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1 Introduction

Several recent works (e.g., [2, 3, 12, 13, 14]), motivated by mathematical physics and probability,
have used explicit central elements of various quantum groups. For the applications in those
paper, the central elements need to be explicitly written in terms of the generators of the
quantum group. In particular, in a probabilistic perspective, the probabilities are required to
be non-negative, which requires explicit expressions for the central elements for calculations.
Furthermore, in an asymptotic analysis, the analysis tools also require explicit expressions for
the central elements.

The explicit generators of the center of Uq(gl(N + 1)) was first constructed for generic q in [7]
without proof (see [1]). Previous work of [24] applies Drinfeld’s central element construction [6] to
universal R-matrices in order to construct central elements of quantum groups and to determine
their eigenvalues on irreducible highest weight modules.

Jimbo in [9] provided a method to construct a polynomial z(x) =
∑N+1

i=0 zix
i in variable x

such that all zi’s are central. Tanisaki in [21] proved that all these zi’s generate the whole centre
by quantized Harish-Chandra isomorphism. However, the expression of zi’s in [9] are not explicit
enough for applications cited in the first paragraph.

By using Jimbo’s [9] formula for the R-matrix of Uq(gl(N + 1)), further work by the same
authors [8] explicitly writes a quantum Casimir element of Uq(gl(N + 1)) with a formula for its
eigenvalues. Using an explicit formula for the universal R-matrix in [11], the authors [23] write
an explicit (but somewhat complicated) expression for general Casimir elements in quantum
groups.

In this paper, we apply Drinfeld’s central element construction to the fused R-matrices of
Uq(gl(N + 1)) in [9], rather than the universal R-matrices of [11]. The resulting central elements
appear to be slightly simpler than the previous expressions. The proof requires some new ingre-
dients, notably relations between the root vectors [10, 18, 22] and some elementary knowledge
of coset representatives of symmetric groups.

We also note the work in [16], which shows that the Casimir elements (and a trivial central
element) generate the entire center of Uq(gl(N + 1)), although this had been known as early
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as [20]. Additionally, the paper [17] explicitly writes two algebraically independent central
elements in Uq(gl(N + 1)). Recently, Dai [5] provided the explicit generators of the center of all
(simply-connected) quantum groups of finite type by following [24]. In principle, it should be
possible to match those central elements to the ones here, but we do not pursue this direction
here.

2 Notations and backgrounds

2.1 Symmetric groups

Recall that the symmetric group is the Weyl group of the special linear group. Define the
usual action of the symmetric group Sm on Nm by σ(x1, . . . , xm) = (xσ(1), . . . , xσ(m)). For any
A ∈ Nm, define HA ≤ Sm to be the subgroup {σ ∈ Sm : σ(A) = A}. Let DA ⊂ Sm be the set
of (left) coset representatives of HA with the fewest inversions: in other words, σ ∈ DA if and
only if inv(σ) ≤ inv(τ) for every τ ∈ σHA. Here, inv is the length function defined as the fewest
number of simple reflections constituting the Weyl group element.

Example 2.1. Take A = (3, 3, 3, 2, 2, 1). Then HA = S3 × S2 × S1 ≤ S6. We have (34) ∈ DA

with (34)·A = (3, 3, 2, 3, 2, 1), and (35) ∈ DA with (35)·A = (3, 3, 2, 2, 3, 1). However, (134)·A =
(34) ·A and inv((134)) > inv((34)), so (134) /∈ DA.

We recall (see, e.g., [4]) that each coset of HA has a unique representative σ ∈ DA, and that
inv(στ) = inv(σ) + inv(τ) for every τ ∈ HA.

Lemma 2.2. Suppose that τ, τ ′ ∈ DA. Then there exist a sequence of elements τ0, . . . , τl ∈ DA

such that τ0 = τ ′, τl = τ and every τj+1τ
−1
j is a transposition for j = 0, . . . , l − 1.

Proof. It suffices to prove this statement when either τ or τ ′ is the identity permutation e,
because the two sequences can be concatenated. So suppose that τ is an arbitrary element
of DA and τ ′ = e. Let sk . . . s1 be a minimal word representation of τ and set τj = sj . . . s1.
Then τj+1τ

−1
j = sj+1, which is a transposition. So it remains to show that τj ∈ DA. If it were

not, then there would exist a transposition s ∈ HA such that inv(τjs) = inv(τj) − 1. But then
inv(τs) = inv(τ)− 1, contradicting the assumption that τ ∈ DA.

Now suppose that τ = e and τ ′ is an arbitrary element of DA. By the previous paragraph,
there exist a sequence of elements τ̃0 = e, τ̃1, . . . , τ̃l = τ ′ in DA such that every τ̃j+1τ̃

−1
j is

a transposition. Setting τj = τ̃l−j , we have that τ0 = τ ′, . . . , τl = e is a sequence of elements
in DA and τl−j−1τ

−1
l−j is a transposition for every j. The latter equality is equivalent to the

condition that for every k, τk = sτk+1 for some transposition s. Since this is also equivalent to
the condition that τk+1τ

−1
k is a transposition for every k, this finishes the proof. ■

Let B(N)
m denote the set of sequences µ = (µ0, . . . , µN ) of non-negative integers such that

µ0 + · · ·+ µN = m. For any µ ∈ B(N)
m , let Hµ ≤ Sm denote the subgroup Sµ0 × · · · × SµN , and

likewise let Dµ denote the set of left coset representatives with the fewest inversions. Define Bm

to be the union
⋃

N≥1 B
(N)
m .

Let Wm ⊂ Nm denote the subset of elements (i1, . . . , im) satisfying i1 ≤ · · · ≤ im. For

i ∈ Wm, and assuming that N ≥ im, let µ(N)(i) ∈ B(N)
m be defined by

µ(N)(i)k = |{l ∈ {1, . . . ,m} : il = k}|.

For i ∈ Wm satisfying im ≤ N , we have a natural isomorphism between the subgroups Hi and
Hµ(N)(i). Thus there is also a natural bijection between Di and Dµ(N)(i).
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Given i ∈ Wm, define the equivalence relation ∼i on Sm by

τ ∼i σ if and only if σ−1τ ∈ Hi.

In words, τ ∼i σ if and only if they are in the same left coset of Hi. For any τ ∈ Sm, there is
a unique σ ∈ Di such that τ ∼i σ. Define di(τ) = inv

(
σ−1τ

)
. In other words, if τ is written

uniquely as τ = σξ for σ ∈ Di and ξ ∈ Hi, then di(τ) = inv(ξ). We will also let σi(τ) and ξi(τ)
denote the two permutations in the unique expression τ = σξ.

Finally, given τ ∈ Sm, let τ̄ denote the reversed permutation τ̄(k) = τ(m+ 1− k).
We conclude this section by noting the following identity.

Lemma 2.3. For i ∈ Wm, set µ = µ(N)(i). Then

−Nµ0 − (N − 2)µ1 + · · ·+NµN = −Nm+ 2(i1 + · · ·+ im).

Proof. By definition,

µk = |l ∈ {1, . . . ,m} : il = k|.

We thus rewrite

−Nµ0 − (N − 2)µ1 + · · ·+NµN = −N(µ0 + · · ·+ µN ) + 2µ1 + 4µ2 + · · ·+ 2NµN

= −Nm+ 2µ1 + 4µ2 + · · ·+ 2NµN

and note that

2(i1 + · · ·+ im) = 2

N∑
k=1

k · |l ∈ {1, . . . ,m} : il = k| = 2

N∑
k=1

k · µk,

which shows the identity. ■

2.2 Quantum groups

We use the following notation modified from [9]. Define Uq(sl(N + 1)) to be the associative
algebra over C generated by the symbols q±hi/2, ê±,i, 1 ≤ i ≤ N , under the following relations:

qhi/2 · q−hi/2 = q−hi/2 · qhi/2 = 1, qhi/2 · qhi′/2 = qhi′/2 · qhi/2,

qhi/2ê±,i′q
−hi/2 = q±aii′/2ê±,i′ ,

[ê+,i, ê−,i′ ] = δi,i′
qhi − q−hi

q − q−1
,

ê±,iê±,i′ = ê±,i′ ê±,i, |i− i′| ≥ 2,

ê2±,iê±,i±1 −
(
q + q−1

)
ê±,iê±,i±1ê±,i + ê±,i±1ê

2
±,i = 0, 1 ≤ i, i± 1 ≤ N.

Here, (ai,i′)1≤i,i′≤N denotes the Cartan matrix of type AN , i.e.,

aii′ =


2, i = i′,

−1, i = i′ ± 1,

0, otherwise.

Then define Uq(gl(N +1)) by adjoining to Uq(sl(N +1)) the elements q±ϵi/2, 0 ≤ i ≤ N , so that
qhi = qϵi−1−ϵi and that qϵ0+···+ϵN belongs to the center.



4 J. Kuan and K. Zhang

The m-fold co-product is the algebra homomorphism

∆(m) : Uq(gl(N + 1)) → Uq(gl(N + 1))⊗ · · · ⊗ Uq(gl(N + 1))︸ ︷︷ ︸
m

such that

∆(m)
(
q±ϵi/2

)
= q±ϵi/2 ⊗ · · · ⊗ q±ϵi/2, ∆(m)(ê±,i) =

m∑
v=1

ê
(v)
±,i, (2.1)

where

ê
(v)
±,i = qhi/2 ⊗ · · · ⊗ qhi/2︸ ︷︷ ︸

v−1

⊗ê±,i ⊗ q−hi/2 ⊗ · · · ⊗ q−hi/2︸ ︷︷ ︸
m−v

.

We also have the reversed co-product

∆̄(m)
(
q±ϵi/2

)
= q±ϵi/2 ⊗ · · · ⊗ q±ϵi/2,

∆̄(m)(ê±,i) =
m∑
v=1

q−hi/2 ⊗ · · · ⊗ q−hi/2︸ ︷︷ ︸
v−1

⊗ê±,i ⊗ qhi/2 ⊗ · · · ⊗ qhi/2.

We write ∆, ∆̄ for ∆(2), ∆̄(2). The map ∆ endows Uq(gl(N + 1)) with a structure of a bi-algebra.
It is also a Hopf algebra, but we will not need the counit and antipode.

Consider the following relations for R:

R∆(u) = ∆̄(u)R ∀u ∈ Uq(gl(N + 1)). (2.2)

This admits a unique (up to a multiplicative constant) solution R ∈ End(V ⊗ V ), where V :=
CN+1 is the defining representation of Uq(gl(N + 1)).

Let us consider (2.2) in Uq(gl(N + 1))⊗ End
(
CN+1

)
. Then a family of solutions is given by

(see [9]) R(x) =
∑

0≤i,j≤N Ê′
ij(x)⊗ eji, where

Ê′
ij(x) =

{(
xq(ϵi+ϵj−1)/2

)∓1
E′

ij , i ≶ j,(
xqϵi − x−1q−ϵi

)
/
(
q − q−1

)
, i = j.

For this paper, only the value at x = 1 will be used in the proofs, but for completeness Jimbo’s
result is stated in its full generality. Here, E′

ij are the root vectors defined recursively by

E′
ij = E′

ikE
′
kj − q±1E′

kjE
′
ik, i ≶ k ≶ j, E′

i−1,i = ê+,i, E′
i,i−1 = ê−,i

and eji is the usual matrix which acts on the canonical basis {I0, . . . , IN} of CN+1 by

ejiIk = δikIj .

In [8], the authors define

Êij =

{
q(Eii+Ejj−1)/2Eij , i ̸= j,

qEii/
(
q − q−1

)
, i = j,

where the modified root vectors are

Eij = EikEkj − q−1EkjEik, i ≶ k ≶ j, E′
i−1,i = ê+,i, E′

i,i−1 = ê−,i.
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Using Jimbo’s results, they show that

R =
∑

N≥i≥j≥0

Êij ⊗ eji ∈ Uq(gl(N + 1))⊗ End(V ),

RT =
∑

N≥i≥j≥0

Êji ⊗ eij ∈ Uq(gl(N + 1))⊗ End(V )

satisfy

R∆(u) = ∆̄(u)R, RT ∆̄(u) = ∆(u)RT .

We can solve (2.2) even more generally. Consider the m-fold tensor of the defining representa-
tion V ⊗m, and let PmV ⊗m be the symmetric projection. In other words, PmV ⊗m is isomorphic
to the module of highest weight mν, where ν is the highest weight of V .

Then the solution of (2.2) in Uq(gl(N + 1))⊗End(PmV ⊗m) is given by the fused R-matrix [9]

R0,{1,2,...,m}(x) = R0m(x)R0m−1(xq) · · ·R01

(
xqm−1

)
Pm ∈ Uq(gl(N + 1))⊗ End

(
PmV ⊗m

)
.

Therefore, the fused R-matrices

R0,{1,2,...,m} = R0mR0m−1 · · ·R01Pm ∈ Uq(glN+1)⊗ End
(
PmV ⊗m

)
,

RT
0,{1,2,...,m} = RT

0mRT
0m−1 · · ·RT

01Pm ∈ Uq(glN+1)⊗ End
(
PmV ⊗m

)
satisfy

R0,{1,2,...,m}∆(u) = ∆̄(u)R0,{1,2,...,m}, RT
0,{1,2,...,m}∆̄(u) = ∆(u)RT

0,{1,2,...,m} (2.3)

in Uq(gl(N + 1))⊗ End(PmV ⊗m) for all u ∈ Uq(gl(N + 1)).
Therefore,

Γm := RT
0,{1,2,...,m}R0,{1,2,...,m} ∈ Uq(gl(N + 1))⊗ End

(
PmV ⊗m

)
commutes with ∆(u) for all u ∈ Uq(gl(N + 1)). By Drinfeld’s central element construction [6],
the element

Cm = id⊗ trq(Γm)

is central in Uq(gl(N + 1)), where the quantum trace trq of an operator A is defined by

trq(A) = tr
(
q−2hρA

)
:= tr

(
q−Nϵ0−(N−2)ϵ1−···+NϵNA

)
.

We also have the following relations between the root vectors:1 For i < l and j < k,

EilEjk =


EjkEil, i < j < k < l or i < l < j < k,

q−1EjkEil, i = j < k < l,

qEjkEil, i < j < k = l,

EjkEil +
(
q − q−1

)
EjlEik, i < j < l < k,

(2.4)

EliEkj =


EkjEli, i < j < k < l or i < l < j < k,

qEkjEli, i = j < k < l,

q−1EkjEli, i < j < k = l,

EkjEli −
(
q − q−1

)
EljEki, i < j < l < k.

(2.5)

1Similar relations can be found in the paper [22], but there appear to be some typos. They can also be derived
from (2.3) by applying id⊗B to both sides, for suitable linear maps B on End

(
P2V

⊗2
)
. One can also check that

the relations hold in the explicit representations in Remark 3.4 below.
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By the first and fourth lines above,

ÊilÊjk + q−1ÊikÊjl = ÊjkÊil + qÊjlÊik, (2.6)

ÊliÊkj + qÊkiÊlj = ÊkjÊli + q−1ÊljÊki. (2.7)

For any i and j in Nm, define

Ê±
ij :=

{
Êi1j1 · · · Êimjm , ±(i1 − j1), . . . ,±(im − jm) ≥ 0,

0, else.

and let eji := ej1i1 ⊗ · · · ⊗ ejmim . For i, j ∈ Wm, define

Ẽ±
ij =

∑
ζ∈Di

q±(inv(τ)−inv(ζ))Ê±
ζ̄(i)τ̄(j)

,

where τ is an arbitrary element of Dj. Note that the notation does not depend on τ , which is
justified by the following lemma and the relation inv(τ̄) = (m− 1)m/2− inv(τ).

Lemma 2.4.

1. For every τ, τ ′ ∈ DA, the following identity holds:∑
σ∈DB

q∓(inv(σ)−inv(τ))Ê±
τ(A)σ(B) =

∑
σ∈DB

q∓(inv(σ)−inv(τ ′))Ê±
τ ′(A)σ(B).

2. Likewise, for every σ, σ′ ∈ DB,∑
τ∈DA

q∓(inv(τ)−inv(σ))Ê±
τ(A)σ(B) =

∑
τ∈DA

q∓(inv(τ)−inv(σ′))Ê±
τ(A)σ′(B).

Proof. For m = 2, both cases are equivalent to the relations in (2.4) and (2.5).
Now suppose that m > 2. We only prove part 1, as part 2 is similar. By Lemma 2.2, it

suffices to consider the case when τ ′ = sτ where s is a transposition, and assume without loss

of generality that inv(τ ′) = inv(τ) + 1. Define the two sets D
(1)
B and D

(2)
B by

D
(1)
B = {σ ∈ DB : sσ(B) = B}, D

(2)
B = {σ ∈ DB : sσ(B) ̸= B}.

First, note that by the second and third lines of (2.4),∑
σ∈D(1)

B

qinv(σ)−inv(τ)Ê−
τ(A)σ(B) =

∑
σ∈D(1)

B

qinv(σ)−inv(sτ)Ê−
sτ(A)σ(B).

Partition the set D
(2)
B into two sets D− and D+ of equal cardinality, where σ ∈ D− if and only

if inv(σ) < inv(sσ). Then∑
σ∈D(2)

B

qinv(σ)−inv(τ)Ê−
τ(A)σ(B) =

∑
σ∈D−

(
qinv(σ)−inv(τ)Ê−

τ(A)σ(B) + qinv(σ)+1−inv(τ)Ê−
τ(A)sσ(B)

)
(2.6)
=

∑
σ∈D−

(
qinv(σ)+1−inv(τ ′)Ê−

sτ(A)sσ(B) + qinv(σ)−1−inv(τ)Ê−
sτ(A)σ(B)

)
=

∑
σ∈D−

(
qinv(σ)+1−inv(τ ′)Ê−

τ ′(A)sσ(B) + qinv(σ)−inv(τ ′)Ê−
τ ′(A)σ(B)

)
=

∑
σ∈D(2)

B

qinv(σ)−inv(τ ′)Ê−
τ ′(A)σ(B),

as needed. The proof for E+ is similar, where one uses (2.7) instead of (2.6). ■
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Example 2.5. Consider m = 2 and N = 3. Set j = (0, 1) and i = (2, 3). Then

Ẽ−
ji = Ê13Ê02 + qÊ03Ê12 = q−1

(
Ê12Ê03 + qÊ02Ê13

)
,

with the equality following from (2.6). Additionally,

Ẽ+
ij = Ê31Ê20 + q−1Ê21Ê30 = q

(
Ê30Ê21 + q−1Ê20Ê31

)
,

with the equality following from (2.7).

3 Statements and proofs

The main theorem is the following expression for central elements of Uq(gl(N + 1)).

Theorem 3.1. The element given by

Cm =
∑

i,j∈Wm

q2i1+···+2im−NmẼ−
ji Ẽ

+
ij

is central in Uq(gl(N + 1)).

Example 3.2. Consider m = 1. Then

C1 =
(
q − q−1

)−2
N∑
i=0

q2i−Nq2ϵi +
∑

0≤j<i≤N

q2i−N−1q2ϵi+2ϵjEjiEij ,

which is (up to a constant) the central element C from [8].

Example 3.3. Consider m = 2 and N = 3. Then

C2 =
∑

0≤j≤i≤3

q−6q4iÊ2
jiÊ

2
ij

+
∑

0≤j≤i1<i2≤3

q−6+2i1+2i2Êji1Êji2

(
Êi2jÊi1j + q−1Êi1jÊi2j

)
+

∑
0≤j1<j2≤i≤3

q−6+4i
(
Êj1iÊj2i + q−1Êj2iÊj1i

)
Êij2Êij1

+
∑

0≤j1≤i1<j2≤i2≤3

q−6+2i1+2i2Êj1i1Êj2i2Êi2j2Êi1j1

+
∑

0≤j1<j2≤i1<i2≤3

q−6+2i1+2i2
(
Êj1i1Êj2i2 + q−1Êjii2Êj2i1

)(
Êi2j2Êi1j1 + q−1Êi2j1Êi1j2

)
.

The central element C2 has 50 terms, consisting of 10 terms from 0 ≤ j ≤ i ≤ 3, 20 terms
from 0 ≤ j1 < j2 ≤ i ≤ 3 and 0 ≤ j ≤ i1 < i2 ≤ 3, 15 terms coming from 0 ≤ j1 ≤ i1 <
j2 ≤ i2 ≤ 3 and 5 terms coming from 0 ≤ j1 < j2 ≤ i1 < i2 ≤ 3. One can also verify that 50
is the correct number of terms, from the fact that |W2| = 10 and the set {{i, j} : i, j ∈ W2}
has 55 = 10(10 + 1)/2 elements, but the term Ẽ±

ji is zero when {i, j} is one of the 5 sets
{(0, 2), (1, 1)}, {(0, 3), (2, 2)}, {(0, 3), (1, 1)}, {(1, 3), (2, 2)}, {(1, 2), (0, 3)}.

The representation P2C4 of Uq(gl(N + 1)) is 10-dimensional, which can be explicitly written
using Example 3.7 below. By multiplying 10 × 10 matrices, one can check that C2 acts as
const · Id10, where the constant is

(
q+ q−1

)−4
q−6

(
1+ q2 +2q4 + q6 + q8 + q10 + q12 + q14 + q20

)
.
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Remark 3.4. In [23], the central element CΛ0 is defined, where Λ0 is the highest weight of
a finite-dimensional irreducible module V (Λ0). The construction there is similar to the one
here, with the major difference being the use of explicit universal R-matrices in place of fused
R-matrices. Although it is not necessarily simple to check directly that Cm equals (up to
a constant) CΛ0 for V (Λ0) = PmV ⊗m, it is straightforward to check that their eigenvalues are
the same.

If V (Λ0) has distinct weights λ1, . . . , λr with multiplicities d1, . . . , dr, then the eigenvalue
of CΛ0 on an irreducible module with highest weight Λ is given by

r∑
k=1

dkq
2(Λ+ρ,λk).

Here, ρ is half the sum of the positive roots, and (·, ·) is the usual invariant bilinear form on h∗.

Now take Λ0 to be the highest weight of PmV ⊗m; then the distinct weights are elements of B(N)
m

with multiplicity 1. Therefore the eigenvalue is∑
µ∈B(N)

m

q(2ρ,µ)q2(Λ,µ).

If Cm acts on the same module V (Λ), then its eigenvalue can be found by evaluating on the
lowest weight vector, because then only the diagonal terms (i = j) have a nonzero contribution.
So the eigenvalue is(

q − q−1
)−2m

q−Nm
∑

i∈Wm

q2i1+···+2imq(2µ
(N)(i),Λ).

By Lemma 2.3, this is
(
q − q−1

)−2m
q−Nm times the eigenvalue of CΛ0 .

Remark 3.5. The value of the central character on Cm can be found using [19, Corollary A.2].
Their result implies that

χλ(Cm) = Tr
(
πWm

(
q2(hλ+hρ)

))
,

where Wm is the mth symmetric tensor power of the defining module. Since Wm has weights

indexed by B(N)
m , the right-hand side is

∑
ν∈B(N)

m

N∏
i=0

q(2λi+N−2i)νi .

3.1 Basis for PmV ⊗m

Before proving Theorem 3.1, we will write a basis for the symmetric projection PmV ⊗m.
Let I0, . . . , IN be the canonical basis of V , and define the action on V by

ê+,iIj = δijIj−1, ê−,iIj−1 = δijIj , q±ϵi/2Ij = q±δij/2Ij . (3.1)

For µ ∈ B(N)
m , define the vector

v(µ) = I⊗µ0
0 ⊗ · · · ⊗ I⊗µN

N

Define

M(µ) =
∑
σ∈Dµ

q− inv(σ)σ(v(µ)).
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Here, as before, Sm acts on V ⊗m by permuting the order. By an abuse of notation, for i ∈ Wm

we define

v(i) = v
(
µ(N)(i)

)
, M(i) = M

(
µ(N)(i)

)
,

where N ≥ im. Note that these definitions do not depend on the value of N . We briefly note
the identity

e
σ(a)
±,i (σ(v(µ))) = σ

(
e
(a)
±,i(v(µ))

)
for all σ ∈ Sm. (3.2)

We now show that the set {M(µ)}
µ∈B(N)

m
gives a basis for PmV ⊗m. A more general statement

appeared in [14] with a more complicated proof, but the expression here is more convenient for
calculations.

Theorem 3.6. The set {M(µ)}
µ∈B(N)

m
gives a basis for PmV ⊗m.

Proof. Note that
∣∣B(N)

m

∣∣ = dimPmV ⊗m and {M(µ)}
µ∈B(N)

m
is a linearly independent set, so it

suffices to show that M(µ) ∈ PmV ⊗m for all µ ∈ B(N)
m . To show that every M(µ) is in PmV ⊗m,

it suffices to show that

∆(m)(ê−,i)(M(µ)) = q
1
2
(µi−1+µi−1)

(
1 + q−2 + q−4 + · · ·+ q−2µi

)
·M

(
µ− î

)
, (3.3)

where î = (0, . . . , 0, 1,−1, 0, . . . , 0) with the −1 occurring in the ith position. By (2.1) and (3.1),
∆(m)(ê−,i)(M(µ)) is in the span of {τ(v(µ − î))}τ∈Sm . Let A(τ) be the coefficients in the
expansion

∆(m)(ê−,i)(M(µ)) =
∑

τ∈Dµ−î

A(τ)τ
(
v
(
µ− î

))
.

It suffices to show that A(τ) = q
1
2
(µi−1+µi−1)

(
1+q−2+q−4+ · · ·+q−2µi

)
q− inv(τ) for all τ ∈ Dµ−î.

In fact, we show something stronger: for all τ ∈ Dµ−î, there exist elements σ(0), . . . , σ(µi) ∈ Dµ

such that for 0 ≤ j ≤ µi,

ê
(aj)
−,i

(
q− inv(σ(j))σ(j)(v(µ))

)
= q

1
2
(µi−1+µi−1)q−2jq− inv(τ)τ

(
v
(
µ− î

))
.

We will proceed by induction on the value of inv(τ), using Lemma 2.2. The base case is
when τ is the identity permutation. Then it is straightforward to check that

σ(j) = (µ[0,i−1] µ[0,i−1] + 1 . . . µ[0,i−1] + j),

where µ[0,i−1] = µ0 + · · ·+ µi−1, satisfies the necessary conditions.

Now fix τ ∈ Dµ−î, and suppose that the induction hypothesis holds for τ . Suppose that
τ̃ ∈ Dµ−î satisfies τ̃ = sτ for some transposition s, and assume without loss of generality that
inv(τ̃) = inv(τ) + 1. Define

σ̃(j) =

{
sσ(j), if sσ(j) ∈ Dµ,

σ(j), else.

We now aim to prove that

ê
(s(aj))
−,i

(
q− inv(σ̃(j))σ̃(j)(v(µ))

)
= q

1
2
(µi−1+µi−1)q−2jq− inv(τ̃)τ̃

(
v
(
µ− î

))
. (3.4)
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If σ̃(j) = sσ(j), then (3.4) follows from (3.2) and the induction hypothesis. Now assume that
σ̃(j) = σ(j). Then s = (aj − 1 aj) and

σ̃(j)(v(µ)) = I∗ ⊗ · · · ⊗ I∗︸ ︷︷ ︸
aj−2

⊗Ii−1 ⊗ Ii−1 ⊗ I∗ ⊗ · · · ⊗ I∗︸ ︷︷ ︸
m−aj

.

Using that

P
((
êi,− ⊗ q−hi/2

)
(Ii−1 ⊗ Ii−1)

)
= q−1

(
qhi/2 ⊗ êi,−

)
(Ii−1 ⊗ Ii−1),

where P (x⊗ y) = y ⊗ x is the permutation operator, we have that

ê
(s(aj))
−,i

(
q− inv(σ̃(j))σ̃(j)(v(µ))

)
= q−1ê

(aj)
−,i

(
q− inv(σ(j))σ(j)(v(µ))

)
.

And now (3.4) follows from the induction hypothesis. ■

Remark 3.7. For all µ ∈ B(N)
m , let M̃(µ) = c(µ)M(µ) where c(µ) is defined inductively by

c(m, 0, . . . , 0) = 1,
c(µ− i)

c(µ)
=

q
µi−1+µi+1

2

(
1− q−2µi

)
qµi+1 − q−µi−1

,

then equation (3.3) is equivalent to

∆(m)(ê−,i)M̃(µ) =
qµi+1 − q−µi−1

q − q−1
M̃

(
µ− î

)
.

In fact, one can show that

∆(m)(ê+,i)M̃(µ) =
qµi−1+1 − q−µi−1−1

q − q−1
M̃

(
µ+ î

)
,

∆(m)(ê−,i)M̃(µ) =
qµi+1 − q−µi−1

q − q−1
M̃

(
µ− î

)
,

∆(m)
(
q±hi/2

)
M̃(µ) = q±

1
2
(µi−1−µi)M̃(µ)

defines a representation on PmV ⊗m. This is equivalent to the representation in [15, equation (3)]
and [14, Lemma 3.1].

Corollary 3.8. Let i, j ∈ Wm. For any τ, σ ∈ Di and any ζ ∈ Dj,(
qinv(τ)eζ(j)τ(i) − qinv(σ)eζ(j)σ(i)

)∣∣
P+
mV ⊗m = 0.

Furthermore,( ∑
τ∈Dj

q−di(τ)eτ(j)τ(i)

)
M(i) = M(j).

Proof. For any µ ∈ B(N)
m not equal to µ(i), it is straightforward that(

qinv(τ)eζ(j)τ(i) − qinv(σ)eζ(j)σ(i)
)
M(µ) = 0− 0 = 0.

On the other hand,(
qinv(τ)eζ(j)τ(i) − qinv(σ)eζ(j)σ(i)

)
M(µ(i))

= qinv(τ)eζ(j)τ(i)
(
q− inv(τ)τ(v(µ(i)))

)
− qinv(σ)eζ(j)σ(i)

(
q− inv(σ)σ(v(σ(i)))

)
= ζ(v(µ(j)))− ζ(v(µ(j))) = 0.
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For the second statement, we use that

eτ(j)τ(i)σ(v(i)) =

{
τ(v(j)), τ ∼i σ,

0, else.

in order to show( ∑
τ∈Dj

q−di(τ)eτ(j)τ(i)

) ∑
σ∈Di

q− inv(σ)σ(v(i)) =
∑

τ∈Dj,σ∈Di
τ∼iσ

q−di(τ)+inv(σ)eτ(j)τ(i)σ(v(i))

=
∑
τ∈Dj

q− inv(τ)τ(v(j)). ■

Example 3.9. Some examples are(
e21 ⊗ e31 + q−1e31 ⊗ e21

)
M(1,1) = M(2,3),

(e31 ⊗ e32)M(1,2) = M(3,3),

(e31 ⊗ e42 + e42 ⊗ e31)M(1,2) = M(3,4).

With Corollary 3.8 as motivation, define for any i, j ∈ Wm,

ẽji =
∑
τ∈Dj

q−di(τ)eτ(j)τ(i).

3.2 Proof of Theorem 3.1

We will now prove Theorem 3.1. Begin by rewriting R0,{1,...,m}. By definition,

R0,{1,...,m} = R0mR0m−1 · · ·R01

=

( ∑
im≥jm

Êimjm ⊗ id⊗m−1⊗ejmim

)
· · ·

( ∑
i1≥j1

Êi1j1 ⊗ ej1i1 ⊗ id⊗m−1

)
=

∑
im≥jm

· · ·
∑
i1≥j1

Êimjm · · · Êi1j1 ⊗ ej1i1 ⊗ · · · ⊗ ejmim

=
∑

i,j∈Wm

∑
ζ∈Di,τ∈Dj

Ê+
ζ̄(i)τ̄(j)

⊗ eτ(j)ζ(i).

From here, the goal is to write this expression as an element of Uq(gl(N + 1))⊗End
(
Pm

(
V ⊗m

))
.

By Corollary 3.8,

R0,{1,...,m} =
∑

i,j∈Wm

∑
ζ∈Di,τ∈Dj

qinv(σi(τ))−inv(ζ)Ê+
ζ̄(i)τ̄(j)

⊗ eτ(j)σi(τ)(i).

By definition, τ = σi(τ)ξi(τ) and di(τ) = inv(ξi(τ)), so therefore

R0,{1,...,m} =
∑

i,j∈Wm

∑
ζ∈Di,τ∈Dj

qinv(τ)−di(τ)−inv(ζ)Ê+
ζ̄(i)τ̄(j)

⊗ eτ(j)τ(i).

By Lemma 2.4 and the identity inv(τ̄) = m(m− 1)/2− inv(τ),∑
ζ∈Di

qinv(τ)−inv(ζ)Êζ̄(i)τ̄(j)
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does not depend on τ . Therefore, the R-matrix factors as

R0,{1,...,m} =
∑

i,j∈Wm

( ∑
ζ∈Di

qinv(τ)−inv(ζ)Ê+
ζ̄(i)τ̄(j)

)
⊗

( ∑
τ∈Dj

q−di(τ)eτ(j)τ(i)

)
=

∑
i,j∈Wm

Ẽ+
ij ⊗ eji.

A similar argument shows that

RT
0,{1,...,m} =

∑
i,j∈Wm

Ẽ−
ji ⊗ eij.

Therefore,

Γm = RT
0,{1,...,m}R0,{1,...,m} =

∑
i,j∈Wm

∑
i′,j′∈Wm

Ẽ−
ji Ẽ

+
i′j′ ⊗ eijej′i′ .

By Corollary 3.8,

Cm = (id⊗ trq)(Γm) =
∑

i,j∈Wm

Ẽ−
ji Ẽ

+
ij ⊗ trq(eijeji).

It just remains to calculate the quantum trace. It is given by

trq(eijeji) = trq(eii) = tr
(
q−NE00−(N−2)E11+···+NENN eii

)
= q−Nµ0−(N−2)µ1+···+NµN ,

where µ = µ(N)(i). Applying Lemma 2.3 finishes the proof.
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algèbre de Lie simple, C. R. Acad. Sci. Paris Sér. I Math. 305 (1987), 587–590.

[21] Tanisaki T., Killing forms, Harish-Chandra isomorphisms, and universal R-matrices for quantum algebras,
Internat. J. Modern Phys. A 7 (1992), supp. 01b, 941–961.

[22] Xi N.H., Root vectors in quantum groups, Comment. Math. Helv. 69 (1994), 612–639.

[23] Zhang R.B., Gould M.D., Bracken A.J., Generalized Gel’fand invariants of quantum groups, J. Phys. A 24
(1991), 937–943.

[24] Zhang R.B., Gould M.D., Bracken A.J., Quantum group invariants and link polynomials, Comm. Math.
Phys. 137 (1991), 13–27.

https://doi.org/10.1007/BF00400222
https://doi.org/10.1007/BF02102819
https://doi.org/10.1007/BF02097710
https://doi.org/10.1007/BF02097710
https://arxiv.org/abs/1601.04402
https://doi.org/10.1088/1751-8113/49/11/115002
https://arxiv.org/abs/1504.07173
https://doi.org/10.1093/imrn/rnx034
https://arxiv.org/abs/1605.00691
https://doi.org/10.1016/j.nuclphysb.2016.09.016
https://arxiv.org/abs/1604.08304
https://doi.org/10.1088/1751-8113/43/34/345202
https://arxiv.org/abs/1003.3729
https://doi.org/10.1007/s11425-017-9119-0
https://doi.org/10.2307/1990961
https://doi.org/10.1007/s00220-007-0222-6
https://arxiv.org/abs/math.QA/0412538
https://doi.org/10.1142/s0217751x92004117
https://doi.org/10.1007/BF02564506
https://dx.doi.org/10.1088/0305-4470/24/5/009
https://doi.org/10.1007/BF02099115
https://doi.org/10.1007/BF02099115

	1 Introduction
	2 Notations and backgrounds
	2.1 Symmetric groups
	2.2 Quantum groups

	3 Statements and proofs
	3.1 Basis for P_mV{̂otimes m}
	3.2 Proof of Theorem 3.1

	References

