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Abstract. Let D ≥ 1 and q ≥ 3 be two integers. Let H(D) = H(D, q) denote the
D-dimensional Hamming graph over a q-element set. Let T (D) denote the Terwilliger
algebra of H(D). Let V (D) denote the standard T (D)-module. Let ω denote a com-
plex scalar. We consider a unital associative algebra Kω defined by generators and rela-
tions. The generators are A and B. The relations are A2B − 2ABA + BA2 = B + ωA,
B2A− 2BAB + AB2 = A+ ωB. The algebra Kω is the case of the Askey–Wilson algebras
corresponding to the Krawtchouk polynomials. The algebra Kω is isomorphic to U(sl2) when
ω2 ̸= 1. We view V (D) as a K1− 2

q
-module. We apply the Clebsch–Gordan rule for U(sl2)

to decompose V (D) into a direct sum of irreducible T (D)-modules.
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1 Introduction

Throughout this paper, we adopt the following conventions: Fix an integer q ≥ 3. Let C denote
the complex number field. An algebra is meant to be a unital associative algebra. An algebra
homomorphism is meant to be a unital algebra homomorphism. A subalgebra has the same unit
as the parent algebra. In an algebra the commutator [x, y] of two elements x and y is defined
as [x, y] = xy − yx. Note that every algebra has a Lie algebra structure with Lie bracket given
by the commutator.

Recall that sl2(C) is a three-dimensional Lie algebra over C with a basis e, f , h satisfying

[h, e] = 2e, [h, f ] = −2f, [e, f ] = h.

Definition 1.1. The universal enveloping algebra U(sl2) of sl2 is an algebra over C generated
by E, F , H subject to the relations

[H,E] = 2E, [H,F ] = −2F, [E,F ] = H.

Using Definition 1.1, it is straightforward to verify the following lemma:

Lemma 1.2. Given any integer n ≥ 0 there exists an (n + 1)-dimensional U(sl2)-module Ln

that has a basis {vi}ni=0 such that

Evi = (n− i+ 1)vi−1 for i = 1, 2, . . . , n, Ev0 = 0,

Fvi = (i+ 1)vi+1 for i = 0, 1, . . . , n− 1, Fvn = 0,

Hvi = (n− 2i)vi for i = 0, 1, . . . , n.

Note that the U(sl2)-module Ln is irreducible for any integer n ≥ 0. Furthermore, the
finite-dimensional irreducible U(sl2)-modules are classified as follows:
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Lemma 1.3. For any integer n ≥ 0, each (n + 1)-dimensional irreducible U(sl2)-module is
isomorphic to Ln.

Proof. See [10, Section V.4] for example. ■

It is well known that the universal enveloping algebra of a Lie algebra is a Hopf algebra. For
example, see [12, Section 5].

Lemma 1.4. The algebra U(sl2) is a Hopf algebra on which the counit ε : U(sl2) → C, the
antipode S : U(sl2) → U(sl2) and the comultiplication ∆: U(sl2) → U(sl2)⊗U(sl2) are given by

ε(E) = 0, ε(F ) = 0, ε(H) = 0,

S(E) = −E, S(F ) = −F, S(H) = −H,

∆(E) = E ⊗ 1 + 1⊗ E, ∆(F ) = F ⊗ 1 + 1⊗ F, ∆(H) = H ⊗ 1 + 1⊗H.

Every U(sl2) ⊗ U(sl2)-module can be viewed as a U(sl2)-module via the comultiplication
of U(sl2). The Clebsch–Gordan rule for U(sl2) is as follows:

Theorem 1.5. For any integers m,n ≥ 0, the U(sl2)-module Lm ⊗ Ln is isomorphic to

min{m,n}⊕
p=0

Lm+n−2p.

Proof. See [10, Section V.5] for example. ■

For the rest of this paper, let ω denote a scalar taken from C.

Definition 1.6. The Krawtchouk algebra Kω is an algebra over C generated by A and B subject
to the relations

A2B − 2ABA+BA2 = B + ωA, (1.1)

B2A− 2BAB +AB2 = A+ ωB. (1.2)

The algebra Kω is the case of the Askey–Wilson algebra corresponding to the Krawtchouk
polynomials [22, Lemma 7.2]. Define C to be the following element of Kω:

C = [A,B].

Lemma 1.7. The algebra Kω has a presentation with the generators A, B, C and the relations

[A,B] = C, (1.3)

[A,C] = B + ωA, (1.4)

[C,B] = A+ ωB. (1.5)

Proof. The relation (1.3) is immediate from the setting of C. Using (1.3), the relations (1.1)
and (1.2) can be written as (1.4) and (1.5), respectively. The lemma follows. ■

Let Kω denote a three-dimensional Lie algebra over C with a basis a, b, c satisfying

[a, b] = c, [a, c] = b+ ωa, [c, b] = a+ ωb.

By Lemma 1.7, the algebra Kω is the universal enveloping algebra of Kω. There is a connection
between Kω and U(sl2):
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Theorem 1.8. There exists a unique algebra homomorphism ζ : Kω → U(sl2) that sends

A 7→ 1 + ω

2
E +

1− ω

2
F − ω

2
H, B 7→ 1

2
H, C 7→ −1 + ω

2
E +

1− ω

2
F.

Moreover, if ω2 ̸= 1, then ζ is an isomorphism and its inverse sends

E 7→ 1

1 + ω
A+

ω

1 + ω
B − 1

1 + ω
C, F 7→ 1

1− ω
A+

ω

1− ω
B +

1

1− ω
C, H 7→ 2B.

Proof. It is routine to verify the result by using Definition 1.1 and Lemma 1.7. Here we provide
another proof by applying [13, Lemmas 2.12 and 2.13].

Let σ : sl2(C) → U(sl2) denote the canonical Lie algebra homomorphism that sends e, f , h to
E, F , H, respectively. Let τ : Kω → Kω denote the canonical Lie algebra homomorphism that
sends a, b, c to A, B, C, respectively. By [13, Lemma 2.12], there exists a unique Lie algebra
homomorphism ϕ : Kω → sl2(C) that sends

a 7→ 1 + ω

2
e+

1− ω

2
f − ω

2
h, b 7→ 1

2
h, c 7→ −1 + ω

2
e+

1− ω

2
f.

Applying the universal property of Kω to the Lie algebra homomorphism σ ◦ ϕ, this gives the
algebra homomorphism ζ. Suppose that ω2 ̸= 1. Then ϕ : Kω → sl2(C) is a Lie algebra
isomorphism by [13, Lemma 2.13]. Applying the universal property of U(sl2) to the Lie algebra
homomorphism τ ◦ ϕ−1, this gives the inverse of ζ. ■

In this paper, we relate the above algebraic results to the Hamming graphs. We now recall
the definition of Hamming graphs. Let X denote a q-element set and let D be a positive integer.
The D-dimensional Hamming graph H(D) = H(D, q) over X is a simple graph whose vertex
set is XD and x, y ∈ XD are adjacent if and only if x, y differ in exactly one coordinate.
Let ∂ denote the path-length distance function for H(D). Let MatXD(C) stand for the algebra
consisting of the square matrices over C indexed by XD.

The adjacency matrix A(D) ∈ MatXD(C) of H(D) is the 0-1 matrix such that

A(D)xy = 1 if and only if ∂(x, y) = 1

for all x, y ∈ XD. Fix a vertex x ∈ XD. The dual adjacency matrix A∗(D) ∈ MatXD(C) of
H(D) with respect to x is a diagonal matrix given by

A∗(D)yy = D(q − 1)− q · ∂(x, y)

for all y ∈ XD. The Terwilliger algebra T (D) of H(D) with respect to x is the subalgebra
of MatXD(C) generated by A(D) and A∗(D) [16, 17, 18]. Let V (D) denote the vector space
consisting of all column vectors over C indexed by XD. The vector space V (D) has a natural
T (D)-module structure and it is called the standard T (D)-module.

In [18], Terwilliger employed the endpoints, dual endpoints, diameters and auxiliary param-
eters to describe the irreducible modules for the known families of thin Q-polynomial distance-
regular graphs with unbounded diameter. In [14], Tanabe gave a recursive construction of
irreducible modules for the Doob graphs and his method can be adjusted to the case of H(D).
In [5], Go gave a decomposition of the standard module for the hypercube. In [4], Gijswijt,
Schrijver and Tanaka described a decomposition of V (D) in terms of the block-diagonalization
of T (D). In [11], Levstein, Maldonado and Penazzi applied the representation theory of GL2(C)
to determine the structure of T (D). In [20], it was shown that V (D) can be viewed as a gl2(C)-
module as well as a sl2(C)-module. In [2], Bernard, Crampé, and Vinet found a decomposition
of V (D) by generalizing the result on the hypercube.

In this paper, we view V (D) as a K1− 2
q
-module as well as a U(sl2)-module in light of Theo-

rem 1.8. Subsequently, we apply Theorem 1.5 to prove the following results:
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Proposition 1.9. Let D be a positive integer. For any integers p and k with 0 ≤ p ≤ D and
0 ≤ k ≤

⌊p
2

⌋
, there exists a (p−2k+1)-dimensional irreducible T (D)-module Lp,k(D) satisfying

the following conditions:

(i) There exists a basis for Lp,k(D) with respect to which the matrices representing A(D)
and A∗(D) are

α0 γ1 0
β0 α1 γ2

β1 α2
. . .

. . .
. . . γp−2k

0 βp−2k−1 αp−2k

,


θ0 0

θ1
θ2

. . .

0 θp−2k

,

respectively.

(ii) There exists a basis for Lp,k(D) with respect to which the matrices representing A(D)
and A∗(D) are

θ0 0
θ1

θ2
. . .

0 θp−2k

,


α0 γ1 0
β0 α1 γ2

β1 α2
. . .

. . .
. . . γp−2k

0 βp−2k−1 αp−2k

,

respectively.

Here the parameters {αi}p−2k
i=0 , {βi}p−2k−1

i=0 , {γi}p−2k
i=1 , {θi}p−2k

i=0 are as follows:

αi = (q − 2)(i+ k) + p−D for i = 0, 1, . . . , p− 2k,

βi = i+ 1 for i = 0, 1, . . . , p− 2k − 1,

γi = (q − 1)(p− i− 2k + 1) for i = 1, 2, . . . , p− 2k,

θi = q(p− i− k)−D for i = 0, 1, . . . , p− 2k.

Given a vector space W and a positive integer p, we let

p ·W = W ⊕W ⊕ · · · ⊕W︸ ︷︷ ︸
p copies of W

.

Theorem 1.10. Let D be a positive integer. Then the standard T (D)-module V (D) is isomor-
phic to

D⊕
p=0

⌊ p
2
⌋⊕

k=0

p− 2k + 1

p− k + 1

(
D

p

)(
p

k

)
(q − 2)D−p · Lp,k(D).

The algebra T (D) is a finite-dimensional semisimple algebra. Following from [3, Theo-
rem 25.10], Theorem 1.10 implies the following classification of irreducible T (D)-modules:

Theorem 1.11. Let D be a positive integer. Let P(D) denote the set consisting of all pairs
(p, k) of integers with 0 ≤ p ≤ D and 0 ≤ k ≤

⌊p
2

⌋
. Let M(D) denote the set of all isomorphism

classes of irreducible T (D)-modules. Then there exists a bijection E : P(D) → M(D) given by

(p, k) 7→ the isomorphism class of Lp,k(D)

for all (p, k) ∈ P(D).

The paper is organized as follows: In Section 2, we give the preliminaries on the algebra Kω.
In Section 3, we prove Proposition 1.9 and Theorems 1.10, 1.11 by using Theorem 1.5. In Ap-
pendix A, we give the equivalent statements of Proposition 1.9 and Theorems 1.10, 1.11.
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2 The Krawtchouk algebra

2.1 Finite-dimensional irreducible Kω-modules

Recall the U(sl2)-module Ln from Lemma 1.2. Recall the algebra homomorphism ζ : Kω →
U(sl2) form Theorem 1.8. Each U(sl2)-module can be viewed as a Kω-module by pulling back
via ζ. We express the U(sl2)-module Ln as a Kω-module as follows:

Lemma 2.1. For any integer n ≥ 0, the matrices representing A, B, C with respect to the basis
{vi}ni=0 for the Kω-module Ln are

α0 γ1 0
β0 α1 γ2

β1 α2
. . .

. . .
. . . γn

0 βn−1 αn

,


θ0 0

θ1
θ2

. . .

0 θn

,


0 −γ1 0
β0 0 −γ2

β1 0
. . .

. . .
. . . −γn

0 βn−1 0


respectively, where

αi =
(2i− n)ω

2
for i = 0, 1, . . . , n,

βi =
(i+ 1)(1− ω)

2
for i = 0, 1, . . . , n− 1,

γi =
(n− i+ 1)(1 + ω)

2
for i = 1, 2, . . . , n,

θi =
n

2
− i for i = 0, 1, . . . , n.

The finite-dimensional irreducible Kω-modules are classified as follows:

Theorem 2.2.

(i) If ω = −1, then any finite-dimensional irreducible Kω-module V is of dimension one and
there is a scalar µ ∈ C such that Av = µv, Bv = µv for all v ∈ V .

(ii) If ω = 1, then any finite-dimensional irreducible Kω-module V is of dimension one and
there is a scalar µ ∈ C such that Av = µv, Bv = −µv for all v ∈ V .

(iii) If ω2 ̸= 1, then Ln is the unique (n+ 1)-dimensional irreducible Kω-module up to isomor-
phism for every integer n ≥ 0.

Proof. (i) Let n ≥ 0 be an integer. Let V denote an (n + 1)-dimensional irreducible K−1-
module. Since the trace of the left-hand side of (1.1) on V is zero, the elements A and B have
the same trace on V . If n = 0 then there exists a scalar µ ∈ C such that Av = Bv = µv for all
v ∈ V .

To see Theorem 2.2(i), it remains to assume that n ≥ 1 and we seek a contradiction. Applying
the method proposed in [6, 7, 8], there exists a basis {ui}ni=0 for V with respect to which the
matrices representing A and B are of the forms

θ0 0
1 θ1

1 θ2
. . .

. . .

0 1 θn

 ,


θ0 φ1 0

θ1 φ2

θ2
. . .
. . . φn

0 θn

 ,
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respectively. Here {θi}ni=0 is an arithmetic sequence with common difference −1 and the sequence
{φi}ni=1 satisfies φi−1 − 2φi + φi+1 = 0, 1 ≤ i ≤ n, where φ0 and φn+1 are interpreted as zero.
Solving the above recurrence yields that φi = 0 for all i = 1, 2, . . . , n. Thus the subspace of V
spanned by {ui}ni=1 is a nonzero K−1-module, which is a contradiction to the irreducibility of V .

(ii) Using Definition 1.6, it is routine to verify that there exists a unique algebra isomorphism
K−1 → K1 that sends A to A and B to −B. Theorem 2.2(ii) follows from Theorem 2.2(i) and
the above isomorphism.

(iii) Theorem 2.2(iii) follows immediate from Lemma 1.3 and Theorem 1.8. ■

Lemma 2.3. There exists a unique algebra automorphism of Kω that sends A 7→ B, B 7→ A,
C 7→ −C.

Proof. It is routine to verify the lemma by using Lemma 1.7. ■

Lemma 2.4. Suppose that ω2 ̸= 1. For any integer n ≥ 0, there exists a basis for the Kω-mod-
ule Ln with respect to which the matrices representing A, B, C are

θ0 0
θ1

θ2
. . .

0 θn

,


α0 γ1 0
β0 α1 γ2

β1 α2
. . .

. . .
. . . γn

0 βn−1 αn

,


0 γ1 0

−β0 0 γ2

−β1 0
. . .

. . .
. . . γn

0 −βn−1 0


respectively, where

αi =
(2i− n)ω

2
for i = 0, 1, . . . , n,

βi =
(i+ 1)(1− ω)

2
for i = 0, 1, . . . , n− 1,

γi =
(n− i+ 1)(1 + ω)

2
for i = 1, 2, . . . , n,

θi =
n

2
− i for i = 0, 1, . . . , n.

Proof. Let L′
n denote the irreducible Kω-module obtained by twisting the Kω-module Ln via

the automorphism of Kω given in Lemma 2.3. Recall the basis {vi}ni=0 for Ln from Lemma 2.1.
Observe that the three matrices described in Lemma 2.4 are the matrices representing A, B, C
with respect to the basis {vi}ni=0 for the Kω-module L′

n. By Theorem 2.2(iii), the Kω-module L′
n

is isomorphic to Ln. The lemma follows. ■

Leonard pairs were introduced in [15, 19, 21] by P. Terwilliger. Suppose that ω2 ̸= 1. By Lem-
mas 2.1 and 2.4, the elements A and B act on the Kω-module Ln as a Leonard pair. The result
was first stated in [13, Theorem 6.3].

2.2 The Krawtchouk algebra as a Hopf algebra

Let H denote an algebra. Recall that H is called a Hopf algebra if there are two algebra
homomorphisms ε : H → C, ∆: H → H ⊗ H and a linear map S : H → H that satisfy the
following properties:

(H1) (1⊗∆) ◦∆ = (∆⊗ 1) ◦∆,

(H2) m ◦ (1⊗ (ι ◦ ε)) ◦∆ = m ◦ ((ι ◦ ε)⊗ 1) ◦∆ = 1,

(H3) m ◦ (1⊗ S) ◦∆ = m ◦ (S ⊗ 1) ◦∆ = ι ◦ ε.
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Here m : H ⊗ H → H is the multiplication map and ι : C → H is the unit map defined by
ι(c) = c1 for all c ∈ C. Note that m is a linear map and ι is an algebra homomorphism.

Suppose that (H1)–(H3) hold. Then the maps ε, ∆, S are called the counit, comultiplication
and antipode of H, respectively. Let n be a positive integer. The n-fold comultiplication of H is
the algebra homomorphism ∆n : H → H⊗(n+1) inductively defined by

∆n =
(
1⊗(n−1) ⊗∆

)
◦∆n−1.

Here ∆0 is interpreted as the identity map of H. We may regard every H⊗(n+1)-module as an
H-module by pulling back via ∆n. Note that

∆n =
(
1⊗(n−i) ⊗∆⊗ 1⊗(i−1)

)
◦∆n−1 for all i = 1, 2, . . . , n. (2.1)

It follows from (2.1) that

∆n = (∆n−1 ⊗ 1) ◦∆ = (1⊗∆n−1) ◦∆. (2.2)

Recall from Section 1 that Kω is the universal enveloping algebra of Kω. Hence Kω is a Hopf
algebra. For the reader’s convenience, we give a detailed verification for the Hopf algebra struc-
ture of Kω. By an algebra antihomomorphism, we mean a unital algebra antihomomorphism.

Lemma 2.5.

(i) There exists a unique algebra homomorphism ε : Kω → C given by

ε(A) = 0, ε(B) = 0, ε(C) = 0.

(ii) There exists a unique algebra homomorphism ∆: Kω → Kω ⊗ Kω given by

∆(A) = A⊗ 1 + 1⊗A, ∆(B) = B ⊗ 1 + 1⊗B, ∆(C) = C ⊗ 1 + 1⊗ C.

(iii) There exists a unique algebra antihomomorphism S : Kω → Kω given by

S(A) = −A, S(B) = −B, S(C) = −C.

(iv) The algebra Kω is a Hopf algebra on which the counit, comultiplication and antipode are
the above maps ε, ∆, S, respectively.

Proof. (i)–(iii) It is routine to verify Lemma 2.5(i)–(iii) by using Definition 1.6.
(iv) Using Lemma 2.5(ii), it yields that (1⊗∆) ◦∆ and (∆⊗ 1) ◦∆ agree at the generators

A, B, C of Kω. Since ∆ is an algebra homomorphism, the maps (1 ⊗∆) ◦∆ and (∆ ⊗ 1) ◦∆
are algebra homomorphisms. Hence (H1) holds for Kω.

Let k = m ◦ (1 ⊗ (ι ◦ ε)) ◦ ∆ and k′ = m ◦ ((ι ◦ ε) ⊗ 1) ◦ ∆. Evidently, k and k′ are linear
maps. Using Lemma 2.5(i), (ii) yields that

k(1) = k′(1) = 1, k(A) = k′(A) = A, k(B) = k′(B) = B, k(C) = k′(C) = C.

Let x, y be any two elements of Kω. To see that k = 1 it remains to check that k(xy) = k(x)k(y).
We can write

∆(x) =

n∑
i=1

x
(1)
i ⊗ x

(2)
i , (2.3)

∆(y) =
n∑

i=1

y
(1)
i ⊗ y

(2)
i , (2.4)
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where n ≥ 1 is an integer and x
(1)
i , x

(2)
i , y

(1)
i , y

(2)
i ∈ Kω for 1 ≤ i ≤ n. Then

k(xy) =

n∑
i=1

n∑
j=1

x
(1)
i · y(1)j · (ι ◦ ε)

(
x
(2)
i

)
· (ι ◦ ε)

(
y
(2)
j

)
.

Since each of (ι ◦ ε)
(
x
(2)
i

)
and (ι ◦ ε)

(
y
(2)
j

)
is a scalar multiple of 1, it follows that

k(xy) =

( n∑
i=1

x
(1)
i · (ι ◦ ε)

(
x
(2)
i

))( n∑
j=1

y
(1)
j · (ι ◦ ε)

(
y
(2)
j

))
= k(x)k(y).

By a similar argument, one may show that k′ = 1. Hence (H2) holds for Kω.
Let h = m ◦ (1⊗S) ◦∆ and h′ = m ◦ (S⊗ 1) ◦∆. Evidently, h and h′ are linear maps. Using

Lemma 2.5(ii), (iii) yields that

h(1) = h′(1) = (ι ◦ ε)(1) = 1, h(A) = h′(A) = (ι ◦ ε)(A) = 0,

h(B) = h′(B) = (ι ◦ ε)(B) = 0, h(C) = h′(C) = (ι ◦ ε)(C) = 0.

Let x, y be any two elements of Kω and suppose that h(x) = (ι ◦ ε)(x) and h(y) = (ι ◦ ε)(y). To
see that h = ι ◦ ε, it suffices to check that h(xy) = h(x)h(y). Applying (2.3) and (2.4), one finds
that

h(xy) =
n∑

i=1

n∑
j=1

x
(1)
i y

(1)
j S

(
x
(2)
i y

(2)
j

)
.

Using the antihomomorphism property of S, we obtain

h(xy) =
n∑

i=1

n∑
j=1

x
(1)
i y

(1)
j S

(
y
(2)
j

)
S
(
x
(2)
i

)
=

n∑
i=1

x
(1)
i

( n∑
j=1

y
(1)
j S

(
y
(2)
j

))
S
(
x
(2)
i

)
=

n∑
i=1

x
(1)
i h(y)S

(
x
(2)
i

)
.

Since h(y) = (ι ◦ ε)(y) is a scalar multiple of 1, it follows that

h(xy) =

n∑
i=1

x
(1)
i S

(
x
(2)
i

)
h(y) = h(x)h(y).

By a similar argument, one can show that h′ = ι ◦ ε. Hence (H3) holds for Kω. The result
follows. ■

Theorem 2.6. For any integers m,n ≥ 0, the Kω-module Lm ⊗ Ln is isomorphic to

min{m,n}⊕
p=0

Lm+n−2p.

Proof. By Lemmas 1.4 and 2.5 along with Theorem 1.8 the following diagram commutes:

Kω U(sl2)

Kω ⊗ Kω U(sl2)⊗U(sl2)

∆

ζ

ζ ⊗ ζ

∆
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Here ∆: U(sl2) → U(sl2)⊗U(sl2) is the comultiplication of U(sl2) from Lemma 1.4 and ∆: Kω →
Kω ⊗ Kω is the comultiplication of Kω from Lemma 2.5(ii). Combined with Theorem 1.5, the
result follows. ■

For the rest of this paper, the notation ∆ will refer to the map from Lemma 2.5(ii) and ∆n

will stand for the corresponding n-fold comultiplication of Kω for every positive integer n.

3 The Clebsch–Gordan rule for U(sl2)
and the Hamming graph H(D, q)

3.1 Preliminaries on distance-regular graphs

Let Γ denote a finite simple connected graph with vertex set X ̸= ∅. Let ∂ denote the path-
length distance function for Γ. Recall that the diameter D of Γ is defined by

D = max
x,y∈X

∂(x, y).

Given any x ∈ X let

Γi(x) = {y ∈ X | ∂(x, y) = i} for i = 0, 1, . . . , D.

For short, we abbreviate Γ(x) = Γ1(x). We call Γ distance-regular whenever for all h, i, j ∈
{0, 1, . . . , D} and all x, y ∈ X with ∂(x, y) = h the number |Γi(x) ∩ Γj(y)| is independent of x
and y. If Γ is distance-regular, the numbers ai, bi, ci for all i = 0, 1, . . . , D defined by

ai = |Γi(x) ∩ Γ(y)|, bi = |Γi+1(x) ∩ Γ(y)|, ci = |Γi−1(x) ∩ Γ(y)|

for any x, y ∈ X with ∂(x, y) = i are called the intersection numbers of Γ. Here Γ−1(x) and
ΓD+1(x) are interpreted as the empty set.

We now assume that Γ is distance-regular. Let MatX(C) be the algebra consisting of the
complex square matrices indexed by X. For all i = 0, 1, . . . , D the ith distance matrix Ai ∈
MatX(C) is defined by

(Ai)xy =

{
1 if ∂(x, y) = i,

0 if ∂(x, y) ̸= i

for all x, y ∈ X. The Bose–Mesner algebra M of Γ is the subalgebra of MatX(C) generated
by Ai for all i = 0, 1, . . . , D. Note that the adjacency matrix A = A1 of Γ generates M and the
matrices {Ai}Di=0 form a basis for M.

Since A is real symmetric and dimM = D + 1, it follows that A has D + 1 mutually
distinct real eigenvalues θ0, θ1, . . . , θD. Set θ0 = b0 which is the valency of Γ. There exist unique
E0,E1, . . . ,ED ∈ M such that

D∑
i=0

Ei = I (the identity matrix), AEi = θiEi for all i = 0, 1, . . . , D.

The matrices {Ei}Di=0 form another basis for M, and Ei is called the primitive idempotent of Γ
associated with θi for i = 0, 1, . . . , D.

Observe that M is closed under the Hadamard product ⊙. The distance-regular graph Γ is
said to be Q-polynomial with respect to the ordering {Ei}Di=0 if there are scalars a∗i , b

∗
i , c

∗
i for

all i = 0, 1, . . . , D such that b∗D = c∗0 = 0, b∗i−1c
∗
i ̸= 0 for all i = 1, 2, . . . , D and

E1 ⊙Ei =
1

|X|
(b∗i−1Ei−1 + a∗iEi + c∗i+1Ei+1) for all i = 0, 1, . . . , D,

where we interpret b∗−1, c
∗
D+1 as any scalars in C and E−1,ED+1 as the zero matrix in MatX(C).
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We now assume that Γ is Q-polynomial with respect to {Ei}Di=0 and fix x ∈ X. For all
i = 0, 1, . . . , D let E∗

i = E∗
i (x) denote the diagonal matrix in MatX(C) defined by

(E∗
i )yy =

{
1 if ∂(x, y) = i,

0 if ∂(x, y) ̸= i
(3.1)

for all y ∈ X. The matrix E∗
i is called the ith dual primitive idempotent of Γ with respect

to x. The dual Bose–Mesner algebra M∗ = M∗(x) of Γ with respect to x is the subalgebra of
MatX(C) generated by E∗

i for all i = 0, 1, . . . , D. Since E∗
iE

∗
j = δijE

∗
i the matrices {E∗

i }Di=0 form

a basis for M∗. For all i = 0, 1, . . . , D the ith dual distance matrix A∗
i = A∗

i (x) is the diagonal
matrix in MatX(C) defined by

(A∗
i )yy = |X|(Ei)xy for all y ∈ X. (3.2)

The matrices {A∗
i }Di=0 form another basis for M∗. Note that A∗ = A∗

1 is called the dual
adjacency matrix of Γ with respect to x and A∗ generates M∗ [16, Lemma 3.11].

The Terwilliger algebra T of Γ with respect to x is the subalgebra of MatX(C) generated
by M and M∗ [16, Definition 3.3]. The vector space consisting of all complex column vectors
indexed by X is a natural T -module and it is called the standard T -module [16, p. 368]. Since
the algebra T is finite-dimensional, the irreducible T -modules are finite-dimensional. Since the
algebra T is closed under the conjugate-transpose map, it follows that T is semisimple. Hence
the algebra T is isomorphic to⊕

irreducible T -modules W

End(W ),

where the direct sum is over all non-isomorphic irreducible T -modules W . Since the standard
T -module is faithful, all irreducible T -modules are contained in the standard T -module up to
isomorphism.

Let W denote an irreducible T -module. The number min0≤i≤D{i | E∗
iW ̸= {0}} is called

the endpoint of W . The number min0≤i≤D{i | EiW ̸= {0}} is called the dual endpoint of W .
The support of W is defined as the set {i | 0 ≤ i ≤ D, E∗

iW ̸= {0}}. The dual support of W is
defined as the set {i | 0 ≤ i ≤ D, EiW ̸= {0}}. The number |{i | 0 ≤ i ≤ D, E∗

iW ̸= {0}}| − 1
is called the diameter of W . The number |{i | 0 ≤ i ≤ D, EiW ̸= {0}}| − 1 is called the dual
diameter of W .

3.2 The adjacency matrix and the dual adjacency matrix
of a Hamming graph

Let X be a nonempty set and let n be a positive integer. The notation

Xn = {(x1, x2, . . . , xn) | x1, x2, . . . , xn ∈ X}

stands for the n-ary Cartesian product of X. For any x ∈ Xn, let xi denote the ith coordinate
of x for all i = 1, 2, . . . , n.

Recall that q stands for an integer greater than or equal to 3. For the rest of this paper, we
set

X = {0, 1, . . . , q − 1}

and let D be a positive integer.

Definition 3.1. The D-dimensional Hamming graph H(D) = H(D, q) over X has the vertex
set XD and x, y ∈ XD are adjacent if and only if x and y differ in exactly one coordinate.
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Let ∂ denote the path-length distance function for H(D). Observe that ∂(x, y) = |{i | 1 ≤
i ≤ D, xi ̸= yi}| for any x, y ∈ XD. It is routine to verify that H(D) is a distance-regular graph
with diameter D and its intersection numbers are

ai = i(q − 2), bi = (D − i)(q − 1), ci = i

for all i = 0, 1, . . . , D.

Let V (D) denote the vector space consisting of the complex column vectors indexed by XD.
For convenience we write V = V (1). For any x ∈ XD, let x̂ denote the vector of V (D) with 1 in
the x-coordinate and 0 elsewhere. We view any L ∈ MatXD(C) as the linear map V (D) → V (D)
that sends x̂ to Lx̂ for all x ∈ XD. We identify the vector space V (D) with V ⊗D via the linear
isomorphism V (D) → V ⊗D given by

x̂ → x̂1 ⊗ x̂2 ⊗ · · · ⊗ x̂D for all x ∈ XD.

Let I(D) denote the identity matrix in MatXD(C) and let A(D) denote the adjacency matrix
of H(D). We simply write I = I(1) and A = A(1).

Lemma 3.2. Let D ≥ 2 be an integer. Then

A(D) = A(D − 1)⊗ I+ I(D − 1)⊗A. (3.3)

Proof. Let x ∈ XD be given. Applying x̂ to the right-hand side of (3.3) a straightforward
calculation yields that it is equal to

D∑
i=1

∑
yi∈X\{xi}

x̂1 ⊗ · · · ⊗ x̂i−1 ⊗ ŷi ⊗ x̂i+1 ⊗ · · · ⊗ x̂D = A(D)x̂.

The lemma follows. ■

Using Lemma 3.2, a routine induction yields that A(D) has the eigenvalues

θi(D) = D(q − 1)− qi for all i = 0, 1, . . . , D.

Let Ei(D) denote the primitive idempotent of H(D) associated with θi(D) for all i = 0, 1, . . . , D.
We simply write E0 = E0(1) and E1 = E1(1). For convenience, we interpret E−1(D) and
ED+1(D) as the zero matrix in MatXD(C).

Lemma 3.3. Let D ≥ 2 be an integer. Then

Ei(D) = Ei(D − 1)⊗E0 +Ei−1(D − 1)⊗E1 for all i = 0, 1, . . . , D. (3.4)

Proof. We proceed by induction on D. Let Ei(D)′ denote the right-hand side of (3.4) for
i = 0, 1, . . . , D. Applying Lemma 3.2 along with the induction hypothesis, it follows that

D∑
i=0

Ei(D)′ = I(D), A(D)Ei(D)′ = θi(D)Ei(D)′ for all i = 0, 1, . . . , D.

Hence Ei(D) = Ei(D)′ for all i = 0, 1, . . . , D. The lemma follows. ■

Applying Lemma 3.3 yields that

E1(D)⊙Ei(D) = q−D(b∗i−1Ei−1(D) + a∗iEi(D) + c∗i+1Ei+1(D))
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for all i = 0, 1, . . . , D, where

a∗i = i(q − 2), b∗i = (D − i)(q − 1), c∗i = i

for all i = 0, 1, . . . , D. Here b∗−1, c∗D+1 are interpreted as any scalars in C. Hence H(D) is
Q-polynomial with respect to the ordering {Ei(D)}Di=0.

Observe that the graph H(D) is vertex-transitive. Without loss of generality, we can consider
the dual adjacency matrix A∗(D) of H(D) with respect to (0, 0, . . . , 0) ∈ XD. We simply write
A∗ = A∗(1).

Lemma 3.4. Let D ≥ 2 be an integer. Then

A∗(D) = A∗(D − 1)⊗ I+ I(D − 1)⊗A∗.

Proof. Given y ∈ XD let cy denote the coefficient of ŷ in E1(D) · 0̂⊗D with respect to the basis
{x̂}x∈XD for V (D). By (3.2), we have

A∗(D)ŷ = qDcyŷ for all y ∈ XD.

Suppose that D ≥ 2. Using Lemma 3.3 yields that cy = q−1c(y1,...,yD−1) + q1−DcyD for all

y ∈ XD. Hence

A∗(D)ŷ =
(
qD−1c(y1,...,yD−1) + qcyD

)
ŷ

= A∗(D − 1)(ŷ1 ⊗ · · · ⊗ ŷD−1)⊗ ŷD + ŷ1 ⊗ · · · ⊗ ŷD−1 ⊗A∗ŷD

= (A∗(D − 1)⊗ I+ I(D − 1)⊗A∗)ŷ

for all y ∈ XD. The lemma follows. ■

Let E∗
i (D) denote the ith dual primitive idempotent ofH(D) with respect to (0, 0, . . . , 0)∈XD

for all i = 0, 1, . . . , D. We simply write E∗
0 = E∗

0(1) and E∗
1 = E∗

1(1). For convenience, we
interpret E∗

−1(D) and E∗
D+1(D) as the zero matrix in MatXD(C).

Lemma 3.5. Let D ≥ 2 be an integer. Then

E∗
i (D) = E∗

i (D − 1)⊗E∗
0 +E∗

i−1(D − 1)⊗E∗
1 for all i = 0, 1, . . . , D.

Proof. It is straightforward to verify the lemma by using (3.1). ■

Using Lemmas 3.4 and 3.5, a routine induction yields that A∗(D)E∗
i (D) = θ∗i (D)E∗

i (D) for
all i = 0, 1, . . . , D where θ∗i (D) = D(q − 1)− qi.

3.3 Proofs of Proposition 1.9 and Theorems 1.10, 1.11

In this subsection, we set

ω = 1− 2

q
.

Let T (D) denote the Terwilliger algebra of H(D) with respect to (0, 0, . . . , 0) ∈ XD.

Definition 3.6. Let V0 denote the subspace of V consisting of all vectors
∑q−1

i=1 ciî, where

c1, c2, . . . , cq−1 ∈ C with
∑q−1

i=1 ci = 0. Let V1 denote the subspace of V spanned by 0̂ and∑q−1
i=1 î.
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Definition 3.7. For any s ∈ {0, 1}D, we define the subspace Vs(D) of V (D) by

Vs(D) = Vs1 ⊗ Vs2 ⊗ · · · ⊗ VsD .

Note that V0(1) = V0 and V1(1) = V1.

Lemma 3.8. The vector space V (D) is equal to⊕
s∈{0,1}D

Vs(D).

Proof. By Definition 3.6, we have V = V0 ⊕ V1. It follows that

V (D) = V ⊗D = (V0 ⊕ V1)
⊗D.

The lemma follows by applying the distributive law of ⊗ over ⊕ to the right-hand side of the
above equation. ■

Lemma 3.9.

(i) There exists a unique representation r0 : Kω → End(V0) that sends

A 7→ 1

q
A|V0 +

1

q
, B 7→ 1

q
A∗|V0 +

1

q
.

Moreover, the Kω-module V0 is isomorphic to (q − 2) · L0.

(ii) There exists a unique representation r1 : Kω → End(V1) that sends

A 7→ 1

q
A|V1 +

1

q
− 1

2
, B 7→ 1

q
A∗|V1 +

1

q
− 1

2
.

Moreover, the Kω-module V1 is isomorphic to L1.

Proof. (i) The subspace V0 of V is invariant under A and A∗ acting as scalar multiplication
by −1. By Lemma 2.1, the statement (i) follows.

(ii) The subspace V1 of V is invariant under A and A∗ and the matrices representing A
and A∗ with respect to the basis 0̂,

∑q−1
i=1 î for V1 are(

0 q − 1
1 q − 2

)
,

(
q − 1 0
0 −1

)
,

respectively. By Lemma 2.1, the statement (ii) follows. ■

Definition 3.10. For any s ∈ {0, 1}D, we define the representation rs(D) : Kω → End(Vs(D))
by

rs(D) = (rs1 ⊗ rs2 ⊗ · · · ⊗ rsD) ◦∆D−1.

Note that r0(1) = r0 and r1(1) = r1.

Proposition 3.11. For any integer D ≥ 2 and any s ∈ {0, 1}D, the following diagram com-
mutes:

Kω Kω ⊗ Kω

End(Vs(D))

rs(D)

∆

r(s1,s2,...,sD−1)
(D − 1)⊗ rsD
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Proof. By Definition 3.10 the map r(s1,s2,...,sD−1)(D − 1) = (rs1 ⊗ rs2 ⊗ · · · ⊗ rsD−1) ◦ ∆D−2.
Hence

r(s1,s2,...,sD−1)(D − 1)⊗ rsD =
(
(rs1 ⊗ rs2 ⊗ · · · ⊗ rsD−1) ◦∆D−2

)
⊗ rsD

= (rs1 ⊗ rs2 ⊗ · · · ⊗ rsD) ◦ (∆D−2 ⊗ 1).

By (2.2), the map ∆D−1 = (∆D−2 ⊗ 1) ◦ ∆. Combined with Definition 3.10, the following
diagram commutes:

Kω Kω ⊗ Kω K⊗D
ω

End(Vs(D))

rs(D)

∆

∆D−1

r(s1,s2,...,sD−1)
(D − 1)⊗ rsD

∆D−2 ⊗ 1

rs1 ⊗ rs2 ⊗ · · · ⊗ rsD

The proposition follows. ■

Proposition 3.12. For any s ∈ {0, 1}D, the representation rs(D) : Kω → End(Vs(D)) maps

A 7→ 1

q
A(D)|Vs(D) +

D

q
− 1

2

D∑
i=1

si, (3.5)

B 7→ 1

q
A∗(D)|Vs(D) +

D

q
− 1

2

D∑
i=1

si. (3.6)

Proof. We proceed by induction on D. By Lemma 3.9, the statement is true when D = 1.
Suppose that D ≥ 2. For convenience let s′ = (s1, s2, . . . , sD−1) ∈ {0, 1}D−1. By Lemma 2.5
and Proposition 3.11, the map rs(D) sends A to

rs′(D − 1)(A)⊗ 1 + 1⊗ rsD(A).

Applying the induction hypothesis the above element is equal to(
1

q
A(D − 1)|Vs′ (D−1) +

D − 1

q
− 1

2

D−1∑
i=1

si

)
⊗ 1 + 1⊗

(
1

q
A|VsD

+
1

q
− sD

2

)

=
A(D − 1)|Vs′ (D−1) ⊗ 1 + 1⊗A|VsD

q
+

D

q
− 1

2

D∑
i=1

si.

By Lemma 3.2, the first term in the right-hand side of the above equation equals 1
qA(D)|Vs(D).

Hence (3.5) holds. By a similar argument, (3.6) holds. The proposition follows. ■

In light of Proposition 3.12, the T (D)-module Vs(D) is a Kω-module for all s ∈ {0, 1}D.
Combined with Lemma 3.8, the standard T (D)-module V (D) is a Kω-module.

Lemma 3.13. Let p be a positive integer. Then the Kω-module L⊗p
1 is isomorphic to

⌊ p
2
⌋⊕

k=0

p− 2k + 1

p− k + 1

(
p

k

)
· Lp−2k.
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Proof. We proceed by induction on p. If p = 1, then there is nothing to prove. Suppose that
p ≥ 2. Applying the induction hypothesis yields that the Kω-module L⊗p

1 is isomorphic to

( ⌊ p−1
2

⌋⊕
k=0

p− 2k

p− k

(
p− 1

k

)
· Lp−2k−1

)
⊗ L1.

Applying the distributive law of ⊗ over ⊕ the above Kω-module is isomorphic to

⌊ p−1
2

⌋⊕
k=0

p− 2k

p− k

(
p− 1

k

)
· (Lp−2k−1 ⊗ L1).

By Theorem 2.6, the Kω-module Lp−2k−1 ⊗ L1 is isomorphic to{
Lp−2k ⊕ Lp−2k−2 if 0 ≤ k ≤

⌊p
2

⌋
− 1,

L1 else

for all k = 0, 1, . . . ,
⌊p−1

2

⌋
. Hence the multiplicity of Lp−2k in L⊗p

1 is equal to

p− 2k

p− k

(
p− 1

k

)
+

p− 2k + 2

p− k + 1

(
p− 1

k − 1

)
=

p− 2k + 1

p− k + 1

(
p

k

)
for all k = 0, 1, . . . ,

⌊p
2

⌋
. Here

(
p−1
k−1

)
is interpreted as 0 when k = 0. The lemma follows. ■

Lemma 3.14. Let p be an integer with 0 ≤ p ≤ D. Suppose that s ∈ {0, 1}D with p =
∑D

i=1 si.
Then the Kω-module Vs(D) is isomorphic to

⌊ p
2
⌋⊕

k=0

p− 2k + 1

p− k + 1

(
p

k

)
(q − 2)D−p · Lp−2k.

Proof. By Definition 3.7, the Kω-module Vs(D) is isomorphic to V ⊗p
1 ⊗ V

⊗(D−p)
0 . Applying

Lemma 3.9 the above Kω-module is isomorphic to (q−2)D−p ·L⊗p
1 . Combined with Lemma 3.13,

the lemma follows. ■

Proof of Proposition 1.9. Let p and k be two integers with 0 ≤ p ≤ D and 0 ≤ k ≤ ⌊p2⌋.
Pick any s ∈ {0, 1}D with p =

∑D
i=1 si. By Lemma 3.14, the Kω-module Vs(D) contains

the irreducible Kω-module Lp−2k. Let {vi}p−2k
i=0 and {wi}p−2k

i=0 denote the two bases for Lp−2k

described in Lemmas 2.1 and 2.4 with n = p − 2k, respectively. In light of Proposition 3.12,
we may view the Kω-submodule Lp−2k of Vs(D) as an irreducible T (D)-module and denoted
by Lp,k(D). To see (i) and (ii), one may evaluate the matrices representing A(D) and A∗(D)

with respect to the bases {vi}p−2k
i=0 and {wi}p−2k

i=0 for Lp,k(D), respectively. The proposition
follows. ■

Proof of Theorem 1.10. Let p be any integer with 0 ≤ p ≤ D. By Lemma 3.14, for any
s ∈ {0, 1}D with p =

∑D
i=1 si the T (D)-submodule Vs(D) of V (D) is isomorphic to

⌊ p
2
⌋⊕

k=0

p− 2k + 1

p− k + 1

(
p

k

)
(q − 2)D−p · Lp,k(D).

Combined with Lemma 3.8, the result follows. ■
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Proof of Theorem 1.11. Since the standard T (D)-module V (D) contains all irreducible
T (D)-modules up to isomorphism, the map E is onto. Suppose that there are two pairs (p, k)
and (p′, k′) in P(D) such that the irreducible T (D)-module Lp,k(D) is isomorphic to Lp′,k′(D).
Since they have the same dimension, it follows that

p− 2k = p′ − 2k′. (3.7)

Since A∗(D) has the same eigenvalues in Lp,k(D) and Lp′,k′(D), it follows from Proposition 1.9
that p − k = p′ − k′. Combined with (3.7), this yields that (p, k) = (p′, k′). Therefore, E is
one-to-one. ■

Corollary 3.15 ([11, Corollary 3.7]). The algebra T (D) is isomorphic to

D⊕
p=0

⌊ p
2
⌋⊕

k=0

Matp−2k+1(C).

Moreover, dim T (D) =
(
D+4
4

)
.

Proof. By Theorem 1.11, the algebra T (D) is isomorphic to
⊕D

p=0

⊕⌊ p
2
⌋

k=0 End(Lp,k(D)). Hence
dim T (D) is equal to

D∑
p=0

⌊ p
2
⌋∑

k=0

(p− 2k + 1)2 =
D∑
p=0

(
p+ 3

3

)
=

(
D + 4

4

)
.

The corollary follows. ■

A Restatements of Proposition 1.9 and Theorems 1.10, 1.11

Recall the irreducible T (D)-module Lp,k(D) from Proposition 1.9. Let r, r∗, d, d∗ denote the
endpoint, dual endpoint, diameter, dual diameter of Lp,k(D) respectively. It is known from [18,
p. 197] that

⌈
D−d
2

⌉
≤ r, r∗ ≤ D − d. From the results of Section 3.2, we see that

r = r∗ = D + k − p, d = d∗ = p− 2k.

In terms of the parameters r and d, the parameters p and k read as

p = 2D − d− 2r, k = D − d− r.

Thus we can restate Proposition 1.9 and Theorems 1.10, 1.11 as follows:

Proposition A.1. Let D be a positive integer. For any integers d and r with 0 ≤ d ≤ D
and

⌈
D−d
2

⌉
≤ r ≤ D − d, there exists a (d + 1)-dimensional irreducible T (D)-module Md,r(D)

satisfying the following conditions:

(i) There exists a basis for Md,r(D) with respect to which the matrices representing A(D)
and A∗(D) are

α0 γ1 0
β0 α1 γ2

β1 α2
. . .

. . .
. . . γd

0 βd−1 αd

,


θ0 0

θ1
θ2

. . .

0 θd

,

respectively.
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(ii) There exists a basis for Md,r(D) with respect to which the matrices representing A(D) and
A∗(D) are

θ0 0
θ1

θ2
. . .

0 θd

,


α0 γ1 0
β0 α1 γ2

β1 α2
. . .

. . .
. . . γd

0 βd−1 αd

,

respectively.

Here the parameters {αi}di=0, {βi}
d−1
i=0 , {γi}di=1, {θi}di=0 are as follows:

αi = (D − d+ i− r)(q − 1)− i− r for i = 0, 1, . . . , d,

βi = i+ 1 for i = 0, 1, . . . , d− 1,

γi = (q − 1)(d− i+ 1) for i = 1, 2, . . . , d,

θi = D(q − 1)− q(i+ r) for i = 0, 1, . . . , d.

Theorem A.2. Let D be a positive integer. Then the standard T (D)-module V (D) is isomor-
phic to

D⊕
d=0

D−d⊕
r=⌈D−d

2
⌉

d+ 1

D − r + 1

(
D

2D − d− 2r

)(
2D − d− 2r

D − d− r

)
(q − 2)d−D+2r ·Md,r(D).

We illustrate Theorem A.2 for D = 3 and D = 4:

D d r The support of Md,r(D) The multiplicity of Md,r(D) in V (D)

3

3 0 {0, 1, 2, 3} 1

2 1 {1, 2, 3} 3(q − 2)

1
1 {1, 2} 2

2 {2, 3} 3(q − 2)2

0
2 {2} 3(q − 2)

3 {3} (q − 2)3

4

4 0 {0, 1, 2, 3, 4} 1

3 1 {1, 2, 3, 4} 4(q − 2)

2
1 {1, 2, 3} 3

2 {2, 3, 4} 6(q − 2)2

1
2 {2, 3} 8(q − 2)

3 {3, 4} 4(q − 2)3

0

2 {2} 2

3 {3} 6(q − 2)2

4 {4} (q − 2)4

Theorem A.3. Let D be a positive integer. Let P(D) denote the set consisting of all pairs
(d, r) of integers with 0 ≤ d ≤ D and

⌈
D−d
2

⌉
≤ r ≤ D − d. Let M(D) denote the set of all
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isomorphism classes of irreducible T (D)-modules. Then there exists a bijection P(D) → M(D)
given by

(d, r) 7→ the isomorphism class of Md,r(D)

for all (d, r) ∈ P(D).

By Theorem A.3, the structure of an irreducible T (D)-module is determined by its endpoint
and its diameter. Also we can restate Corollary 3.15 as follows:

Corollary A.4. The algebra T (D) is isomorphic to

D⊕
d=0

(⌊
D − d

2

⌋
+ 1

)
·Matd+1(C).

Moreover, dim T (D) =
(
D+4
4

)
.
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