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Abstract. The two-dimensional quantum harmonic oscillator is modified with reflection
terms associated with the action of the Coxeter group B2, which is the symmetry group of
the square. The angular momentum operator is also modified with reflections. The wave-
functions are known to be built up from Jacobi and Laguerre polynomials. This paper
introduces a fourth-order differential-difference operator commuting with the Hamiltonian
but not with the angular momentum operator; a specific instance of superintegrability.
The action of the operator on the usual orthogonal basis of wavefunctions is explicitly
described. The wavefunctions are classified according to the representations of the group:
four of degree one and one of degree two. The identity representation encompasses the
wavefunctions invariant under the group. The paper begins with a short discussion of the
modified Hamiltonians associated to finite reflection groups, and related raising and lowering
operators. In particular, the Hamiltonian for the symmetric groups describes the Calogero–
Sutherland model of identical particles on the line with harmonic confinement.
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1 Introduction

The two-dimensional quantum harmonic oscillator is modified with reflection terms associated
with the action of the Coxeter group B2, the symmetry group of the square. The wavefunctions
are known to be built up from Jacobi and Laguerre polynomials. This paper introduces a fourth-
order differential-difference operator commuting with the Hamiltonian but not with the angular
momentum operator; a specific instance of superintegrability. The action of the operator on an
orthogonal basis of wavefunctions is explicitly described. The wavefunctions are not in general
invariant under the group, rather are classified by the representations of the group: four of
degree one and one of degree two. The group-invariant wavefunctions of the B2 oscillator and
its superintegrability have been studied by Tremblay et al. [10, 11], Quesne [9].

First the general background on finite reflection groups and root systems, Dunkl operators,
and the associated Hamiltonian is described. In particular, the Calogero–Sutherland model
of N identical particles on a line with r−2 interaction and harmonic confinement comes from
the symmetric group (Lassalle [8], Baker and Forrester [1]). In the general situation, there
are raising and lowering operators which can be used to construct operators commuting with
the Hamiltonian and the group action. After this the development turns to dihedral groups
(type I2(k)) and the use of a complex coordinate system, which simplifies the description of
rotations. Some general formulas are specialized to this setting.
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2 C.F. Dunkl

The description of the wavefunctions of B2 and of the action of specific operators is in
Sections 4 and 6. The important operators are the Hamiltonian H, the angular momentum J
and a new operator K which commutes with H and the group action but not with J 2. This
property constitutes superintegrability. There are a number of different classes of wavefunctions,
requiring frequent case-by-case analysis. The explicit action of K on the orthogonal basis of
wavefunctions is found in Section 7.

In the appendix, there are details on some proofs, and a sketch of a symbolic computation
method of proving relations involving polynomials and Dunkl operators.

2 Reflection groups and a harmonic oscillator

In RN the inner product is ⟨x, y⟩ :=
∑N

i=1 xiyi and ∥x∥2 = ⟨x, x⟩. If v ̸= 0, then the reflection σv
along v is defined by

xσv := x− 2
⟨x, v⟩
∥v∥2

v.

This is an isometry ∥xσv∥2 = ∥x∥2 and an involution σ2v = I. The set of fixed points (xσv = x)
is the hyperplane {x : ⟨x, v⟩ = 0}. A finite root system is a subset R of nonzero elements of RN

satisfying u, v ∈ R implies uσv ∈ R. We restrict consideration to reduced root systems, that
is if u, cu ∈ R, then c = ±1. Define W (R) to be the group generated by {σv : v ∈ R}; this is
a finite subgroup of the orthogonal group ON (R). There is a decomposition of R into R+ (the
positive roots) and R−; this relies on choice of a vector u such that ⟨u, v⟩ ≠ 0 for all v ∈ R then
set R+ = {v ∈ R : ⟨u, v⟩ > 0}. Since σv = σ−v, the set R+ can be used to index the reflections
in W (R). The set of reflections σv decomposes into conjugacy classes (W orbits) σu ∼ σv if
u = vw for some w ∈ W (R). A multiplicity function κv is a function on R which is constant
on each conjugacy class, usually here κv ≥ 1. Set γκ :=

∑
v∈R+

κv. Define the Dunkl operator
(1 ≤ i ≤ N)

Dif(x) :=
∂

∂xi
f(x) +

∑
v∈R+

κv
f(x)− f(xσv)

⟨x, v⟩
vi.

Then DiDj = DjDi for all i, j (Dunkl [2], also see Dunkl and Xu [4, Theorem 6.4.8]). Let

∇ =

(
∂

∂x1
, . . . ,

∂

∂xN

)
, ∆ =

N∑
i=1

(
∂

∂xi

)2

and ∇κ = (D1, . . . ,DN ).

The Dunkl Laplacian is ∆κ :=
∑N

i=1D2
i and

∆κf(x) = ∆f(x) +
∑
v∈R+

κv

(
2
⟨∇f(x), v⟩

⟨x, v⟩
− ∥v∥2 f(x)− f(xσv)

⟨x, v⟩2

)
.

This leads to the modified Schrödinger equation (with parameter ω > 0)

Hψ :=
(
ω2∥x∥2 −∆κ

)
ψ = Eψ.

The exponential ground state is g(x) := exp
(
−ω

2 ∥x∥
2
)
, as can be seen from the transformation

g−1
(
ω2∥x∥2 −∆κ

)
(fg) = −∆κf + ω(N + 2γκ + 2⟨x,∇⟩)f,

which implies
(
ω2∥x∥2 −∆κ

)
g = ω(N + 2γκ)g. An equivalent expression is

g−1Hg = −∆κ + ω

N∑
i=1

(xiDi +Dixi). (2.1)
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Denote the set of polynomials on RN by P and the set of polynomials homogeneous of degree n
by Pn (that is, p(cx) = cnp(x) for c ∈ R). Let Hκ,n = {p ∈ Pn : ∆κp = 0} (κ-harmonic
polynomials). We find eigenfunctions of g−1Hg of the form p(x)q

(
ω∥x∥2

)
with p ∈ Hκ,n (thus

∆κp = 0 and ⟨x,∇⟩p = np). This gives the differential equation (where t = ω∥x∥2)

t
d2

dt2
q +

(
n+

N

2
+ γκ − t

)
d

dt
q − 1

4

(
2n+N + 2γκ −

E

ω

)
q = 0

and the solution is the Laguerre polynomial q(t) = L
(α)
m (t), m = 0, 1, 2, . . ., α = γκ + n+ N

2 − 1,
E = ω(N + 2γκ + 2n+ 4m). Note E depends on deg(pq) = n+ 2m. The Laguerre polynomial
of degree n and index α > −1 satisfies

L(α)
n (t) :=

(α+ 1)n
n!

n∑
j=0

(−n)j
(α+ 1)j

tj

j!
,

∫ ∞

0
L(α)
m (t)L

(α)
k (t)tαe−t dt = δmk

Γ(α+ 1 +m)

m!
= δmkΓ(α+ 1)

(α+ 1)m
m!

.

The Pochhammer symbol is (a)n =
∏n

i=1(a+ i− 1) (or (a)0 = 1 and (a)n+1 = (a+ n)(a)n).

There is an orthogonality structure which uses the W (R)-invariant weight function

hκ(x) :=
∏

v∈R+

|⟨x, v⟩|κv

positively homogeneous of degree γκ. The orthogonality Hκ,n⊥Hκ,m for n ̸= m holds with
respect to the measure hκ(x)

2dµ(x) on the sphere SN−1 := {x : ∥x∥ = 1}, where µ is the
rotation-invariant surface measure. There is a key result on adjoints: suppose p, q are sufficiently
smooth and have exponential decay then (with 1 ≤ i ≤ N)∫

RN

(Dip)qh
2
κ dm = −

∫
RN

p(Diq)h
2
κ dm, (2.2)

where dm is Lebesgue measure on RN (see [4, Theorem 7.7.10]). Thus the adjoint of Di is
defined on a dense subspace of L2

(
RN , h2κdm

)
and D∗

i = −Di. This meaning of adjoint will be
used throughout. Furthermore, the conjugate of H is

hκ
(
−∆κ + ω2∥x∥2

)
h−1
κ = −∆+ ω2∥x∥2 +

∑
v∈R+

κv(κv − σv)∥v∥2

⟨x, v⟩2
,

(details of the derivation are in Appendix A) a Schrödinger equation with the potential

V (x) = ω2∥x∥2 +
∑
v∈R+

κv(κv − σv)∥v∥2

⟨x, v⟩2
,

which includes reflections. The ground state is hκg. For the special case where R is the root
system of type AN−1 and W (R) = SN (the symmetric group), this potential occurs in the
Calogero–Sutherland model of N identical particles on a line with r−2 interaction potential and
harmonic confinement. There is a closely related model of N identical particles on a circle
with r−2 interaction, called the trigonometric model. The wavefunctions are Jack polynomials
in the variables xj = eiθj , 1 ≤ j ≤ N . Lapointe and Vinet [7] defined raising and lowering
operators and found Rodrigues formulas for the Jack polynomials arising in this model. The
Jack polynomials can be used as bases for generalized Hermite (Lassalle [8]) and Laguerre
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polynomials, which occur as wavefunctions in types A and B models on the line (Baker and
Forrester [1], also see [4, Section 11.6.3]).

We need the basic commutation relations ([A,B] := AB −BA) for a, b ∈ RN :

[⟨a,∇κ⟩, ⟨b, x⟩] = ⟨a, b⟩+ 2
∑
v∈R+

κv
⟨a, v⟩⟨b, v⟩

∥v∥2
σv, (2.3)

[∆κ, ⟨b, x⟩] = 2⟨b,∇κ⟩,
[
∥x∥2, ⟨a,∇κ⟩

]
= −2⟨a, x⟩. (2.4)

Definition 2.1. For a, b ∈ RN , the angular momentum operator is Ja,b := ⟨a, x⟩⟨b,∇κ⟩ −
⟨b, x⟩⟨a,∇κ⟩.

Proposition 2.2. Ja,b = ⟨b,∇κ⟩⟨a, x⟩ − ⟨a,∇κ⟩⟨b, x⟩; J∗
a,b = −Ja,b and [H, Ja,b] = 0.

Proof. From (2.3), the commutator [⟨a, x⟩, ⟨b,∇κ⟩] = −[⟨b, x⟩, ⟨a,∇κ⟩]. This proves the first
statement. By (2.2), J∗

a,b = −⟨a, x⟩⟨b,∇κ⟩+ ⟨b, x⟩⟨a,∇κ⟩ = −Ja,b. Next by (2.4),

[H, ⟨b,∇κ⟩⟨a, x⟩] = ω2
{
∥x∥2⟨b,∇κ⟩⟨a, x⟩ − ⟨b,∇κ⟩∥x∥2⟨a, x⟩

}
− {∆κ⟨b,∇κ⟩⟨a, x⟩ − ⟨b,∇κ⟩⟨a, x⟩∆κ}

= ω2
[
∥x∥2, ⟨b,∇κ⟩

]
⟨a, x⟩ − ⟨b,∇κ⟩[∆κ, ⟨a, x⟩]

= −2ω2⟨b, x⟩⟨a, x⟩ − 2⟨b,∆κ⟩⟨a,∇κ⟩,

and this expression is symmetric in a, b and thus [H, Ja,b] = 0. ■

Corollary 2.3. [∆κ, Ja,b] = 0 and
[
∥x∥2, Ja,b

]
= 0.

This family of angular momentum operators has been studied by Feigin and Hakobyan [6],
especially in connection with the symmetric group and the Calogero–Moser model.

We introduce raising and lowering operators. These operators were used by Feigin [5] in his
study of generalized Calogero–Moser models, which are constructed in terms of subdiagrams
(certain subsets of roots) of the Coxeter diagram of W (R). Note {A,B} := AB +BA.

Definition 2.4. For a ∈ RN , a ̸= 0, let A±
a = ω⟨a, x⟩ ± ⟨a,∇κ⟩ and Ha := 1

2{A
+
a , A

−
a } =

ω2⟨a, x⟩2 − ⟨a,∇κ⟩2.

Proposition 2.5. (A+
a )

∗ = A−
a ; g

−1A+
a g = ⟨a,∇κ⟩ (lowering) and g−1A−

a g = 2ω⟨a, x⟩−⟨a,∇κ⟩
(raising); H∗

a = Ha and [H, Ha] = 0. Also g−1Hag = ω(⟨a, x⟩⟨a,∇κ⟩+ ⟨a,∇κ⟩⟨a, x⟩)− ⟨a,∇κ⟩2.

Proof. From (2.2), it follows that (A+
a )

∗ = A−
a and H∗

a = Ha. The commutator[
ω2⟨a, x⟩2 − ⟨a,∇κ⟩2,H

]
= −

[
⟨a,∇κ⟩2, ω2∥x∥2

]
−
[
ω2⟨a, x⟩2,∆κ

]
and expanding the right hand side with formulas (2.4) and

[
A2, B

]
= A[A,B] + [A,B]A shows

[Ha,H] = 0. ■

Proposition 2.6. Suppose w ∈ W (R), then w−1Haw = Haw; suppose S ⊂ R+ and S ∪ (−S)
is an W (R)-orbit (closed under v → vw), then

∑
v∈S H

k
v commutes with each w ∈ W (R) for

k = 1, 2, 3, . . ..

Proof. This follows from ⟨a,∇κ⟩w = w⟨aw,∇κ⟩ (see [4, Proposition 6.4.3]) and

w(⟨aw, x⟩p(x)) = ⟨aw, xw⟩p(xw) = ⟨a, x⟩wp(x)

(because w ∈ ON (R)). ■

This produces a collection of self-adjoint operators commuting with W (R) and H.
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3 The dihedral groups

For m = 3, 4, . . ., the dihedral group I2(m) is the symmetry group of the regular m-gon. We
will use complex coordinates for R2:

z := x1 + ix2, z := x1 − ix2.

Let ζ := exp
(
2πi
m

)
, then the reflections in I2(m) are σj : (z, z) →

(
zζj , zζ−j

)
(0 ≤ j < m), and

the rotations are ρj : (z, z) →
(
zζj , zζ−j

)
. Then σkσjσk = σ2k−j and ρ−1

k σjρk = σj+2k; when m
is even, there are two conjugacy classes {σ2j} and {σ2j+1} with 0 ≤ j ≤ m

2 − 1. The real root

vector for σj is vj :=
(
sin

(πj
m

)
,− cos

(πj
m

))
and ⟨x, vj⟩ = i

2 exp
(
− jπi

m

)(
z − ζjz

)
. The Dunkl

operators are
(
∂z :=

∂
∂z , ∂z :=

∂
∂z

)
Tf(z) = ∂zf(z) +

m−1∑
j=0

κj
f(z)− f

(
zζj

)
z − zζj

=
1

2
(D1 − iD2)f,

Tf(z) = ∂zf(z)−
m−1∑
j=0

κj
f(z)− f

(
zζj

)
z − zζj

ζj =
1

2
(D1 + iD2)f.

These imply ∆κ = 4TT . If m is odd, then κj = κ; if m is even then κ2j = κ0 and κ2j+1 = κ1
for all j. Denote Hvj by Hj and let Ĥj = g−1Hjg. In the complex coordinates,

⟨vj , x⟩ =
i

2
exp

(
−jπi
m

)(
z − ζjz

)
, ⟨vj ,∇κ⟩ = −i

(
exp

jπi

m

)(
T − ζ−jT

)
,

(
note

(
exp jπi

m

)2
= ζj

)
, thus

⟨vj , x⟩⟨vj ,∇κ⟩ =
1

2

(
z − ζjz

)(
T − ζ−jT

)
and

⟨vj ,∇κ⟩2 = −ζj
(
T − ζ−jT

)2
= −ζjT 2 + 2TT − ζ−jT

2
.

Then using (2.1),

Ĥj = ζjT 2 − 2TT + ζ−jT
2
+
ω

2

{(
z − ζjz

)(
T − ζ−jT

)
+
(
T − ζ−jT

)(
z − ζjz

)}
,

g−1Hg = −4TT + ω
{
zT + zT + Tz + Tz

}
. (3.1)

In R2 there is only one angular momentum operator (up to scalar multiplication), namely x1D2−
x2D1 = i

(
zT − zT

)
. Set J := zT − zT .

The κ-harmonic polynomials can be found in [4, Section 7.6]; they are expressed in terms of
Gegenbauer, respectively Jacobi, polynomials, in case of odd m, respectively even m.

4 Orthogonal basis of wavefunctions for B2

Henceforth, we specialize to the group B2 = I2(4). The formulas in the previous section apply
with ζ = i. Let γκ = 2κ0+2κ1. The weight function hκ =

∣∣z2− z2
∣∣κ0

∣∣z2+ z2
∣∣κ1 . The group has

five irreducible representations: four of degree one and one of degree two. The four multiplicative
characters satisfy χ0(σk) = 1, χ1(σk) = (−1)k, χ2(σk) = (−1)k+1, χ3(σk) = −1, 0 ≤ k ≤ 3.
The basis of wavefunctions (solutions of Hψ = 2ω(n + 1 + γκ)ψ) are denoted ψn−j,j where the
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subscript refers to a dominant monomial in the polynomial part (ignoring g) and monomials
zazb (a+ b = n) are ordered by |a− b|. The factor g in the wavefunctions will be omitted and
we use operators in the form g−1Ag acting on polynomials.

The basis functions are all expressed in the following:

R(α,β)
n (z) := (zz)2nP (α,β)

n

(
z4 + z4

2z2z2

)
=

(−1)n

22nn!

n∑
j=0

(
n

j

)
(−n− α)n−j(−n− β)j

(
z2 − z2

)2j(
z2 + z2

)2n−2j
.

The Jacobi polynomial P
(α,β)
n (t) of degree n and indices α, β can be defined as (see [4, Propo-

sition 4.14])

P (α,β)
n (t) :=

(α+ 1)n
n!

(
1 + t

2

)n n∑
j=0

(−n)j(−n− β)j
(α+ 1)j j!

(
t− 1

t+ 1

)j

;

this formula leads to the expression stated above. Then define

p4n,00(z) := R(κ0−1/2,κ1−1/2)
n (z),

p4n,11(z) :=
(
z4 − z4

)
R

(κ0+1/2,κ1+1/2)
n−1 (z),

p4n+2,10(z) :=
(
z2 + z2

)
R(κ0−1/2,κ1+1/2)

n (z),

p4n+2,01(z) :=
(
z2 − z2

)
R(κ0+1/2,κ1−1/2)

n (z).

These are of isotype χ0, χ3, χ1, χ2, respectively. The L
2-norms are necessary for normalization,

and are derived from∫ π/2

0
sin2α θ cos2β θP

(α− 1
2
,β− 1

2)
n (cos 2θ)P

(α− 1
2
,β− 1

2)
k (cos 2θ) dθ

=
1

2
δnkB

(
α+

1

2
, β +

1

2

)(
α+ 1

2

)
n

(
β + 1

2

)
n
(α+ β + n)

n!(α+ β + 1)n(α+ β + 2n)
.

The beta function B is defined by a definite integral and satisfies B(a, b) = Γ(a)Γ(b)/Γ(a+ b).
Denote for polynomials p(z, z)

∥p∥2T :=

∫ π

−π

∣∣p(eiθ)∣∣2hκ(eiθ)2 dθ,
∥p∥2 :=

∫ ∞

0
exp

(
−ωr2

)
r2γκ+1dr

∫ π

−π

∣∣p(reiθ)∣∣2hκ(eiθ)2 dθ,
then

∥1∥2T = 2γκ+1B

(
κ0 +

1

2
, κ1 +

1

2

)
.

The squared norms are

∥p4n,00∥2T =

(
κ0 +

1
2

)
n

(
κ1 +

1
2

)
n
(κ0 + κ1 + n)

n!(κ0 + κ1 + 1)n(κ0 + κ1 + 2n)
∥1∥2T,

∥p4n,11∥2T = 16

(
κ0 +

1
2

)
n

(
κ1 +

1
2

)
n
(κ0 + κ1 + n+ 1)

(n− 1)!(κ0 + κ1 + 1)n(κ0 + κ1 + 2n)
∥1∥2T,

∥p4n+2,10∥2T =
4
(
κ0 +

1
2

)
n

(
κ1 +

3
2

)
n

n!(κ0 + κ1 + 1)n(κ0 + κ1 + 2n+ 1)
∥1∥2T,

∥p4n+2,01∥2T =
4
(
κ0 +

3
2

)
n

(
κ1 +

1
2

)
n

n!(κ0 + κ1 + 1)n(κ0 + κ1 + 2n+ 1)
∥1∥2T.
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For the odd degrees,

p4n+1(z) :=

{
p4n,00(z) +

1

4
p4n,11(z)

}
, (4.1)

p4n+3(z) := z

{(
n+ κ0 +

1

2

)
p4n+2,10(z) +

(
n+ κ1 +

1

2

)
p4n+2,01(z)

}
. (4.2)

From the orthogonality relations p4n,00 ⊥ p4n,11 and p4n+2,10 ⊥ p4n+2,01 (different isotypes),

∥p4n+1∥2T = ∥p4n,00∥2T +
1

16
∥p4n,11∥2T =

(
κ0 +

1
2

)
n

(
κ1 +

1
2

)
n

n!(κ0 + κ1 + 1)n
∥1∥2T,

∥p4n+3∥2T =

(
n+ κ0 +

1

2

)2

∥p4n+2,10∥2T +

(
n+ κ1 +

1

2

)2

∥p4n+2,01∥2T

= 4

(
κ0 +

1
2

)
n+1

(
κ1 +

1
2

)
n+1

n!(κ0 + κ1 + 1)n
∥1∥2T.

Next we list the orthogonal basis, which involves the Laguerre polynomials. The subscript
notation may appear strange, but it makes it easy to identify the isotype and every possibility
of (n− j, j) can be found by suitably replacing n (the trailing factor g is understood),

ψ4n+j,j(z) = p4n,00(z)L
(γκ+4n)
j (ωzz),

ψ4n+2+j,j(z) = p4n+2,10(z)L
(γκ+4n+2)
j (ωzz),

ψj,4n+j(z) = p4n,11(z)L
(γκ+4n)
j (ωzz),

ψj,4n+2+j(z) = p4n+2,01(z)L
(γκ+4n+2)
j (ωzz).

In this list, σ0ψ2n−j,j = ψ2n−j,j and σ0ψj,2n−j = −ψj,2n−j, for 0 ≤ j ≤ n (j < n for the second
case). For odd degrees,

ψ4n+1+j,j(z) = p4n+1(z)L
(γκ+4n+1)
j (ωzz),

ψ4n+3+j,j(z) = p4n+3(z)L
(γκ+4n+3)
j (ωzz),

ψj,4n+1+j(z) = σ0ψ4n+1+j,j(z),

ψj,4n+3+j(z) = σ0ψ4n+3+j,j(z).

By construction, Hψn−j,j = Enψn−j,j , where the energy eigenvalue is En := 2ω(n+2κ0+2κ1+1).
The squared norms of the ψ follow from the formula

∥ψ∥2 = 1

2
ω−(n+γκ+1)Γ(γκ + n+ ℓ+ 1)

ℓ!
∥p∥2T,

where p(z) is homogeneous of degree n and ψ(z) = p(z)L
(γκ+n)
ℓ (ωzz). When ω = 1, the wave-

functions ψn−j,j are eigenfunctions of the Dunkl transform with eigenvalue (−i)n (see [4, Theo-
rem 7.7.5]).

5 Some self-adjoint operators

5.1 General properties

In this section, we are concerned with finding the action of operators which commute with H
on the basis functions described above. Suppose A is such an operator and A is self-adjoint
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(in L2
(
R2, h2κdm2

)
, then for any (n− j, j) the polynomial Aψn−j,j is an eigenfunction of H with

the same eigenvalue 2ω(n+1+ γκ) and has an expansion
∑n

i=0 ciψn−i,i (note that dm2 denotes
the R2 Lebesgue measure and equals rdr dθ for z = reiθ). Suppose it is known that the top-
degree (nonzero) monomials zn−izi in Aψn−j,j satisfy m ≤ i ≤ N −m, then ψn−k,k for k < m
or n − m < k ≤ n cannot appear in the expansion of Aψn−j,j . This is an implicit inductive
argument: if zn and zn do not appear, then neither ψn,0 nor ψ0,n can appear in the expansion,
now consider zn−1z and zzn−1, ψn−1,1 and ψ1,n−1 and so on. It also follows that it suffices to
consider the top-degree terms to find the coefficients of the expansion. The top degree terms
of ψn−j,j are scalar multiples of zn−jzj ± zjzn−j if n is even, and of zn−jzj (or zjzn−j) if n is
odd and n− j > j (or n− j < j).

Definition 5.1. For a polynomial p(z, z), let C(p, zmzn) denote the coefficient of zmzn in the
expansion of p. If p can be expanded in a series of wavefunctions, then C(p, ψn−j,j) denotes the
coefficient of ψn−j,j .

Suppose, as above, that [A,H] = 0 and A is self-adjoint, then

C(Aψn−j,j , ψn−k,k)∥ψn−k,k∥2 = C(Aψn−k,k, ψn−j,j)∥ψn−j,j∥2; (5.1)

generally the coefficients we use are real and the complex conjugate on C can be omitted.
In particular, C(Aψn−j,j , ψn−k,k) = 0 implies C(Aψn−k,k, ψn−j,j) = 0.

5.2 Angular momentum

Here J = zT − zT , from Proposition 2.2 we have J ∗ = −J and [J ,H] = 0. Also g−1J g = J
(because J (zz)k = 0). We determine the effect of J on ψn−j,j by considering the dominant top-
degree monomials. This suffices because [J ,∆κ] = 0 and the image of a κ-harmonic polynomial
under J is κ-harmonic, and there are only two (independent) κ-harmonic polynomials of each
degree (≥ 1)

J zn = nzn +
3∑

j=0

κjmod2
zn − (ijz)n

z − ijz
(z + ijz)

= nzn + 2(κ0 + κ1)z
n +

{
κ0(1 + (−1)n) + κ1

(
in + (−i)n

)}
zn + · · ·

= (n+ 2κ0 + 2κ1)z
n +

(
1 + (−1)n

)(
κ0 + inκ1

)
zn + · · · ,

omitting terms like zn−jzj with 1 ≤ j < n. Also

J zn = −(n+ 2κ0 + 2κ1)z
n −

(
1 + (−1)n

)(
κ0 + inκ1

)
zn + · · ·

because σ0J σ0 = −J . If n is odd, then

J zn = (n+ 2κ0 + 2κ1)z
n + · · · and J 2zn = (n+ 2κ0 + 2κ1)

2zn + · · · .

Thus

Jψn+j,j = J
(
pn(z)L

(γκ+n)
j (ωzz)

)
= (J pn(z))L(γκ+n)

j (ωzz) = (n+ 2κ0 + 2κ1)ψn+j,j ,

Jψj,n+j = −(n+ 2κ0 + 2κ1)ψj,n+j .

If n = 0mod 4, then

J zn = (n+ 2κ0 + 2κ1)z
n + 2(κ0 + κ1)z

n + · · · ,
J zn = −(n+ 2κ0 + 2κ1)z

n − 2(κ0 + κ1)z
n + · · ·
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and thus

J 2zn = (n+ 2κ0 + 2κ1)J zn + 2(κ0 + κ1)J zn = n(n+ 4κ0 + 4κ1)z
n + · · · ,

J 2zn = n(n+ 4κ0 + 4κ1)z
n + · · · .

If n = 2mod 4, then

J zn = (n+ 2κ0 + 2κ1)z
n + 2(κ0 − κ1)z

n + · · · ,
J zn = −(n+ 2κ0 + 2κ1)z

n − 2(κ0 − κ1)z
n + · · · ,

J 2zn = (n+ 4κ0)(n+ 4κ1)z
n + · · · ,

J 2zn = (n+ 4κ0)(n+ 4κ1)z
n + · · · .

Thus

J 2ψ4n+j,j = 16n(n+ κ0 + κ1)ψ4n+j,j , (5.2)

J 2ψj,4n+j = 16n(n+ κ0 + κ1)ψj,4n+j , (5.3)

J 2ψ4n+2+j,j = 4(2n+ 2κ0 + 1)(2n+ 2κ1 + 1)ψ4n+2+j,j , (5.4)

J 2ψj,4n+2+j = 4(2n+ 2κ0 + 1)(2n+ 2κ1 + 1)ψj,4n+2+j . (5.5)

5.3 Raising and lowering operators

Formula (3.1) specializes to

Ĥj = ijT 2 − 2TT + i−jT
2
+
ω

2

{(
z − ijz

)(
T − i−jT

)
+
(
T − i−jT

)(
z − ijz

)}
.

Proposition 5.2. H0 +H2 = H = H1 +H3.

Proof. We use the polynomial parts Ĥj . First

Ĥ2j = −2TT +
ω

2

{
zT + Tz + zT + Tz

}
+ (−1)j

(
T 2 + T

2 − ω

2

{
zT + zT + Tz + Tz

})
,

thus Ĥ0 + Ĥ2 = −4TT +ω
{
zT + Tz+ zT + Tz

}
= g−1Hg. Similarly, Ĥ1 + Ĥ3 = g−1Hg (using

i2j+1 = (−1)j i). ■

Corollary 5.3. [H0, H2] = 0 and [H1, H3] = 0.

Proof. H0H2 = H0(H−H0) and [H0,H] = 0 by Proposition 2.5. ■

The formula w−1Haw = Haw (see Proposition 2.6) implies ρ3Ĥ0ρ1 = Ĥ2. To find the effect

of ρ1 or ρ3 consider the leading term in ψm+j,j = pm(z)L
(γκ+m)
j (ωzz) (total degree n = m+2j),

a scalar multiple of zm+ℓzℓ; examination of each of the formulas for pm shows that each monomial
zazb satisfies a − b = mmod4, this also applies to ψj,m+j except for the odd case where the
leading term is zjzj+m and a−b = −mmod4. Also ρ1(z

azb) = (iz)a(−iz)b = ia−bzazb = imzazb.
Thus by replacing m by n − 2j, we obtain ρ1ψn−j,j = in−2jψn−j,j ; this applies to all n (if n is
even then in−2j = i2j−n). Replace i by −i to find ρ3ψn−j,j .

Proposition 5.4. Suppose Ĥ0ψn−j,j =
∑n

j=0 cj,iψn−i,i, then (1) cj,j = 1
2En, (2) i = jmod2

and i ̸= j implies ci,j = 0, (3) Ĥ2ψn−j,j =
1
2Enψn−j,j −

∑
{cj,iψn−i,i : j − i = 1mod 2}.
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Proof. By hypothesis,

H2ψn−2j,j = ρ3H0ρ1ψn−j,j = ρ3i
n−2j

n∑
i=0

cj,iψn−i,i = in−2j
n∑

i=0

cj,ii
−n+2iψn−i,i

=

n∑
i=0

(−1)i−jcj,iψn−i,i.

From H0 +H2 = H, it follows that
∑n

i=0 cj,i
(
1 + (−1)j−i

)
ψn−i,i = Enψn−j,j . Thus 2cj,j = En

and j − i = 0mod 2 and j ̸= i implies cj,i = 0. ■

Since {σ0, σ2} and {σ1, σ3} are conjugacy classes, the operators Hm
0 + Hm

2 and Hm
1 + Hm

3

commute with H and with the action of the group for m = 1, 2, 3, . . . (Proposition 2.6). There
is a fairly simple formula for

∑3
i=0H

2
i . Note I denotes the identity in the group.

Definition 5.5. Set R := (I + κ0(σ0 + σ2) + κ1(σ1 + σ3))
2 − 2

(
κ20 + κ21

)
(1 − ρ2). This is an

element of the center of the group algebra, that is, [R, σj ] = 0 for 0 ≤ j ≤ 3 and [R, ρj ] = 0 for
1 ≤ j ≤ 3.

Equivalently, R = I + 4
(
κ20 + κ21

)
ρ2 + 2κ0(σ0 + σ2) + 2κ1(σ1 + σ3) + 4κ0κ1(ρ1 + ρ3).

Theorem 5.6. H2
0 +H2

2 +H2
1 +H2

3 = 3
2H

2 − 2ω2J 2 − 2ω2R.

Proof. The details are presented in Appendix B. The idea is to use direct (computer-assisted)
calculation. ■

The following defines the operator which is the main concern in the sequel; it will be shown
to commute with H and the group action but not with angular momentum. The latter claim is
proven by demonstrating that eigenfunctions of J 2 are not preserved.

Definition 5.7. Set K := H2
0 +H2

2 −H2
1 −H2

3 , a fourth-order operator.

From Propositions 2.5 and 2.6, it follows that [K,H] = 0 and each of H2
0 + H2

2 , H
2
1 + H2

3

commutes with the group action.

Proposition 5.8. K = 2(H1H3 −H0H2) = −1
2H

2 + 2ω2J 2 + 2ω2R+ 4
(
H0 − 1

2H
)2
.

Proof. K = (H0 +H2)
2 − 2H0H2 − (H1 +H3)

2 +2H1H3. Also K+
∑3

i=0H
2
i = 2

(
H2

0 +H2
2

)
=

2H2− 4H0H2. From Proposition 5.4, H2− 1
2H = −(H0− 1

2H) and H2H0 =
1
4H

2−
(
H0− 1

2H
)2
.

Thus

K = 2H2 − 4H0H2 −
(
3

2
H2 − 2ω2J 2 − 2ω2R

)
=

1

2
H2 + 2ω2J 2 + 2ω2R− 4

{
1

4
H2 −

(
H0 −

1

2
H
)2}

;

this completes the proof. ■

6 The expansion coefficients of H0

6.1 General formulas

This section calculates the coefficients in H0ψn−j,j . Start with

Ĥ0 =
(
T − T

)2
+
ω

2

{
(z − z)

(
T − T

)
+
(
T − T

)
(z − z)

}
=

(
T − T

)2
+ ω

{
(z − z)

(
T − T

)
+ 1 + 2κ0σ0 + κ1(σ1 + σ3)

}
.
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Let

A := (z − z)(∂z − ∂z) + 1 + 2κ0,

B := κ1

{
(σ1 + σ3) + (z − z)

{
(1 + i)

z − iz
(1− σ1) +

(1− i)

z + iz
(1− σ3)

}}

so that Ĥ0 = (T−T )2+ω(A+B). The part of (z−z)(T−T ) corresponding to σ0 is 2κ0(z − z)×
1−σ0
(z−z) = 2κ0(1 − σ0). To determine the coefficients in Ĥ0ψn−j,j =

∑n
i=0 cj,iψn−i,i, it suffices to

consider the monomials of degree n in Ĥ0ψn−j,j , that is, analyze (A+B)ψj,n−j . For a polynomial

p =
∑ℓ

i=k ciz
n−izi with ck ̸= 0 ̸= cℓ let D(p) = ckz

n−kzk + cℓz
n−ℓzℓ (D for dominant terms).

Then (for 2j ≤ n)

D
(
Azn−jzj

)
= −jzn−j+1zj−1 − (n− j)zn−j−1zj+1,

D
(
Azjzn−j

)
= −jzj−1zn−j+1 − (n− j)zj+1zn−j−1.

Let 2j ≤ n and m := n− 2j, then

Bzn−jzj = κ1(zz)
j im(1 + (−1)m)zm

+ κ1(zz)
j(z − z)

m−1∑
k=0

zm−1−kzk
{
ik(1 + i) + (−i)k(1− i)

}
= κ1(zz)

j

{
2zm + 2εm−1z

m + 2

m−1∑
k=1

zm−kzk(εk − εk−1)

}
,

where εk = (−1)⌊(k+1)/2⌋ and ⌊r⌋ is the largest integer ≤ r. Thus

D
(
Bzn−jzj

)
= 2κ1

(
zn−jzj + εn−2j−1z

jzn−j
)
;

the same formula holds with (z, z) replaced by (z, z) (because [B, σ0] = 0). The special case
Bzjzj = 2κ1z

jzj .

Let 1 ≤ j ≤ n, then by construction D(ψ2n−j,j) = C
(
ψ2n−j,j , z

2n−jzj
)(
z2n−jzj + zjz2n−j

)
,

similarly for ψj,2n−j ; and from the above formulas, it follows that

D((A+B)ψ2n−j,j) = −jC(ψ2n−j,j , z
2n−jzj)(z2n−j+1zj−1 + zj−1z2n−j+1), (6.1)

D((A+B)ψj,2n−j) = −jC(ψj,2n−j , z
2n−jzj)(z2n−j+1zj−1 − zj−1z2n−j+1), (6.2)

the other terms are dominated by these. This implies that C(H0ψ2n−j,j , ψ2n−i,i) = 0 and
C(H0ψj,2n−j , ψi,2n−i,) = 0 for i < j − 1. Thus the nonzero coefficients occur only for |j − i| ≤ 1.

For the odd case, suppose j ≤ n, then

D(ψ2n+1−j,j) = C
(
ψ2n+1−j,j , z

2n+1−jzj
)
z2n+1−jzj + C

(
ψ2n+1−j,j , z

j+1z2n−j
)
zj+1z2n−j .

This implies

D((A+B)ψ2n+1−j,j) =
(
−jz2n+2−jzj−1 + 2ε2n+2jκ1z

jz2n+1−j
)
C
(
ψ2n+1−j,j , z

2n+1−jzj
)

− (j + 1)C
(
ψ2n+1−j,j , z

j+1z2n−j
)
zjz2n+1−j . (6.3)
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6.2 Even degree

To find C
(
Ĥ0ψ2n−j,j , ψ2n−j+1,j−1

)
and C

(
Ĥ0ψj,2n−j , ψj−1,2n−j+1

)
, we used formulas (6.1) and

(6.2). Then for C
(
Ĥ0ψ2n−j,j , ψ2n−j−1,j+1

)
and C

(
Ĥ0ψj,2n−j , ψj+1,2n−j−1

)
, we used (5.1). The

leading coefficients of ψn−j,j are derived from

C
(
R(α,β)

n , z4n
)
= C

(
R(α,β)

n , z4n
)
=

1

22nn!
(n+ α+ β + 1)n,

C
(
L
(n+γκ)
j (ωzz), zjzj

)
= (−1)j

ωj

j!
.

Then

C
(
p4n,00, z

4n
)
= C

(
p4n,00, z

4n
)
=

1

22nn!
(n+ κ0 + κ1)n,

C
(
p4n,11, z

4n
)
= −C

(
p4n,11, z

4n
)
=

1

22n−2(n− 1)!
(n+ κ0 + κ1 + 1)n−1

and

C
(
p4n,+2,10, z

4n+2
)
= C

(
p4n+2,10, z

4n+2
)
=

1

22nn!
(n+ κ0 + κ1 + 1)n,

C
(
p4n+2,01, z

4n+2
)
= −C

(
p4n+2,01, z

4n+2
)
=

1

22nn!
(n+ κ0 + κ1 + 1)n.

First consider the even degree polynomials satisfying σ0p = p(
H0 −

1

2
E4n+2j

)
ψ4n+j,j = ω2 n+ κ0 + κ1

2n+ κ0 + κ1
ψ4n+j+1,j−1

+
(j + 1)(2n+ 2κ0 − 1)(4n+ 2κ0 + 2κ1 + j)

2(2n+ κ0 + κ1)
ψ4n+j−1,j+1, (6.4)(

H0 −
1

2
E4n+2j+2

)
ψ4n+2+j,j = 4ω2 n+ 1

2n+ κ0 + κ1 + 1
ψ4n+j+3,j−1

+ 2
(j + 1)(2n+ 2κ1 + 1)(4n+ 2κ0 + 2κ1 + j + 2)

2n+ κ0 + κ1 + 1
ψ4n+1+j,j+1, (6.5)

then the even degree polynomials satisfying σ0p = −p,(
H0 −

1

2
E4n+2j

)
ψj,4n+j = 4ω2 n

2n+ κ0 + κ1
ψj−1,4n+j+1

+
(j + 1)(2n+ 2κ1 − 1)(4n+ 2κ0 + 2κ1 + j)

(2n+ κ0 + κ1)
ψj+1,4n+j−1, (6.6)(

H0 −
1

2
E4n+2j+2

)
ψj,4n+2+j = ω2 n+ κ0 + κ1 + 1

2n+ κ0 + κ1 + 1
ψj−1,4n+j+3

+
(j + 1)(2n+ 2κ0 + 1)(4n+ 2κ0 + 2κ1 + j + 2)

2(2n+ κ0 + κ1 + 1)
ψj+1,4n+1+j . (6.7)

Thus the matrix of H0 in the bases {ψ2n−j,j : 0 ≤ j ≤ n} and {ψj,2n−j : 0 ≤ j < n} is tridiagonal.

6.3 Odd degree

Formula (6.3) is used to find C
(
Ĥ0ψ2n+1−j,j , ψ2n+2−j,j−1

)
and C

(
Ĥ0ψ2n+1−j,j , ψj,2n+1−j

)
. We

will show that the nonzero coefficients in H0ψ2n+1−j,j =
∑2n+1

i=0 cj,iψ2n+1−i,i occur at i = j − 1,



The B2 Harmonic Oscillator with Reflections and Superintegrability 13

j, j + 1, 2n + 1 − j. Suppose m is odd, then ψm−j,j =
∑m−j−1

i=j aiz
m−izi and aj , am−j−1 are

involved in finding C
(
H0ψm−j,j , z

m−j+1zj−1
)
and C

(
H0ψm−j,j , z

jzm−j
)
. Then

C(H0ψm+j,j , ψm+1+j,j−1) =
C
(
H0ψm+j,j , z

m+1+jzj−1
)

C
(
ψm+1+j,j−1, zm+1+jzj−1

)
= −

jωC
(
ψm+j,j , z

m+jzj
)

C
(
ψm+1+j,j−1, zm+1+jzj−1

) ,
C
(
H0ψm+j,j , z

jzm+j
)
= C

(
H0ψm+j,j , ψm+1+j,j−1

)
C
(
ψm+1+j,j−1, z

jzm+j
)

+ C(H0ψm+j,j , ψj,m+j)C
(
ψj,m+j , z

jzm+j
)

= −ω(j + 1)C
(
ψm+j,j , z

j+1zm−1+j
)

+ 2(−1)(m+1)/2ωκ1C
(
ψm+j,j , z

m+jzj
)
.

The lower three lines are used to solve for C(H0ψm+j,j , ψj,m+j). There are two cases: m− 2j =
4n+ 1, 4n+ 3. First

C
(
p4n+1, z

4n+1
)
= C

(
p4n,00, z

4n
)
+

1

4
C
(
p4n,11, z

4n
)
=

1

22nn!
(n+ κ0 + κ1 + 1)n,

C
(
p4n+1, zz

4n
)
= C

(
p4n,00, z

4n
)
− 1

4
C
(
p4n,11, z

4n
)
=
κ0 + κ1
22nn!

(n+ κ0 + κ1 + 1)n−1

and second

C
(
p4n+3, z

4n+3
)
=

(
n+ κ0 +

1

2

)
C
(
p4n+2,10, z

4n+2
)
+

(
n+ κ1 +

1

2

)
C
(
p4n+2,01, z

4n+2
)

=
1

22nn!
(n+ κ0 + κ1 + 1)n+1,

C
(
p4n+3, zz

4n+2
)
=

(
n+ κ0 +

1

2

)
C
(
p4n+2,10, z

4n+2
)
−
(
n+ κ1 +

1

2

)
C
(
p4n+2,01, z

4n+2
)

=
κ0 − κ1
22nn!

(n+ κ0 + κ1 + 1)n.

Then (
H0 −

1

2
E4n+1+2j

)
ψ4n+1+j,j

=
ω2

2n+ κ0 + κ1 + 1
ψ4n+2+j,j−1 +

(j + 1)(4n+ 2κ0 + 2κ1 + j + 1)

2n+ κ0 + κ1
ψ4n+j,j+1

+ ω

{
j(2n+ 2κ0 + 1)

2n+ κ0 + κ1 + 1
+

2n(j + 1)

2n+ κ0 + κ1
− (2j + 2κ1 + 1)

}
ψj,4n+1+j , (6.8)(

H0 −
1

2
E4n+3+2j

)
ψ4n+3+j,j

=
4ω2(n+ 1)(n+ κ0 + κ1 + 1)

2n+ κ0 + κ1 + 2
ψ4n+4+j,j−1

+
(j + 1)(4n+ 2κ0 + 2κ1 + j + 3)(2n+ 2κ0 + 1)(2n+ 2κ1 + 1)

2n+ κ0 + κ1 + 1
ψ4n+2+j,j+1

+ ω

{
(j + 1)(2n+ 2κ0 + 1)

2n+ κ0 + κ1 + 1
− 2j(n+ 1)

2n+ κ0 + κ1 + 2
+ (2j + 2κ1 + 1)

}
ψj,4n+3+j . (6.9)
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7 The expansion coefficients of K

7.1 Even degree

The matrices of H0 − 1
2H with respect to the bases {ψ2n−j,j : 0 ≤ j ≤ n} (σ0p = p) and

{ψj,2n−j : 0 ≤ j < n} (σ0p = −p) are tridiagonal with zeroes on the main diagonal. If M is such
a matrix, then the only nonzero elements in M2 are

(
M2

)
i,i−2

= Mi,i−1Mi−1,i−2,
(
M2

)
i,i+2

=

Mi,i+1Mi+1,i+2 and
(
M2

)
i,i

=Mi,i−1Mi−1,i +Mi,i+1Mi+1,i. By use of the expansion coefficients

of H0 − 1
2H, we find the matrix for K = −1

2H
2 + 2ω2J 2 + 2ω2R+ 4

(
H0 − 1

2H
)2

(the first three
terms act as scalars).

To compute K ψ4n+j,j , we use the coefficients of the expansions ofH0ψ4n+j+k,j−k with k =
−1, 0, 1 from (6.4), (6.5). Note 4n + j − 1 = (4(n − 1) + 2) + (j + 1) and 4n + j + 1 =
(4n + 2) + (j − 1); this indicates which types are involved. The scalars derive from E4n+2j ,
Rψ4n+j,j = (1 + 2κ0 + 2κ1)

2ψ4n+j,j and J 2ψ4n+j,j = 16n(n+ κ0 + κ1)ψ4n+j,j (from (5.2))

Kψ4n+j,j = A0
−1(n)ψ4n+j+2,j−2 +A0

0(n, j)ψ4n+j,j +A0
1(n, j)ψ4n+j−2,j+2,

A0
−1(n) = 16ω4 (n+ 1)(n+ κ0 + κ1)

(2n+ κ0 + κ1)(2n+ κ0 + κ1 + 1)
,

A0
1(n, j) = 4

(j + 1)(j + 2)(2n+ 2κ0 − 1)(2n+ 2κ1 − 1)

(2n+ κ0 + κ1 − 1)(2n+ κ0 + κ1)

× (4n+ 2κ0 + 2κ1 + j − 1)(4n+ 2κ0 + 2κ1 + j),

A0
0(n, j) = −8ω2(κ0 − κ1)

{
2j +

(n+ 1)j(j − 1)

2n+ κ0 + κ1 + 1
− n(j + 1)(j + 2)

2n+ κ0 + κ1 − 1

}
.

For Kψ4n+2+j,j , we use 4(n+1)+(j− 1) and 4n+(j+1) for the adjacent labels, and E4n+2+2j ,
Rψ4n+2+j = (1+2κ0−2κ1)

2ψ4n+2+j,j and J 2ψ4n+2+j,j = 4(2n+2κ0+1)(2n+2κ1+1)ψ4n+2+j,j

(from (5.4))

Kψ4n+2+j,j = A1
−1(n)ψ4n+4+j,j−2 +A1

0(n, j)ψ4n+2+j,j +A1
1(n, j)ψ4n+j,j+2,

A1
−1(n) = 16ω4 (n+ 1)(n+ κ0 + κ1 + 1)

(2n+ κ0 + κ1 + 2)(2n+ κ0 + κ1 + 1)
,

A1
1(n, j) = 4

(j + 1)(j + 2)(2n+ 2κ0 − 1)(2n+ 2κ1 + 1)

(2n+ κ0 + κ1 + 1)(2n+ κ0 + κ1)
,

× (4n+ 2κ0 + 2κ1 + j + 2)(4n+ 2κ0 + 2κ1 + j + 1)

A1
0(n, j) = 8ω2(κ0+ κ1)− 8ω2(κ0− κ1− 1)

(
2j+ 1+

(n+ 1)j(j− 1)

2n+ κ0+ κ1+ 2
− n(j+ 1)(j+ 2)

2n+ κ0+ κ1

)
.

For Kψj,4n+j , use the coefficients from (6.6), (6.7), the reversed labels from ψ4n+j,j and from (5.3)

Rψj,4n+j = (1− 2κ0 − 2κ1)
2ψj,4n+j ,J 2ψj,4n+j = 16n(n+ κ0 + κ1)ψj,4n+j ,

then

Kψj,4n+j = B0
−1(n)ψj−2,4n+j+2 +B0

0(n, j)ψj,4n+j +B0
1(n, j)ψj+2,4n+j−2,

B0
−1(n) = 16ω4 n(n+ κ0 + κ1 + 1)

(2n+ κ0 + κ1)(2n+ κ0 + κ1 + 1)
,

B0
1(n, j) = 4

(j + 1)(j + 2)(2n+ 2κ0 − 1)(2n+ 2κ1 − 1)

(2n+ κ0 + κ1 − 1)(2n+ κ0 + κ1)

× (4n+ 2κ0 + 2κ1 + j − 1)(4n+ 2κ0 + 2κ1 + j),
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B0
0(n, j) = −8ω2(κ0 − κ1)

{
2j + 2 +

nj(j − 1)

2n+ κ0 + κ1 + 1
− (n− 1)(j + 1)(j + 2)

2n+ κ0 + κ1 − 1

}
.

For Kψj,4n+2+j , use the reversed labels from ψ4n+2+j,j and Rψj,4n++2j = (1−2κ0+2κ1)
2ψj,4n+j ,

J 2ψj,4n+2+j = 4(2n+ 2κ0 + 1)(2n+ 2κ1 + 1)ψj,4n+2+j (5.5)

Kψj,4n+2+j = B1
−1(n)ψj−1,4n+3+j +B1

0(n, j)ψj,4n+2+j +B1
1(n, j)ψj+1,4n+j+1,

B1
−1(n) = 16ω4 (n+ 1)(n+ κ0 + κ1 + 1)

(2n+ κ0 + κ1 + 2)(2n+ κ0 + κ1 + 1)
,

B1
1(n, j) = 4

(j + 1)(j + 2)(2n+ 2κ0 + 1)(2n+ 2κ1 − 1)

(2n+ κ0 + κ1 + 1)(2n+ κ0 + κ1)

× (4n+ 2κ0 + 2κ1 + j + 1)(4n+ 2κ0 + 2κ1 + j + 2),

B1
0(n, j) = −8ω2(κ0 + κ1)− 8ω1(κ0 − κ1 + 1)

×
(
2j + 1 +

(n+ 1)j(j − 1)

2n+ κ0 + κ1 + 2
− n(j + 1)(j + 2)

2n+ κ0 + κ1

)
.

That concludes the even degree case. One might notice that all the coefficients are bounded
in (n − j), except for the types ψ2n−j,j → ψ2n−j−2,j+2, j ≤ n − 2, and ψj,2n−j → ψj+2,2n−j−2,
j ≤ n− 3, which are O

(
(n− j)2

)
.

7.2 Odd degree

The matrix M of H0 − 1
2H with respect to the basis {ψ2n+1−j,j : 0 ≤ j ≤ 2n + 1} has nonzero

entries on the subdiagonal {(i+ 1, i)}, the superdiagonal {(i, i+ 1)} (with 0 ≤ i ≤ 2n) and the
cross diagonal {(i, 2n+1− i) : 0 ≤ i ≤ 2n+1}. Because

[
H0− 1

2H, σ0
]
= 0, there is a symmetry

property Mi,j =M2n+1−i,2n+1−j . Then(
M2

)
i,i+2

=Mi,i+1Mi+1,i+2,
(
M2

)
i,i−2

=Mi,i−1Mi−1,i−2,(
M2

)
i,i

=Mi,i+1Mi+1,i +Mi,i−1Mi−1,i +M2
i,2n+1−i,(

M2
)
i,2n−i

=Mi,i+1(Mi+1,2n−i +Mi,2n+1−i),(
M2

)
i,2n+2−i

=Mi,i−1(Mi−1,2n+2−i +Mi,2n+1−i)

(because M2n+1−i,2n−i =Mi,i+1 and M2n+1−i,2n+2−i =Mi,i−1). The two cases for ψ2n+1−j,j are
2n+1− 2j = 1, 3mod 4. The adjacent (j± 1) polynomials to ψ4n+1+j,j are ψ4n+3+(j−1),j−1 and
ψ4(n−1)+3+(j+1),j+1. By use of (6.8), (6.9) and Section 5.2, E4n+1+2j ,J 2ψ4n+1+j,j = (4n + 1 +
2κ0 + 2κ1)

2, Rψ4n+1+j,j = (1− 4κ20 − 4κ21)ψ4n+1+j , we obtain

Kψ4n+1+j,j = A−2(n)ψ4n+3+j,j−2 +A0(n, j)ψ4n+1+j,j +A2(n, j)ψ4n−1+j,j+2

+A1(n, j)ψj+1,4n+j +A−1(n, j)ψj−1,4n+2+j ,

A−2(n) = 16ω4 (n+ 1)(n+ κ0 + κ1 + 1)

(2n+ κ0 + κ1 + 2)(2n+ κ0 + κ1 + 1)
,

A2(n, j) = 4
(j + 1)(j + 2)(2n+ 2κ0 − 1)(2n+ 2κ1 − 1)

(2n+ κ0 + κ1 − 1)(2n+ κ0 + κ1)

× (4n+ 2κ0 + 2κ1 + j + 1)(4n+ 2κ0 + 2κ1 + j),

A0(n, j) = −8ω2 (κ0 + κ1)(κ0 − κ1)(2n+ κ0 + κ1 + j + 1)2

(2n+ κ0 + κ1)(2n+ κ0 + κ1 + 1)
,

A1(n, j) = −8ω(κ0 − κ1)
(j + 1)(2n+ κ0 + κ1 + j + 1)(4n+ 2κ0 + 2κ1 + j + 1)

(2n+ κ0 + κ1 − 1)3
,
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A−1(n, j) = −8ω3(κ0 + κ1)
(2n+ κ0 + κ1 + j + 1)

(2n+ κ0 + κ1)3
.

Omit A−2 if j < 2, A2 if n = 0, A1 if n = 0, A−1 if j < 1. In the special case ψ1,0 = z, only one
term appears: Kz = A0(0, 0)z and A0(0, 0) = −8ω2(κ0 − κ1)(κ0 + κ1 + 1).

The adjacent (j ± 1) polynomials to ψ4n+3+j,j are ψ4(n+1)+1+(j−1),j−1 and ψ4n+1+(j+1),j+1.
By use of (6.8), (6.9) and E4n+3+2j , J 2ψ4n+3+j,j = (4n + 3 + 2κ0 + 2κ1)

2, Rψ4n+3+j,j =(
1− 4κ20 − 4κ21

)
ψ4n+3+j , we obtain

Kψ4n+3+j,j = B−2(n)ψ4n+5+j,j−2 +B0(n, j)ψ4n+3+j,j +B2(n, j)ψ4n+1+j,j+2

+B1(n, j)ψj+1,4n+2+j +B−1(n, j)ψj−1,4n+4+j ,

B−2(n) = 16ω4 (n+ 1)(n+ κ0 + κ1 + 1)

(2n+ κ0 + κ1 + 2)(2n+ κ0 + κ1 + 3)
,

B2(n, j) = 4
(j + 1)(j + 2)(2n+ 2κ0 + 1)(2n+ 2κ1 + 1)

(2n+ κ0 + κ1 + 1)(2n+ κ0 + κ1)

× (4n+ 2κ0 + 2κ1 + j + 2)(4n+ 2κ0 + 2κ1 + j + 3),

B0(n, j) = −8ω2 (κ0 + κ1)(κ0 − κ1)(2n+ κ0 + κ1 + j + 2)2

(2n+ κ0 + κ1 + 1)(2n+ κ0 + κ1 + 2)
,

B1(n, j) = −8ω(κ0 + κ1)
(2n+ κ0 + κ1 + j + 2)(4n+ 2κ0 + 2κ1 + j + 3)

(2n+ κ0 + κ1)3

× (j + 1)(2n+ 2κ0 + 1)(2n+ 2κ1 + 1),

B−1(n, j) = −32ω3(κ0 − κ1)
(n+ 1)(2n+ κ0 + κ1 + j + 1)(n+ κ0 + κ1 + 1)

(2n+ κ0 + κ1 + 1)3
.

Omit B−2 if j < 2, B2 if n = 0, B−1 if j = 0.

It is perhaps a surprise that the coefficients A0(n, j) and B0(n, j) are products of linear
factors, in contrast to the even case where the neatest expressions for A0

0, A
1
0, B

0
0 , B

1
0 are partial

fractions. In fact, all of the coefficients in this subsection are products of linear factors, which
is not the case for some of the terms in H0ψ2n+1−j,j .

8 Conclusion

We described an orthogonal basis of wavefunctions in terms of Jacobi and Laguerre polynomials.
Each of the basis elements is of a particular isotype, that is, involved in one of the five irreducible
representations of the group B2. We defined a fourth order differential-difference self-adjoint
operator K which commutes with H but not with the angular momentum J 2. This is an example
of superintegrability. The action of K on the basis elements was found explicitly. It is known [9]
that there are differential operators of degree 2k which demonstrate superintegrability for the
two-parameter I2(2k) (even dihedral group) model. It does not appear straightforward to adapt
the methods of this paper to the larger groups.

A Transformation of the Hamiltonian

This is a short proof of the formula

hκ
(
−∆κ + ω2∥x∥2

)
h−1
κ = −∆+ ω2∥x∥2 +

∑
v∈R+

κv(κv − σv)∥v∥2

⟨x, v⟩2
,
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where hκ(x) :=
∏

v∈R+
|⟨x, v⟩|κv , the W (R)-invariant weight function used in L2

(
RN , h2κdm

)
.

For the Laplacian, we have

hκ∆
(
fh−1

κ

)
−∆f = fhκ∆h

−1
κ + 2hκ

〈
∇f,∇h−1

κ

〉
= f

∑
v∈R+

κv
∥v∥2

⟨x, v⟩2
+ f

N∑
i=1

( ∑
v∈R+

−κvvi
⟨x, v⟩

)2

− 2
∑
v∈R+

κv
⟨∇f, v⟩
⟨x, v⟩

and

N∑
i=1

( ∑
v∈R+

−κvvi
⟨x, v⟩

)2

=
∑

u,v∈R+

κuκv
⟨u, v⟩

⟨x, u⟩⟨x, v⟩
=

∑
v∈R+

κ2v
∥v∥2

⟨x, v⟩2
;

this follows from breaking up the double sum over rotations w = σuσv and the identity σ2u and
applying a lemma [4, Lemma 6.4.6] the w terms vanish. Thus

hκ∆
(
fh−1

κ

)
−∆f = f

∑
v∈R+

κv(κv + 1)
∥v∥2

⟨x, v⟩2
− 2

∑
v∈R+

κv
⟨∇f, v⟩
⟨x, v⟩

.

Also ∑
v∈R+

2κv
hκ

〈
∇
(
fh−1

κ

)
, v
〉
− ⟨∇f, v⟩

⟨x, v⟩
= −2f

∑
u,v∈R+

κuκv
⟨u, v⟩

⟨x, u⟩⟨x, v⟩
= −2f

∑
v∈R+

κ2v
∥v∥2

⟨x, v⟩2
.

The other part of hκ∆κ

(
fh−1

κ

)
contributes −

∑
v∈R+

κv
f−σvf
⟨x,v⟩2 thus

hκ∆κ

(
fh−1

κ

)
−∆f =

∑
v∈R+

κv
∥v∥2

⟨x, v⟩2
{(κv + 1)f − 2κvf − f + σvf}

= −
∑
v∈R+

κv
∥v∥2

⟨x, v⟩2
(κvf − σvf).

This proves the formula.

B Symbolic computation proofs

There is an analog K(x, y) of the exponential function exp⟨x, y⟩ on RN × RN which satisfies

K(x, y) = K(y, x), K(xw, yw) = K(x, y) for all w ∈ W (R) and D(x)
i K(x, y) = yiK(x, y)

(where D(x)
i is the operator Di acting on x, for 1 ≤ i ≤ N). The kernel exists for nonsingular

parameters {κv}, which include the situation κv ≥ 0. Suppose p(x) is a polynomial then by the
product rule

Di(p(x)K(x, y)) =

(
yip(x) +

∂

∂xi
p(x)

)
K(x, y) +

∑
v∈R+

κv
p(x)− p(xσv)

⟨x, v⟩
K(xσv, y)vi.

This formula together with wK(x, y) = K(xw, y) = K
(
x, yw−1

)
show how an element of the

rational Cherednik algebra (an algebra of operators on polynomials generated by
{
D(x)

i , xi : 1 ≤
i ≤ N

}
∪W (R)) acts on a generic sum

∑
w∈W (R) pW (x, y)K(xw, y). It can be shown that if T is

in the rational Cherednik algebra and TK(x, y) = 0, then T = 0 (see Dunkl [3]). For particular
groups and operators, the calculation of TK(x, y) can be implemented in computer algebra.
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The function K is an undefined function with argument ⟨x, y⟩
(
or

〈
x, yw−1

〉)
. To compute

D(x)
i K(xw, y) = D(x)

i K
(
x, yw−1

)
=

(
yw−1

)
i
K(xw, y) one applies ∂

∂xi
to

〈
x, yw−1

〉
, a straight-

forward calculation.
In the B2 application with complex coordinates z = x1 + ix2, u = y1 + iy2, the inner product

is ⟨x, y⟩ = 1
2(zu+ zu). As examples,

TK

(
1

2
(zu+ zu)

)
=

1

2
uK

(
1

2
(zu+ zu)

)
,

T

{(
z2 − z2

)
K

(
1

2
(zu+ zu)

)}
=

{
1

2

(
z2 − z2

)
u+ 2z

}
K

(
1

2
(zu+ zu)

)
+ 2κ0(z − z)K

(
−1

2
(zu+ zu)

)
+ 2κ0(z + z)K

(
1

2
(zu+ zu)

)
,

and

K

(
−1

2
(zu+ zu)

)
= σ2K

(
1

2
(zu+ zu)

)
, K

(
1

2
(zu+ zu)

)
= σ0K

(
1

2
(zu+ zu)

)
.

This method is used to prove Theorem 5.6.
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