (degenerate) canonical Pois-

son tensor on the Q space, which in turn leads to (%)PfQ ( ) = —473( ), giving
0100 0 @ bz 0
@_|-1 000 @ _ | @ 0 b2z O
PT=1 000 0 e O
0 00O 0 0 0 0
)

where (b13,523,0,0)T ( V h( )
We use the three independent fluxes from (2.5e) to build the bi-Hamiltonian ladders:

1 1 1
Fip =201 =4, Fiy = o= —2h@ = —Zh@ + 50@ =202 + B,

which satisfy Pl(q)anl = Péq)vqal = PfQ)VQa = PéQ)VQa =0 and
PV,a0=0,  ay, = PVV,a0 = PPVED, POV =
PAOVeh@ =0, Qi = POVoh@ =p@vy(-8), P@ves=o0.

Remark 4.2 (the parameters o and ap). At this stage it looks like we should consider a;
and « as constants rather than dynamical variables. However, we will see in Section 5 that they
generate nontrivial flows with respect to a third Poisson bracket.
4.2 The t, flow
We build 3 different Hamiltonians.

The Lagrangian (4.1b), using 2H, and labelling £4 as L, gives

1
L= ol — (w1 (dup + u3) (12ug + Tui) — dury(dugs + Suruig)) — apur — aq (dug + u). (4.7a)

The standard Legendre transformation gives

Uy = q1, U = qo, woz = 2(5q2p1 — 2p2), Uy = —4p1,

giving the Hamiltonian

W9 = 5gop? — dp1ps — é% (4q1 + ¢2) (12q1 + 73) + a0ga + a1 (4q1 + ¢3). (4.7b)
The fluxes (2.5e) give
FQO = 8041, F21 = 20&0, Fgg = h(q), (4.70)

Fp3 —8a} = f@ = Aq1 + 3g3) (64(a0 — 2a192) +64p7 — 1665 + 5¢5) — 2(p2 — qap1)*-

256 (

The Lagrangian (4.2), using —8Hs in the first multicomponent version of (4.2) (see (3.3b)),
we find

= 1 8; 1
A +1
L= ; (2%233 — §u goz :01 > + aug + 2u1x 8(4u0+u%) (4u0+5u%).

This is degenerate in ug, but d,,L£ = 0 gives ug = —%u% — % f[_l

) 23 1 N-1 2
L=_ (ulx + E < _ z;l)) + auy + 32 16u; + 12u} E cpl < E gof)
¥ i=1

¢?, after which
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Defining w1 = @1, ui, = P and ¢; = Qi+1, @iz = Pit1, ¢ = 1,..., N — 1, we obtain the
Hamiltonian

N N N N 2
hQ — %Zp; a0+ 52 - 313 16Q7 +12Q1 > Q7 + (Z Q?) . (48a)
i=1 i=2

7 =2 =2

The fluxes (2.5¢) give

1 1
F20 = 50(’ F21 == _Zh(Q)’ 64F23 - 20[ == (I) Z hl] + ZB’L? (48b)
2<z<]<N

N
165 = 19 = i Y7 Qi — 2010 — 2a(103 +Q?) — 101 (103 + Q%) (403 + 3Q?),

where Q? = Zé\[ @Q? and h;; are defined by (3.6a), with 2 < i < j < N. In fact, h;; are
themselves first integrals. Since h;; are a deformation of the (squares of) angular momenta, it is
straightforward to build an involutive set of integrals, so (4.8a) defines a superintegrable system
(for N > 4).

When N = 2, Fos = 6—14(2042 + 5), so there are just the two integrals, h(?9) and f(@). This is
the case which was found in the classifications of [14, 19]. We show that this particular case is
tri-Hamiltonian in Section 5 (see Remark 5.3). In fact, this Hamiltonian and the Hénon—Heiles
one (3.13) belong to an infinite family, which are separable in parabolic coordinates (see, for
example, [18, equation (2.2.41)]). Other members of the classifications of [14, 19] can similarly
be derived as stationary flows associated with 4" order scalar Lax operators [4].

When N = 3, we have h(@, f(@ and ®©@ in involution. It appears in the classification
of [10, case 4 of Table 1] and is further generalised in [13] and in Section 6 of this paper.

When N = 4, we have A9, f(@Q) hy3 and @ in involution, with five independent integrals.

Remark 4.3 (rotationally invariant case). The extension (3.3¢) gives a similar result, with

@ _ 1 - 2 1 4 2 Y 2 al 9 ’ B
=1 i=2

=2

The integrals h;; are just replaced by the rotation algebra on the space Qa,...,Qn.

4.2.1 Bi-Hamiltonian formulation when N = 2

Here we have

B

o7 (4.10)

1 1
R(@ — 5(Pl2 +P}) —aQ; — 3—2(16Q‘{ +12Q3Q3 + Q3) +

The Hamiltonian formulations (4.7b) and (4.10) give coordinates q = (g¢;, pi, ®0, 1) and
Q = (@i, B, B, ), respectively. From the definitions of the canonical coordinates, we have

1 1
@ Z—g(6Q%+Q§)7 72 = Q1, P1 :—ZPL

1 1
= —(QyPy — 401 P = _—p@ = —q.
D2 16(Q2 y — 41 Pr), ag S , T
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Following the same procedure as Section 3.1.1, we introduce a degenerate extension of the

canonical Poisson tensor in the 6D space with coordinates q and then use (

16P\?, giving

0 0
0 0
@_|—-1 O
Po = 0 —1
0 0
0 0

0

0

0

P{g@): 1

Qs

—ais

0

where the column (a5, ass, ass, ass,0,0)T =

(a).
P
0 0
0 0
-1 0
p{Q) _ -
0 0
0 0
0
0
—12¢o
'Pl(Q) — )
—b14
—b15
0

where by4 = 4q; + 15¢3 and the column (b5, bos, bss, bas, 0,0)T =

1
0
0
0
0
0
0
0
8

8q2
—bas

0

[=llalelall e

oo oo~ O

o O O O oo

O O O O O

12¢>
—8
0

O O O O OO

o O O O OO

—8p1

—b3s
0

—a45
0

b14

—8q2

8p1
0

—bys
0

ais
a25
azs

Q45
0
0

o o o o O

0

)P(g)(aq)T:

, (4.11a)

—Pl(Q)VQf(Q)’ where Pl(Q) is the compatible (de—
generate) canonical Poisson tensor on the Q space, which in turn leads to (3‘1)73(@( Q) N

0

o O O O o O

: (4.11b)

— 4PV h@).

We use the independent fluxes from (2.5e) to build the bi-Hamiltonian ladders:

1
F20 = 80(1 = 50&,

—p@ —

1
F21 = 20[0 = —Zh(Q),

7f(Q

Fyz = f@) =

B

6747

where f(9) is given by (4.7c) and f(@) by (4.8b) (with N = 2). These satisfy

PLV a1 = PY V401 = 0

together with

P(()q)vqao = O,

th = Pl(q)

and

PDy,a

P(gQ)VQO[ =0,

1
Y, (—4a0> POV, h@),
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1
a, =PV, (—8h<q>> = Ry 5@, POV, =0,

péQ)th(Q) —0, Q. = pr)th(Q) — PéQ)VQf(Q)7

Q, =PV f @ =PPVo(-8),  PIVVeB=0.
Remark 4.4. The first two components of the ¢;, and t; flows just reproduce the first two flows
of the DWW hierarchy, analogous to equations (3.16a) and (3.16b) for the stationary to flow of
the KdV hierarchy.

4.3 The Lax representation

Following the approach of Section 3.3, we obtain the Lax representations.

4.3.1 The t; flow

In this case our matrices are

o 0 1 (1) _ —%ulx 2A + Uil
U= <)\2 _ )\Ul — ug O> ) Vv = ( ao1 %le . (412)

where as; = ()\2 — \up — uo)(2)\ +uy) — %algm, given in terms of the component aio of the
matrix V1),
Using the coordinates of the Hamiltonian (4.3b), we define

L0 _ oy _ <fl _2(”; Q1)> S 22— 20 4 dagh + 160172 — 16M* = 0,
21 —/1

where a01 = ag — 2011 + %q{’ + )\(4a1 — q%) + 2M\%¢; — 4X\3. The Lax representation of the
equation generated by h(? is

M) — 1M p@y — 1 LM ; _ 0 1
LY ={L" n9} = [U,LV],  with U <A2—Aq1+iq%—a1 0).

Using the coordinates of (4.4c), we have

N
Y QP 22 -Q?

LW —y® | 1 N
ag — Y QiP,
1
=  224+20@ —4\p(@ 4 8aX? — 4Nt =0, (4.13a)
where

N 28; 1 N )
ag =Y (Pf + Q2) +5AQ —8a) + QT+ 2N Q=) 0L Q'=(QY),

1 ? 1

with ®(@ as given in (4.4d). The Lax equations generated by h(Q) and ®@ are
LM = {L(l), h(Q)} = [, L(l)]7

1) @1 _ : _ 0 1
{LW, 0%} =0, with U <A2+AQ2+2Q4_2Q 0). (4.13b)

In fact, {L(l), hij} = 0, for each of the functions h;; of (3.6a).

Remark 4.5 (rotationally symmetric case). Similar equations hold for the case (4.5).
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4.3.2 The ty flow

In this case our matrices are U (the same as (4.12)) and

v — <_%)\’U,1x - %(2uoz + 3uiuiy) 2% + \uy + ug + %u% )

a1 A, + 1(2u0p + Buruny)
where
2 3 2 2 1
as1 = | 2 + Auq + ug + Zul ()\ — Auyp — UO) — ial2xw.

Using the coordinates of the Hamiltonian (4.7b), we define

1@ _lye@_ <>\p1 +p2a—@p1 A+ 5eA+ §(4q + 3Q%)> 7
az1 q2p1 — p2 — Ap1

where

1 1 1
agr = A — §q2A3 - §(4q1 +q3) N\ + Z(qg’ +2¢1g2 — 160:1) A — a

1 5
+2a1q9 + ~¢F —

92 4 2
1 64Q2 4%

The characteristic equation of L2 is
2,10 1@ 2 3 6
z +§f —|—§h A+ agA® + 4o N’ — N° =0,

where £(@ is given by (4.7¢).
The Lax representation of the equations generated by h(@ and f(@ are

L?) = {L(2), h(l])} = [T, L(Q)], Lg) — {L(Z),f@} — [L(l),L(2)],

where U and L) = 1V (see (4.12)) are given by

0 1 p A+ ig
U= L= < 342)
<)\2 — @A —q1 0) asy —D1

with

1 1 1
agr = A3 — 5q2A2 — 5(2q1 + @A+ §(5q§’ +8q1¢2 — 320a1).

Using the coordinates of (4.8a), we have

N N
S QP —AAPL 16X +8AQ1 — Y Q7
1@ gy _ | 2 N (4.14a)
a1 4\P; — Z QP
2
where

N 25‘ N
a21:Z(PZ,2—|—QQZ> —)\<4a+Q1 <2Q%+ZQ§)>
7 2

2
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N
+ A2 (4@% +> Q?) —8Q1 N + 16)\*.
2

The characteristic equation of L2 is
22+ 20@) 4 8 (@) — 32h QN2 4 64003 — 256)° = 0, (4.14D)

where ®(@) and (@) are given in (4.8b).
The Lax equations generated by (@), f(@ and hi; (not just the combination <I>(Q)) are
L) = {L(Q), h(Q)} = [U, L(2)], Lg) — {L(2),f(Q)} — [L(l),L(Q)],
{L?,hij} =0, (4.14c)

where L) = —2V (1) (see (4.12)), written in the coordinates of (4.8a), and U are given by

P —4\—20Q, 0 1
L = < ' > . U= : 4.14d
as1 -P A2 —\Q1 + % (6@% + Zév Q?) 0 ( )

with
1 N 1 N
2 2 2 2 3
= = F— -2 . 2 —4\°.
az 04—|-2Q1 51 Q; 2)\<Q1+ 52 QZ>+ Q1A A
Remark 4.6 (rotationally symmetric case). Similar equations hold for the case (4.9).

5 The DWW stationary flows in tri-Hamiltonian form

We now use the Miura maps of Section 2.2.1 to construct a tri-Hamiltonian formulation of the

stationary flows corresponding to (2.5b) and (2.7). In this way, Figure 1 is extended to an

array of 9 Poisson matrices Plgm), k,m = 0,1,2. The 3 Poisson matrices P,gk) can be directly

constructed in canonical form, giving us coordinates (¢;, p;), (Qi, P;) and (Ql, R), for k=0,1,2
respectively. Written in terms of these coordinates, the Miura maps then allow us to build the
remaining 6 Poisson matrices.

1. The case By, has already been considered in Section 4, giving the Lagrangian (4.1b), which
we now write as

o = Hil o — agur — an (dug +u3). (5.1)

The (generalised) Legendre transformation defines canonical coordinates (g;, p;), the Pois-

)

son matrix Péo) = Péq and the Hamiltonian function h(®.

2. Using B}’, we have
BiuéwH;LUJrl =0 = 5w (Hrszrl - /80w0 - 5171}1) =0
= Ly =H — Bowo — fruw. (5.2)

n

The (generalised) Legendre transformation defines canonical coordinates (Q;, F;), the Pois-
son matrix 771(1) = PEQ) and the Hamiltonian function h(Q).

3. Using B3, we have
ByoyH, =0 = 0y (Hy —vv—mv1) =0 = L, =H;—uv —nvi (5.3)

The (generalised) Legendre transformation defines canonical coordinates (QZ, R), the Pois-

son matrix 732(2) = 732@) and the Hamiltonian function h(@).
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5.1 The t; flow

We now derive the explicit formulae for the case n = 1.
The u space, with (5.1): We previously derived this as (4.3b), giving

1 1
hl@) = 5;0% - iqil + 20147 — g, (5.4)

where ug = o1 — 2u}, up = q1, w1y = p1.
The w space, with (5.2): Using —H’, we have

1 1
Y= Fw1 (wox + w%) — gw:{’ — Bowgy — Brwy. (5.5a)
This is degenerate and reduces to wy = wl;TJrlwo Removing an exact derivative and an overall

numerical factor, we find

w o (wlx + 2/80)2

1 2
9 = 21U1 + 5'(01 (w1 + 8,81), (55b)

corresponding to the Hamiltonian
1 1
WY = SQ1P} = 2601 = SQu (861 + Q). (5.5¢)

The v space, with (5.3): Using H{, we have

1 2
LY = —voy — v§ + 1(2001}1 + V1) — Yovo — Y101 (5.6a)
This is degenerate and reduces to vy = 720(231_”11)”. Removing an exact derivative and an overall
1
numerical factor, we find
w_ L e _ 2 2
LY = 5 (le 27Y0U1 V12 471111(1 vl) —{—’yo), (5.6b)
2(1 —vy)
corresponding to the Hamiltonian
_ 1 o o B
W@ = —(1- Q1) P} +70Q1 P + 21 Q:1. (5.6¢)

2

5.1.1 The Miura maps in these coordinates

We consider the two steps induced by w — u and v — w. We again extend each space to
include the parameters as dynamical variables, which we define as q = (q1,p1,a0,1), Q =

(Q1, P1, B0, 51), Q= (Q1,P1,70,m)-

The relation of q to Q: q1 = Q1, p1 = Q1P1 — 25p. The constraints on ug and wq, together
with ug = —wp, — wg, gives a; = —2071. The formula ag = w4, — 2u:{’ + 4daquy gives ag = h(@).
In summary

@ = Q1, p1 = Q1P — 25, ag =A@, ap = =203 = WD) =253
The relation of Q to Q: Q1 = —P;, P, = Q1P; — 7. The “x derivative” of the first gives

{Q, h(Q)} = {—Pl,h(@}, which implies 8y = —v1. The formula 3 = 460P1_Q1(1;126;3Q%)+2Q1”

gives B = —%h@) + %’yg. In summary

_ _ 1. /5 1
Q1=—h, Py = Q1P — o, Bo = =1, B = —Zh(Q) + g%%

= h@= —2v71-
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5.1.2 The array of Poisson brackets

We constructed the 3 canonical representations (5.4), (5.5¢) and (5.6¢), respectively on spaces
q, Q and Q. The canonical brackets are then extended to include the parameters as Casimirs:

01 00
3 -1 0 0 0
00 0O

Following the same procedure as Section 4.1.1, we construct the other 6 Poisson brackets.
From Po(q)7 we obtain

0 2P1 a3 0
,P(Q) _ i —2P1 0 a3 0
0 460 | —a13 —azs 0 0]’

0 0 0 0

0 Q1P —2mQ1 =5 —obiz bz

p(g(?) _ 1+ 2mQ1 — @1 P 0 —Y0b23  Y1b23

4ry2 Yob13 Yoba3z 0 0o |’
—Y1b13 —7Y1b23 0 0

where (a13, ass,0,0)T = P{YVoh(@ and (b, bas, 0,0)T =PIV h@.

From PI(Q), we obtain

0 qu a3 0 0 QiPi—9 biz 0

pl_ | 1 0 az 0 p@ _ 1 [n-Quh 0 baz 0
1 —a13 —asz3 0 0}’ 1 2v1 —b13 —bas 0o o}’

0 0 0 0 0 0 0 O

where (arg, ags, 0,0)T = POV @ and (bis, bas, 0,0)T = —P{DV k(.

From PQ(Q), we obtain

0 —Q1 0 au 0 —¢ 0 bu
2
p@—| @ 0 0au)  pa@_f g 0 0 bauf
0 0 0 O 0 0 0 0
—aa —a 00 —big —bay 0 O

where ((I14, az4, 0, O)T = —i’Pl(Q)VQh(Q) and (b14, b24, 0, O)T = %Péq)vqh(q)

Each of these has 2 Casimirs and the t; = t; flow in each space has a tri-Hamiltonian
representation.

In the q space, we have

ar, = PV, (2a1) = P{? V400 = PYVAD,
PV 00 = PLOVED = POV LD = POV,01 = POV,0n = PPV,00 = 0.
In the Q space, we have

Q,, = Py Va(~451) = P{YVoh Q) = PV (265)
PYIVR@ = POV = POV = POV = PiVVo = PVVoh'@ = 0.
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In the Q space, we have
~ 5 5 1 ) 2
Qt, = PéQ)VQ <h(Q) - 273) = PfQ)VQ(—QVOW) = PéQ)VQ (217).

, , 5 . Sy 1
PO 0 = PG = PO — P, (h@) _ 273>

Remark 5.1 (relation of (5.5¢) to (4.6)). The canonical transformation

1. 1P+ /=2 .
@=30t  p=CREEE i 0= s, o= -85
1
gives h(@ = L@ where B = 1P2 — 108 1 a2 + Q%, which is just (4.6) with relabelled
variables.

This transformation is real when 5 < 0. i i
Under this transformation, P9 are transformed to P‘Q), with P;Q) = PI(Q) and

7 A

0 é ai3 0 0 —Q% 0 b14
5 —L 5 1 A2
PéQ) -9 Q% 0 as3 0 7 7)2(@) —_ 5 Ql 0 0 b24 7
—aig —azz 0 O 0 0 0 0
0 0 0 O —byg —byy 0 O

where (a3, as3,0,0)T = —P}Q)Véh@) and (b14,b24,0,0)T = Pl(Q)VQh(Q), thus rendering the

flow of h(Q) as tri-Hamiltonian

2 Q Q . Q 1
Qu, = PiVV4(20) = P9V n@Q = PPV, (—2ﬁ> .

This system also has the Lax matrix (4.13a), with N = 1.

5.2 The t, flow

We now derive the explicit formulae for the case n = 2.
The u space, with (5.1): We previously derived this as (4.7b), giving

q2

W9 = 5qp? — dpips — o1 (o +a3) (1201 +763) + aoge + o (41 + g3), (5.7a)

where ug = q1, u1 = g2, upx = 2(5gap1 — 2p2), U1, = —4p1. In (4.7¢), we also gave the first
integral

1
256
The w space, with (5.2): Using 2H3’, we have

F9 = —(4g1 + 3¢3) (64(a0 — 201¢2) + 64pF — 1663 + 5¢3) — 2(p2 — qop1)*. (5.7b)

1 1 3 1 3
Defining Q1 = wq, Q2 = w1, P = wp, — %w%, Py = —iwlx, we obtain the Hamiltonian

1 3 1 3 1
WO = SPE—2Pf + Q8P — QI+ {QIQE + Q2+ foQi + A1Qs. (5.8b)
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Remark 5.2 (first integral). Rather than calculating fluxes of the modified PDEs, we derive
the first integral f(@) (also f(@) below) directly through the Miura maps in the stationary
coordinates, later in our calculations.

The v space, with (5.3): Using 2HJ, we have

1 3
Ly = —Zvi)’l, - ivovlv%m + VogpU1s — 31)311%11133 + 21181}1 (1 — v%) — YoUp — Y11 (5.9a)
Defining Q1 = vg, Q2 = v1, P = viz, P = —%v%x — UV U1z + Voz — 31)32}%, we obtain the

Hamiltonian

A 1_ R 3~ =~ - —0 = = —a =~ ;= ~ ~
h@ = ZPf + PP+ §Q1Q2P12 +3Q1Q3 P +2Q7Q2(Q3 — 1) + %Q1 + 11 Qo (5.9b)

5.2.1 The Miura maps in these coordinates

We consider the two steps induced by w — u and v — w. We again extend each space to
include the parameters as dynamical variables, which we define as q = (q1, ¢2, 1, P2, @0, 1),

Q - (Ql?QQrPlaPQ?ﬁOaﬁl)? Q = (Q17Q27P17p2770771)~
The relation of q to Q: found by using the Miura map and the definitions of q and Q.
Formulae for g, oy are derived from the equations of motion implied by A(?. In summary

3 1 1
q=-P-Qi- ZQ%’ ©=Q2 p1=PF, p= 5@1(131 + Q1) + QP2 — 150,
1

1 1 1
Q] = Zﬁla ap = §h(Q)7 h(q) = _§f(Q)7 f(q) = _gﬁ(%)

where
@ = %(Pl +Q7) (881 + 16Q1 P2 + 4Q2 P + (8QF + Q3)Q2) — Bo (2P + Q1Q2),

satisfying {h(Q), f(Q)} =0.
The relation of Q to Q: found by using the Miura map and the definitions of Q and Q.
Formulae for By, 1 are derived from the equations of motion implied by ~(@). In summary

Q1 =Qx, Q2= —P1 —2Q1Q2,
1

_ 1,- — 3.
Py =P, Py = §(Q1P1 + Q2P2) + 5@%@2 — 10
1 /5 1 5 1 1
— — —p(@Q Q) — 2 ¢(@) _ Z.2 @ _ =
Bo =, B 2h ; h 4f g0 f 57071,

where

FQ = (P + Q) (Pu(Pr +4Q1Qs) —2(Py — Q2)(Q3 — 1)) + 270Q2 (P2 + Q3)
— 271 (Q2P1 + 2@1(@% -1)),

satisfying {h@), f(Q)} =0.

5.2.2 The array of Poisson brackets

We constructed the 3 canonical representations (5.7a), (5.8b) and (5.9b), respectively on spaces
q, Q and Q. The canonical brackets are then extended to include the parameters «;, 5;, v; as
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Casimirs:

oo oo o
[l eloll =)
o O oo oo

OO O o oo

Following the same procedure as Section 5.1.2, we construct the other 6 Poisson brackets.

From Po(q), we obtain

0 —16Q1 8(2P + Q1Q2) 4P1+8Q7+3Q3 ais 0

16Q1 0 —32Q? 0 as; 0

P(Q) — i _8(2P2 + QIQQ) BQQ% 0 as4 ass 0
0 460 | — (4P +8Q7+3Q3) 0 —a34 0 ag; 0]

—ais —azs —ass —a4s 0 0

0 0 0 0 0 O

0 biz  biz 1(2Q2(P+ Q) —0) bis big

—b12 0 ba3 boy bas  bag

P(Q) _ i ib137 B _b23 0 b34 b35 b36
0 V2 [71(0 —2Q2(Po + QF)) —bas —bay 0 bas bag |’

—b15 —bos  —b3s5 —bys 0 0

—big —bys  —b3e —bag 0 0

where ags = —2(280 + Q1 (4P + 8Q1 4 3Q3) ), (a15, ass, ass, as5,0,0)T = 8P1(Q)VQf(Q) and

b2 = 70 (P1 +2Q1Q2) — 21 Q3,

big = 2Q1(271(Q3 + 1) — o (P1 +2Q1Q2)),

bag = 2(v0(Pr +2Q1Q2) Q2 — 271Q2(Q3 — 1) — 270Q1),

baa = 270 (P1 + Q1Q2) Q1 — 271 (P1 + 4Q1Q2) Q2 — 270Q2Ps + 4711 Q1 + 75,

bss = 2(271Q1Q2 (P 4+ 3Q1Q2) — 270 (P1 + Q1Q2) Q% + (@1 — mQ2) (2Q2P — 1)),
(b1, bas, bz, bz, 0,0)T = PYDV g (10 @ — 4410 D),

(b16, b2, b3s, bag, 0,0)T = —PéQ)VQ (’ylf(Q)),

From Pl(Q), we obtain (%)Pl(@ ( 8q)T = —%Pfq), of (4.11b), and

oQ
_ 0 _(pl + 2Q1Q2) 2Q1 (p1 + 2@1@2) 7 ais O
P +21Q2 a3 azs ags 0
P(Q) — i _2Q1 (Pl + 2Q1Q2) —a23 0 as4 ass 0
! gs! -7 —a24 —as34 0 as5 0]’
—ais —asgs —ass —asgs 0 0
0 0 0 0 O
where

ags = 2(2Q1 — Q2P — 201Q3),

azs = 2(Q2Ps — Q1 Py — Q3Q2) — 70,

azs = 2(2Q7 (P1 + Q1Q2) — 2Q1Q2P; + %0Q1 — 1 Q2),

(a5, azs, ass, ass,0,0)T = —PQQ)VQJC(Q)-
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(@) IQ\ (@) (9Q\T _ 15(Q) 2] Q) 0a\T _ 1.p(9)
From P,”’, we obtain (@)P (%) = 5Py, and (—%)772 (%) P
0 -2 0 Q1 0 ae
2 0 —40Q —Q2 0 ags
P = 0 4@ 0 —(P1+3Q7) 0 aze
-1 Q2 P +3Q? 0 0 ag
0 0 0 0 0 O
—aig —ag —agg —a46 0 O
0 0 3¢3 —4q1 3qp(4q1 +15¢3) bis big
0 0 —4qo —4q1 — g3 bos  bog
pla) _ g1 — 343 4q2 0 4qap1 bss  bse
2 —1go(4q1 +15¢3) Aqi +7¢3  —dqep 0 bas  bag |’
—b1s —bas —bzs —bss 0 0
—big —bae —bse —bag 0 0

where
(a16,.-.,0)T =PDVohQ (by5,...,00T = 4PV, f@,
(bg,-..,0)T = POV LD.

Each of these has 2 Casimirs and the flows in each space have tri-Hamiltonian representations.
In the q space, we have

1
ay, = P{V,a1 = PV, (—4a0> POV R,

1 1
Qiy = 2(q)vq (4&0) = Pl(q)vq <_8h(Q)> = 73(()(1)qu(qo

PV LD = POV, 1@ = POy, @ = POy o) = POV,01 = PPV,00 = 0.

In the Q space, we have
1
Q. = POV = POV = Py, <_2f(Q)>7
1
Q, = POV(-h®) = POV @ = PV, (453) ,

Q)va(Q) - PQ(Q) VQBO — P§Q)VQ50 — PI(Q) vQﬁl — vQﬁl Q)th(Q) —0.

In the Q space, we have
~ 3 5 5 1.5 1 3 1
Qi = PéQ)VQh(Q) - Pl(Q)VQ <4f(Q) - 873) = PSQ)VQ <—47071> )

3 3 1
Q, = PIVor D = P{¥Vq (—om) = PV Vg (—v%>,

2
3 9 1
- ng>th<@> =PV (19~ 51) =

Remark 5.3 (relation of (5.8b) to (4.10)). The canonical transformation

g(\/—2 — QD)
Q3 ’

Q1 = Q2 =250,
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2 V=28 — Q2 P»)* p
Plzgg—zé( B- Q1) . p (5.10a)
23 Q3 23
with o = 1, B = —%Bg, gives h(@) = —2%h@), @ = —Z%f@), where
5 1, - ~ 1, - a0~y A
WO =S (PP+ B) — aQr — 5 (16Q1 + 120705 + Q3) + %, (5.10b)
2
- o a
@ =P Q1P + Q2P) — 2Q1h @) — 5(4Q% +Q3)
1 - - - ~ ~
- EQI (4Q7 + Q3) (4Q7 +3Q3), (5.10c)

which are just (4.10) and (4.8b) (for N = 2), with relabelled variables Q = (QZ, P, B,a).
This transformation is real when 8 < 0.

Under this transformation, 731-@) are transformed to PZ(Q), with PfQ) = Pl(Q) and (up to
overall numerical factors)

0 0 0 é ais 0

o0 A —2%1 azs 0
po_| O a0 @ o 0|

-3 29%1 —% 0 agp O

0 0 21 Q2 0 b
0 0 Q2 0 0 b
P _ 200 Qe 0 B0 b | (5.10d)
—Q2 0 P 0 0 bg
0 0 0 0 0 O
—bie —bs —bsg —bsg O O

where (a15, ass, azs, 45, 0, O)T = —Pl(Q)VQf(Q) and (b16, b26, b36, b46, 0, O)T = 27)1(Q)th(Q)7 thus
rendering the flow of (5.10b) as tri-Hamiltonian:

~ A 1 ~ ~ ~
Qi =PIV, <2a> = POVah @ = POV Q. (5.10e)

This system also has the Lax matrix (4.14a), with N = 2.

6 Generalisations: coupling with the Calogero—Moser model

Several of our Lax pairs can be generalised (when N = 3) to incorporate an arbitrary function
in the Hamiltonian, which allows us to relate the system to the rational Calogero—Moser model,
following an approach described in [13].

In Section 6.1, we present generalisations of the Garnier and Hénon—Heiles systems, as well
as the Hamiltonian (4.8a), with quartic potential, but others, such as (4.4c), can be similarly
generalised. For each case we give three functions, h(B), f (B) and hgf), which are in involution,
along with Lax matrices.

The connection to the Calogero-Moser model is explained in Section 6.2.
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6.1 Generalisations in (Q;, P;) coordinates
6.1.1 Generalised Garnier system

In Section 3.1, we derived two versions of the multicomponent Garnier system, given by (3.5b)
and (3.5¢). For brevity, we just give the generalisation of the second of these:

B) _Lipe  p2 2 2L 024022 4 B <Q3>
h 2(P1+P2+P3)+k(Q1+Q2+Q3) Q2+Q2+Q2+QQB QQ
2
FP = Q1P — Q2P1)* + (Q2Ps — QsP2)* + (QsPy — Q1 Ps)* +2 —Q * 82 i Q?’B(gz)
2

B _

2 2
23 — (QQPB - Q3P2)2 + 2@3 <C>23) ’

Q3 Q2

where B(%) is an arbitrary function. When k = —% and B(%) = 0, these reduce to (3.5¢)
and elements of the rotation algebra.

The Lax matrix (3.18a), with N = 3 and Z can similarly be generalised:

L — <Q1P1 + Q2P + Q3P3 2\ — Q% — Q- Q2 )
@21 —(Q1P1 + Q2P + Q3 P3)

= 22+ 16k) — 4B 4+ FB) L 23 =0,
where
2
()
Ql + QQ + Qg QQ Q?
The Lax equations (3.18b) are unchanged, but U is deformed:

(1) _ (7,0 pBY = (1)
LY =1, — [U, 0],
0 1) { { WP} = [U, LW

U= (—4k()\+ QI +Q3+Q3) 0 (LW, f®) = {10 a8} — 0.

ag1 = —4kA(A + Q7 + Q3 + Q3) + PL + P + P§ +

6.1.2 Generalised Hénon—Heiles system

The generalised Hénon-Heiles potential of (3.12b) was considered in [13, Section 3.5], for the
case N = 3, with some additional terms:

hB) = §(P1 +P5+P})+ (4Q1+Q2+Q3)+kQ1(2Q1+Q2+Q3) QQ <gz> , (6.1a)
FfB) = P(Q1P1 + Q2P + Q3P3) — 2010 B) + 20%Q1 (2Q2 + Q% + Q2)

+ 2(1662‘% +12Q3(Q3 + Q3) + (Q3 + @3)*). (6.1b)
WSy = (QaPs — QsPy)* + 2(62%@2%)3 (g;’) : (6.1c)

where B <Q3> is an arbitrary function.
When B(z) = (2 + ZQ, k=1, w =0, then h® reduces to h(? of (3.12b). We also have

that £ reduces to f(@) and hgg) to hos + 2(P2 + F3).
The Lax matrix (3.19a), with N = 3, can similarly be generalised:

1@ _ QP2+ Q3P — 4P 16A% + 8AQ1 — Q3 — Q3 (6.22)
a1 ANP, — Q2P — Q3P )7 '
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where

az = 2k (160 — 8QIN*+ A(4Q7 + @3 + @3)) + 8w A(Q1 — 2)) + P + P§ + —B (gi)

and the characteristic equation is
22 = 5125\ — 25602\ + 320(BIN2 — g B\ — p{D). (6.2b)
The Lax equations are just the same as (3.19¢):

LR = {L(Q) h B)} [U,L(Q)], Lg) — {L(2),f(B)} — [L(l),L(Q)],
{L®.h5} =0, (6.2¢)

but with deformed versions of U and L():

= 0 1 y _ (P 2020+ @)
U= <2/~c()\ — Q1) - w? 0> , L= <b21 o ) , (6.2d)

where

bor = k(—8\2 +4\Q1 — (2Q% + Q3 + Q3)) + 2w*(2X\ — Q1).

6.1.3 Generalisation of the Hamiltonian (4.8a)

The potential of (4.8a) was labelled Uy in [13, Section 3.3|, for the case N = 3. With some

additional terms, and writing 8 = 1w2 we have
1 2
WP = (P + B3 + P}) — aQi + %(4@% + Q3+ Q%)
Q
+E(16Q1 + 1202 (Q3 + @3) + (Q3 + @3)°) + 02 B <Q3 , (6.3a)
2

B = P Q1P + QaPy + Q3P3) — 2Q:hP) — %(4621 + Q3+ Q3)
+20%Q1 (207 + Q3 + Q3) + 2kQ1 (4Q7 +3Q3 +3Q3) (4QT + Q3+ Q3),  (6.3b)

2 02
hy) = (Q2P3 — Q3P2)* + QMB <Qg> ; (6.3¢)
QQ Q2

where B(%) is an arbitrary function.
When B(z) = (2 + 22, k= —55, w =0, then h(B) reduces to h(@) of (4.8a). We also have

that f(®) reduces to f(?) and hgg) to hos + 2(B2 + F3).
The Lax matrix (4.14a), with N = 3, is similarly generalised:

1@ _ <Q2Pg + Q3P —4AP; 16A% +8AQ1 — (Q3 + Q§)>
a1 4AP) — (Q2P2 + Q3P3)

where

Qs
0 > +AN(20°(Q1 — 2)) — a)

— 32kA(16X° — 8X2Qy + A(4Q2 + Q2 + Q) — @1 (2Q3 + Q3 + Q2)).

2



Stationary Flows Revisited 31

The characteristic equation of L(? is
22+ 8192kA0 + 25602 A + 6400 — 320PN2 8 FBIX 4 nE) = 0.

The Lax equations generated by h(5), f(B) and hg) are the same as (4.14c):
Lgc?) - {L(2), h(B)} - [U, L(2)], Lg) - {L(Z)jf(B)} - [L(l),L(Q)],
{2®,hg} =0,

where L) and U are deformations of (4.14d):

L(l) _ P —4X—-20 U— 0 1
by P ) —32k(A? = AQ1 + 5 (6Q7 + Q3+ Q3)) —w® 0/
with

bo1 = o+ 2(,02(2)\ — Ql)
— 32k (3Q1(Q7 + Q3 + Q3) — 3A(2Q7 + Q3 + Q3) +2Q12% — 4N%).

Remark 6.1. The cases (6.1a) and (6.3a) belong to a family of Hamiltonians which are separable
in generalised parabolic coordinates [13].

6.2 Transformation to Calogero—Moser coordinates

The Hamiltonian (%), with just the B term (for example, (6.1a) with k = w = 0) is known
[9, 15] to have 4 integrals for general B, with an additional integral for the particular choice

992 (1422)2
B() = g
generated by

This particular choice, with the (orthogonal) canonical transformation,

1 1 1
S=—@m+@e+@)Pr+—@1 —@)Pr+ —=(q¢1 + ¢2 — 2¢3) Ps,

V3 V2 V6

gives the rational Calogero—Moser potential:

1 (Qs :2< 1 1 1 )
Q%B(Q2) g (Q1—Q2)2+(Q1—Q3)2+(Q2—(J3)2.

In [13], we gave a large class of additional potentials which could be added to B and thus coupled
with the rational Calogero—Moser system, but had no Lax representations. In this paper, we see
that any system written in Section 6.1 gives rise to a coupling of the rational Calogero—Moser
system with a Lax representation. To illustrate this, we just present the Hénon—Heiles case.

6.2.1 Calogero—Moser system, coupled with the Hénon—Heiles potential

Since the formulae are more complicated in the Calogero—Moser coordinates, we introduce three
functions which give some simplifications:

T=q1+q +qs, p=q +@+a; §=(q1—q)*+ (1 — @3)* + (g2 — @3)*.

Under this canonical transformation, the functions h(8), f(B), hgf) (of (6.1)) take the form

1 1 1 1
hOM = —(p? + p3 +p3) + 2( + + )
2( Hpy )ty (1 —q2)*  (1—ag3)®>  (g2—q3)?
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+F rep—0)+ W (4p — 8)
T - - )
3v3 P 2 P
1 21
(OM) = —(py +po + + qap2 + — 2 p(OM)
f \/g (p1 D2 PS) ((hpl q2p2 Q3p3) \/3
2 2 k: 2 2
2 —8) + — (144 62 — 60p6
+3\/§w7’(6p )+36( p* + 56% — 60p6),
1
ns™ = 5 (a2 = as)pr + (a3 — a)p2 + (@ — @2)ps)?
2, ( 1 1 1 )
+ 24% + + .
37 (1 —q)?  (1—¢3)?  (q2—gq3)?

The Lax matrices of Section 6.1.2 take the form

0 1
(2) _ (@11 a12 _
L <a21 —a11> ’ v <2k ()\ — %T> W2 0) )
LM = 1 <p1 +pa+ps  —4V3A-—27 >
V3 V3bn —(p1+p2+p3))’

where

1 8 1
air = qip1 + q2p2 + q3p3 — 5(7' +4V3X) (p1 + p2 + p3), a1z = 16A% + ﬁ”\ - 55,

8w\

V3

1 1
=32% (N — ——7 2+ —\4p—4¢
a1 3 < 2\/§T +16(10 )>+

2
+ 3 (p% + p3 + p§ — p1p2 — P1p3 — p2p3)

(7 —2V3))

, 1 |
29 ((Q1 —q2)? * (@1 —g3)? * (g2 — Q3)2> ’
2w? 4T 1
bo1 = ﬁ(%/g)\ — 7-) —k (8)\2 — ﬁ)\ + §(6p — 5)) .

The characteristic equation of L(?) and the Lax equations are just the same as (6.2b) and (6.2c),
but written in terms of these coordinates. Setting &k = 0, the system reduces to the resonant
harmonic oscillator case presented in [13, Section 4.2].

This Lax matrix is certainly not as elegant as the usual Calogero-Moser one [17], but it
does include the additional potentials. Furthermore, the Calogero—Moser system is known to
be superintegrable [21] and f (M) hégM) are related to his “additional” integrals, rather than
those generated by the usual Lax matrix.

7 Conclusions

In this paper we have reconsidered the relationship of integrable nonlinear evolution equations
and their stationary flows, which define finite-dimensional Hamiltonian systems (also integrable).

Multicomponent squared eigenfunction expansions gave us Hamiltonians with higher degrees
of freedom, such as (3.5¢), (3.12b), (4.4c), (4.8a) and their rotationally symmetric versions.
Restricting the dimension allowed us to build Poisson maps, giving us bi-Hamiltonian repre-
sentations, by comparing the definitions of the corresponding canonical variables. The space
is extended to include some arbitrary parameters as dynamical variables and the Poisson maps
are non-canonical. For the DWW hierarchy, this was extended to a tri-Hamiltonian represen-
tation in Section 5. This used the DWW Miura maps, so (for each time-evolution) gave 3
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tri-Hamiltonian systems. In particular, we showed that the well known Hamiltonian (5.10b),
with quartic potential (see [14, 19]), is tri-Hamiltonian.

For each of these systems, we presented a 2 x 2 Lax representation, derived from the zero-
curvature representation of the corresponding coupled KdV equation. For the case of 3 degrees
of freedom, these Lax representations are further generalised in Section 6 to connect with the
results of [13], where we studied the class of Hamiltonians separable by generalised parabolic
coordinates. A large subclass of these have the arbitrary function B (%), introduced in Section 6.
This gave a way of deriving Lax pairs and first integrals for a coupling of the rational Calogero—
Moser model to many other potential functions, such as the Hénon—Heiles potential, given in
Section 6.2.1.

From their derivation, the Lax matrices of this paper inherit a polynomial A-dependence,
with complicated coefficients. Clearly a larger matrix with linear A-dependence (such as a defor-
mation of the usual Lax matrix of [17]) would be preferable. Currently these generalisations are
restricted to 3 degrees of freedom, related to the results of [13]. For higher degrees of freedom,
we would like generalisations with simple reductions to the 3 degrees of freedom case. These are
quite varied and not necessarily related to the Calogero—-Moser model.

In this paper we only considered the cases M =1 and M = 2 in (2.1a), mainly presenting de-
tails of the first two nontrivial stationary flows. The squared eigenfunction representations (3.3b)
and (4.2), corresponding to h(@) of Sections 3 and 4, is the most interesting.

The t1 flow has the general structure

N

h(@):12<p2+25i>+U<§:Q2) (7.1a)
92 7 QZQ g i) :

=1

and has a universal set of integrals, given by (3.6a). For N = 3, this is the first case in Table 2
of [11]. For general N, this class of Hamiltonian (on a curved space background) has been
analysed in [5], where the same set of universal integrals was derived. The particular form of
the function U in (7.1a), derived in our construction, depends upon the value of M in (2.1a),
but universally possesses a Lax representation.

The to flow has the general structure

N N
1 1 205;
WO =Pt 5D <P3+ Q%) +U (Ql, > Q?) : (7.1b)
i=2 i i=2

which also has the universal set of integrals (3.6a), but for 2 < i < j < N, as well as the
integral f(@). For N = 2 we just have the integral f(©), but we see that the potential belongs to
the class separable in parabolic coordinates (see [18, equation (2.2.41)]). From our construction,
we have two additional features: M + 1 compatible Poisson brackets (for N = 2) and a Lax
representation (for all V).

The to flow is particularly interesting and leads to a number of important questions: Can we
extend the multi-Poisson formulation beyond N = 2?7 Even for N = 2, can the multi-Poisson
formulation be extended to the entire class of potentials separable in parabolic coordinates?
Can the Lax pair be similarly extended? Some insight into these questions may be obtained by
considering the case of (2.1a) with M = 3.
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