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1 Introduction

The pioneering work of Koenigs [13] which led to a finite set of metrics with non constant
curvature and with a superintegrable (SI) geodesic flow was rediscovered and generalized in [11]
and [9] at the classical and at the quantum levels, leading to the determination of its geodesics [1,
6, 17] and allowed impressive three dimensional generalizations thanks to ideas from conformal
geometry [7]. Needless to say, this field is closely related to superintegrability, a flourishing
domain of research [16].

The original proof given by Koenigs is not so convincing and in [11] and [9] some complex
coordinates changes are even needed to recover the real forms of the metrics.

The quest for a proof, in a more modern approach, was first given in [4]: after having proved
that SI metrics are metrics admitting three independent projective fields the authors proceeded
to give a complete classification and description of these metrics with arbitrary signature.

Unaware of these results and starting from Matveev and Shevchishin framework [15] the
complete list of Riemannian Koenigs metrics was derived in [17, Theorem 3]. According to the y
dependence of the quadratic integrals one has

hyperbolic: g =
(a cosx+ b)

sin2 x

(
dx2 + dy2

)
,

trigonometric:


g0 =

(
ae−x + be−2x

)(
dx2 + dy2

)
,

g+ =
a sinhx+ b

cosh2 x

(
dx2 + dy2

)
,

g− =
a coshx+ b

sinh2 x

(
dx2 + dy2

)
,

affine: g =

(
a2x

2 + 2a1x+ a0
)

(a2x+ a1)2
(
dx2 + dy2

)
. (1.1)

The parameters which do appear must be restricted in order to avoid a constant Gaussian
curvature and to insure that the metric is indeed of Riemannian signature.
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Koenigs theorem stemmed from the following problem: start from a generic Hamiltonian on
some surface of revolution

H = a2(x)
(
P 2
x + P 2

y

)
find all the possible quadratic integrals

S = A(x, y)P 2
x +B(x, y)PxPy + C(x, y)P 2

y .

Our first aim will be to give a direct proof of Koenigs theorem facing up to the PDEs which
allow for the construction of S.

On the way, we were also interested in another related problem: is it possible to find all
Riemannian Liouville metrics which are SI? Some partial answers were already found in the
literature [14] and not surprisingly this problem is also related with Koenigs metrics.

Let us observe that this problem, in the pseudo-Riemannian setting, is much richer than in
the Riemannian case. It was first considered in [5] and generalized in [2] where all the normal
forms of the pseudo-Riemannian metrics with a quadratic integral were determined, showing
three possible classes whereas for the Riemannian metrics there is a single class.

The content of this article is the following: in Section 2, we present our direct proof of Koenigs
theorem. In Section 3, we give the setting of SI Liouville metrics and the PDE which determines
these metrics. Then in Section 4, solving this PDE reveals a finite set of metrics. In Section 5,
the global structure of these metrics is discussed and, in Section 6, we interpret our results in
terms of coupling constant metamorphosis. Three appendices conclude the paper: Appendix A
which describes a non canonical metric on H2, Appendix B gives a summary of the various SI
Liouville metrics found and Appendix C which relates the metrics given in [4] and the ones given
by (1.1).

2 A direct proof of Koenigs theorem

The setting is the following: we have for Hamiltonian

H = Π2
x + a2(x)P 2

y , Πx = a(x)Px,

for which {H,Py} = 0 and we are looking for an extra quadratic integral (which should be
irreducible) having the most general form

S = A(x, y)H +B(x, y)ΠxPy + C(x, y)P 2
y .

Remark 2.1. We will exclude a constant Gaussian curvature R = aa′′− (a′)2 since this implies
the reducibility of S.

Remark 2.2. An additive constant either in A or in C is irrelevant.

Let us begin with

Lemma 2.3. S is an integral iff (A,B,C) solve the following system of PDEs:

{H,S} = 0 ⇐⇒
(1) : ∂xA = 0, (2) : ∂xB = −a∂yA,

(3) : ∂xC = −∂y(aB), (4) : ∂yC = ∂x(aB).

Proof. It follows from an elementary computation of Poisson brackets. Let us observe that the
functions aB and C are harmonic conjugate. ■
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Lemma 2.4. The previous system admits a solution iff

α(x)∂3
yA(y) + λ(x)∂yA(y)− ∂2

yβ(y)− µ(x)β(y) = 0, (2.1)

where

λ =
(αα′)′′

α′ , µ =
α′′′

α′ , α′ = a.

Proof. Relations (1) and (2) are easily integrated

A = A(y), B(x, y) = −α(x)∂yA+ β(y).

The remaining equations (3) and (4) become

∂xC = αα′∂2
yA− α′∂yβ, ∂yC = −(αα′)′∂yA+ α′′β.

Their integrability condition gives relation (2.1). ■

Let us prove:

Proposition 2.5. The integrability equation (2.1) is equivalent to

B = −α∂yA, ∂3
yA+ s0∂yA = 0,

(
α2
)′′′ − s0

(
α2
)′
= 0, s0 ∈ {0,±1}.

Proof. Let us first deduce some necessary conditions. Applying ∂x to (2.1) gives

α′∂3
yA+ λ′∂yA− µ′β = 0. (2.2)

Observing that µ′ cannot vanish, otherwise the Gaussian curvature is constant, this relation
determines β(y) according to

β =
α′

µ′ ∂
3
yA+

λ′

µ′∂yA.

Applying on it ∂x leads to(
α′

µ′

)′
∂3
yA+

(
λ′

µ′

)′
∂yA = 0,

from which we deduce the separation relations

∂3
yA+ s0∂yA = 0, s0 ∈ R,

(
λ′ − s0α

′

µ′

)′
= 0. (2.3)

By a scaling of y, we can restrict s0 to be in {0,±1}.
The relations obtained in (2.3) are necessary. To lift them up to sufficient conditions we must

discuss backwards successively the relations (2.1) and (2.2).
Integration of the right-hand relation in (2.3) produces

λ′ − s0α
′ = lµ′ =⇒ λ− s0α = lµ+m, (l,m) ∈ R2. (2.4)

Since µ′ cannot vanish, relation (2.2) determines β:

β = l∂yA =⇒ B = −(α− l)∂yA.

Eventually relation (2.1) gives m = −s0l. Hence the right-hand relation in (2.4) leads to the
following ODE[

(α− l)2
]′′′ − s0

[
(α− l)2

]′
= 0,

showing that we can take l = 0 since a = α′ = (α− l)′.
It follows that β(y) = 0 and B = −α∂yA, ending the proof. ■
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So we conclude, in agreement with [13] and [17]:

Theorem 2.6 (Koenigs). Recalling that H = (α′)2
(
P 2
x + P 2

y

)
, according to the values of s0 we

have:

s0 = 0, A = k1y + k2
y2

2
, α2 = a0 + a1x+ a2x

2,

s0 = +1, A = k1 sin y + k2 cos y, α2 = a0 + a1 sinhx+ a2 coshx,

s0 = −1, A = k1 sinh y + k2 cosh y, α2 = a0 + a1 sinx+ a2 cosx,

while S is given by

s0 = 0, S = AH −
(
α2
)′

2
(∂yA)PxPy +

1

2

(
α2∂2

yA−
(
α2
)′′
A
)
P 2
y ,

s0 = ±1, S = AH −
(
α2
)′

2
(∂yA)PxPy −

s0
2

(
α2 − a0

)
AP 2

y . (2.5)

Proof. Proposition 2.5 gives

aB = −
(
α2
)′

2
∂yA

and C (see Lemma 2.3) has to be determined from

∂xC =
α2

2
∂2
yA, ∂yC = −1

2

(
α2
)′′
∂yA.

Elementary computations give C in each case. ■

Remark 2.7. Let us notice the striking balance between trigonometric and hyperbolic lines in
the differential equations obtained in Proposition 2.5:

∂3
yA+ s0∂yA = 0,

(
α2
)′′′ − s0

(
α2
)′
= 0.

Remark 2.8. One can check that aB and C are indeed harmonic conjugate.

Remark 2.9. From Theorem 2.6, we observe that we can define S = k1S1 + k2S2, where these
integrals are easily deduced from (2.5). It follows that the linear span of the quadratic integrals
is indeed four dimensional, with

H, P 2
y , S1, S2.

Remark 2.10. However a well known theorem (for a proof see [18, p. 461]) states that in dimen-
sion 2 there may be at most three algebraically independent integrals including the Hamiltonian.
Indeed there is a quadratic relation between S1 and S2 given in [11] and [9] which does reduce
the number of algebraically independent integrals to three.

Remark 2.11. The global properties of these SI metrics, their geodesics and their quantum
structure were discussed in [1] and in [17].

For further reference, let us mention three metrics of interest. The first one is

s0 = 0, α = 2
√
x : g = x

(
dx2 + dy2

)
. (2.6)

A second one is

s0 = 0, α =
√
s+ x2 : g =

(
s+ x2

)(dx2 + dy2
)

x2
. (2.7)
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The last one is

s0 = −1, α =
4

s

(√
1 + sex − 1

)
: g =

(
se−x + e−2x

)(dx2 + dy2
)

4
.

The change of coordinates X = e−x/2 cos(y/2) and Y = e−x/2 sin(y/2) leads to

g =
(
s+X2 + Y 2

)(
dX2 + dY 2

)
. (2.8)

Let us consider now the second item: SI Liouville metrics.

3 The setting

The metric on a Liouville surface is defined locally as

g = (f(x) + g(y))
(
dx2 + dy2

)
,

and its geodesic flow, generated by the Hamiltonian

H =
P 2
x + P 2

y

f(x) + g(y)
,

does exhibit the quadratic integral

Q =
g(y)P 2

x − f(x)P 2
y

f(x) + g(y)
= P 2

x − f(x)H = g(y)H − P 2
y , {H,Q} = 0.

To reach superintegrability, we need an extra integral which can be written without loss of
generality

S = A(x, y)H +B(x, y)PxPy + C(x, y)P 2
y .

Remark 3.1. We will exclude from our analysis the metrics g of constant curvature since in
this case all the integrals become reducible.

Remark 3.2. Constants either in A or in C are irrelevant.

3.1 PDE system and a master equation

Let us start with

Proposition 3.3. The conservation relation {H,S} = 0 is equivalent to the following set of
PDE:

(1) ∂xA+ ġ
2B = 0,

(2) ∂yA+ (f + g)∂xB + f ′

2 B + ġC = 0,

(3) ∂xA+ (f + g)(∂yB + ∂xC) + ġ
2B = 0,

(4) ∂yA+ (f + g)∂yC + f ′

2 B + ġC = 0.

Proof. Elementary calculation. ■
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3.2 Discussion

Computing relations (1)–(3) and (2)–(4) gives

∂xC = −∂yB, ∂yC = ∂xB, (3.1)

implying that these two functions are harmonic conjugate while A is determined by

∂xA = − ġ

2
B, ∂yA = −f∂yC − f ′

2
B − ∂y(gC).

So, defining A = A+ gC, we end up with
∂xA = −g∂yB − ġ

2
B,

∂yA = −f∂xB − f ′

2
B,

=⇒ S = AH +BPxPy − CQ. (3.2)

The integrability condition of this system is therefore

Bf ′′ + 3B′f ′ + 2B′′f = Bg̈ + 3Ḃġ + 2B̈g. (3.3)

This is the master equation to be solved.
Having observed in (3.1) that B and C are harmonic conjugate, let us define

(x+ iy)n = Rn(x, y) + iIn(x, y).

Since equation (3.3) is linear, we can consider separately the following four cases:

I : B = R2n(x, y), II : B = I2n+1(x, y),

III : B = R2n+1(x, y), IV: B = I2n(x, y).

Remark 3.4. Despite the usefulness ofA, and sinceQ = g(y)H−P 2
y , we will write the integral S

in its initial form

S = A(x, y)H +B(x, y)PxPy + C(x, y)P 2
y .

4 Discussion of the four cases

4.1 Case I

Let us prove

Proposition 4.1. For B given by

B = R2n(x, y) =

n∑
l=0

(
2n

2l

)
(−1)n−lx2ly2(n−l), n ≥ 0,

the integrability constraint (3.3) never gives a Liouville metric except for n = 0 for which we
have

f(x) = µx2 + 2a1x+ a0, g(y) = µy2 + 2b1y + b0 (4.1)

and

A = −µxy − b1x− a1y, S = AH + PxPy. (4.2)
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Proof. For n = 0, we have B = 1 and C = 0. Relation (3.3) becomes f ′′ = g̈ = 2µ with µ ∈ R
which gives (4.1). Integrating (3.2) gives (4.2).

Let us consider n ≥ 1. We will call S1 (resp. S2) the left-hand side (resp. the right-hand side)
of the relation (3.3). Positing Cn

l = (−1)n−l
(
2n
2l

)
and δx = x∂x and δy = y∂y, we have

S1 =
n∑

l=0

Cn
l x

2(l−1)Fl(x)y
2(n−l), Fl(x) = (δx + 2l − 1)(δx + 4l)f(x),

while

S2 =
n∑

l=0

Cn
l x

2ly2(n−l−1)Gn−l(y), Gν(y) = (δy + 2ν − 1)(δy + 4ν)g(y).

The leading terms are

S1 = Cn
0 f

′′(x)y2n + · · · , S2 = Cn
nx

2ng̈(y) + · · · .

Acting with ∂2n
x ∂2n

y on the relation S1 = S2 gives the separation relation

∂2(n+1)
x f(x) = (−1)n∂2(n+1)

y g(y),

which leads to polynomials for f and g

f(x) =

2(n+1)∑
k=0

akx
k, g(y) =

2(n+1)∑
k=0

bky
k, b2n+2 = (−1)na2n+2.

Now we can compute

S1 =

2(n+1)∑
k=0

n∑
l=0

Cn
l ak(k + 2l − 1)(k + 4l)xk+2(l−1)y2(n−l),

S2 =

2(n+1)∑
k=0

n∑
l=0

Cn
l bk(k + 2(n− l)− 1)(k + 4(n− l))x2lyk+2(n−l).

The relation S1 = S2 implies that k can take only even values, giving

S̃1 =
S1

2
=

n+1∑
k=0

n∑
l=0

Cn
l a2k(2k + 2l − 1)(k + 2l)x2(k+l−1)y2(n−l),

S̃2 =
S2

2
=

n+1∑
k=0

n∑
l=0

Cn
l b2k(2(k + n− l)− 1)(k + 2(n− l))x2ly2(k+n−l−1).

The first sum can be written

S̃1 = a0A0 +

n+1∑
k=1

n∑
l=0

Cn
l a2k(2k + 2l − 1)(k + 2l)x2(k+l−1)y2(n−l), (4.3)

where

A0 =

n−1∑
l=0

Cn
l+1(2l + 1)(2l + 2)x2ly2(n−l−1).
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In (4.3), let us operate the change of summation index l → L = l + k − 1 giving

n+1∑
k=1

n+k−1∑
L=k−1

Cn
L−k+1a2k(2L+ 1)(2L− k + 2)x2Ly2(k+n−L−1). (4.4)

Exchanging the summations in (4.4) leads to

S̃1 = a0A0 +

n∑
L=0

(2L+ 1)x2L
L+1∑
k=1

Cn
L−k+1(2L− k + 2)a2ky

2(k+n−L−1)

+
2n∑

L=n+1

(2L+ 1)x2L
n+1∑

k=L−n+1

Cn
L−k+1(2L− k + 2)a2ky

2(k+n−L−1).

Comparing with S̃2 shows that the last sum must vanish because L ≥ n + 1 and this entails
a2s = 0 for s = 2, 3, . . . , n+ 1, reducing S̃1 to the simple form

S̃1 = a0A0 + a2A2, A2 =
n∑

l=0

Cn
l (2l + 1)2x2ly2(n−l).

Let us consider S̃2, which can be written

S̃2 = b0B0 + b2B2 +
n∑

l=0

Cn
l x

2l
n+1∑
k=2

b2k(2(k + n− l)− 1)(k + 2(n− l))y2(n−l+k−1),

where

B0 =

n−1∑
l=0

Cn
l (2(n− l)− 1)2(n− l)x2ly2(n−l−1), B2 =

n∑
l=0

Cn
l (2(n− l) + 1)2x2ly2(n−l).

Comparing S̃2 with S̃1 implies b2s = 0 for s = 2, 3, . . . , n+ 1 and we are left with

S̃2 = b0B0 + b2B2.

The relation

(2l + 1)(2l + 2)Cn
l+1 = −(2(n− l)− 1)(2n− 2l)Cn

l =⇒ B0 = −A0,

so we end up with

S̃1 − S̃2 = (a0 + b0)A0 + a2A2 − b2B2 = 0,

or more explicitly

S̃1 − S̃2 = (a0 + b0)
(
2Cn

1 y
2(n−1) + · · ·+ (2n− 1)2nCn

nx
2(n−1)

)
+ a2

(
Cn
0 y

2n + · · ·+ (2n+ 1)2Cn
nx

2n
)
− b2

(
(2n+ 1)2Cn

0 y
2n + · · ·+ Cn

nx
2n
)
= 0.

It follows that a0 + b0 = 0 and a2 = b2 = 0, hence f(x) + g(y) ≡ 0. ■

Let us consider the second case.
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4.2 Case II

Let us prove

Proposition 4.2. For B given by

B = I2n+1(x, y) =
n∑

l=0

(
2n+ 1

2l

)
(−1)n−lx2ly2(n−l)+1, n ≥ 0,

the integrability constraint (3.3) never gives a Liouville metric except if n = 0 for which we have

f(x) = µx2 + 2a1x+ a0, g(y) =
µ

4
y2 +

b−2

y2
+ b0, (4.5)

and

A = −µ

2
xy2 − a1

2
y2 − b0x =⇒ S = AH + yPxPy + xQ. (4.6)

Proof. For n = 0, we have B = y and C = −x. The relation (3.3) becomes

f ′′ = g̈ +
3

y
ġ = 2µ, µ ∈ R,

which implies (4.5). Integrating (3.2) gives (4.6).
Let us consider n ≥ 1. Positing this time Cn

l = (−1)n−l
(
2n+1
2l

)
, we have

S1 =
n∑

l=0

Cn
l x

2(l−1)Fl(x)y
2(n−l)+1, Fl(x) = (δx + 2l − 1)(δx + 4l)f(x),

and

S2 =
n−1∑
l=0

Cn
l x

2ly2(n−l)−1Gn−l(y), Gν(y) = (δy + 2ν)(δy + 4ν + 2)g(y).

The leading terms are

S1

y
= Cn

0 f
′′(x)y2n + · · · , S2

y
= Cn

nx
2n

(
g̈ +

3

y
ġ

)
+ · · · ,

so acting with ∂2n
x ∂2n

y gives the separation relation

∂2(n+1)
x f(x) = (−1)n(2n+ 1)∂2n

y

(
g̈ +

3

y
ġ

)
,

which are easily integrated into

f(x) =

2(n+1)∑
k=0

akx
k, g(y) =

2(n+1)∑
k=−2,k ̸=±1

bky
k, b2(n+1) =

(−1)n

2(n+ 2)
a2(n+1).

Similarly to Case I, we obtain

S̃1 =

n∑
l=0

n+1∑
k=0

Cn
l (2(k + l)− 1)(k + 2l)a2kx

2(k+l−1)y2(n−l)+1,

S̃2 =
n∑

l=0

n+1∑
k=−1

Cn
l 2(k + n− l)(k + 2(n− l) + 1)b2kx

2ly2(k+n−l)−1.
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Following the same lines as in the proof of Proposition 2.5, we get

S̃1 = a0A0 + a2A2,

A0 =
n−1∑
l=0

Cn
l+1(2l + 1)(2l + 2)x2ly2(n−l)−1, A2 =

n∑
l=0

Cn
l (2l + 1)2x2ly2(n−l)+1.

Let us consider now S̃2. It can be expanded

S̃2 = b−2B−2 + b0B0 + b2B2 +

n∑
l=0

n+1∑
k=2

Cn
l 2(k + n− l)(k + 2(n− l) + 1)b2kx

2ly2(k+n−l)−1,

where

B−2 =

n∑
l=0

Cn
l 2(n− l − 1)2(n− l)x2ly2(n−l)−3.

Comparing with S̃1 implies

b−2 = 0, b4 = b6 = · · · = b2(n+1) = 0

and we are left with

S̃2 = b0B0 + b2B2,

B0 =
n−1∑
l=0

Cn
l 2(n− l)(2(n− l) + 1)x2ly2(n−l)−1,

B2 =
n∑

l=0

Cn
l [2(n− l + 1)]2x2ly2(n−l)+1.

Here also we have B0 = −A0 and the relation S̃1 = S̃2 reduces to

(a0 + b0)A0 + a2A2 − b2B2 = 0.

Since we have

A0 = 2Cn
1 y

2n−1 + · · ·+ (2n− 1)2nCn
nx

2(n−1)y,

A2 = Cn
0 y

2n+1 + · · ·+ (2n+ 1)2Cn
nx

2ny,

B2 = 4(n+ 1)2Cn
0 y

2n+1 + · · ·+ 4Cn
nx

2ny,

it follows that for n ≥ 1 we have a0 + b0 = 0 and a2 = b2 = 0 hence f(x) + g(y) ≡ 0. ■

Let us consider the third case.

4.3 Case III

Let us prove

Proposition 4.3. For B given by

B = R2n+1(x, y) =

n∑
l=0

(−1)n−l

(
2n+ 1

2l + 1

)
x2l+1y2(n−l), n ≥ 0,
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the integrability constraint (3.3) never gives a Liouville metric except for n = 0 for which we
have

f(x) =
µ

4
x2 +

a−2

x2
+ a0, g(y) = µy2 + 2b1y + b0, (4.7)

and

A = −µ

2
x2y − b1

2
x2 − a0x =⇒ S = AH + xPxPy − yQ. (4.8)

Proof. For n = 0, we have B = x and C = y. The relation (3.3) becomes

f ′′ +
3

x
f ′ = g̈ = 2µ,

which implies (4.7). Integrating (3.2) gives (4.8).
Let us posit Cn

l = (−1)n−l
(
2n+1
2l+1

)
. This time we have

S1 =
n∑

l=0

Cn
l x

2l−1Fl(x)y
2(n−l), Fl(x) = (δx + 2l)(δx + 4l + 2)f(x),

and

S2 =
n∑

l=0

Cn
l x

2l+1y2(n−l−1)Gn−l(y), Gν(y) = (δy + 2ν − 1)(δy + 4ν)g(y).

The leading terms are

S1

x
= Cn

0

(
f ′′ +

3

x
f ′
)
y2n + · · · , S2

x
= Cn

nx
2ng̈ + · · · ,

so acting with ∂2n
x ∂2n

y we get the separation relation

∂2n
x

(
f ′′ +

3

x
f ′
)

=
(−1)n

2n+ 1
∂2(n+1)
y g,

which implies

f(x) =

2(n+1)∑
k−2,k ̸=±1

akx
k, g(y) =

2(n+1)∑
k=0

bky
k, b2(n+1) = (−1)n2(n+ 2)a2(n+1).

As in the previous cases, we get

S̃1 =

n∑
l=0

Cn
l y

2(n−l)
n+1∑
k=−1

2(k + l)(k + 2l + 1)a2kx
2(k+l)−1,

S̃2 =

n∑
l=0

Cn
l x

2l+1
n+1∑
k=0

(2(k + n− l)− 1)(k + 2(n− l))b2ky
2(k+n−l−1).

By an analysis similar to the proof of Proposition 3.3, we have

S̃1 = a−2A−2 + a0A0 + a2A2,

with

n = 1: A−2 = 0, n ≥ 2: A−2 = 2

n−2∑
l=0

Cn
l+2(2l + 2)(2l + 4)x2l+1y2(n−l−2)
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and

A0 = 2
n−1∑
l=0

Cn
l+1(2l + 2)(2l + 3)x2l+1y2(n−l)−1, A2 = 2

n∑
l=0

Cn
l (2l + 2)2x2l+1y2(n−l).

Since the powers of y appearing in A−2 never appear in S̃2 it follows that for n ≥ 2 we
have a−2 = 0 and S̃1 = a0A0 + a2A2.

By an argument similar to the proof of Proposition 2.5, we have

S̃2 = b0B0 + b2B2,

where

B0 =
n−1∑
l=0

Cn
l (2(n− l)− 1)2(n− l)x2l+1y2(n−l−1),

B2 =
n∑

l=0

Cn
l (2(n− l) + 1)2x2l+1y2(n−l).

Here also the relation B0 = −A0 holds. So we have

S̃1 − S̃2 = 0 ⇐⇒ (a0 + b0)A0 + a2A2 − b2B2 = 0.

The relations

A0 = 12Cn
1 xy

2n−1 + · · ·+ 4n(2n+ 1)Cn
nx

2n−1y,

A2 = 8Cn
0 xy

2n + · · ·+ 4(n+ 1)2Cn
nx

2n+1,

B2 = (2n+ 1)2Cn
0 xy

2n + · · ·+ Cn
nx

2n+1

imply, for n ≥ 1, that a0 + b0 = 0 and a2 = b2 = 0 hence f(x) + g(y) ≡ 0. ■

Remark 4.4. One should observe that Case III is not really different from Case II since, if we
define

f(x) = µx2 + 2a1x+ a0, g(y) =
µ

4
y2 +

b−2

y2
+ b0,

the Hamiltonians are respectively

HII =
P 2
x + P 2

y

f(x) + g(y)
and HIII =

P 2
x + P 2

y

g(x) + f(y)
,

and therefore they cannot be considered as different since they are related by the substitu-
tion x ↔ y.

Let us consider the last case.

4.4 Case IV

Let us prove
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Proposition 4.5. For B given by

B = I2n(x, y) =
n−1∑
l=0

(−1)n−l

(
2n

2l + 1

)
x2l+1y2(n−l)−1, n ≥ 1,

the integrability constraint (3.3) does not give a Liouville metric except for n = 1 and n = 2.
For n = 1, we have

f(x) = µx2 +
a−2

x2
+ a0, g(y) = µy2 +

b−2

y2
+ b0, (4.9)

and

A = −µx2y2 − b0
2
x2 − a0

2
y2, S = AH + xyPxPy +

1

2

(
x2 − y2

)
Q, (4.10)

while for n = 2 we have

f(x) =
a

x2
, g(y) =

b

y2
,

and

S = 4
(
ay2 − bx2

)
H − 4xy

(
x2 − y2

)
PxPy −

(
x4 − 6x2y2 + y4

)
Q.

Proof. For n = 1, let us take B = xy and C = −1
2

(
x2 − y2

)
, in which case the relation (3.3)

becomes

f ′′ +
3

x
f ′ = g̈ +

3

y
ġ = 8µ,

leading to (4.9). Integrating (3.2) gives (4.10). Let us consider now n ≥ 2. Positing this time
Cn
l = (−1)n−l

(
2n

2l+1

)
, we have

S1 =

n−1∑
l=0

Cn
l x

2l−1Fl(x)y
2(n−l)−1, Fl(x) = (δx + 2l)(δx + 4l + 2)f(x),

while

S2 =
n−1∑
l=0

Cn
l x

2l+1y2(n−l−1)−1Gn−l(y), Gν(y) = (δy + 2(ν − 1))(δy + 4ν − 2)g(y).

The higher order terms are given by

S1 = Cn
0 (xf

′′ + 3f ′)y2n−1 + · · · , S2 = Cn
n−1x

2n−1(yg̈ + 3ġ) + · · · .

So, acting with ∂2n−1
x ∂2n−1

y on the relation S1 = S2, gives the separation relation

∂2n−1
x (xf ′′ + 3f ′) = (−1)n−1∂2n−1

y (yg̈ + 3ġ),

which implies

f(x) =

2n∑
k=−2,k ̸=±1

akx
k, g(y) =

2n∑
k=−2,k ̸=±1

bky
k, b2n = (−1)n−1a2n.
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It follows that

S̃1 =
n−1∑
l=0

Cn
l y

2(n−l)−1
n∑

k=−1

2(k + l)(k + 2l + 1)a2kx
2(k+l)−1,

S̃2 =

n−1∑
l=0

Cn
l x

2l+1
n∑

k=−1

2(k + n− l − 1)(k + 2(n− l)− 1)b2ky
2(k+n−l−1)−1.

As in the previous propositions, one can prove that

S̃1 = a−2A−2 + a0A0 + a2A2, (4.11)

where

n = 2: A−2 = 0, n ≥ 3: A−2 =
n−3∑
l=0

Cn
l+2(2l + 2)(2l + 4)x2l+1y2(n−l−2)−1,

and

A0 =

n−2∑
l=0

Cn
l+1(2l + 2)(2l + 3)x2l+1y2(n−l−1)−1,

A2 =

n−1∑
l=0

Cn
l (2l + 2)2x2l+1y2(n−l)−1.

Similarly, one can show that S̃2 can be written

S̃2 = b2B−2 + b0B0 + b2B2,

where

n = 2: B−2 = 0, n ≥ 3: B−2 =
n−3∑
l=0

Cn
l 2(n− l − 2)2(n− l − 1)x2l+1y2(n−l−2)−1,

and

B0 =
n−2∑
l=0

Cn
l 2(n− l − 1)(2(n− l)− 1)x2l+1y2(n−l−1)−1,

B2 =

n−1∑
l=0

Cn
l (2(n− l))2x2l+1y2(n−l)−1.

Since the relation B0 = −A0 remains valid the last step in the proof requires solving

S̃1 = S̃2 ⇐⇒ a−2A−2 − b−2B−2 + (a0 + b0)A0 + a2A2 − b2B2 = 0. (4.12)

At this stage we must discuss separately the cases n = 2 and n = 3 before the general
case n ≥ 4.

4.4.1 First case: n = 2

In this case, we have A−2 = B−2 = 0 and the previous relation reduces to

−3(a0 + b0)xy + 2a2
(
xy3 − 8x3y

)
− 2b2

(
xy3 − x3y

)
= 0,

implying a2 = b2 = 0 and a0 + b0 = 0 but no constraint on a−2 = a, b−2 = b. So we have

f(x) + g(y) =
a

x2
+

b

y2
,

and integrating (3.2) gives

S = 4
(
ay2 − bx2

)
H − 4xy

(
x2 − y2

)
PxPy −

(
x4 − 6x2y2 + y4

)
Q. (4.13)
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4.4.2 Second case: n = 3

Comparing, in equation (4.12), the y dependence of the various bivariate polynomials shows
that this equation reduces to

a−2A−2 − b−2B−2 = 0, (a0 + b0)A0 = 0, a2A2 − b2A2 = 0.

Taking into account that

A−2 = B−2 = −48xy =⇒ b−2 = a−2 = a.

Since A0 = 30xy
(
3y2 − 4x2

)
it follows that a0 + b0 = 0.

Observing that

A2 = 4
(
C3
0xy

3 + 4C3
1x

3y3 + 9C3
2x

5y
)
, B2 = 4

(
9C3

0xy
3 + 4C3

1x
3y3 + C3

2x
5y
)
,

implies a2 = b2 = 0. Setting a = 1, we have

f(x) + g(y) =
1

x2
+

1

y2
,

and one can check that

S = − 2
(
5x4 − 6x2y2 + 5y4

)
H − 2xy

(
3x4 − 10x2y2 + 3y4

)
PxPy

−
(
x6 − 15x4y2 + 15x2y4 − y6

)
Q. (4.14)

As shown in Appendix A, the corresponding Liouville metric is of constant negative curvature
and should not be considered any longer.

4.4.3 General case: n ≥ 4

This time we have

A−2 = 4
(
2Cn

2 xy
2n−5 + · · ·+ (n− 2)(n− 1)Cn

n−1x
2n−5y

)
,

B−2 = 4
(
(n− 2)(n− 1)Cn

0 xy
2n−5 + · · ·+ 2Cn

n−3x
2n−5y

)
,

as well as

A0 = 2
(
3Cn

1 xy
2n−3 + · · ·+ (n− 1)(2n− 1)Cn

n−1x
2n−3y

)
and

A2 = 4
(
Cn
0 xy

2n−1 + · · ·+ n2Cn
n−1x

2n−1y
)
,

B2 = 4
(
n2Cn

0 xy
2n−1 + · · ·+ Cn

n−1x
2n−1y

)
.

It follows that a0 + b0 = 0 and a−2 = b−2 = a2 = b2 = 0 hence f(x) + g(y) ≡ 0. ■

5 Global structure

One should take care of the following point: in principle (H,Q,S) are independent integrals
which ensure the superintegrability, but for particular values of the parameters a Killing vector
may appear (let us call K the corresponding linearly conserved quantity) which may induce
a reducibility either of Q or of S. So we may have, in these particular cases, a SI system either
of the form (H,Q,K) or (H,S,K).
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5.1 Case I

In Proposition 4.1, we got the Liouville metric

f(x) = µx2 + a1x+ a0, g(y) = µy2 + b1y + b0,

A = −µxy − b1
2
x− a1

2
y, S = AH + PxPy.

If µ = 0 by a translation of x and y, we can set a0 = b0 = 0. Then, by a linear change of
coordinates and a scaling of the metric, one obtains

g = x
(
dx2 + dy2

)
=⇒ H =

P 2
x + P 2

y

x
. (5.1)

This geodesic flow is not globally defined because the conformal factor vanishes for x = 0
inducing a singularity in the Gaussian curvature R = 1/

(
2x3
)
.

This is one of the SI systems discovered by Koenigs [13], see (2.6). This case is special since Py

is now conserved and the SI system is

H, Py, S = −y

2
H + PxPy,

since Q = −P 2
y is reducible. It is well known [11] that there is another quadratic integral

T = −y2

2
H + 2Py(yPx − xPy),

which is reducible since we have HT = −2S2 − 2P 4
y .

When µ ̸= 0 a translation of x and y allows a1 = b1 = 0 and a scaling of the metric
allows µ = 1, leaving us with

g =
(
s+ x2 + y2

)(
dx2 + dy2

)
, (x, y) ∈ R2, s = a0 + b0. (5.2)

This metric is Koenigs [13], see (2.8). It was also considered by Matveev in [14, p. 555]. It is
globally defined iff s > 0: since the conformal factor never vanishes we have for manifoldM ∼= R2.

This metric was advocated in [14, p. 565] to be an example of a geodesic flow with four
independent integrals. Indeed there are 4 integrals:

H, Q = (y2 + b0)H − P 2
y , K = xPy − yPx, S = −xyH + PxPy,

which are not functionally independent since we have

S2 = −(Q+ a0H)(Q− b0H) +HK2.

5.2 Case II

In Proposition 4.2, we got the Liouville metric with

f(x) = µx2 + ax+ a0, g(y) =
µ

4
y2 +

b

y2
+ b0,

and

A = −µ

2
xy2 − a

4
y2 − b0x =⇒ S = AH + yPxPy + xQ.
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If µ = 0 and a ̸= 0, b ̸= 0 a translation of x reduces the metric to

g =
(
b+ (s+ ax)y2

)(dx2 + dy2
)

y2
, x ∈ R, y > 0, (5.3)

which is never globally defined due to the zero of the conformal factor.

The three independent integrals are

H =
y2

b+ (s+ ax)y2
(
P 2
x + P 2

y

)
, Q̃ =

(
b+ sy2

)
P 2
x − axy2P 2

y

b+ (s+ ax)y2
,

and

S = −
(a
4
y2 + sx

)
H + yPxPy + xQ̃.

A companion case is obtained via (x ↔ y).

For a = 0, taking b = s2 and scaling the metric gives

g =
(
s+ y2

)dx2 + dy2

y2
=
(
s+ y2

)
g0
(
H2
)
, x ∈ R, y > 0, (5.4)

we recover a second metric due to Koenigs, see (2.7), globally defined on M ∼= H2 iff s > 0. Its
three independent integrals are

H =
y2

s+ y2
(
P 2
x + P 2

y

)
, Px, S = −xH + Px(xPx + yPy),

since Q = P 2
x − sH is reducible.

If µ ̸= 0 we can set µ = 1. For a = b = 0, one gets

g =

(
s+ x2 +

y2

4

)(
dx2 + dy2

)
, (5.5)

a metric derived by Matveev [14], globally defined on M ∼= R2 iff s > 0. Its three independent
integrals are

H =
P 2
x + P 2

y

s+ x2 + y2

4

, Q̃ = P 2
x − x2H, S = −x

(
s+

y2

2

)
H + yPxPy + xQ̃.

More generally, for b ̸= 0, we have

g = Ψ(x, y)g0
(
H2
)
, Ψ(x, y) = b+ y2

(
s+ x2 +

y2

4

)
, (5.6)

globally defined on M ∼= H2 iff b > 0 and s ≥ 0.

The three independent integrals are

H =
y2

Ψ

(
P 2
x + P 2

y

)
, Q̃ = P 2

x − x2H, S = −x

(
s+

y2

2

)
H + yPxPy + xQ̃.

Due to Remark 4.4, Case III does not produce new metrics and can be skipped.
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5.3 Case IV

In Proposition 4.5, we got the Liouville metric

f(x) = µx2 +
a

x2
+ a0, g(y) = µy2 +

b

y2
+ b0,

and

A = −µx2y2 − b0
2
x2 − a0

2
y2, S = AH + xyPxPy +

1

2

(
x2 − y2

)
Q. (5.7)

If µ = 0, the case where a0 = b0 = 0 is special since the metric is

g =
bx2 + ay2

x2y2
(
dx2 + dy2

)
, a > 0, b > 0, a ̸= b, (5.8)

encountered in Section 4.4.1 for n = 2. It exhibits an extra Killing vector: x∂x + y∂y.
We have for integrals

H =
x2y2

bx2 + ay2
(
P 2
x + P 2

y

)
, Q = P 2

x − a

x2
H, K = xPx + yPy. (5.9)

However, there are two other quadratic integrals: the first one from (5.7) is reducible

2S = 2xyPxPy +
(
x2 − y2

)
Q = K2 − (a+ b)H.

So we remain with 4 integrals: H, Q, K and S given by (4.13) which are not independent since
one has the relation

QS = −(a− b)2H2 + 2(a+ b)HK2 −K4,

and we remain with a SI geodesic flow with three independent integrals: (H,Q,K).
More generally, when µ ≥ 0 and s = a0 + b0 ≥ 0 the metric is

g =

(
bx2 + ay2

x2 + y2
+ s

x2y2

x2 + y2
+ µx2y2

)
x2 + y2

x2y2
(
dx2 + dy2

)
, x > 0, y > 0, (5.10)

and taking into account Proposition A.1, we have g = χg0
(
H2
)
.

In terms of the global coordinates
(
X1, X2, X3

)
, defined in Appendix A, relation (A.1), we

have

x2 + y2 =

√
X3 +X1

X3 −X1
, x2 − y2 =

X2

X3 −X1
,

leading to

bx2 + ay2

x2 + y2
=

a+ b

2
− (a− b)

2

X2√
1 + (X2)2

.

Since X2√
1+(X2)2

∈ (−1,+1) the sum of the first two terms, for a > 0 and b > 0 is strictly

positive, so if (a > 0, b > 0) and (s ≥ 0, µ ≥ 0) the non-vanishing of the conformal factor
implies M ∼= H2.

The three independent integrals are

H =
x2y2

x2 + y2

(
P 2
x + P 2

y

)
χ

, Q̃ = P 2
x −

( a

x2
+ µx2

)
H,

and

S = −x2
(s
2
+ µy2

)
H + xyPxPy +

1

2

(
x2 − y2

)
Q̃.
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Remark 5.1. The global structure meets the manifolds R2 and H2 but never S2. The explana-
tion stems from a theorem due to Kiyohara [12]: a SI geodesic flow of Hamiltonian H, globally
defined on S2, with two extra quadratic integrals implies that its metric is of constant curvature
hence cannot appear in our analysis. This applies as well to Koenigs metrics which are never
defined on S2.

Let us now relate our results, via coupling constant metamorphosis, to previous work.

6 Coupling constant metamorphosis

The so-called “coupling constant metamorphosis” [8] or Stäckel transform [3] establishes that if
a system has for Hamiltonian

H = P 2
x + P 2

y + V (x, y) (6.1)

and is quadratically SI then

H ′ =
P 2
x + P 2

y

V (x, y)

will be also quadratically SI. Since all the systems having the form (6.1) were derived in [10] let
us give their relation with our work.

In Case I (Section 5.1), we have

V = µ
(
x2 + y2

)
+ 2(a1x+ b1y) + s, s = a0 + b0,

which is the case E′3, merely the case E3 with a translation of both variables.

In Case II (Section 5.2), the potential is

V = µ
(
x2 +

y2

4

)
+ 2a1x+

b

y2
+ s,

which is the case E2. Case III is obtained by the permutation x ↔ y.

In Case IV, the potential is

V = µ
(
x2 + y2

)
+

a

x2
+

b

y2
+ s,

and this is the case E1.

A Appendix

Let us prove:

Proposition A.1. If one takes

f(x) =
1

x2
, g(y) =

1

y2
=⇒ g0 =

(
x2 + y2

)
x2y2

(
dx2 + dy2

)
, x > 0, y > 0,

the Liouville metric is a non-canonical form of g0
(
H2
)
.
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Proof. The Gaussian curvature R = −1 implies a non-canonical metric of H2. There are three
linear integrals

K1 = xPx + yPy, K2 =
xPx − yPy

x2 + y2
, K3 = x

(
x2 − 3y2

)
Px − y

(
y2 − 3x2

)
Py.

Within this geometry all the quadratic integrals are reducible:

H =
1

4

(
K2

1 −K2K3

)
, Q = K1K2,

and despite the apparent complexity of S, see (4.14), we have merely S = −K2
3 .

Defining the coordinates

X1 =

(
x2 + y2

)2 − 1

4xy
∈ R, X2 =

x2 − y2

2xy
∈ R, X3 =

(
x2 + y2

)2
+ 1

4xy
≥ 1, (A.1)

one can check the relations(
X1
)2

+
(
X2
)2 − (X3

)2
= −1

and

g0
(
H2
)
≡
(
dX1

)2
+
(
dX2

)2 − (dX3
)2

=

(
x2 + y2

)
x2y2

(
dx2 + dy2

)
. ■

B Appendix

The list of SI Liouville metrics is the following:

1. The first Koenigs metric (5.1):

g = x
(
dx2 + dy

)2
, x > 0, y ∈ R, M ∼= ∅.

2. The second Koenigs metric (5.4):

g =
(
s+x2

)dx2 + dy2

x2
=
(
s+x2

)
g0
(
H2
)
, x > 0, y ∈ R, s > 0 =⇒ M ∼= H2.

3. The third Koenigs metric (5.2):

g =
(
s+ x2 + y2

)(
dx2 + dy2

)
, (x, y) ∈ R2, s > 0 =⇒ M ∼= R2.

4. The variant (5.3):

g =
(
b+ (s+ ax)y2

)
g0
(
H2
)
, x ∈ R, y > 0, M = ∅,

and its companion via (x ↔ y).

5. Matveev metric (5.5):

g =

(
s+ x2 +

y2

4

)(
dx2 + dy2

)
, (x, y) ∈ R2, s > 0 =⇒ M ∼= R2,

and its companion via (x ↔ y).
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6. The most general metric in Case II (see (5.6)):

g =

[
b+ y2

(
s+ x2 +

y2

4

)]
g0
(
H2
)
, x ∈ R, y > 0, b > 0, s ≥ 0

=⇒ M ∼= H2,

and its companion via (x ↔ y).

7. The metric (5.8):

g =
bx2 + ay2

x2y2
(
dx2 + dy2

)
, a > 0, b > 0, a ̸= b ⇐⇒ M ∼= H2.

For a = b, it reduces to a non-canonical metric on H2, see Appendix A.

8. The most general metric in Case IV (Section 5.3) given by (5.10)

g = χ(x, y)g0
(
H2
)
, χ(x, y) =

bx2 + ay2

x2 + y2
+ s

x2y2

x2 + y2
+ µx2y2,

and if a > 0, b > 0, a ̸= b, s ≥ 0, µ ≥ 0, we have M ∼= H2.

The three independent integrals are given for each metric in Section 5.

C Appendix

The metrics derived in [4] are expressed in terms of algebraic functions while Koenigs ones resort
to trigonometric or hyperbolic functions. Let us put a bridge, in the Riemannian case, between
these metrics observing that a scaling of the metric is irrelevant since this is tantamount to
a scaling of the Hamiltonian.

C.1 The affine case

The metric (a) given in [4], in which we substitute u = ex, leads to

u
(
du2 + dy2

)
. (C.1)

The metric (b) given in [4], in which we substitute u = 2
√
ex + ϵ, becomes

(
u2 − 4ϵ

)(du2 + dy2
)

u2
. (C.2)

Let us compare with the affine case in (1.1)

g =

(
a2x

2 + 2a1x+ a0
)

(a2x+ a1)2
(
dx2 + dy2

)
.

If a2 = 0, we can set a1 = 1/2 and taking u = x+ a0 we obtain (C.1). If a2 does not vanish, we
take a2 = 1. Defining u = x+ a1, we recover (C.2) up to an overall scaling of u and y.

What remains to be discussed in [4] is the metric (c) which can be written

g =
x(

x2 + 2ax+ ϵ
) ( dx2

x2
(
x2 + 2ax+ ϵ

) + dy2

)
, a ∈ R, ϵ = ±1.
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C.2 The hyperbolic case

If ϵ = −1, let us define the coordinate change x → u:

u = arctan

(√
x2 + 2ax− 1

1− ax

)
, a < 0, x > x0 =

√
a2 + 1 + |a|.

It maps x ∈ (x0,+∞) into u ∈ (0, arctan(1/|a|)) and we have the relations

dx2

x2
(
x2 + 2ax− 1

) = du2, x =
1√

a2 + 1 cosu− |a|
,

leading to

g =
1

a2 + 1

(√
a2 + 1 cosu− |a|

)
sin2 u

(
du2 + dy2

)
,

which fits with the first metric in (1.1).

C.3 The trigonometric cases

For ϵ = +1, we have two possible cases. The first one defines the coordinate change

u = arctanh

(√
x2 + 2ax+ 1

1 + ax

)
, a > 1, x > 0,

which maps x ∈ (0,+∞) into u ∈ (arctanh(1/a),+∞). We have the relations

dx2

x2
(
x2 + 2ax+ 1

) = du2, x =
1√

a2 − 1 coshu− a
,

leading to

g =
1(

a2 − 1
)√a2 − 1 coshu− a

sinh2 u

(
du2 + dy2

)
,

which fits with the fourth metric in (1.1).
The second case is given by the coordinate change

u = arctanh

(
1 + ax√

x2 + 2ax+ 1

)
, a ∈ (0, 1), x > 0,

which maps x > 0 into u ∈ (arctanh(a),+∞). We have

dx2

x2
(
x2 + 2ax+ 1

) = du2, x =
1√

1− a2 sinhu− a
,

leading to

g =
1

1− a2

√
1− a2 sinhu− a

cosh2 u

(
du2 + dy2

)
,

which fits with the third metric in (1.1).
Up to now a ̸= ±1. For a = 1, we have

x =
e−u

e−u − 1
⇒ g =

(
e−u − e−2u

)(
du2 + dy2

)
.
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For a = −1, we have two possible cases:

x =
eu

eu − 1
⇒ g =

(
e2u − eu

)(
du2 + dy2

)
,

x =
eu

eu + 1
⇒ g =

(
eu + e2u

)(
du2 + dy2

)
.

Due to the freedom u → ±u, we are in agreement with the second case in (1.1).
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