| 
 SIGMA 19 (2023), 055, 33 pages       arXiv:2210.03041     
https://doi.org/10.3842/SIGMA.2023.055 
 
Matrix Spherical Functions for $(\mathrm{SU}(n+m),\mathrm{S}(\mathrm{U}(n)\times \mathrm{U}(m)))$: Two Specific Classes
Jie Liu
 Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
 
 
Received October 18, 2022, in final form July 13, 2023; Published online August 04, 2023
 Abstract 
We consider the matrix spherical function related to the compact symmetric pair $(G,K)=(\mathrm{SU}(n+m),\mathrm{S}(\mathrm{U}(n)\times\mathrm{U}(m)))$. The irreducible $K$ representations $(\pi,V)$ in the ${\rm U}(n)$ part are considered and the induced representation $\mathrm{Ind}_K^G\pi$ splits multiplicity free. In this case, the irreducible $K$ representations in the ${\rm U}(n)$ part are studied. The corresponding spherical functions can be approximated in terms of the simpler matrix-valued functions. We can determine the explicit spherical functions using the action of a differential operator. We consider several cases of irreducible $K$ representations and the orthogonality relations are also described.
 Key words: representation theory; Lie group; special functions. 
pdf (630 kb)  
tex (33 kb)  
 
 
References 
- Bourbaki N., Éléments de mathématique. Fasc. XXXIV. Groupes  et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes  de Tits. Chapitre V: Groupes engendrés par des réflexions.  Chapitre VI: Systèmes de racines, Actual. Sci. Ind., Vol.  1337, Hermann, Paris, 1968.
 
- Casselman W., Miličić D., Asymptotic behavior of matrix coefficients of  admissible representations, Duke Math. J. 49 (1982),  869-930.
 
- Deitmar A., Invariant operators on higher $K$-types, J. Reine Angew.  Math. 412 (1990), 97-107.
 
- Gangolli R., Varadarajan V.S., Harmonic analysis of spherical functions on real  reductive groups, Ergeb. Math. Grenzgeb. (3), Vol. 101, Springer,  Berlin, 1988.
 
- Gantmacher F.R., The theory of matrices. Vol. 1, AMS Chelsea Publishing,  Providence, RI, 1998.
 
- Grünbaum F.A., Pacharoni I., Tirao J., Matrix valued spherical functions  associated to the complex projective plane, J. Funct. Anal.  188 (2002), 350-441, arXiv:math.RT/0108042.
 
- Heckman G., Schlichtkrull H., Harmonic analysis and special functions on  symmetric spaces, Perspect. Math., Vol. 16, Academic Press, Inc.,  San Diego, CA, 1994.
 
- Helgason S., Differential geometry and symmetric spaces, Pure Appl.  Math., Vol. 12, Academic Press, New York, 1962.
 
- Kass S.N., Explicit decompositions of some tensor products of modules for  simple complex Lie algebras, Comm. Algebra 15 (1987),  2251-2261.
 
- Kobayashi T., Multiplicity-free representations and visible actions on complex  manifolds, Publ. Res. Inst. Math. Sci. 41 (2005), 497-549.
 
- Koelink E., Liu J., $BC_{2}$ type multivariable matrix functions and matrix  spherical functions, Publ. Res. Inst. Math. Sci., to appear,  arXiv:2110.02287.
 
- Koelink E., van Pruijssen M., Román P., Matrix-valued orthogonal  polynomials related to $({\rm SU}(2)\times{\rm SU}(2),{\rm diag})$,  Int. Math. Res. Not. 2012 (2012), 5673-5730,  arXiv:1012.2719.
 
- Koelink E., van Pruijssen M., Román P., Matrix-valued orthogonal  polynomials related to $({\rm SU}(2)\times{\rm SU}(2),{\rm diag})$, II,  Publ. Res. Inst. Math. Sci. 49 (2013), 271-312,  arXiv:1203.0041.
 
- Koelink E., van Pruijssen M., Román P., Matrix elements of irreducible  representations of ${\rm SU}(n+1)\times {\rm SU}(n+1)$ and multivariable  matrix-valued orthogonal polynomials, J. Funct. Anal. 278  (2020), 108411, 48 pages, arXiv:1706.01927.
 
- Koornwinder T.H., Orthogonal polynomials in two variables which are  eigenfunctions of two algebraically independent partial differential  operators. I, Indag. Math. 77 (1974), 48-58.
 
- Koornwinder T.H., Orthogonal polynomials in two variables which are  eigenfunctions of two algebraically independent partial differential  operators. II, Indag. Math. 77 (1974), 59-66.
 
- Koornwinder T.H., Orthogonal polynomials in two variables which are  eigenfunctions of two algebraically independent partial differential  operators. III, Indag. Math. 77 (1974), 357-369.
 
- Koornwinder T.H., Orthogonal polynomials in two variables which are  eigenfunctions of two algebraically independent partial differential  operators. IV, Indag. Math. 77 (1974), 370-381.
 
- Koornwinder T.H., Matrix elements of irreducible representations of ${\rm  SU}(2)\times{\rm SU}(2)$ and vector-valued orthogonal polynomials,  SIAM J. Math. Anal. 16 (1985), 602-613.
 
- Krämer M., Sphärische Untergruppen in kompakten zusammenhängenden  Liegruppen, Compositio Math. 38 (1979), 129-153.
 
- Kumar S., Tensor product decomposition, in Proceedings of the International  Congress of Mathematicians. Vol. III, Editors R. Bhatia, A. Pal,  G. Rangarajan, V. Srinivas, M. Vanninathan, Hindustan Book Agency, New Delhi,  2010, 1226-1261.
 
- Macdonald I.G., Symmetric functions and Hall polynomials, 2nd ed., Oxford  Science Publications, Clarendon Press, Oxford, 1998.
 
- Pacharoni I., Tirao J., One-step spherical functions of the pair $({\rm  SU}(n+1),{\rm U}(n))$, in Lie Groups: Structure, Actions, and  Representations, Progr. Math., Vol. 306, Birkhäuser, New York,  2013, 309-354, arXiv:1209.4500.
 
- Pezzini G., van Pruijssen M., On the extended weight monoid of a spherical  homogeneous space and its applications to spherical functions,  Represent. Theory, to appear, arXiv:2005.09490.
 
- Stokman J.V., Reshetikhin N., $N$-point spherical functions and asymptotic  boundary KZB equations, Invent. Math. 229 (2022), 1-86,  arXiv:2002.02251.
 
- van Pruijssen M., The branching rules for $(\mathrm{SL}(n + 1, \mathbb{C}),  \mathrm{GL}(n, \mathbb{C}))$ revisited: a spherical approach and  applications to orthogonal polynomials, Preprint, 2018, available at  https://www.math.ru.nl/ mpruijssen/MVP-SphericalProof2018.pdf.
 
- van Pruijssen M., Multiplicity free induced representations and orthogonal  polynomials, Int. Math. Res. Not. 2018 (2018),  2208-2239, arXiv:1405.0796.
 
- Warner G., Harmonic analysis on semi-simple Lie groups. II.,Grundlehren Math. Wiss., Vol. 189, Springer, New York, 1972.
 
 
 | 
 |