Symmetry, Integrability and Geometry: Methods and Applications SIGMA 19 (2023), 017, 19 pages

The Clebsch—Gordan Rule for U (sl5),
the Krawtchouk Algebras and the Hamming Graphs

Hau-Wen HUANG

Department of Mathematics, National Central University, Chung-Li 32001, Taiwan
E-mail: hauwenh@math.ncu.edu.tw

Received October 03, 2022, in final form March 22, 2023; Published online April 04, 2023
https://doi.org/10.3842/SIGMA.2023.017

Abstract. Let D > 1 and ¢ > 3 be two integers. Let H(D) = H(D,q) denote the
D-dimensional Hamming graph over a g-element set. Let T7(D) denote the Terwilliger
algebra of H(D). Let V(D) denote the standard 7(D)-module. Let w denote a com-
plex scalar. We consider a unital associative algebra K, defined by generators and rela-
tions. The generators are A and B. The relations are A2B — 2ABA + BA? = B 4 wA,
B2A —2BAB + AB? = A+ wB. The algebra £, is the case of the Askey~Wilson algebras
corresponding to the Krawtchouk polynomials. The algebra £, is isomorphic to U(slz) when
w? # 1. We view V(D) as a &,_z2-module. We apply the Clebsch-Gordan rule for U(sly)
to decompose V(D) into a direct sum of irreducible 7/(D)-modules.
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1 Introduction

Throughout this paper, we adopt the following conventions: Fix an integer ¢ > 3. Let C denote
the complex number field. An algebra is meant to be a unital associative algebra. An algebra
homomorphism is meant to be a unital algebra homomorphism. A subalgebra has the same unit
as the parent algebra. In an algebra the commutator [x,y] of two elements x and y is defined
as [z,y] = xy — yz. Note that every algebra has a Lie algebra structure with Lie bracket given
by the commutator.

Recall that sl2(C) is a three-dimensional Lie algebra over C with a basis e, f, h satisfying

[h’e]:2e’ [haf]:_2fa [eaf]:h'

Definition 1.1. The universal enveloping algebra U(sly) of sly is an algebra over C generated
by E, F, H subject to the relations

[H,E] =2F, [H,F] = —2F, [E,F] =H.
Using Definition 1.1, it is straightforward to verify the following lemma:

Lemma 1.2. Given any integer n > 0 there exists an (n + 1)-dimensional U(slz)-module Ly,
that has a basis {v;}}'_, such that

Evi=(n—i+1)v;1 fori=1,2,... n, Evy =0,
Fv; = (i + 1)vigg fori=0,1,...,n—1, Fuv, =0,
Huv; = (n — 2i)v; fori=0,1,...,n.

Note that the U(slz)-module L, is irreducible for any integer n > 0. Furthermore, the
finite-dimensional irreducible U(sly)-modules are classified as follows:
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Lemma 1.3. For any integer n > 0, each (n + 1)-dimensional irreducible U(sly)-module is
isomorphic to L.

Proof. See [10, Section V.4] for example. [ |

It is well known that the universal enveloping algebra of a Lie algebra is a Hopf algebra. For
example, see [12, Section 5].

Lemma 1.4. The algebra U(sly) is a Hopf algebra on which the counit ¢: U(sly) — C, the
antipode S: U(sly) — U(slz) and the comultiplication A: U(sly) — U(sly) ® U(sly) are given by

™
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Every U(sly) ® U(sly)-module can be viewed as a U(slz)-module via the comultiplication
of U(slz). The Clebsch-Gordan rule for U(sly) is as follows:

Theorem 1.5. For any integers m,n > 0, the U(sly)-module L, ® Ly, is isomorphic to

min{m,n}

@ Lm+nf2p-
p=0
Proof. See [10, Section V.5] for example. [ |

For the rest of this paper, let w denote a scalar taken from C.

Definition 1.6. The Krawtchouk algebra K, is an algebra over C generated by A and B subject
to the relations

A’B — 2ABA + BA® = B+ wA, (1.1)
B?A - 2BAB + AB? = A+ wB. (1.2)

The algebra 8, is the case of the Askey—Wilson algebra corresponding to the Krawtchouk
polynomials [22, Lemma 7.2]. Define C' to be the following element of £,:

C = (A, B].

Lemma 1.7. The algebra R, has a presentation with the generators A, B, C' and the relations

[A,B] = C, (1.3)
[A,C] = B+ wA, :
[C,B] = A+ wB. (1.5)

Proof. The relation (1.3) is immediate from the setting of C. Using (1.3), the relations (1.1)
and (1.2) can be written as (1.4) and (1.5), respectively. The lemma follows. [

Let K, denote a three-dimensional Lie algebra over C with a basis a, b, ¢ satisfying
[a,b] = ¢, [a,c] = b+ wa, [c,b] = a + wb.

By Lemma 1.7, the algebra K, is the universal enveloping algebra of K. There is a connection
between K, and U(sly):
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Theorem 1.8. There exists a unique algebra homomorphism (: R, — U(sly) that sends

14+ w 1—w w 1 14w 1—w
A E F—-——H B— -H C— — E F.
2 + 2 2 2 2 + 2
Moreover, if w? # 1, then ( is an isomorphism and its inverse sends
1 1 1
E s Ay Y B~ ¢  Fo A+ -2 By C,  Hw 2B.
14w 14w 14w 1-w 1-w 1-w

Proof. It is routine to verify the result by using Definition 1.1 and Lemma 1.7. Here we provide
another proof by applying [13, Lemmas 2.12 and 2.13].

Let o: sl3(C) — U(sly) denote the canonical Lie algebra homomorphism that sends e, f, h to
E, F, H, respectively. Let 7: K, — R, denote the canonical Lie algebra homomorphism that
sends a, b, ¢ to A, B, C, respectively. By [13, Lemma 2.12], there exists a unique Lie algebra
homomorphism ¢: K, — slo(C) that sends

14w l—-w w 1 14w l-w
a— 5 e+ 5 ffah, b+—>§h, c— — 5 e+ 5 I
Applying the universal property of £, to the Lie algebra homomorphism o o ¢, this gives the
algebra homomorphism (. Suppose that w? # 1. Then ¢: K, — sly(C) is a Lie algebra
isomorphism by [13, Lemma 2.13]. Applying the universal property of U(sly) to the Lie algebra
homomorphism 7 o ¢!, this gives the inverse of C. |

In this paper, we relate the above algebraic results to the Hamming graphs. We now recall
the definition of Hamming graphs. Let X denote a g-element set and let D be a positive integer.
The D-dimensional Hamming graph H(D) = H(D,q) over X is a simple graph whose vertex
set is XP and x,y € XP are adjacent if and only if z, y differ in exactly one coordinate.
Let O denote the path-length distance function for H(D). Let Matyp (C) stand for the algebra
consisting of the square matrices over C indexed by XP.

The adjacency matrix A(D) € Matxp(C) of H(D) is the 0-1 matrix such that

A(D),y =1 if and only if  J(z,y) =1

for all 7,y € XP. Fix a vertex + € X?. The dual adjacency matrix A*(D) € Matyxp(C) of
H(D) with respect to x is a diagonal matrix given by

A*(D)yy =D(qg—1) —q-0(z,y)

for all y € XP. The Terwilliger algebra 7(D) of H(D) with respect to z is the subalgebra
of Matyp(C) generated by A(D) and A*(D) [16, 17, 18]. Let V(D) denote the vector space
consisting of all column vectors over C indexed by X?. The vector space V(D) has a natural
T (D)-module structure and it is called the standard 7 (D)-module.

In [18], Terwilliger employed the endpoints, dual endpoints, diameters and auxiliary param-
eters to describe the irreducible modules for the known families of thin ()-polynomial distance-
regular graphs with unbounded diameter. In [14], Tanabe gave a recursive construction of
irreducible modules for the Doob graphs and his method can be adjusted to the case of H(D).
In [5], Go gave a decomposition of the standard module for the hypercube. In [4], Gijswijt,
Schrijver and Tanaka described a decomposition of V(D) in terms of the block-diagonalization
of T(D). In [11], Levstein, Maldonado and Penazzi applied the representation theory of GL2(C)
to determine the structure of 7 (D). In [20], it was shown that V(D) can be viewed as a gl,(C)-
module as well as a sl3(C)-module. In [2], Bernard, Crampé, and Vinet found a decomposition
of V(D) by generalizing the result on the hypercube.

In this paper, we view V(D) as a £, _2-module as well as a U(sly)-module in light of Theo-

rem 1.8. Subsequently, we apply Theorerri 1.5 to prove the following results:
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Proposition 1.9. Let D be a positive integer. For any integers p and k with 0 < p < D and
0 <k < |L|, there emists a (p— 2k + 1)-dimensional irreducible T (D)-module Ly, (D) satisfying
the following conditions:

(1) There exists a basis for Ly, (D) with respect to which the matrices representing A (D)
and A*(D) are

a M 0 6o 0
Bo a1 e 0
B a2 ; 02 ;
. ' Tp—2k -
0 Bp—2k—1 Qp_2k 0 Op—2k
respectively.

(i1) There exists a basis for Ly, (D) with respect to which the matrices representing A (D)
and A*(D) are

0o 0 ap M 0
6, Bo a1 72
02 , B1 e )
’ .. . Tp—2k
0 Op—ok 0 Bp—2k—1  Qp—2k
respectively.

Here the parameters {ozi}f:_gk, {8}, 2kl {'yi}f:_l%, {6;3025 2k are as follows:

=(q—-2)(i+k)+p—D fori=0,1,...,p— 2k,

Bi=i+1 fori=0,1,...,p—2k—1,
vi=(q—1)(p—i—2k+1) fori=1,2,...,p—2k,
;=q(p—i—k)—D fori=0,1,...,p—2k.

Given a vector space W and a positive integer p, we let

pW=WaWa---aW.

TV
p copies of W

Theorem 1.10. Let D be a positive integer. Then the standard T (D)-module V(D) is isomor-
phic to

GB @ I; 2kkj 11 <D> <Z> (g=2)"7" - Lyy(D).

p=0 k=0

The algebra 7 (D) is a finite-dimensional semisimple algebra. Following from [3, Theo-
rem 25.10], Theorem 1.10 implies the following classification of irreducible 7 (D)-modules:

Theorem 1.11. Let D be a positive integer. Let P(D) denote the set consisting of all pairs
(p, k) of integers with0 <p < D and 0 < k < ng Let M(D) denote the set of all isomorphism
classes of irreducible T (D)-modules. Then there exists a bijection £: P(D) — M(D) given by

(p, k) — the isomorphism class of Ly, (D)
for all (p, k) € P(D).

The paper is organized as follows: In Section 2, we give the preliminaries on the algebra K.
In Section 3, we prove Proposition 1.9 and Theorems 1.10, 1.11 by using Theorem 1.5. In Ap-
pendix A, we give the equivalent statements of Proposition 1.9 and Theorems 1.10, 1.11.
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2 The Krawtchouk algebra

2.1 Finite-dimensional irreducible £_,-modules

Recall the U(slz)-module L, from Lemma 1.2. Recall the algebra homomorphism ¢: R, —
U(sly) form Theorem 1.8. Each U(sly)-module can be viewed as a K,-module by pulling back
via (. We express the U(slz)-module L,, as a K,-module as follows:

Lemma 2.1. For any integer n > 0, the matrices representing A, B, C with respect to the basis

{vi}iy for the Ry-module L, are

ap M 0
50 a1 Y2
B1

. o

0 5n—1 (679

respectively, where

- (2i-njw
=y

o (1+1)(1—w)
= U
C(n=i+1)(1+w)
Yi = 5
ng—i

fori=0,1,...
fori=0,1,...

fori=1,2,...

fori=0,1,...

0 0
Bo
02 7
0, 0
7n’
, L — 17
y 1y
, M.

-M 0
0 —72
B 0
' : —In
671—1 0

The finite-dimensional irreducible £,,-modules are classified as follows:

Theorem 2.2.

(i) If w = —1, then any finite-dimensional irreducible R,-module V is of dimension one and
there is a scalar p € C such that Av = pv, Bv = pv for allv e V.

(1) If w = 1, then any finite-dimensional irreducible K,-module V is of dimension one and
there is a scalar y € C such that Av = pv, Bv = —puwv for allv e V.

(iii) If w? # 1, then Ly, is the unique (n + 1)-dimensional irreducible &,-module up to isomor-
phism for every integer n > 0.

Proof. (i) Let n > 0 be an integer. Let V denote an (n + 1)-dimensional irreducible K_;-
module. Since the trace of the left-hand side of (1.1) on V' is zero, the elements A and B have
the same trace on V. If n = 0 then there exists a scalar p € C such that Av = Bv = pwv for all

veV.

To see Theorem 2.2(i), it remains to assume that n > 1 and we seek a contradiction. Applying
the method proposed in [6, 7, 8], there exists a basis {u;};, for V with respect to which the
matrices representing A and B are of the forms

) 0
1 6
1 6 7
0 1 6,

to 1
01

0

P2
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respectively. Here {6;}!"  is an arithmetic sequence with common difference —1 and the sequence
{pi}i, satisfies pj—1 —2¢; + @iy1 = 0, 1 < i < n, where ¢y and ¢,41 are interpreted as zero.
Solving the above recurrence yields that ¢; = 0 for all i = 1,2,...,n. Thus the subspace of V'
spanned by {u;}! is a nonzero K_j-module, which is a contradiction to the irreducibility of V.

(ii) Using Definition 1.6, it is routine to verify that there exists a unique algebra isomorphism
R_1 — R that sends A to A and B to —B. Theorem 2.2(ii) follows from Theorem 2.2(i) and
the above isomorphism.

(iii) Theorem 2.2(iii) follows immediate from Lemma 1.3 and Theorem 1.8. [

Lemma 2.3. There exists a unique algebra automorphism of K, that sends A — B, B — A,
C— —C.

Proof. It is routine to verify the lemma by using Lemma 1.7. |

Lemma 2.4. Suppose that w?> # 1. For any integer n > 0, there exists a basis for the f,-mod-
ule Ly, with respect to which the matrices representing A, B, C are

0o 0 ag M 0 0 m 0
0, Bo a1 e —Bo 0 7
92 ’ Bl a2 R ) _Bl 0

. . . - . . o

0 9” 0 /Bn—l Qn 0 _571—1 0

respectively, where

ai:(2z’—2n)w fori=0,1,... n,
5i:(i+1)§1_w) fori=0,1,...,n—1,
wz(n_H;)(Hw) fori=1,2,....n,
Hi:g—i fori=0,1,...,n.

Proof. Let L] denote the irreducible K,-module obtained by twisting the &,-module L,, via
the automorphism of K, given in Lemma 2.3. Recall the basis {v;}}, for L, from Lemma 2.1.
Observe that the three matrices described in Lemma 2.4 are the matrices representing A, B, C
with respect to the basis {v;}I, for the K,-module L],. By Theorem 2.2(iii), the £,-module L,
is isomorphic to L,,. The lemma follows. |

Leonard pairs were introduced in [15, 19, 21] by P. Terwilliger. Suppose that w? # 1. By Lem-
mas 2.1 and 2.4, the elements A and B act on the &, ,-module L,, as a Leonard pair. The result
was first stated in [13, Theorem 6.3].

2.2 The Krawtchouk algebra as a Hopf algebra

Let H denote an algebra. Recall that H is called a Hopf algebra if there are two algebra
homomorphisms ¢: H — C, A: H - H ® H and a linear map S: H — H that satisfy the
following properties:

(Hl) (1®A)ocA=(A®1)oA,

(H2) mo(1® (toeg))oA=mo((toe)®1)oA=1,

(H3) mo(1®S)ocA=mo(S®1)oA=r0c¢.
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Here m: H ® H — H is the multiplication map and ¢: C — H is the unit map defined by
t(c) = cl for all ¢ € C. Note that m is a linear map and ¢ is an algebra homomorphism.

Suppose that (H1)—(H3) hold. Then the maps ¢, A, S are called the counit, comultiplication
and antipode of H, respectively. Let n be a positive integer. The n-fold comultiplication of H is
the algebra homomorphism A,,: H — H®™+1) inductively defined by

An =12V @A) o Ay

Here Ay is interpreted as the identity map of #. We may regard every H®("*+Y_module as an
‘H-module by pulling back via A,. Note that

A, = (120D g A@1%0 ) oA, foralli=1,2,...,n. (2.1)
It follows from (2.1) that
Ap=An1®1)oA=(18®A, 1)0A. (2.2)

Recall from Section 1 that K, is the universal enveloping algebra of K. Hence &, is a Hopf
algebra. For the reader’s convenience, we give a detailed verification for the Hopf algebra struc-
ture of K,. By an algebra antihomomorphism, we mean a unital algebra antihomomorphism.

Lemma 2.5.

(i) There exists a unique algebra homomorphism e: K, — C given by

e(A) =0, e(B) =0, e(C)=0.

(ii) There exists a unique algebra homomorphism A: R, — R, ® R, given by

AA)=A®1+184, AB)=Bo1+18®B, AC)=C1+1xC.

(tit) There exists a unique algebra antihomomorphism S: R, — R, given by

S(A)=-4, S(B)=-B, S(C)=-C.

(iv) The algebra K, is a Hopf algebra on which the counit, comultiplication and antipode are
the above maps €, A, S, respectively.

Proof. (i)—(iii) It is routine to verify Lemma 2.5(i)—(iii) by using Definition 1.6.

(iv) Using Lemma 2.5(ii), it yields that (1 ® A) o A and (A ® 1) o A agree at the generators
A, B, C of R,. Since A is an algebra homomorphism, the maps (1 ® A)o A and (A®1)o A
are algebra homomorphisms. Hence (H1) holds for K,.

Let k=mo(l1®(toe))oAand ¥ =mo((toe)®1)oA. Evidently, k and k" are linear
maps. Using Lemma 2.5(i), (ii) yields that

k(1) =K (1) =1, k(A) =K (A) = A, k(B) = k' (B) = B, k(C) =k (C)=C.

Let x, y be any two elements of R,. To see that k = 1 it remains to check that k(zy) = k(z)k(y).
We can write

A) =Y 2V 0 al?, (2.3)
=1

Ay) =yt @y, (2.4)
=1
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where n > 1 is an integer and :cgl), z@),ym,yf) € Ry for 1 <4 <n. Then

wy) =Y 3wty (o) (a?) - (oe) ().
i=1 j=1

Since each of (1o¢€) (:El@)) and (voe) (y§2)) is a scalar multiple of 1, it follows that

<Z:c() voe)(z?) >(Zy() Loe) y2))>:k:(:c)k(y).

By a similar argument, one may show that k' = 1. Hence (H2) holds for &,,.
Let h=mo(1®S)oAand ' =mo(S®1)oA. Evidently, h and h’ are linear maps. Using
Lemma 2.5(ii), (iii) yields that
h(1) =Rh'(1) = (Loe)(1) =1, h(A) =W (A) = (Loe)(A)
h(B) =h'(B) = (1o€)(B) =0, h(C)=h'(C) = (toe)(C)

0,
0.

Let x, y be any two elements of &, and suppose that h(z) = (toe)(x) and h(y) = (toe)(y). To
see that h = toe, it suffices to check that h(zy) = h(z)h(y). Applying (2.3) and (2.4), one finds
that

(2)
=Y S ).
=1 j=1
Using the antihomomorphism property of S, we obtain

=33l STl = Yol (L) 5047 s

i=1 j=1
_ Z +Vh(y)5(2®).

Since h(y) = (to¢€)(y) is a scalar multiple of 1, it follows that
v) =Yy 8(5”)h(y) = h(@)h(y).
i=1
By a similar argument, one can show that h’ = 1 oe. Hence (H3) holds for £,. The result

follows. u

Theorem 2.6. For any integers m,n > 0, the R,-module L, ® L, is isomorphic to

min{m,n}

@ Lm+n72p-
p=0

Proof. By Lemmas 1.4 and 2.5 along with Theorem 1.8 the following diagram commutes:

Y ¢ U(sly)

A A

R ® Ry W U(slz) ® U(sla)
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Here A: U(slp) — U(slz) @ U(sly) is the comultiplication of U(sly) from Lemma 1.4 and A: &, —
Ry ® R, is the comultiplication of &, from Lemma 2.5(ii). Combined with Theorem 1.5, the
result follows. [ |

For the rest of this paper, the notation A will refer to the map from Lemma 2.5(ii) and A,
will stand for the corresponding n-fold comultiplication of &, for every positive integer n.

3 The Clebsch—Gordan rule for U(sl,)
and the Hamming graph H (D, q)

3.1 Preliminaries on distance-regular graphs

Let I" denote a finite simple connected graph with vertex set X # &. Let O denote the path-
length distance function for I'. Recall that the diameter D of T" is defined by
D= 0 .
Jnax O(z,y)

Given any x € X let
Fi(z) ={y e X | 0(z,y) =i} fori=0,1,...,D.

For short, we abbreviate I'(z) = T'1(x). We call T' distance-regular whenever for all h,i,j €
{0,1,...,D} and all z,y € X with 9(z,y) = h the number |T';(x) NT';(y)| is independent of =
and y. If I is distance-regular, the numbers a;, b;, ¢; for all i = 0,1, ..., D defined by

ai=|Ti(x) NT),  bi=Tin(@)NT)],  =[Ti—1(z)NT(y)|

for any z,y € X with d(x,y) = i are called the intersection numbers of I'. Here I'_(x) and
I'p41(x) are interpreted as the empty set.

We now assume that I' is distance-regular. Let Matx(C) be the algebra consisting of the
complex square matrices indexed by X. For all i = 0,1,...,D the i*" distance matriz A; €
Mat x (C) is defined by

N if d(x,y) =1,
(A)ey = {0 if O(z,y) #1

for all z,y € X. The Bose-Mesner algebra M of T is the subalgebra of Matx(C) generated
by A; foralli =0,1,...,D. Note that the adjacency matrix A = A; of I generates M and the
matrices {A;}2, form a basis for M.

Since A is real symmetric and dimM = D + 1, it follows that A has D 4+ 1 mutually

distinct real eigenvalues 6y, 01, ...,0p. Set 89 = by which is the valency of I'. There exist unique
Eo,E,...,Ep € M such that
D
Z E, =1 (the identity matrix), AE; = 0,E; foralli=0,1,...,D.
i=0

The matrices {E;}2, form another basis for M, and E; is called the primitive idempotent of T
associated with 0; for i =0,1,...,D.

Observe that M is closed under the Hadamard product @. The distance-regular graph I' is
said to be Q-polynomial with respect to the ordering {Ez’}i’;o if there are scalars a;, b}, ¢ for
alli=0,1,...,D such that b}, = c¢§ =0, b]_;cf #0 foralli=1,2,...,D and

Ei0FE,; = |)1((b:<_1Ei1 -+ CL:El + C;(+1Ei+1) forall2=0,1,...,D,

where we interpret b* |, ¢, | as any scalars in C and E_1, Ep,1 as the zero matrix in Mat x (C).
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We now assume that I' is Q-polynomial with respect to {E;}2, and fix € X. For all
i=0,1,...,D let Ef = Ef(z) denote the diagonal matrix in Matx (C) defined by

o )1 ifo(z,y) =1,
<Ei>yy—{0 o2 1)

for all y € X. The matrix E] is called the i dual primitive idempotent of T' with respect
to x. The dual Bose-Mesner algebra M* = M*(x) of T" with respect to x is the subalgebra of
Mat x (C) generated by E; for alli =0,1,..., D. Since EfE} = ¢;;E} the matrices {E] D, form
a basis for M*. For all i = 0,1,...,D the i*" dual distance matriz A = A’ (x) is the diagonal
matrix in Matx (C) defined by

(AD)yy = |X|(By)zy  forally € X. (3.2)

The matrices {A}}2, form another basis for M*. Note that A* = A% is called the dual
adjacency matriz of T' with respect to x and A* generates M* [16, Lemma 3.11].

The Terwilliger algebra T of T' with respect to x is the subalgebra of Matx(C) generated
by M and M* [16, Definition 3.3]. The vector space consisting of all complex column vectors
indexed by X is a natural 7-module and it is called the standard T -module [16, p. 368]. Since
the algebra 7T is finite-dimensional, the irreducible 7-modules are finite-dimensional. Since the
algebra 7T is closed under the conjugate-transpose map, it follows that T is semisimple. Hence
the algebra 7 is isomorphic to

ey End(W),

irreducible T-modules W

where the direct sum is over all non-isomorphic irreducible 7-modules W. Since the standard
T-module is faithful, all irreducible T-modules are contained in the standard 7-module up to
isomorphism.

Let W denote an irreducible 7-module. The number ming<;<p{i | EfW # {0}} is called
the endpoint of W. The number ming<;<p{i | E;W # {0}} is called the dual endpoint of W.
The support of W is defined as the set {i | 0 < i < D, EXW # {0}}. The dual support of W is
defined as the set {i | 0 < i < D, E;W # {0}}. The number |{i |0 <i < D, EXW # {0}}| —1
is called the diameter of W. The number [{i | 0 < i < D, E;W # {0}}| — 1 is called the dual
diameter of W.

3.2 The adjacency matrix and the dual adjacency matrix
of a Hamming graph

Let X be a nonempty set and let n be a positive integer. The notation
X" =A(z1,2z2,...,2y) | 1,22,..., 2y € X}

stands for the n-ary Cartesian product of X. For any x € X", let z; denote the i*" coordinate
of x foralli=1,2,...,n.

Recall that ¢ stands for an integer greater than or equal to 3. For the rest of this paper, we
set

X ={0,1,...,q—1}
and let D be a positive integer.

Definition 3.1. The D-dimensional Hamming graph H(D) = H(D,q) over X has the vertex
set XD and z,y € XP are adjacent if and only if z and y differ in exactly one coordinate.
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Let O denote the path-length distance function for H(D). Observe that d(z,y) = [{i | 1 <
i <D, x; # vy} for any x,y € X D It is routine to verify that H (D) is a distance-regular graph
with diameter D and its intersection numbers are

ai:i(q—Q), bi:(D—i)(q—l), Ci:i

foralli=0,1,...,D.

Let V(D) denote the vector space consisting of the complex column vectors indexed by X 7.
For convenience we write V = V(1). For any x € X let # denote the vector of V(D) with 1 in
the z-coordinate and 0 elsewhere. We view any L € Mat xp (C) as the linear map V(D) — V(D)
that sends & to L for all x € XP. We identify the vector space V(D) with VP via the linear
isomorphism V(D) — V&P given by

PRI - Q1p for all z € XP.

Let I(D) denote the identity matrix in Mat yp (C) and let A (D) denote the adjacency matrix
of H(D). We simply write I =I(1) and A = A(1).

Lemma 3.2. Let D > 2 be an integer. Then
AD)=AD-1)I+I(D-1)®A. (3.3)

Proof. Let z € X? be given. Applying & to the right-hand side of (3.3) a straightforward
calculation yields that it is equal to

D
oY He®ua®§®iine - ®ip=A(D)i.
=1 y;eX\{z:}
The lemma follows. n
Using Lemma 3.2, a routine induction yields that A(D) has the eigenvalues
0;(D)=D(qg—1)—qi foralli=0,1,...,D.

Let E;(D) denote the primitive idempotent of H (D) associated with 6;(D) for alli = 0,1,...,D.
We simply write Eg = Eg(1) and E; = E;(1). For convenience, we interpret E_;(D) and
Ep11(D) as the zero matrix in Mat xp (C).

Lemma 3.3. Let D > 2 be an integer. Then
Ez(D) ZEl(D— 1)®E0—|—EZ‘_1(D—1)®E1 foralli=0,1,...,D. (34)

Proof. We proceed by induction on D. Let E;(D)" denote the right-hand side of (3.4) for
1=0,1,...,D. Applying Lemma 3.2 along with the induction hypothesis, it follows that

D
> Ei(D) =I(D), A(D)E(D) =0;(D)E;(D)  foralli=0,1,...,D.
=0

Hence E;(D) = E;(D) for all i = 0,1,...,D. The lemma follows. |

Applying Lemma 3.3 yields that

E\(D) ©Ei(D) = ¢ (b} ,Ei_1(D) + a;Ei(D) + ¢ 1Ei1(D))
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foralli=0,1,..., D, where
aj =i(g—2), by=(D—i)¢—1), ¢ =i

for all i = 0,1,...,D. Here b*,, ¢}, are interpreted as any scalars in C. Hence H(D) is
Q-polynomial with respect to the ordering {E;(D)}2,.

Observe that the graph H (D) is vertex-transitive. Without loss of generality, we can consider
the dual adjacency matrix A*(D) of H(D) with respect to (0,0,...,0) € X”. We simply write
A* = A*(1).

Lemma 3.4. Let D > 2 be an integer. Then
A*D)=A"D-1)I+I(D-1)® A"

Proof. Given y € XP let ¢, denote the coefficient of § in E;(D) -0®P with respect to the basis
{2} exp for V(D). By (3.2), we have

A*(D)j=qPc,y  forally e XP.

Suppose that D > 2. Using Lemma 3.3 yields that ¢, = q_IC(
y € XP. Hence

Yi,yp_1) T ql_DcyD for all

A*(D)y = (qD_lc(yum,nyl) + quD)Q
=A"D-1)(h® - Q@Yp-1)RYp + 1 @+ R Yp—1 X A*Yp
= (A*(D-1)@I+I(D—-1)®A*)j

for all y € XP. The lemma follows. |

Let Ef (D) denote the i*® dual primitive idempotent of H(D) with respect to (0,0, ...,0)€ XP
for all i = 0,1,...,D. We simply write Ej = E{(1) and E] = Ej(1). For convenience, we
interpret E* | (D) and E}, (D) as the zero matrix in Mat xn (C).

Lemma 3.5. Let D > 2 be an integer. Then
E;(D)=E;(D-1)®E;+E;_ (D—-1)®E] for alli=0,1,...,D.
Proof. It is straightforward to verify the lemma by using (3.1). |
Using Lemmas 3.4 and 3.5, a routine induction yields that A*(D)E*(D) = 6;(D)E; (D) for
all i =0,1,...,D where 6 (D) = D(q — 1) — qi.

3.3 Proofs of Proposition 1.9 and Theorems 1.10, 1.11

In this subsection, we set

w=1--.
q

Let 7(D) denote the Terwilliger algebra of H (D) with respect to (0,0,...,0) € XP.

Definition 3.6. Let 1 denote the subspace of V consisting of all vectors Zf:_ll ¢;1, where
c1,¢2,...,¢-1 € C with Z;?:_ll ¢; = 0. Let V1 denote the subspace of V spanned by 0 and

—14
23:1 L.
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Definition 3.7. For any s € {0,1}”, we define the subspace V(D) of V(D) by
Vs(D) = Vs, @ Vs, @+ @ Vs
Note that Vp(1) = Vp and V4(1) = V3.
Lemma 3.8. The vector space V(D) is equal to
P v.(D).
s€{0,1}P
Proof. By Definition 3.6, we have V = Vj & V;. It follows that
V(D) =V = (Vo 11)®P.

The lemma follows by applying the distributive law of ® over @ to the right-hand side of the
above equation. |

Lemma 3.9.

(i) There exists a unique representation ro: R, — End(Vy) that sends
1 1 1 1
A *A’VO—F*, B~ *A*|V0+*~
q q q q
Moreover, the R,-module Vjy is isomorphic to (¢ — 2) - Ly.
(13) There exists a unique representation r1: K, — End(V}) that sends
1 1 1 1

1 1
A —Aly, + - — =, B —A%|y, + - — -
Moreover, the K,-module Vi is isomorphic to L.

Proof. (i) The subspace Vj of V is invariant under A and A* acting as scalar multiplication
by —1. By Lemma 2.1, the statement (i) follows.

(ii) The subspace V; of V is invariant under A and A* and the matrices representing A
and A* with respect to the basis 0, Zg;ll i for V; are

0 g—1 qg—1 0
1 ¢g-2) 0 —=1)
respectively. By Lemma 2.1, the statement (ii) follows. n

Definition 3.10. For any s € {0,1}”, we define the representation 74(D): &, — End(V4(D))
by

TS(D> = (T51 RTg @& TSD) oAp_1.
Note that ro(1) =79 and (1) = r1.

Proposition 3.11. For any integer D > 2 and any s € {0,1}7, the following diagram com-
mutes:

ﬁw%ﬁw(@ﬁw

rs(D)
l T(51,82,..., SD_1)(D_ 1)®r5D

End(Vs(D))
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Proof. By Definition 3.10 the map 7, s, . sp (D —1) = (rs, @75, ® - @15, ;) 0 Ap_a.
Hence

T(517327--~75D—1)(D —1)®rsp = ((Tsl QTsy & - ®Tsp_,) 0 AD72) @ Tsp
= (Tsl ® TSQ ® tee ®TSD) o} (AD_Q ® 1)

By (2.2), the map Ap_1 = (Ap_2 ® 1) o A. Combined with Definition 3.10, the following
diagram commutes:

Ap_1

Ry ——— R, @ Ry ——— &IP

(51,825, Sp_1 (D - 1) ®TSD
rs(D) Ts) @Tsy @ QTsp

End(Vs(D))

The proposition follows. n

Proposition 3.12. For any s € {0,1}7, the representation rs(D): R, — End(V(D)) maps

1 D 1&
A gA(D)h/S(D) 7 > si, (3.5)
=1
D
1, D 1
B gA (D)lv.(p) + 7 2 > s (3.6)
=1

Proof. We proceed by induction on D. By Lemma 3.9, the statement is true when D = 1.
Suppose that D > 2. For convenience let s’ = (s1,s9,...,5p_1) € {0,1}P~1. By Lemma 2.5
and Proposition 3.11, the map r4(D) sends A to

rs(D—1)(A)®@1+1®@71r,(A).
Applying the induction hypothesis the above element is equal to
D—1

1 D—-1 1 1 1 sp
-AD-1 N 7—7§ ; 1+1 -Aly, +-—--—>
(q ( v, (p-1) + . 2 2 sz>® + ®(q \KD+q 2)

A(D - 1)"/8/(D,1) R1I+1® A|VsD

D
D 1
= == s

By Lemma 3.2, the first term in the right-hand side of the above equation equals %A(D)|VS( D)-
Hence (3.5) holds. By a similar argument, (3.6) holds. The proposition follows. [

In light of Proposition 3.12, the 7 (D)-module V(D) is a f,-module for all s € {0,1}".
Combined with Lemma 3.8, the standard 7 (D)-module V(D) is a &,-module.

Lemma 3.13. Let p be a positive integer. Then the K,-module L?p 1s isomorphic to

L5]
ép—%ﬂ—i—l P I
p—k+1\k) P

k=0
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Proof. We proceed by induction on p. If p = 1, then there is nothing to prove. Suppose that
p > 2. Applying the induction hypothesis yields that the £,-module L?p is isomorphic to

By Theorem 2.6, the &,-module L,_o,_1 ® Ly is isomorphic to

{Lp—Qk ® Ly op—o f0<k<|B]—1,

L4 else
for all k =0,1,..., L%J Hence the multiplicity of L, o in LS? is equal to
p—2k<p—1> +p—2k+2<p—1> _p—2k+1<p>
p—k k p—k+1\k—-1 p—k+1\k
forall k=0,1,..., L%J Here (Zj) is interpreted as 0 when k = 0. The lemma follows. |

Lemma 3.14. Let p be an integer with 0 < p < D. Suppose that s € {0,1}F with p = ZZDZI s;.
Then the R,-module Vi(D) is isomorphic to

5]
p— 2](3 + 1 D D—
_ — 7P L o

Proof. By Definition 3.7, the K,-module V(D) is isomorphic to V1®p ® V0®(D_p ), Applying
Lemma 3.9 the above &,-module is isomorphic to (¢—2)P~P- L?p. Combined with Lemma 3.13,
the lemma follows. |

Proof of Proposition 1.9. Let p and k be two integers with 0 < p < D and 0 < k < |§].
Pick any s € {0,1}" with p = Zi’il si. By Lemma 3.14, the K,-module V(D) contains
the irreducible K,-module L, 9. Let {vi}f:_g k and {wi}f:_o? ¥ denote the two bases for Ly_ok
described in Lemmas 2.1 and 2.4 with n = p — 2k, respectively. In light of Proposition 3.12,
we may view the R,-submodule L, o5 of Vi(D) as an irreducible 7 (D)-module and denoted
by Ly k(D). To see (i) and (ii), one may evaluate the matrices representing A (D) and A*(D)

with respect to the bases {Ui}f:_gk and {wi}?:_gk for Ly (D), respectively. The proposition
follows. |

Proof of Theorem 1.10. Let p be any integer with 0 < p < D. By Lemma 3.14, for any
s € {0,1}P with p = Zi’;l si the T(D)-submodule V(D) of V(D) is isomorphic to

L] p—2k+1/(p

DL ()i - 27 L)

et p—k+1

Combined with Lemma 3.8, the result follows. |
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Proof of Theorem 1.11. Since the standard 7 (D)-module V(D) contains all irreducible
T (D)-modules up to isomorphism, the map £ is onto. Suppose that there are two pairs (p, k)
and (p/, k') in P(D) such that the irreducible 7(D)-module L, ;(D) is isomorphic to Ly (D).
Since they have the same dimension, it follows that

p—2k=7p —2K. (3.7)

Since A*(D) has the same eigenvalues in L, (D) and L, (D), it follows from Proposition 1.9
that p — k = p’ — k. Combined with (3.7), this yields that (p,k) = (p/,k’). Therefore, £ is
one-to-one. |

Corollary 3.15 ([11, Corollary 3.7]). The algebra T (D) is isomorphic to
i

D
@ Matp,QkJrl(C).
=0 k

3
O

Moreover, dim T (D) = (Dfl).

Proof. By Theorem 1.11, the algebra 7 (D) is isomorphic to @p 0 @ End( k(D)). Hence
dim 7 (D) is equal to

Lj(p e 1) f:<p+3> <DZ4>'

p=0

[SIiS]

NE

k=

i
o
O

The corollary follows. |

A Restatements of Proposition 1.9 and Theorems 1.10, 1.11

Recall the irreducible 7 (D)-module Ly, (D) from Proposition 1.9. Let r, 7*, d, d* denote the
endpoint, dual endpoint diameter, dual diameter of L, (D) respectively. It is known from [18,
p. 197] that { ] <r,r* <D —d. From the results of Section 3.2, we see that

r=r*=D+k—p, d=d" =p—2k.

In terms of the parameters r and d, the parameters p and k read as
p=2D —d—2r, k=D—d-—r.

Thus we can restate Proposition 1.9 and Theorems 1.10, 1.11 as follows:

Proposition A.1. Let D be a positive integer. For any integers d and v with 0 < d < D
and [25%] < r < D —d, there exists a (d + 1)-dimensional irreducible T (D)-module Mg, (D)
satisfying the following conditions:

(1) There exists a basis for Mg ,(D) with respect to which the matrices representing A (D)
and A*(D) are

ag M 0 6o 0
Bo a1 7o 0h
fr oy . ; 02 ;
SR )
0 Bi-1 g 0 Oa

respectively.
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(t3) There exists a basis for My (D) with respect to which the matrices representing A(D) and

A*(D) are
6o 0 ap M 0
0, Bo a1 e
92 ) 51 a2 E 3
. ST
0 Oa 0 Ba-1 aq
respectively.

Here the parameters {a;}L, {B: f;ol, {7}, {0:}L, are as follows:

a=(D—-d+i—-r)(g—1)—i—r for i=0,1,...,d,

Bi=1+1 for i=0,1,...,d—1,
vi=(q—-1)(d—-i+1) for i=1,2,...,d,
0;=D(q—1)—q(i+r) for i=0,1,...,d.

Theorem A.2. Let D be a positive integer. Then the standard T (D)-module V(D) is isomor-
phic to

d+1 D 2D —d — 2r Do
T —2 " My, (D).
o D D—r+1<2D—d—2r><D—d—r>(q ) ar(D)

D D—d
=0 2z

We illustrate Theorem A.2 for D = 3 and D = 4:

D | d|r | The support of My,.(D) | The multiplicity of M, (D) in V(D)
0 {0,1,2,3} 1
1 (1,2,3) 3(q — 2)
NRE (1,2} 2
2 {2,3} 3(qg — 2)
NE 2} 30— 2)
3 {3} (q—2)
0 {0,1,2,3,4} 1
3] 1 (1,2,3,4) 4(q—2)
NE (1,2,3) 3
2 {2,3,4} 6(q — 2)?
AP 2.3} 8(¢—2)
3 {3,4} 4(q —2)
2 21 2
013 {3} 6(q —2)
4 {4} (¢ —2)*

Theorem A.3. Let D be a positive integer. Let P(D) denote the set consisting of all pairs
(d,r) of integers with 0 < d < D and [%W <r < D —d. Let M(D) denote the set of all
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isomorphism classes of irreducible T (D)-modules. Then there ezists a bijection P(D) — M(D)
given by

(d,r) + the isomorphism class of Mg, (D)
for all (d,r) € P(D).

By Theorem A.3, the structure of an irreducible 7 (D)-module is determined by its endpoint
and its diameter. Also we can restate Corollary 3.15 as follows:

Corollary A.4. The algebra T (D) is isomorphic to

B (|25 +1) s

d=0

Moreover, dim T(D) = (P}4).

4

Acknowledgements

The author would like to thank the anonymous referees for insightful suggestions to improve
the paper and bring his attention to [13]. Also, the author thanks Dr. Luc Vinet to bring his
attention to [1, 2, 9]. The research is supported by the Ministry of Science and Technology of
Taiwan under the project MOST 110-2115-M-008-008-MY?2.

References

[1] Bernard P.-A., Crampé N., Vinet L., Entanglement of free fermions on Johnson graphs, arXiv:2104.11581.

[2] Bernard P.-A., Crampé N., Vinet L., Entanglement of free fermions on Hamming graphs, Nuclear Phys. B
986 (2023), 116061, 22 pages, arXiv:2103.15742.

[3] Curtis C.W., Reiner I., Representation theory of finite groups and associative algebras, Pure Appl. Math.,
Vol. 11, Interscience Publishers, New York, 1962.

[4] Gijswijt D., Schrijver A., Tanaka H., New upper bounds for nonbinary codes based on the Terwilliger algebra
and semidefinite programming, J. Combin. Theory Ser. A 113 (2006), 1719-1731.

[5] Go J.T., The Terwilliger algebra of the hypercube, European J. Combin. 23 (2002), 399-429.

[6] Huang H.-W., Finite-dimensional irreducible modules of the universal Askey—Wilson algebra, Comm. Math.
Phys. 340 (2015), 959-984, arXiv:1210.1740.

[7] Huang H.-W., Finite-dimensional irreducible modules of the Bannai-Ito algebra at characteristic zero, Lett.
Math. Phys. 110 (2020), 2519-2541, arXiv:1910.11447.

[8] Huang H.-W., Bockting-Conrad S., Finite-dimensional irreducible modules of the Racah algebra at charac-
teristic zero, SIGMA 16 (2020), 018, 17 pages, arXiv:1910.11446.

[9] Jafarizadeh M.A., Nami S., Eghbalifam F., Entanglement entropy in the Hamming networks,
arXiv:1503.04986.

[10] Kassel C., Quantum groups, Grad. Texts in Math., Vol. 155, Springer, New York, 1995.

[11] Levstein F., Maldonado C., Penazzi D., The Terwilliger algebra of a Hamming scheme H(d,q), Furo-
pean J. Combin. 27 (2006), 1-10.

[12] Milnor J.W., Moore J.C., On the structure of Hopf algebras, Ann. of Math. 81 (1965), 211-264.

[13] Nomura K., Terwilliger P., Krawtchouk polynomials, the Lie algebra slz, and Leonard pairs, Linear Algebra
Appl. 437 (2012), 345-375, arXiv:1201.1645.

[14] Tanabe K., The irreducible modules of the Terwilliger algebras of Doob schemes, J. Algebraic Combin. 6
(1997), 173-195.

[15] Terwilliger P., Leonard pairs and dual polynomial sequences, Unpublished manuscript, 1987, available at
https://www.math.wisc.edu/~terwilli/Htmlfiles/leonardpair.pdf.


https://arxiv.org/abs/2104.11581
https://doi.org/10.1016/j.nuclphysb.2022.116061
https://arxiv.org/abs/2103.15742
https://doi.org/10.1016/j.jcta.2006.03.010
https://doi.org/10.1006/eujc.2000.0514
https://doi.org/10.1007/s00220-015-2467-9
https://doi.org/10.1007/s00220-015-2467-9
https://arxiv.org/abs/1210.1740
https://doi.org/10.1007/s11005-020-01306-9
https://doi.org/10.1007/s11005-020-01306-9
https://arxiv.org/abs/1910.11447
https://doi.org/10.3842/SIGMA.2020.018
https://arxiv.org/abs/1910.11446
https://arxiv.org/abs/1503.04986
https://doi.org/10.1007/978-1-4612-0783-2
https://doi.org/10.1016/j.ejc.2004.08.005
https://doi.org/10.1016/j.ejc.2004.08.005
https://doi.org/10.2307/1970615
https://doi.org/10.1016/j.laa.2012.02.006
https://doi.org/10.1016/j.laa.2012.02.006
https://arxiv.org/abs/1201.1645
https://doi.org/10.1023/A:1008647205853
https://www.math.wisc.edu/~terwilli/Htmlfiles/leonardpair.pdf

The Clebsch—Gordan Rule for U(sly), the Krawtchouk Algebras and the Hamming Graphs 19

[16]
[17]
18]
[19]
[20]
[21]

(22]

Terwilliger P., The subconstituent algebra of an association scheme. I, J. Algebraic Combin. 1 (1992), 363—
388.

Terwilliger P., The subconstituent algebra of an association scheme. II, J. Algebraic Combin. 2 (1993),
73-103.

Terwilliger P., The subconstituent algebra of an association scheme. III, J. Algebraic Combin. 2 (1993),
177-210.

Terwilliger P., An algebraic approach to the Askey scheme of orthogonal polynomials, in Orthogonal Poly-
nomials and Special Functions, Lecture Notes in Math., Vol. 1883, Springer, Berlin, 2006, 255-330.

Terwilliger P., Manila notes, 2010, available at https://people.math.wisc.edu/~terwilli/teaching.
html.

Terwilliger P., Vidunas R., Leonard pairs and the Askey—Wilson relations, J. Algebra Appl. 3 (2004), 411—
426, arXiv:math.QA /0305356.

Vidanas R., Normalized Leonard pairs and Askey—Wilson relations, Linear Algebra Appl. 422 (2007), 39-57,
arXiv:math.RA/0505041.


https://doi.org/10.1023/A:1022494701663
https://doi.org/10.1023/A:1022480715311
https://doi.org/10.1023/A:1022415825656
https://doi.org/10.1007/978-3-540-36716-1_6
https://people.math.wisc.edu/~terwilli/teaching.html
https://people.math.wisc.edu/~terwilli/teaching.html
https://doi.org/10.1142/S0219498804000940
https://arxiv.org/abs/math.QA/0305356
https://doi.org/10.1016/j.laa.2005.12.033
https://arxiv.org/abs/math.RA/0505041

	1 Introduction
	2 The Krawtchouk algebra
	2.1 Finite-dimensional irreducible K_w-modules
	2.2 The Krawtchouk algebra as a Hopf algebra

	3 The Clebsch–Gordan rule for U(sl_2) and the Hamming graph H(D,q)
	3.1 Preliminaries on distance-regular graphs
	3.2 The adjacency matrix and the dual adjacency matrix of a Hamming grap
	3.3 Proofs of Proposition 1.9 and Theorems 1.10, 1.11

	A Restatements of Proposition 1.9 and Theorems 1.10, 1.11
	References

