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1 Introduction

Several deformations of boson, fermion and full Fock spaces and Brownian motion have been
proposed so far. Bożejko and Speicher used the Coxeter groups of type A (= the symmetric
group) to construct a q-deformed Fock space and a q-deformed Brownian motion [12] (= Fock
space of type A). Bożejko, Ejsmont and Hasebe followed this idea in [10] and constructed an
(α, q)-Fock space using the Coxeter groups of type B. We give an alternative construction to [10]
of a generalized Gaussian process related to the Coxeter groups of type B. Our motivation is
inspired by the following reasoning. If we start the construction of a deformed probability space
by using some symmetrization operator (with a given statistic on the set of permutations), then
we obtain that the joint moments of a Gaussian operator may be expressed by the analogue of
statistic on the set of pair partitions. We explain this by the examples.

First of all, we focus on the work by Bożejko and Speicher about q-Gaussian process [12] on
the q-deformed Fock space Fq(H) := (CΩ)⊕

⊕∞
n=1H

⊗n, where −1 ≤ q ≤ 1, and Ω denotes the
vacuum vector and H is the complexification of some real separable Hilbert space HR. On this
space the authors introduced a deformed inner product, using the following symmetrization:∑

σ∈S(n)

qinv(σ)σ,

where S(n) is the set of all the permutations of {1, n, . . . , n} (the Coxeter groups of type A) and
inv(σ) := card{(i, j) : i < j, σ(i) > σ(j)} is the number of inversions of σ ∈ S(n). On this space
we define a creation a∗q(x) and its adjoint, i.e., an annihilation operator aq(x), and a Gaussian
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operator Gq(x) := a∗q(x) + aq(x). The key point of q-Gaussian distributions is the methodology
of computing their multidimensional moments, which are given by〈

Ω, Gq(x1) · · ·Gq(x2n)Ω
〉
q
=

∑
π∈P2(2n)

qcr(π)
∏

{i,j}∈π

⟨xi, xj⟩,

where cr(π) is the number of crossings of a pair partition π (see [12]).
Bożejko and Yoshida [16] (see also [6]) introduced a two-parameter refinement of the q-Fock

space, formulated as a (q, t)-Fock space Fq,t(H), where −1 ≤ q, t ≤ 1. The corresponding
symmetrization operator has the form∑

σ∈Sn

qinv(σ)tcinv(σ)σ,

where cinv(σ) denotes the number of co-inversions of a permutation cinv(σ) := card{(i, j) : i < j,
σ(i) < σ(j)}. If we denote the creation operator by a∗q,t(x) and the annihilation operator
by aq,t(x), then the moments of the deformed Gaussian operator Gq,t(x) := a∗q,t(x) + aq,t(x) are
encoded by the joint statistics of crossings and nestings in the set of pair partitions:〈

Ω, Gq,t(x1) · · ·Gq,t(x2n)Ω
〉
q
=

∑
π∈P2(2n)

qcr(π)tnest(π)
∏

{i,j}∈π

⟨xi, xj⟩,

where nest(π) denotes the number of nestings in pair partition of π (see [6, Section 2]).
From these two examples we see that the inversions and co-inversions in the symmetric group

now become the joint statistics of crossings and nestings on the set of pair partitions. The
symmetrization operator of type B for −1 ≤ α, q ≤ 1, has the form∑

σ∈B(n)

αnumber of negative inversions in σq number of positive inversions in σσ,

where

� B(n) is the hyperoctahedral group, see Sections 2 below;

� the definition of positive and negative inversion is given in Section 4.3 below.

If we apply the above reasoning to the statistic which appears during calculation of moments of
type-B Gaussian operator, it should be∑

π∈PB
2 (2n)

αnumber of negative pairs of πqnumbers of crossings of π,

where PB
2 (2n) is the set of pair partitions of type B (see Definition 4.3). It is worth mentioning

that probabilistic considerations of type B that first appeared in [10, Corollary 3.9 (2)] are not
quite associated with our present approach. The goal of this paper is to introduce a double
Fock space of type B, such that the Gaussian operator moments are compatible with a statistic
symmetrization related to the Coxeter groups of type B. We claim that this approach is more
natural than the methodology proposed in [10]. In particular, we use this model in order to
describe the kernel of the symmetrization operator, that was difficult to achieve with the model
from [10].

2 Preliminaries

In the present section we show that the construction of type B Fock space [10] can be adapted
to recover the double Fock space of type B. In the following we will briefly describe the tools
we use in this investigation, which is partially contained in the previous paper [10]. For further
information the reader is referred to [10] and the references therein.
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2.1 Coxeter groups of type B

Recall that the Coxeter group of type B (also known as the hyperoctahedral group) of degree n,
denoted by B(n), is generated by the elements π0, π1, . . . , πn−1 subject to the defining relations
π2
i = e, 0 ≤ i ≤ n − 1, (π0π1)

4 = (πiπi+1)
3 = e, 1 ≤ i < n − 1 and (πiπj)

2 = e if |i − j| ≥ 2,
0 ≤ i, j ≤ n − 1. Note that {πi | i = 1, . . . , n − 1} generate the symmetric group S(n). The
Coxeter diagram for B(n) is described in Figure 1.

πn−1
◦. . .

π2
◦

π1
◦

π0
◦

Figure 1. The Coxeter diagram for B(n).

We express σ ∈ B(n) in an irreducible form

σ = πi1 · · ·πik , 0 ≤ i1, . . . , ik ≤ n− 1,

i.e., in a form with the minimal length, and in this case let

l1(σ) = the number of the occurrences of the factor π0 in σ,

l2(σ) = the number of the occurrences of all the factor of the form π1, . . . , πn−1 in σ.

Remark 2.1. These definitions do not depend on the way we express σ in an irreducible form,
and therefore, l1(σ) and l2(σ) are well defined (see [14, Proposition 1]).

2.2 (q,α)-Meixner–Pollaczek orthogonal polynomials

In this subsection, we remind basic facts about the orthogonal polynomials.

For a probability measure µ with finite moments of all orders, we can assign the orthogonal
polynomials (Pn(x))

∞
n=0 with degPn(x) = n and the leading coefficient of each Pn(x) is 1, i.e.,

monic. It is known that they satisfy the recurrence relation

xPn(x) = Pn+1(x) + βnPn(x) + γn−1Pn−1(x), n = 0, 1, 2, . . . ,

with the convention that P−1(x) = 0. The coefficients βn and γn are called Jacobi parameters
and they satisfy βn ∈ R and γn ≥ 0. It is known that

γ0 · · · γn =

∫
R
|Pn+1(x)|2µ(dx), n ≥ 0.

Let

� [n]q be the q-number [n]q := 1 + q + · · ·+ qn−1, n ≥ 1;

� [n]q! be the q-factorial [n]q! := [1]q · · · [n]q, n ≥ 1;

� (s; q)n be the q-Pochhammer symbol (s; q)n :=
∏n

k=1

(
1− sqk−1

)
, s ∈ R, |q| < 1, n ≥ 1.

Let MPα,q be the probability measure supported on
(
−2/

√
1− q, 2/

√
1− q

)
. This measure

has density (with respect to the Lebesgue measure)

dMPα,q

dt
(t) =

(q; q)∞
(
β2; q

)
∞

2π
√
4/(1− q)− t2

·
g(t, 1; q)g(t,−1; q)g(t,

√
q; q)g(t,−√

q; q)

g(t, iβ; q)g(t,−iβ; q)
, (2.1)
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where

g(t, b; q) =

∞∏
k=0

(
1− 4bt(1− q)−1/2qk + b2q2k

)
, (s; q)∞ =

∞∏
k=0

(
1− sqk

)
, s ∈ R,

β =

{√
−α, α ≤ 0,

i
√
α, α ≥ 0.

Remark 2.2. In equation (2.1), we assume that (α, q) ∈ (−1, 1)×(−1, 1), but by weak continuity
we may allow the parameters (α, q) of MPα,q to take any values in [−1, 1]× [−1, 1].

Example 2.3. In the special case, we have

1. The measure MPα,1 is the normal law (2(1 + α)π)−1/2e
− t2

2(1+α) 1R(t) dt.

2. The measure MP0,0 is the standard Wigner’s semicircle law (1/2π)
√
4− t21(−2,2)(t) dt.

3. The measure MP0,q is the q-Gaussian law [12].

4. The measure MPα,−1 is the Bernoulli law (1/2)
(
δ√1+α + δ−

√
1+α

)
.

5. The measure MPα,0 is a symmetric free Meixner law [1, 8, 19].

The orthogonal polynomials (Qα,q
n (t))∞n=0 associated to the distribution of the MPα,q are

called (q, α)-Meixner–Pollaczek polynomials satisfying the recurrence relation

tQ(α,q)
n (t) = Q

(α,q)
n+1 (t) + [n]q

(
1 + αqn−1

)
Q

(α,q)
n−1 (t), n = 0, 1, 2, . . . , (2.2)

where Qα,q
−1 (t) = 0, Qα,q

0 (t) = 1 and −1 ≤ α, q ≤ 1.

3 The double Fock space of type B

Let HR be a separable real Hilbert space and let H be its complexification with the inner
product ⟨·, ·⟩, linear in the right component and anti-linear in the left. The Hilbert space
K := H ⊗H is the complexification of its real subspace KR := HR⊗HR, with the inner product

⟨x⊗ y, ξ ⊗ η⟩K = ⟨x, ξ⟩⟨y, η⟩.

We define Kn := H⊗n⊗H⊗n = H⊗2n and instead of indexing its simple tensors by {1, . . . , 2n}
we will index them by [±n] = {−n, . . . ,−1, 1, . . . , n} and we will use the typical involution
n̄ = −n for n ∈ N

Kn ∋ xn ⊗ xn = xn ⊗ · · · ⊗ x1 ⊗ x1 ⊗ · · · ⊗ xn = xn ⊗ · · · ⊗ xn.

We use this convention for indexing the elements of Kn to define a natural action of the hyper-
octahedral group B(n) on Kn by setting

σ : Kn → Kn,

xn ⊗ · · · ⊗ x1 ⊗ x1 ⊗ · · · ⊗ xn 7→ xσ−1(n) ⊗ · · · ⊗ xσ−1(1) ⊗ xσ−1(1) ⊗ · · · ⊗ xσ−1(n)

for any σ ∈ B(n).

Remark 3.1. It is worth to mention that in the present paper we act on the indexes, but in
the previous one, [10], we were acting on the vectors.
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Let Ffin(K) be the algebraic full Fock space over K:

Ffin(K) :=

∞⊕
n=0

Kn =

∞⊕
n=0

H⊗2n,

with the convention that K⊗0 = H⊗0 ⊗ H⊗0 = CΩ ⊗ Ω is the one-dimensional normed space
along with the unit vector Ω⊗ Ω. We equip Ffin(K) with the inner product

⟨xn ⊗ · · · ⊗ x1 ⊗ x1 ⊗ · · · ⊗ xn, ym ⊗ · · · ⊗ y1 ⊗ y1 ⊗ · · · ⊗ ym⟩0,0 := δm,n

n∏
i=n

⟨xi, yi⟩.

By definition, the action of the generators πi for 0 ≤ i ≤ n− 1 on

η = xn̄ ⊗ · · · ⊗ x1̄ ⊗ x1 ⊗ · · · ⊗ xn ∈ Kn

is given for i ≥ 1 and n ≥ 2 by

πi(η) = xn̄ ⊗ · · · ⊗ xi ⊗ xi+1 ⊗ · · · ⊗ x1̄ ⊗ x1 ⊗ · · · ⊗ xi+1 ⊗ xi ⊗ · · · ⊗ xn,

and for i = 0 and n ≥ 1 by

π0(η) = xn̄ ⊗ · · · ⊗ x1 ⊗ x1̄ ⊗ · · · ⊗ xn.

For the parameters −1 ≤ α, q ≤ 1, we define the symmetrization operators

P (n)
α,q :=

∑
σ∈B(n)

αl1(σ)ql2(σ) σ, n ≥ 1,

P (0)
α,q := IH⊗0⊗H⊗0 .

Moreover, let

Pα,q :=

∞⊕
n=0

P (n)
α,q

be the type B symmetrization operator acting on the algebraic full Fock space.

Remark 3.2. From Bożejko and Speicher [13, Theorem 2.1], the operator P
(n)
α,q is positive for

−1 ≤ α, q ≤ 1. If −1 < α, q < 1, then P
(n)
α,q is a strictly positive operator meaning that it is

positive and kerP
(n)
α,q = {0}.

For xn ⊗ xn ∈ Kn and ym ⊗ ym ∈ Km, we deform the inner product ⟨·, ·⟩0,0 by using the
type B symmetrization operator:

⟨xn ⊗ xn,ym ⊗ ym⟩α,q := δn,m⟨xn ⊗ xn, P
(m)
α,q ym ⊗ ym⟩0,0.

For x ∈ H, let l(x) and r(x) be the free left and right annihilation operators on H⊗n,
respectively, defined by the equations

l∗(x)(x1 ⊗ · · · ⊗ xn) := x⊗ x1 ⊗ · · · ⊗ xn,

l(x)(x1 ⊗ · · · ⊗ xn) := ⟨x, x1⟩x2 ⊗ · · · ⊗ xn,

r∗(x)(x1 ⊗ · · · ⊗ xn) := x1 ⊗ · · · ⊗ xn ⊗ x,

r(x)(x1 ⊗ · · · ⊗ xn) := ⟨x, xn⟩x1 ⊗ · · · ⊗ xn−1,
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where the adjoint is taken with respect to the free inner product. The left-right creation and
annihilation operators b∗(x⊗ y), b(x⊗ y) on Ffin(K) are defined as follows:

b∗(x⊗ y)(xn ⊗ xn) := l∗(x)xn ⊗ r∗(y)xn, b∗(x⊗ y)Ω⊗ Ω := x⊗ y,

b(x⊗ y)(xn ⊗ xn) := l(x)xn ⊗ r(y)xn, b(x⊗ y)Ω⊗ Ω := 0,

where xn⊗xn ∈ Kn, n ≥ 1. It holds that [b∗(x⊗ y)]∗ = b(x⊗ y) where the adjoint is taken with
respect to ⟨·, ·⟩0,0.

Definition 3.3. Let q, α ∈ (−1, 1). The algebraic full Fock space Ffin(K) equipped with the
inner product ⟨·, ·⟩α,q is called the double Fock space of type B and denoted by Fα,q(K). For
x ⊗ y ∈ K we define b∗α,q(x ⊗ y) := b∗(x ⊗ y) and we consider its adjoint operator bα,q(x ⊗ y)
with respect to the inner product ⟨·, ·⟩α,q acting on the Hilbert space Fα,q(K). The operators
b∗α,q(x⊗ y) and bα,q(x⊗ y) are called double creation and double annihilation operator of type B,
respectively.

Remark 3.4. We would like to emphasize that our double Fock space of type B is different
from [10]. In the present version of the model, we apply a more natural operation on tensor
product, which finally contributes to the more natural combinatorics of calculating the Gaussian
moments. In [10], we put the action of the symmetrization on n points but in the current ap-
proach we give 2n points which is close to our construction from the articles [9, 20]. In [10],
we defined the creator in the same way as in the case of type A, and then we did not obtain
a natural combinatorics which is compatible with partitions of the set {±1, . . . ,±n}. Now if we
start our construction with the creator operator of double type B, the situation is completely
different from [10].

The following proposition can be derived directly from [10, Proposition 2.3].

Proposition 3.5. We have the decomposition

P (n)
α,q =

(
I ⊗ P (n−1)

α,q ⊗ I
)
R(n)

α,q on Kn, n ≥ 1,

where

R(n)
α,q = I +

n−1∑
k=1

qkπn−1 · · ·πn−k + αqn−1πn−1πn−2 · · ·π1π0
(
1 +

n−1∑
k=1

qkπ1 · · ·πk
)
, n ≥ 2,

R(1)
α,q = I + απ0.

We can compute the annihilation operator in terms of R
(n)
α,q by using the similar method to

that in [10, Proposition 2.4].

Proposition 3.6. For n ≥ 1 and x⊗ y ∈ KR, we have

bα,q(x⊗ y) = b(x⊗ y)R(n)
α,q on Kn.

Remark 3.7. Using the above notation, we can decompose bα,q(x⊗ y) into the positive part pq
and the negative part nq as

bα,q(x⊗ y) = pq(x⊗ y) + αnq(x⊗ y), x⊗ y ∈ K,

where

pq(x⊗ y)η =

n∑
k=1

qn−k⟨x, xk̄⟩⟨y, xk⟩xn̄ ⊗ · · · ⊗ x̌k̄ ⊗ · · · ⊗ x1̄

⊗ x1 ⊗ · · · ⊗ x̌k ⊗ · · · ⊗ xn, (3.1)
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nq(x⊗ y)η = qn−1
n∑

k=1

qk−1⟨x, xk⟩⟨y, xk̄⟩xn̄ ⊗ · · · ⊗ x̌k̄ ⊗ · · · ⊗ x1̄

⊗ x1 ⊗ · · · ⊗ x̌k ⊗ · · · ⊗ xn, (3.2)

where η = xn̄ ⊗ · · · ⊗ xn. We called the operator pq the positive part and nq the negative part
because in the next section we see that they contribute to positive and negative partitions of
type B, respectively.

The following commutation relation is almost the same as in [10, Proposition 2.6]. The
difference is due to a twisted inner product which appears in the second part of the following
equation: ⟨x, η⟩⟨y, ξ⟩.

Proposition 3.8. For x⊗ y, ξ ⊗ η ∈ K, we have the commutation relation

bα,q(x⊗ y)b∗α,q(ξ ⊗ η)− qb∗α,q(ξ ⊗ η)bα,q(x⊗ y) = ⟨x, ξ⟩⟨y, η⟩I + α⟨x, η⟩⟨y, ξ⟩(q2)N ,

where (q2)N is the operator on Ffin(K) defined by the linear extension of (q2)NΩ ⊗ Ω = 0 and
xn ⊗ xn 7→ q2nxn ⊗ xn for n ≥ 1.

Now we come to calculate the norm of the creation operators. The following theorem is
inspired by [10, Theorem 2.9]. The proof is almost identical to that of [10, Theorem 2.9], and it
can be omitted (the only difference is the estimate of the norm at the end).

Theorem 3.9. Suppose that x⊗ y ∈ KR, x⊗ y ̸= 0.

1. If (α, q) ∈ A, where A = [0, 1]× (−1, 0], then

∥b∗α,q(x⊗ y)∥α,q =
√

∥x∥2∥y∥2 + α⟨x, y⟩2.

2. If (α, q) ∈ B, where B = [−1, 0)× (−1, 0], then

∥x∥∥y∥√
1− q

≤ ∥b∗α,q(x⊗ y)∥α,q ≤ ∥x∥∥y∥.

3. If (α, q) ∈ C, where C = {(α, q) | |α| ≤ q < 1}, then

∥b∗α,q(x⊗ y)∥α,q =
∥x∥∥y∥√
1− q

.

4. Otherwise, if (α, q) ∈ [−1, 1]× (−1, 1) \ (A ∪B ∪ C)

∥x∥∥y∥√
1− q

≤ ∥b∗α,q(x⊗ y)∥α,q ≤

√
1 + |α|
1− q

∥x∥∥y∥.

4 The double Gaussian operator of type B

In this non-commutative setting, random variables are understood to be the elements of the
∗-algebra generated by {bα,q(x⊗ y), b∗α,q(x⊗ y) | x⊗ y ∈ KR}. Particularly interesting are their
mixed moments. In order to work effectively on this object we need to define the corresponding
statistics. We provide an explicit formula for the combinatorial moments, involving the number
of crossings and negative pairs of a partition. First, we need to define the operators, the set of
partitions and statistics of type B.
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4.1 The orthogonal polynomials

Definition 4.1. The operator

Gα,q(x⊗ y) = bα,q(x⊗ y) + b∗α,q(x⊗ y), x⊗ y ∈ KR

on Ffin(K) is called the double Gaussian operator of type B. Denote by φ the vacuum vector
state φ(·) = ⟨Ω⊗ Ω, · Ω⊗ Ω⟩.

Using a similar argument as in [10, Theorem 3.3], we can prove the following.

Theorem 4.2. Suppose α, q ∈ (−1, 1) and x ⊗ y ∈ KR, ∥x∥ = ∥y∥ = 1. Let µα,q,x,y be the
probability distribution of Gα,q(x⊗ y) with respect to the vacuum state. Then µα,q,x,y is equal to
MPα⟨x,y⟩2,q.

Proof. We observe that for n ≥ 1, we have

Gα,q(x⊗ y)x⊗n ⊗ y⊗n = b∗α,q(x⊗ y)x⊗n ⊗ y⊗n + bα,q(x⊗ y)x⊗n ⊗ y⊗n

= x⊗(n+1) ⊗ y⊗(n+1) + [n]q
(
1 + α⟨x, y⟩2qn−1

)
x⊗(n−1) ⊗ y⊗(n−1),

where Remark 3.7 was used in the second line. Note that for n = 1

Q
(α⟨x,y⟩2,q)
1 (Gα,q(x⊗ y))Ω⊗ Ω = Gα,q(x⊗ y)Ω⊗ Ω = x⊗ y

and by induction

Q
(α⟨x,y⟩2,q)
n+1 (Gα,q(x⊗ y))Ω⊗ Ω

= Gα,q(x⊗ y)Q(α⟨x,y⟩2,q)
n (Gα,q(x⊗ y))Ω⊗ Ω

− [n]q
(
1 + α⟨x, y⟩2qn−1

)
Q

(α⟨x,y⟩2,q)
n−1 (Gα,q(x⊗ y))Ω⊗ Ω

= Gα,q(x⊗ y)x⊗n ⊗ y⊗n − [n]q
(
1 + α⟨x, y⟩2qn−1

)
x⊗(n−1) ⊗ y⊗(n−1)

= x⊗n+1 ⊗ y⊗n+1.

Therefore, the map Φ:
(
span

{
x⊗n ⊗ y⊗n | n ≥ 0

}
, ∥ · ∥α,q

)
→ L2(R,MPα⟨x,y⟩2,q) defined by

Φ
(
x⊗n ⊗ y⊗n

)
= Q(α⟨x,y⟩2,q)

n (t)

is an isometry. Since Φ is an isometry, we get ⟨Ω⊗Ω, Gα,q(x⊗y)nΩ⟩α,q = mn(MPα⟨x,y⟩2,q), where
mn(µ) is the n-th moment of measure µ. Since MPα⟨x,y⟩2,q is a compactly supported measure,
the Hamburger moment problem has a unique solution and hence MPα⟨x,y⟩2,q = µα,q,x,y. ■

4.2 Pair partitions of type B

Let S be an ordered set. Then π = {V1, . . . , Vp} is a partition of S, if the Vi ̸= ∅ are ordered
and disjoint sets Vi = (v1, . . . , vk), where v1 < · · · < vk, whose union is S. For V ∈ π , we say
that V is a block of π. Any partition π defines an equivalence relation on S, denoted by ∼π,
such that the equivalence classes are the blocks of π. Therefore, i ∼π j if i and j belong to the
same block of π. A block of π is called a singleton if it consists of one element. Similarly, a block
of π is called a pair if it consists of two elements. Let Sing(π) and Pair(π) denote the set of
all singletons and pairs of π, respectively. The set of partitions of S is denoted by P(S), in the
case where S = [n] := {1, . . . , n} we write P(n) := P([n]). We denote by P1,2(S) the subset of
partitions π ∈ P(S) whose every block is either a pair or a singleton.

From now on, we will work on a set [±n] := {n̄, . . . , 1̄, 1, . . . , n}. For a pair V = (a, b) (or
a singleton V = (a)), we denote its reflection by V = (b̄, ā) (V = (ā)), where ā = −a. Similarly,
we define

π̄ :=
{
V | V ∈ π, π ∈ P1,2([±n])

}
.
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Definition 4.3. We denote by PB
1,2(n) the subset of partitions π ∈ P1,2([±n]) such that they

are symmetric π = π (which is invariant under the bar operation), but every pair V ∈ π is
different from its reflection V , i.e., V ̸= V . We call PB

1,2(n) the set of partitions of type B.

From Definition 4.3 it follows that for every block in B ∈ π, π ∈ PB
1,2(n) there exists a unique

reflection block B̄ ∈ π. This leads to one more definition. We call B = ((b̄, ā), (a, b)) a B-pair
if b̄ < b, |a| < |b| and (b̄, ā), (a, b) ∈ π. The B-pair ((b̄, ā), (a, b)) is called positive if b × a > 0;
otherwise it is called negative; see Figure 2. The set of such B-pairs is denoted by PairB(π). Let
us notice that from Definition 4.3 it follows that the element s is a singleton of π ∈ PB

1,2(n) if
and only if s̄ is also a singleton of π, thus we can define the subset of B-singletons ((ā), (a)) as

SingB(π) := {((ā), (a)) | ā, a ∈ Sing(π), ā < a}, π ∈ PB
1,2(n).

Let

PB
2 (n) :=

{
π ∈ PB

1,2(n) | SingB(π) = ∅
}

and

PA
2 (n) :=

{
π ∈ PB

2 (n) | (b̄, ā), (a, b) ∈ π =⇒ ((b̄, ā), (a, b)) is positive
}
,

i.e., it is a subset of PB
2 (n), with only positive B-pairs.

Remark 4.4.

1. We note that a B-pair is not a block of π, but a pair of reflection pairs.

2. We note that #PA
2 (n) = (n − 1)!! for even n, which is the same as the number of the

classical pair partitions on n points. In Figure 6, they are depicted on the top row.

4 3 2 1 4321

Figure 2. The example of π ∈ PB
2 (4) with a positive B-pair ((3̄, 2̄), (2, 3)) and a negative B-pair

((4̄, 1), (1̄, 4)).

We introduce some partition statistics. For two pairs V and W , we introduce the relation cr
as follows:

V
cr∼ W ⇐⇒ V = (i, j), W = (k, l) such that i < k < j < l,

For a set partition π ∈ PB
1,2(n), let Cr(π) be the number of crossings of B-pairs, i.e.,

Cr(π) = #
{((

V , V
)
,
(
W,W

))
∈ PairB(π)× PairB(π) | V

cr∼ W
}

+#
{((

V , V
)
,
(
W,W

))
∈ PairB(π)× PairB(π) | V

cr∼ W
}
.

For two blocks V , W of a set partition, we say that W covers V if there are i, j ∈ W such that
i < k < j for any k ∈ V and then we write V

cs∼ W . For π ∈ PB
1,2(n), let Cs(π) be the number

of pairs of a B-singleton and a covering B-pair:

Cs(π) = #
{((

V , V
)
,
(
W,W

))
∈ SingB(π)× PairB(π) | V

cs∼ W
}

+#
{((

V , V
)
,
(
W,W

))
∈ SingB(π)× PairB(π) | V

cs∼ W
}
.
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We say that the B-pair (W,W ) cover the B-singleton
(
V , V

)
if V

cs∼ W or V
cs∼ W (equivalently,(

V , V
)
is the inner singleton of

(
W,W

)
).

Let Nb(π) be the number of negative B-pairs of PairB(π), where π ∈ PB
1,2(n). A set partition

π ∈ PB
1,2(n) is non-crossing if Cr(π) = 0. The set of non-crossing pair partitions of [±n] is

denoted by NCB
2 (n), and by NCA

2 (n) we denote the subset of NCB
2 (n) where all B-pairs are

positive.

Remark 4.5. While reading this, the first impression seems to be that the procedure of counting
the crossings is complicated. This is not true since it can be read from the figure as follows.
First, we draw a vertical line in the center as in Figure 3. Then we count only the crossings on
the left of this vertical line. We count the number of negative B-pairs as the number of B-pairs
crossed by a vertical line (♦ points on Figure 3). Similarly we count the pairs of the form

(B-singleton, covering B-pair)

as the number of such a pairs with at least one leg on the left of this vertical line.

1 2 3 4 5 6 7 8 9 10

♦

♦

♦

♦

♦

♦

♦

♦

♦

♦

♦

♦

♦

♦

♦

♦

♦

♦

♦

♦

♦

♦

♦

♦

10 9 8 7 6 5 4 3 2 1

Figure 3. The example of statistic of partition π ∈ PB
1,2(10), i.e., Cr(π) = 4, Nb(π) = 3,

Cs(π) = 5.

Now we prove the following theorem, which shows the relationship between the set of parti-
tions of type B (corresponding statistic) and a joint action of Gaussian operators on a vacuum
vector.

Theorem 4.6. For any i ∈ {1, . . . , 2n} and xī ⊗ xi ∈ KR, we have

φ(Gα,q(x2n ⊗ x2n) · · ·Gα,q(x1̄ ⊗ x1)) =
∑

π∈PB
2 (2n)

αNb(π)qCr(π)
∏

(i,j)∈Pair(π)

⟨xi, xj⟩. (4.1)

Proof. Given ε = (ε(1), . . . , ε(n)) ∈ {1, ∗}n, let PB
1,2;ε(n) be the set of partitions π ∈ PB

1,2(n)
such that

� if ((b̄, ā), (a, b)) is a B-pair of PairB(π), then ε(|a|) = ∗, ε(|b|) = 1,

� if {c} is a singleton in π, then ε(|c|) = ∗.

We will prove first that

bε(n)α,q (xn ⊗ xn) · · · bε(1)α,q (x1 ⊗ x1)Ω⊗ Ω

=
∑

π∈PB
1,2;ε(n)

αNb(π)qCr(π)+Cs(π)
∏

(i,j)∈Pair(π)

⟨xi, xj⟩
⊗

i∈Sing(π)

xi (4.2)
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holds, where

Sing(π) = {(v̄m), . . . , (v̄1), (v1), . . . , (vm)} ⊂ N̄ ∪ N, v̄m < · · · < v̄1 < v1 < · · · < vm,

and
⊗

i∈Sing(π) xi denotes the tensor product xv̄m ⊗ · · · ⊗ xv̄1 ⊗ xv1 ⊗ · · · ⊗ xvm . If

#{i ∈ [j] | ε(i) = 1} > #{i ∈ [j] | ε(i) = ∗}

for some j ∈ {1, . . . , n}, then we understand the sum over the empty set is 0 since PB
1,2;ε(n) = ∅

in this case. The proof of (4.2) is given by induction.
When n = 1, then bα,q(x1̄ ⊗ x1)Ω ⊗ Ω = 0 and b∗α,q(x1̄ ⊗ x1)Ω ⊗ Ω = x1̄ ⊗ x1 and hence the

formula (4.2) is true.

Suppose that the (4.2) is true for n = k. We will show that the action of b
ε(k+1)
α,q (x k+1⊗xk+1)

for ε(k+1) = ∗ or ε(k+1) = 1 corresponds to the inductive pictorial description of set partitions
of type B.

Case 1. If ε(k + 1) = ∗, then the operator b∗α,q(x k+1 ⊗ xk+1) acts on the tensor product,
putting xk+1 on the right and x k+1 on the left. This operation pictorially corresponds to

adding the singleton (k + 1) and (k + 1) to π ∈ PB
1,2;ε(k), to yield the new type-B partition

π̃ ∈ PB
1,2;ε(k + 1) such that ((k + 1), (k + 1)) ∈ SingB(π̃). This map π 7→ π̃ does not change the

numbers Nb, Cr or Cs, which is compatible with the fact that the action of b∗α,q(x k+1 ⊗ xk+1)
does not change the coefficient. Hence the formula (4.2) holds when n = k+1 and ε(k+1) = ∗.
Case 2. If ε(k + 1) = 1, then we have two subcases, depending on pq and nq.

If the positive part pq (subcase (a)) (resp. αnq – subcase (b)) acts on the tensor product on
the right hand side of (4.2) (for fixed π), then new m terms appear by using (3.1). We obtain
the equations

pq(x k+1 ⊗ xk+1)xv̄m ⊗ · · · ⊗ xvm =

m∑
i=1

qm−i⟨x k+1, xv̄i⟩⟨xvi , xk+1⟩

× xv̄m ⊗ · · · ⊗ x̌v̄i ⊗ · · · ⊗ xv̄1 ⊗ xv1 ⊗ · · · ⊗ x̌vi ⊗ · · · ⊗ xm,

(4.3a)

αnq(x k+1 ⊗ xk+1)xv̄m ⊗ · · · ⊗ xvm = αqm−1
m∑
i=1

qi−1⟨x k+1, xvi⟩⟨xv̄i , xk+1⟩

× xv̄m ⊗ · · · ⊗ x̌v̄i ⊗ · · · ⊗ xv̄1 ⊗ xv1 ⊗ · · · ⊗ x̌vi ⊗ · · · ⊗ xm.

(4.3b)

Now we will focus on the i-th summand of the above equations.
We fix π ∈ PB

1,2;ε(k) and suppose that π has singletons

v̄m < · · · < v̄i < · · · < v̄1 < v1 < · · · < vi < · · · < vm, where i ∈ [m].

We assume that PairB(π) contains the B-pairs
(
W 1,W1

)
, . . . ,

(
W u,Wu

)
which cover the

B-singleton ((v̄i), (vi)). Case 2(a) – see Figure 4. In the i-th term of (4.3a) the inner prod-
uct ⟨x k+1, xv̄i⟩⟨xvi , xk+1⟩ appears with coefficient qm−i. Pictorially this corresponds to get-

ting a set partition π̃ ∈ PB
1,2;ε(k + 1) by adding the positive B-pair

(
(k + 1, vi), (vi, k + 1)

)
to PairB(π̃). This new B-pair crosses the B-pairs

(
W j ,Wj

)
, j ∈ {1, . . . , u} and so increases

the crossing number by u but decreases the number Cs(π) by u because originally ((v̄i), (vi))
was the inner singleton of B-pairs

(
W j ,Wj

)
, j ∈ {1, . . . , u}. Now the new inner B-singletons

((v̄i+1), (vi+1)), . . . , ((v̄m), (vm)) of B-pair ((k + 1, vi), (vi, k + 1)) appear. Altogether we have

Cr(π̃) = Cr(π) + u, Cs(π̃) = Cs(π) +m− i− u and Nb(π̃) = Nb(π).

So the exponent of q increases by m − i. This factor qm−i is exactly the factor appearing in
equation (4.3a).
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v̄m vi v̄1 vmviv1

Wj Wj 7→

v̄m vi v̄1 vmviv1k+1 k+1

Wj Wj

Figure 4. The visualization of the action of pq(x k+1 ⊗ xk+1).

Case 2(b) – see Figure 5. In the i-th term of (4.3b) the inner product ⟨x k+1, xvi⟩⟨xv̄i , xk+1⟩
appears with the coefficient αqm+i−2. Graphically this corresponds to getting a set parti-
tion π̃ ∈ PB

1,2;ε(k + 1) by adding k + 1 and k + 1 to π and creating the new negative B-pair(
(k + 1, vi), (vi, k+1)

)
∈ PairB(π̃). Similarly to Case 2(a), we count the change of numbers and

get

Cr(π̃) = Cr(π) + u, Cs(π̃) = Cs(π) +m− 1 + i− 1− u and Nb(π̃) = Nb(π) + 1.

Altogether, when moving from π to π̃, the exponent of α increases by 1 and the exponent
of q increases by m+ i− 2, which coincides with the coefficient appearing in the action of
αnq(x k+1 ⊗ xk+1), creating the inner product ⟨x k+1, xvi⟩⟨xv̄i , xk+1⟩.

v̄m vi v̄1 vmviv1

Wj Wj 7→

v̄m vi v̄1 vmviv1k+1 k+1

Wj Wj

Figure 5. The visualization of the action of αnq(x k+1 ⊗ xk+1).

Note that as π runs over PB
1,2;(ε(1),...,ε(k))(k), every set partition π̃ ∈ PB

1,2;(ε(1),...,ε(k),1)(k + 1)

appears exactly once, either in Case 2(a) or in Case 2(b). Therefore, in Case 2, the pictorial
inductive step and the actual action of bα,q(x k+1 ⊗ xk+1) both create the same terms with the
same coefficients, and hence the formula (4.2) is true when n = k + 1 and ε(k + 1) = 1. Case 1
and Case 2 show by induction that the formula (4.2) holds for all n ∈ N.

For a given set of B-pairs {((b̄1, ā1), (a1, b1)), . . . , ((b̄n/2, ān/2), (an/2, bn/2))} ∈ PairB(π), where

π ∈ PB
2 (n), we denote the set of left and right legs of π by lπ := {a1, ā1, . . . , an/2, ān/2}, and

rπ := {b1, b̄1, . . . , bn/2, b̄n/2}. Formula (4.1) follows from (4.2) by taking the sum over all ε such
that Sing(π) = ∅. In this case, we understand that

⊗
i∈Sing(π) xi = Ω⊗ Ω and⊔

ε∈{1,∗}n
PB
2;ε(n) =

⊔
ε∈{1,∗}n

{
π ∈ PB

2 (n) | (b̄, ā), (a, b) ∈ π =⇒ ε(|a|) = ∗, ε(|b|) = 1
}

=
⊔

L⊂[±n]
#L=n

{
π ∈ PB

2 (n) | lπ = L and rπ = [±n] \ L
}

= PB
2 (n).

Finally, applying the state action, we get

φ(Gα,q(x2n ⊗ x2n) · · ·Gα,q(x1̄ ⊗ x1))

=
∑

ε∈{1,∗}2n
φ
(
bε(2n)α,q (x2n ⊗ x2n) · · · bε(1)α,q (x1 ⊗ x1)

)
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=
∑

ε∈{1,∗}2n

∑
π∈PB

1,2;ε(2n)

Sing(π)=∅

αNb(π)qCr(π)+Cs(π)
∏

(i,j)∈Pair(π)

⟨xi, xj⟩

=
∑

ε∈{1,∗}2n

∑
π∈PB

2;ε(2n)

αNb(π)qCr(π)
∏

(i,j)∈Pair(π)

⟨xi, xj⟩

=
∑

π∈PB
2 (2n)

αNb(π)qCr(π)
∏

(i,j)∈Pair(π)

⟨xi, xj⟩. ■

Example 4.7. The set of partitions of type B for

φ(Gα,q(x4 ⊗ x4) · · ·Gα,q(x1̄ ⊗ x1))

can be graphically represented as shown in Figure 6.

4 3 2 1 4321 4 3 2 1 4321 4 3 2 1 4321

⟨x4̄,x3̄⟩⟨x2̄,x1̄⟩⟨x1,x2⟩⟨x3,x4⟩ q⟨x4̄,x2̄⟩⟨x3̄,x1̄⟩⟨x1,x3⟩⟨x2,x4⟩ ⟨x4̄,x1̄⟩⟨x3̄,x2̄⟩⟨x1,x4⟩⟨x2,x3⟩

4 3 2 1 4321 4 3 2 1 4321 4 3 2 1 4321

α⟨x4̄,x3̄⟩⟨x2̄,x1⟩⟨x1̄,x2⟩⟨x3,x4⟩ αq⟨x4̄,x2̄⟩⟨x3̄,x1⟩⟨x1̄,x3⟩⟨x2,x4⟩ αq2⟨x4̄,x1̄⟩⟨x3̄,x2⟩⟨x1,x4⟩⟨x2̄,x3⟩

4 3 2 1 4321 4 3 2 1 4321 4 3 2 1 4321

α⟨x4̄,x3⟩⟨x2̄,x1̄⟩⟨x1,x2⟩⟨x3̄,x4⟩ αq⟨x4̄,x2⟩⟨x3̄,x1̄⟩⟨x1,x3⟩⟨x2̄,x4⟩ α⟨x4̄,x1⟩⟨x3̄,x2̄⟩⟨x1̄,x4⟩⟨x2,x3⟩

4 3 2 1 4321 4 3 2 1 4321 4 3 2 1 4321

α2⟨x4̄,x3⟩⟨x2̄,x1⟩⟨x1̄,x2⟩⟨x3̄,x4⟩ α2q⟨x4̄,x2⟩⟨x3̄,x1⟩⟨x1̄,x3⟩⟨x2̄,x4⟩ α2q2⟨x4̄,x1⟩⟨x3̄,x2⟩⟨x1̄,x4⟩⟨x2̄,x3⟩

Figure 6. The statistics and the set of partitions of type B for the fourth moment.

Let vN(Gα,q(KR)) be the von Neumann algebra generated by {Gα,q(x⊗ y) | x⊗ y ∈ KR} for
|q| < 1.

Proposition 4.8. Suppose that dim(HR) ≥ 2 and |q| < 1. From Example 4.7, we can easily
calculate that the vacuum state is a trace on vN(Gα,q(KR)) if and only if α = 0.

Proof of the last statement. By using Example 4.7, we obtain

φ(Gα,q(x4 ⊗ x4)Gα,q(x3 ⊗ x3)Gα,q(x3 ⊗ x2)Gα,q(x1̄ ⊗ x1))

= ⟨x4̄, x3̄⟩⟨x2̄, x1̄⟩⟨x1, x2⟩⟨x3, x4⟩+ q⟨x4̄, x2̄⟩⟨x3̄, x1̄⟩⟨x1, x3⟩⟨x2, x4⟩
+ ⟨x4̄, x1̄⟩⟨x3̄, x2̄⟩⟨x1, x4⟩⟨x2, x3⟩+ α⟨x4̄, x3̄⟩⟨x2̄, x1⟩⟨x1̄, x2⟩⟨x3, x4⟩
+ αq⟨x4̄, x2̄⟩⟨x3̄, x1⟩⟨x1̄, x3⟩⟨x2, x4⟩+ αq2⟨x4̄, x1̄⟩⟨x3̄, x2⟩⟨x1, x4⟩⟨x2̄, x3⟩
+ α⟨x4̄, x3⟩⟨x2̄, x1̄⟩⟨x1, x2⟩⟨x3̄, x4⟩+ αq⟨x4̄, x2⟩⟨x3̄, x1̄⟩⟨x1, x3⟩⟨x2̄, x4⟩
+ α⟨x4̄, x1⟩⟨x3̄, x2̄⟩⟨x1̄, x4⟩⟨x2, x3⟩+ α2⟨x4̄, x3⟩⟨x2̄, x1⟩⟨x1̄, x2⟩⟨x3̄, x4⟩
+ α2q⟨x4̄, x2⟩⟨x3̄, x1⟩⟨x1̄, x3⟩⟨x2̄, x4⟩+ α2q2⟨x4̄, x1⟩⟨x3̄, x2⟩⟨x1̄, x4⟩⟨x2̄, x3⟩,
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and by permuting x4 ⊗ x4, . . . , x1̄ ⊗ x1,

φ(Gα,q(x3 ⊗ x3)Gα,q(x3 ⊗ x2)Gα,q(x1̄ ⊗ x1)Gα,q(x4̄ ⊗ x4))

= ⟨x3̄, x2̄⟩⟨x1̄, x4̄⟩⟨x4, x1⟩⟨x2, x3⟩+ q⟨x3̄, x1̄⟩⟨x2̄, x4̄⟩⟨x4, x2⟩⟨x1, x3⟩
+ ⟨x3̄, x4̄⟩⟨x2̄, x1̄⟩⟨x4, x3⟩⟨x1, x2⟩+ α⟨x3̄, x2̄⟩⟨x1̄, x4⟩⟨x4̄, x1⟩⟨x2, x3⟩
+ αq⟨x3̄, x1̄⟩⟨x2̄, x4⟩⟨x4̄, x2⟩⟨x1, x3⟩+ αq2⟨x3̄, x4̄⟩⟨x2̄, x1⟩⟨x4, x3⟩⟨x1̄, x2⟩
+ α⟨x3̄, x2⟩⟨x1̄, x4̄⟩⟨x4, x1⟩⟨x2̄, x3⟩+ αq⟨x3̄, x1⟩⟨x2̄, x4̄⟩⟨x4, x2⟩⟨x1̄, x3⟩
+ α⟨x3̄, x4⟩⟨x2̄, x1̄⟩⟨x4̄, x3⟩⟨x1, x2⟩+ α2⟨x3̄, x2⟩⟨x1̄, x4⟩⟨x4̄, x1⟩⟨x2̄, x3⟩
+ α2q⟨x3̄, x1⟩⟨x2̄, x4⟩⟨x4̄, x2⟩⟨x1̄, x3⟩+ α2q2⟨x3̄, x4⟩⟨x2̄, x1⟩⟨x4̄, x3⟩⟨x1̄, x2⟩.

Since dim(HR) ≥ 2, there are two orthogonal unit eigenvectors e1, e2, and we take x1̄ = x4 = e1,
x1 = x4̄ = e2, x2̄ = x3 = e1 and x2 = x3̄ = e2. Hence

φ(Gα,q(x4 ⊗ x4)Gα,q(x3 ⊗ x3)Gα,q(x3 ⊗ x2)Gα,q(x1̄ ⊗ x1))

− φ(Gα,q(x3 ⊗ x3)Gα,q(x3 ⊗ x2)Gα,q(x1̄ ⊗ x1)Gα,q(x4 ⊗ x4)) = α2q2 − α2.

Therefore, the vacuum state is not a trace when α ̸= 0. When α = 0, the traciality follows from
the similar arguments of [13, Theorem 4.4]. ■

For π ∈ NCA
2 (2m) we say that B-pair is inner if it is covered by another B-pair. A B-pair of

a non-crossing partition of type A is outer if it is not inner. In accordance with this definition
we can formulate the following corollary.

Corollary 4.9. Assume that xī, xi ∈ HR for i = 1, . . . , 2m.

1. For α = 0, we recover the q-deformed formula for moments [12, Proposition 2]:

φ(G0,q(x2m ⊗ x2m) · · ·G0,q(x1̄ ⊗ x1))

=
∑

π∈PB
2 (2m)

Nb(π)=0

qCr(π)
∏

(i,j)∈π

⟨xi, xj⟩ =
∑

π∈PA
2 (2m)

qCr(π)
∏

(i,j)∈π

⟨xi, xj⟩.

2. For q = 0, we obtain the formula for moments of the symmetric Kesten’s law

φ(Gα,0(x2m ⊗ x2m) · · ·Gα,0(x1̄ ⊗ x1)) =
∑

π∈NCB
2 (2m)

αNb(π)
∏

(i,j)∈π

⟨xi, xj⟩.

3. For q = 0, we obtain the formula

φ(Gα,0(x2m ⊗ x2m) · · ·Gα,0(x1 ⊗ x1)) =
∑

π∈NCA
2 (2m)

(1 + α)#Out(π)
∏

(i,j)∈π

⟨xi, xj⟩2,

where #Out(π) is the number of outer B-pairs in a non-crossing partition of type A.

Proof. 2. When q = 0, then the nonzero terms in part 2 of Theorem 4.6 occur only when π is
non-crossing of type B.

3. In order to proof the third point, we introduce the following map

D: NCB
2 (2m) → NCA

2 (2m), π̃ 7→ π,
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D7−−−→

D7−−−→

D7−−−→

Figure 7. The visualization of the action D on NCB
2 (4).

where π is defined through the B-pairs of π̃; more precisely, the B-pairs C = ((b̄, ā), (a, b)) ∈
PairB(π̃) are mapped according to the action of the following relation

C 7→

{
((b̄, ā), (a, b)), if C is the positive pair of PairB(π̃),

((b̄, a), (ā, b)), if C is the negative pair of PairB(π̃).

We further observe that every negative B-pair in PairB(π̃) is mapped to an outer positive B-pair
in PairB(π) – see Figure 7. For any choice of outer blocks V1, . . . , Vi ∈ π, there is a unique
π̃ ∈ D−1(π) which whose negative blocks are exactly the preimages of V1, . . . , Vi. Thus, we get

#D−1(π) =

#Out(π)∑
i=0

(
#Out(π)

i

)
for π ∈ NCA

2 (2m).

Using the above fact we obtain

∑
π∈NCA

2 (2m)

(1 + α)#Out(π)
∏

(i,j)∈π

⟨xi, xj⟩2 =
∑

π∈NCA
2 (2m)

#Out(π)∑
i=0

αi

(
#Out(π)

i

) ∏
(i,j)∈π

⟨xi, xj⟩2

=
∑

π∈NCA
2 (2m)

∑
π̃∈D−1(π)

αNb(π̃)
∏

(i,j)∈π

⟨xi, xj⟩2

and finally by using NCB
2 (2m) =

⊔
π∈NCA

2 (2m)D
−1(π), we get

=
∑

π̃∈NCB
2 (2m)

αNb(π)
∏

(i,j)∈π

⟨xi, xj⟩.

Let us observe that during this procedure we don’t change the inner product because now we
assume that xī = xi. ■

Remark 4.10. The formula in Corollary 4.9 (3) was employed in many papers related to con-
ditional free probability, e.g., [11, 15, 30].

4.3 The positive and negative inversions

Finally, in this subsection, we explain the combinatorial interpretation of calculating the positive
and negative inversions, which is well compatible with the procedure of counting crossings and
negative blocks as described in Remark 4.5. Let us observe that we can rewrite a symmetrization
operator by using the language of the positive and negative inversions; see [14, pp. 219–220].
First, we need some definition of positive and negative roots of two types:

R+
1 := {1, . . . , n} and R−

1 = −R+
1 ,

R+
2 := {(i, j) | 1 ≤ i < j ≤ n} ∪ {(i,−j) | 1 ≤ i < j ≤ n} and R−

2 := −R+
2 .
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In this style, we may express the lengths l1 and l2 as

� l1(σ) = ninv(σ) := card{i | 1 ≤ i ≤ n and σ(i) < 0} is the number of negative inversions
of σ ∈ B(n);

� l2(σ) = pinv(σ) := card{(i, j) ∈ R+
2 | (σ(i), σ(j)) ∈ R−

2 } is the number of positive inver-
sions of σ ∈ B(n);

With the above notation, we have P
(n)
α,q =

∑
σ∈B(n) α

ninv(σ)qpinv(σ)σ.

Remark 4.11. The lengths functions l1 and l2 are very related to root system of the Coxeter
group of type B. We can use results of [14, Proposition 1] or [7, Chapter 4.3]. In our case of the
group B(n), the this is related to root system of type B

Π = Π1 ∪Π2,

where Π1 = {e1, . . . , en} and Π2 = {ei ± ej | i < j}. The related length functions (see [14,
Proposition 1]) on our group B(n) are the following:

li(σ) = #
{
Πi ∩ σ−1(−Πi)

}
, i = 1, 2,

which in our notations reads R+
2 = Π2 and R+

1 = Π1. More information on the subject can be
found in the books of [5, 24].

This new definition of length has the following interpretation. We draw arrows which show
the action of permutation; see Figure 8. Then we follow the rules:

� if an arrow a → b crosses −a → −b, then we count them as a negative inversion. This
crossing appears in the center of picture and corresponds to a crossing which appears when
we draw the negative pair (b̄, ā)⊗ (a, b), i.e., the cross of (b̄, ā) and (a, b).

� if an arrow a → b crosses c → d, (c ̸= −a) and repeatedly, −a → −b crosses −c → −d, then
we count one of them as a positive inversion. In other words, we count positive inversions
as crossings of arrows, which lie to the left or to the right of the center of the picture.

We would like to emphasize that the same rule applies when we count corresponding statistics
for the set of pair partitions of type B.

Remark 4.12. We say that σ ∈ B(n) has a crossing of an arrow if it has a crossing in a sense
described and illustrated in Figure 8, and we denote the cardinality of them by Cr(σ).

4.4 The Coxeter arcsine distribution

The Catalan number Cat(W ) is defined for any finite Coxeter group W . Its explicit formula is

Cat(W ) =
1

|W |

n∏
i=1

(h+ di),

where h is the Coxeter number and d1, . . . , dn are the degrees of W , arising from its ring of
polynomial invariants (see [2, Section 2.7]). The number Cat(W ) has been discovered indepen-
dently in several different areas and wherever it appears, it is accompanied by a wealth of new
combinatorics. Armstrong [2, p. 39, Table 2.8] displays the complete list of Coxeter–Catalan
numbers for finite irreducible Coxeter groups; in type B it is a central binomial coefficient

(
2n
n

)
.

This sequence is cataloged as A000984 in Sloane’s database [27] and the numbers are called the
Catalan numbers of type B.
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−2 −1 1 2

−2 −1 1 2

σ =
(−2 −1 1 2

2 −1 1 −2

)
= π1π0π1

inv(σ) = 2, ninv((σ) = 1

−2 −1 1 2

−2 −1 1 2 inv(σ) = 1, ninv((σ) = 2

σ =
(−2 −1 1 2

1 2 −2 −1

)
= π0π1π0

−2 −1 1 2

inv(σ) = 1, ninv((σ) = 0

σ =
(−2 −1 1 2
−1 −2 2 1

)
= π1

−2 −1 1 2

Figure 8. The example of a permutation B(2) with inversions.

Definition 4.13. A type-B set partition in a sense of Reiner [26, Section 2] is a set parti-
tion PB

R (n) of the set [±n], which is ordered according to the principle −1 < · · · < −n < 1 <
· · · < n satisfying the following two conditions:

� if B is a block in PB
R (n), then −B is also a block in PB

R (n);

� there exists at most one block B in PB
R (n) for which B = −B called the zero block.

If it is non-crossing then we call it a non-crossing partition. We denote by NCB
R(n) the set of

all non-crossing partitions in a sense of Reiner.

Our definition of partition in PB
1,2(n) is quite similar to a partitions PB

R (n), but in our situation
the zero block does not exist.

Reiner [26] showed that the cardinality of the set of non-crossing partitions of type W on
Coxeter group W is Cat(W ) and in the type-B situation we have: #NCB

R(n) =
(
2n
n

)
. It is worth

to mention that the authors also refer to these numbers as the type-B Catalan numbers, because
they count the number of lattice paths of type B from (0, 0) to (n, n) using steps (1, 0) and (0, 1);
see [28, 29].

Finally, we count the number of non-crossing pair partitions of type B, which appear in this
article. If we put q = 0 and α = 1 in (2.2), then we obtain

tQ(1,0)
n (t) = Q

(1,0)
n+1 (t) + 2Q

(1,0)
n−1 (t), n = 1,

tQ(1,0)
n (t) = Q

(1,0)
n+1 (t) +Q

(1,0)
n−1 (t), n = 2, 3, . . . .

These are the Chebyshev polynomials of the first kind, defined through the identity

Q(1,0)
n (2 cos(θ)) = cos(nθ).

These polynomials are well known and the orthogonalizing probability measure is a symmet-
ric arcsine distribution 1

π
√
4−x2

, supported on (−2, 2); see [23, p. 39]. The moments of this

distribution is a central binomial coefficient; from this and from Corollary 4.9, we conclude that

#NCB
2 (2n) =

(
2n

n

)
.
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It seems to us that this is the first interpretation of the Catalan numbers of type B as pair
partitions coming form our double Fock space of type B study in that paper. A few years
ago Professor P. Biane let us know that this case is interesting because the arcsine distribution
should be analogue of the normal distribution in a free probability of type B.

Remark 4.14. Biane, Goodman and Nica [4] showed that it is possible to build a free probabil-
ity theory of type B, by replacing the occurrences of the symmetric groups and the non-crossing
partitions of type A by their type B analogues and the non-crossing partitions of Reiner [26],
i.e., NCB

R(n). In their work, a central role is played by the boxed convolution, which is a com-
binatorial operation having a natural type B analogue and describing the multiplication of two
freely independent non-commutative random variables. Our construction of double Fock space
of type B uses the geometry and length function of Coxeter groups based on simple roots, but
the main idea of the paper [4] is to use all roots and another length function. Recently, con-
nections between construction [4] and c-freeness and infinitesimal free probability were put into
evidence in [3, 17, 18, 21, 22, 25].

5 Fock space in edge cases

In the last section, we explain a situation when the kernel of the symmetrization P
(n)
α,q is non-

trivial. In this case P
(n)
α,q projects to the space of special symmetric and antisymmetric tensors.

In the group algebra CG the natural involution is defined by x∗ = x−1 for x ∈ G and extended
by anti-linearity for all groups algebra.

Lemma 5.1. If H ̸= {e} is a subgroup of a finite group G and function φ is a character of H,
then PH = 1

|H|
∑

x∈H φ(x)x is an orthogonal projection.

Proof. Let us first observe that PH = P ∗
H because φ(x) = φ

(
x−1

)
for x ∈ H. We also have

|H|2P 2
H =

∑
x∈H

∑
y∈H

φ(x)φ(y)xy =
∑
x∈H

∑
y∈H

φ(xy)xy

=
∑
x∈H

∑
t∈H

φ(t)t = |H|
∑
t∈H

φ(t)t = |H|2PH .

From this we see that PH is an orthogonal projection. ■

Remark 5.2. Assume that (α, q) ∈ {(±1,±1)}. Then we have that P
(n)
α,q :=

∑
σ∈B(n) φα,q(σ)σ,

where φα,q(σ) := αl1(σ)ql2(σ) is a character of the group B(n). Indeed, we can easily see that in
each of the four cases (α, q) ∈ {(±1,±1)}, we have

φα,q(σγ) = αl1(σγ)ql2(σγ) = αl1(σ)ql2(σ)αl1(γ)ql2(γ) = φα,q(σ)φα,q(γ).

If these cases (α, q) ∈ {(0,±1), (±1, 0)}, we obtain also two characters of subgroups H0 =
gp{π0} and two characters of the permutation group S(n) generated by {π1, . . . , πn−1}.

Now we will specify the range of parameters for which the considered operator is invertible.

Lemma 5.3. If |q| < 1, |α| < 1 and (α, q) /∈ {(±1,±1), (0,±1), (±1, 0)}, then considered sym-

metrization P
(n)
α,q is invertible and kerP

(n)
α,q = {0}, as operator on l2(B(n)) and on Kn = H⊗2n,

for arbitrary Hilbert space H.

Proof. The proof of this lemma follows from [13, Theorem 2.4]. ■

Our operator P
(n)
α,q has a nontrivial kernel in the following situation.
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Theorem 5.4. If α ∈ [−1, 1] and q = ±1 or q ∈ [−1, 1] and α = ±1, then the operator P
(n)
α,q

has a nontrivial kernel.

Proof. First we consider the case α ∈ [−1, 1] and q = ±1. Then by well-known result from
Coxeter groups (see Remark 5.5 below), we have

P
(n)
α,±1 = T1P

(n)
0,±1,

and the operator 1
n!P

(n)
0,±1 is the orthogonal projection (see Lemma 5.1). Therefore the space

V
(n)
0,±1 =

(
I − 1

n!
P

(n)
0,±1

)
(Kn)

is the kernel of P
(n)
α,±1 since

P
(n)
α,±1

(
V

(n)
0,±1

)
=

1

n!
T1P

(n)
0,±1

(
I − 1

n!
P

(n)
0,±1

)
(Kn) = {0}.

We proceed in a similar manner when q ∈ [−1, 1] and α = ±1. Then we get form Remark 5.5

P
(n)
±1,q = T2

1

2
P

(n)
±1,0.

Since 1
2P

(n)
±1,0 = 1

2(e + ±π0) is the orthogonal projection on l2(H0), where H0 = gp{π0}. Hence
we get that on the subspace

W
(n)
±1,0 =

(
I − 1

2
P

(n)
±1,0

)
(Kn),

we have P
(n)
±1,0

(
W

(n)
±1,0

)
= {0}. ■

Remark 5.5.

(1) We use very important result form the Coxeter groups (W,S). If J ⊂ S and WJ = gp(J),
then there exists decomposition

W = W JWJ

(see [24]). Moreover, if we define for the subset A ⊂ W

P (n)
q (A) =

∑
w∈A

ql(w)w,

then P
(n)
q (W ) = P

(n)
q (WJ)P

(n)
q

(
W J

)
. In our case, q = (α, q) and ql(w) = αl1(w)ql2(w).

(2) We also observe that if (α, q) ∈ {(±1,±1)}, then P
(n)
α,q is homomorphism of B(n), i.e.,

P
(n)
α,q (σ1σ2) = P

(n)
α,q (σ1)P

(n)
α,q (σ2), Therefore, the natural extension of P

(n)
α,q to tensor product

of Hilbert space P̃
(n)
α,q : Kn → Kn as was presented in beginning of Section 3. Hence we

have identification of linear spaces

Kn/ ker P̃
(n)
α,q

∼= P̃ (n)
α,q (Kn).

(3) Finally, we describe four special tensor products. The type B-tensor product is of the form

xn⊗̃ · · · ⊗̃xn : =
1

n!2n
P̃

(n)
±1,±1xn ⊗ · · · ⊗ xn.
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In particular cases, we distinguish the following tensors:

(I) If α = q = 1, then symmetrization covers all B-symmetric tensor products, i.e.,

xn⊗̃ · · · ⊗̃xn : =
1

n!2n

∑
σ∈B(n)

xσ(n) ⊗ · · · ⊗ xσ(n),

i.e., we have

σ(xn⊗̃ · · · ⊗̃xn) = xn⊗̃ · · · ⊗̃xn.

(II) If α = −1 and q = −1, then we have the antisymmetric tensor product of type B, i.e.,

xn⊗̃ · · · ⊗̃xn =
1

n!2n

∑
σ∈B(n)

(−1)number of inversions in σxσ(n) ⊗ · · · ⊗ xσ(n).

(III) If α = 1 and q = −1, then we have the fermionic tensor product of type B, i.e.,

xn⊗̃ · · · ⊗̃xn =
1

n!2n

∑
σ∈B(n)

(−1)number of positive inversions in σxσ(n) ⊗ · · · ⊗ xσ(n).

(IV) If α = −1 and q = 1, then we have the bosonic tensor product of type B, i.e.,

xn⊗̃ · · · ⊗̃xn =
1

n!2n

∑
σ∈B(n)

(−1)number of negative inversions in σxσ(n) ⊗ · · · ⊗ xσ(n).

Next we distinguish yet four situations (α, q) ∈ {(0,±1), (±1, 0)}, namely

(V) If q = 0 and α = ±1, then P
(n)
α,0 = 1 + απ0 and 1

2 P̃
(n)
α,0 is a projection. From this we see

that

(a) if q = 0 and α = −1, then we don’t have a positive inversion and at most one negative
inversion π0 and so we obtain

xn⊗̃ · · · ⊗̃xn =
1

2
xn ⊗ · · · ⊗ x1̄ ⊗ x1 ⊗ · · · ⊗ xn

− 1

2
xn ⊗ · · · ⊗ x1 ⊗ x1̄ ⊗ · · · ⊗ xn.

This tensor product might be called the Boolean tensor product of type B ;

(b) if q = 0 and α = 1, then we obtain the free tensor product of type B

xn⊗̃ · · · ⊗̃xn =
1

2
xn ⊗ · · · ⊗ x1̄ ⊗ x1 ⊗ · · · ⊗ xn

+
1

2
xn ⊗ · · · ⊗ x1 ⊗ x1̄ ⊗ · · · ⊗ xn.

(VI) If q = ±1 and α = 0, then we have two cases namely a negative inversion does not appear
and we obtain the classical fermionic relation for q = −1 and the bosonic relation for
q = 1, namely

xn⊗̃ · · · ⊗̃xn =
1

n!

∑
σ∈B(n)

ninv(σ)=0

(±1)number of positive inversions in σxσ(n) ⊗ · · · ⊗ xσ(n).

The above cases are interesting and will be considered in future work. The most significant
situations appear, when q = 0 and α = 1 as it can be a starting point for creating a new kind
of type B free probability.
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[12] Bożejko M., Speicher R., An example of a generalized Brownian motion, Comm. Math. Phys. 137 (1991),
519–531.
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[14] Bożejko M., Szwarc R., Algebraic length and Poincaré series on reflection groups with applications to repre-
sentations theory, in Asymptotic Combinatorics with Applications to Mathematical Physics (St. Petersburg,
2001), Lecture Notes in Math., Vol. 1815, Springer, Berlin, 2003, 201–221.

[15] Bożejko M., Wysoczański J., Remarks on t-transformations of measures and convolutions, Ann.
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