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1 Introduction

The goal of this paper is to present explicit formulas for certain algebraic Poisson brackets on P5.
Recall that two Poisson brackets {·, ·}1, {·, ·}2 are called compatible if any linear combination

{·, ·}1+λ · {·, ·}2 is still a Poisson bracket (i.e., satisfies the Jacobi identity). Pairs of compatible
Poisson brackets play an important role in the theory of integrable systems.

With every normal elliptic curve C in Pn one can associate naturally a Poisson bracket on Pn,
called a Feigin–Odesskii bracket of type qn+1,1. The corresponding quadratic Poisson brackets
on An+1 arise as quasi-classical limits of Feigin–Odesskii elliptic algebras. On the other hand,
they can be constructed using the geometry of vector bundles on C (see [2, 8]).

It was discovered by Odesskii–Wolf [6] that for every n there exists a family of 9 linearly
independent mutually compatible Poisson brackets on Pn, such that their generic linear com-
binations are Feigin–Odesskii brackets of type qn+1,1. In [3], this construction was explained
and extended in terms of anticanonical line bundles on del Pezzo surfaces. It was observed
in [3, Example 4.6] that in this framework one also obtains 10 linearly independent mutually
compatible Poisson brackets on P5. In this paper, we will produce explicit formulas for these 10
brackets (see Theorem 3.2).

2 Homological perturbation for Pn

2.1 Formula for the homotopy

Let

H =
⊕

p≥0, q∈Z
Hp(Pn,O(q))

be the cohomology algebra of line bundles on Pn, and

A =
( ⊕

p≥0, q∈Z
Cp(Pn,O(q)), d

)
the Čech complex with respect to the standard open covering Ui = (xi ̸= 0) of Pn. There is
a natural dg-algebra structure on A, such that the corresponding cohomology algebra is H. The
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multiplication on A is defined as follows. For α ∈ Cp(Pn,O(q)) and β ∈ Cp′(Pn,O(q′)), we
define αβ ∈ Cp+p′(Pn,O(q + q′)) by

(αβ)i0i1...ip+p′ := αi0...ip |Ui0...ip+p′
· βip...ip+p′ |Ui0...ip+p′

,

where on the right hand side we use the multiplication map O(q)⊗O(q′) → O(q + q′).

The homological perturbation lemma equips H with a minimal A∞-structure (mn), where m2

is the usual product on H. We will use the form of this lemma due to Kontsevich–Soibelman [5],
which gives formulas for mn as sums over trees. To apply homological perturbation, we need
the following data:

� a projection π : A → H,

� an inclusion ι : H → A, and

� a homotopy Q such that πι = idH and idA−ιπ = dQ+Qd.

Recall that H0 = C[x0, . . . , xn],

Hn ≃
⊕

e0,...,en<0

k · xe00 xe11 · · ·xenn ⊂ An,

and H i = 0 for i ̸= 0, n. We define ι in degree zero by ι(f)k = f for k = 0, 1, . . . , n. We define ι
in degree n by ι(g)0...n = g. We define the projection in degree zero to be

π(γ) =

{
γn if γn ∈ C[x0, . . . , xn],
0 else.

To define π in degree n, we observe that

An =
⊕

e0,...,en∈Z
k · xe00 xe11 · · ·xenn ,

and we let π be the natural projection to Hn.

To define the homotopy, we use that A decomposes as a direct sum of chain complexes

A = ⊕e⃗∈Zn+1A(e⃗),

where A(e⃗) consists of all elements in A whose components are scalar multiples of xe⃗ :=
xe00 xe11 · · ·xenn . In other words, A(e⃗) is the e⃗-isotypical summand with respect to the action
of the group Gn+1

m .

Let us set for e⃗ ∈ Zn+1,

k(e⃗) := max{i | ei ≥ 0}

(which is equal to −∞ if all ei are negative). There is then a standard homotopy Q defined
on an element γ ∈ A(e⃗)p by Q(γ)i0i1...ip−1 = γk(e⃗)i0...ip−1

if k(e⃗) > −∞ and Q(γ)i0i1...ip−1 = 0
otherwise (i.e., if all ei are negative).

For a Laurent monomial xe⃗ and a subset I = {i0, . . . , ip} ⊂ {0, 1, . . . , n} such that I ⊃ {0 ≤
i ≤ n|ei < 0}, let us denote by xe⃗I the element of Ap given by

(xe⃗I)j0...jp =

{
xe⃗ if {j0, . . . , jp} = I,

0 otherwise.
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Note that the condition I ⊃ {0 ≤ i ≤ n | ei < 0} guarantees that xe⃗ is a regular section of
the appropriate line bundle over Ui0...ip . Clearly, these elements form a basis for A and our
homotopy operator Q is given by

Q
(
xe⃗I

)
=

{
(−1)jxe⃗I\k(e⃗) if k(e⃗) = ij ∈ I,

0 otherwise.

With these data one can in principle calculate all the higher products on the cohomology
algebra H. Below, we will get explicit formulas in the case we need.

2.2 Calculation of m4 for P2

We now specialize to the case of the projective plane P2. We have no higher products of odd
degree because H and H⊗n only live in even degrees. Also, for degree reasons the product m4

will only be non-zero on elements e ⊗ f ⊗ g ⊗ h ∈ H⊗4 where one or two of the arguments
lie in H2 and the rest in H0. Below, we will explicitly compute the product m4 involving one
argument in H2. Thus, the following special case of the multiplication in A will be relevant: for
a monomial xe⃗ and a Laurent monomial xe⃗

′
, we have

ι0
(
xe⃗
)
· xe⃗ ′

I = xe⃗
′

I · ι0
(
xe⃗
)
= xe⃗+e⃗ ′

I .

We use the formula

m4(e, f, g, h) = −
∑
T

ϵ(T )mT (e, f, g, h),

where the sum runs over all rooted binary trees with 4 leaves labeled e, f , g and h (from left
to right). For each such tree T the expression mT (e, f, g, h) is computed by moving the inputs
through that tree, applying ι at the leaves, applying the homotopy Q on each interior edge,
multiplying elements of A at each inner vertex and finally applying the projection π at the
bottom.

We have to sum over the following five trees, which we denote T1, . . . , T5, respectively,

Let us first consider the case e ∈ H2 and f, g, h ∈ H0 and let’s take them all to be basis elements
of H2 and H0:

e =
(
xα0
0 xα1

1 xα2
2

)
{0,1,2}, f = xa00 xa11 xa22 , g = xb00 xb11 xb22 , h = xc00 xc11 xc22 ,

where α0, α1, α2 < 0 and ai, bi, ci ≥ 0 for i = 0, 1, 2. In this case only one of the trees above can
be non-zero in the expression for m4(e, f, g, h), namely T5, because in all other trees at some
point the homotopy Q will be applied to an element of A0. Below is a picture of the different
summands in A• and the possible ways the homotopy Q can map a monomial element in each
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summand:

H2

A2 : •0,1,2

A1 : •0,1 •0,2 •1,2

A0 : •0 •1 •2

H0

ι2

(1)
(3)

(2)
(4)

π0

When computing mT5(e, f, g, h) we should move e through this diagram; at every node it gets
multiplied by one of the other arguments and then it moves downwards along one of the arrows.
We see that we get non-zero result if we move either along (1) followed by (2) or along (3)
followed by (4) (so that we land in •2). We claim that only the second route is possible. The
reason is that at each node we multiply e by a monomial, so the exponents of x0, x1, x2 will
not decrease at any time. By the definition of Q, if e gets moved along (1) then after the
multiplication at •0,1,2 the exponent of x1 is non-negative while the exponent of x2 is negative.
Hence, after performing the multiplication at •0,2 the exponent of x1 is still non-negative. It
follows then from the definition of Q that e cannot move along (2) after moving along (1).

Now comes the computation of mT5(e, f, g, h). Below, we denote by µ the multiplication in A.
Then

mT5(e, f, g, h) = πµ(Qµ(Qµ(e, f), g), h)

= πµ
(
Qµ

(
Q
(
xα0+a0
0 xα1+a1

1 xα2+a2
2

)
{0,1,2}, g

)
, h

)
(∗)
= πµ

(
Qµ

((
xα0+a0
0 xα1+a1

1 xα2+a2
2

)
{1,2}, g

)
, h

)
= πµ

(
Q
(
xα0+a0+b0
0 xα1+a1+b1

1 xα2+a2+b2
2

)
{1,2}, h

)
(∗∗)
= π

(
µ
((
xα0+a0+b0
0 xα1+a1+b1

1 xα2+a2+b2
2

)
{2}, h

))
= π

((
xα0+a0+b0+c0
0 xα1+a1+b1+c1

1 xα2+a2+b2+c2
2

)
{2}

)
(∗∗∗)
= xα0+a0+b0+c0

0 xα1+a1+b1+c1
1 xα2+a2+b2+c2

2 ,

where the symbols (∗), (∗∗) are (∗∗∗) mean that we get zero unless the following conditions
hold:

(∗)


α0 + a0 ≥ 0,

α1 + a1 < 0,

α2 + a2 < 0,

(∗∗)

{
α1 + a1 + b1 ≥ 0,

α2 + a2 + b2 < 0,
(∗∗∗)


α0 + a0 + b0 + c0 ≥ 0,

α1 + a1 + b1 + c1 ≥ 0,

α2 + a2 + b2 + c2 ≥ 0.

In the end, we have

m4(e, f, g, h) = −mT5(e, f, g, h) = −ρ
(
α⃗; a⃗, b⃗, c⃗

)
· xα⃗+a⃗+b⃗+c⃗,

where

ρ
(
α⃗; a⃗, b⃗, c⃗

)
:=


1 if α0 + a0 ≥ 0, α1 + a1 < 0, α1 + a1 + b1 ≥ 0,

α2 + a2 + b2 < 0, α2 + a2 + b2 + c2 ≥ 0,

0 else.
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Similarly, we compute m4 applied to e, f , g, h in any given order. We have

m4(e, f, g, h) = −ρ
(
α⃗; a⃗, b⃗, c⃗

)
· xα⃗+a⃗+b⃗+c⃗,

m4(f, e, g, h) =
[
− ρ

(
α⃗; a⃗, b⃗, c⃗

)
+ ρ

(
α⃗; b⃗, a⃗, c⃗

)
− ρ

(
α⃗; b⃗, c⃗, a⃗

)]
· xα⃗+a⃗+b⃗+c⃗,

m4(f, g, e, h) =
[
ρ
(
α⃗; b⃗, a⃗, c⃗

)
− ρ

(
α⃗; b⃗, c⃗, a⃗

)
+ ρ

(
α⃗; c⃗, b⃗, a⃗

)]
· xα⃗+a⃗+b⃗+c⃗,

m4(f, g, h, e) = ρ
(
α⃗; c⃗, b⃗, a⃗

)
· xα⃗+a⃗+b⃗+c⃗.

3 Feigin–Odesskii brackets

3.1 Bivectors on projective spaces

It is well known that every Gm-invariant bivector on a vector space V leads to a bivector on the
projective space PV . A bivector on V can be thought of as a skew-symmetric bracket {·, ·} on
the polynomial algebra S(V ∗), which is a biderivation. Such a bracket is Gm-invariant if and
only if the bracket of two linear forms is a quadratic form. In other words, such a bracket can
be viewed as a skew-symmetric pairing

b : V ∗ × V ∗ → S2(V ∗).

The corresponding bivector Π on the projective space PV is determined by the skew-symmetric
forms Πv on T ∗

v PV for each point ⟨v⟩ ∈ PV . We have an identification

T ∗
v PV = ⟨v⟩∨ ⊂ V ∗.

It is easy to see that under this identification we have

Πv(s1 ∧ s2) = b(s1, s2)(v), (3.1)

where s1, s2 ∈ ⟨v⟩∨. Here we take the value of the quadratic form b(s1 ∧ s2) at v.
We can use the above formula in reverse. Namely, suppose for some bivector Π on PV we

found a skew-symmetric pairing b such that (3.1) holds. Then the Gm-invariant bracket {·, ·}
on S(V ) given by b induces the bivector Π on PV . Note that if Π is a Poisson bivector on PV ,
it is not guaranteed that the Gm-invariant bracket {·, ·} on S(V ) is also Poisson, i.e., satisfies
the Jacobi identity (but it is known that {·, ·} can be chosen to be Poisson, see [1, 7]).

3.2 Recollections from [3]

Below, we will denote simply by L1L2 the tensor product of line bundles L1 and L2.
Let ξ be a line bundle of degree n on an elliptic curve C. We fix a trivialization ωC ≃ OC .

Then the associated Feigin–Odesskii Poisson structure Π (to which we will refer as FO bracket)
on PH1

(
ξ−1

)
≃ PH0(ξ)∗ is given by the formula (see [3, Lemma 2.1])

Πϕ(s1 ∧ s2) = ⟨ϕ,MP(s1, ϕ, s2)⟩, (3.2)

where ⟨ϕ⟩ ∈ PExt1(ξ,O), and s1, s2 ∈ ⟨ϕ⟩⊥. Here we use the Serre duality pairing ⟨·, ·⟩ be-
tween H0(ξ) and H1

(
ξ−1

)
and the triple Massey product

MP: H0(ξ)⊗H1
(
ξ−1

)
⊗H0(ξ) → H0(ξ)

that also agrees with the triple product m3 obtained by homological perturbation from the
natural dg enhancement of the derived category of coherent sheaves on C. There is some
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ambiguity in a choice of m3 but for s1, s2 ∈ ⟨ϕ⟩⊥, the expression in the right-hand side of (3.2)
is well defined.

Next, assume that S is a smooth projective surface, L is a line bundle on S such that
H∗(S,LKS) = 0, and let C ⊂ S be a smooth connected anticanonical divisor (which is an
elliptic curve), so we have an exact sequence of coherent sheaves on S,

0 → KS
F→ OS → OC → 0. (3.3)

We have a natural restriction map

H0(S,L) → H0(C,L|C).

The exact sequence

0 → LKS
F→ L → LC → 0 (3.4)

shows that under our assumptions this restriction map is an isomorphism.

Thus, the FO bracket on PH0(L|C)∗ associated with (C,L|C) (defined up to rescaling) can
be viewed as a Poisson structure on a fixed projective space PV ∗, where

V := H0(S,L).

By [3, Theorem 4.4], the Poisson brackets on PV ∗ associated with different anticanonical divisors
are compatible. More precisely, we get a linear map from H0

(
S,K−1

S

)
to the space of bivectors

on PV ∗, whose image lies in the space of Poisson brackets.

3.3 Feigin–Odesskii bracket for an anticanonical divisor

We keep the data (S,L) of the previous subsection. Let i : C ↪→ S be an anticanonical divisor
in S, with the equation F ∈ H0

(
S,K−1

S

)
. We want to write a formula for the FO bracket

Π = ΠF on PV ∗ in terms of higher products on the surface S and the equation F . For this
we rewrite the right-hand side of formula (3.2). Let us write the triple product in this formula
as MPC to remember that it is defined for the derived category of C.

Proposition 3.1.

(i) In the above situation, given e ∈ V ∗ and s1, s2 ∈ ⟨e⟩⊥, one has〈
e,MPC(s1|C , e, s2|C)

〉
= ⟨m4(F, s1, e, s2)−m4(s1, F, e, s2), e⟩,

where we use the identification V ∗ ≃ H2
(
S,L−1KS

)
given by Serre duality and consider

the A∞-products on S,

m4 : H0
(
K−1

S

)
H0(L)H2

(
L−1KS

)
H0(L) → H0(L),

H0(L)H0
(
K−1

S

)
H2

(
L−1

)
H0(L) → H0(L),

obtained by the homological perturbation.

(ii) Assume that a generic anticanonical divisor is smooth (and connected). Then

ΠF |e(s1 ∧ s2) := ⟨m4(F, s1, e, s2)−m4(s1, F, e, s2), e⟩

gives a collection of compatible Poisson brackets on PV depending linearly on F .
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Proof. (i) By Serre duality, H∗(S,L−1
)
= 0, so the map

H1
(
C,L−1

∣∣
C

)
→ H2

(
S,L−1KS

)
,

induced by the exact sequence

0 → L−1KS → L−1 → L−1
∣∣
C
→ 0,

is an isomorphism. It is a standard fact that this isomorphism is the dual to the isomorphism
H0(S,L) → H0(C,L|C) given by the restriction, via Serre dualities on S and C. Let us de-
note by eC ∈ H1

(
C,L−1

∣∣
C

)
the element corresponding to e ∈ H2

(
S,L−1KS

)
under the above

isomorphism.

We claim that the triple Massey product MPC(s1|C , eC , s2|C) = m3(s1|C , eC , s2|C) corre-
sponding to the arrows

OC
s2|C−→ L|C

eC−→ OC
s1|C−→ L|C

(where the middle arrow has degree 1) agrees with the corresponding triple Massey product
on S,

OS
s2−→ L

eC−→ OC
s1|C−→ L|C .

Indeed, the relevant spaces are identified via the restriction maps. Let

r : OS → OC , rL : L → L|C

be the natural maps. Then we have to check that for s1, s2 ∈ ⟨e⟩⊥ ⊂ H0(S,L), one has

m3(s1|C , eC , s2|C)r ≡ m3(s1|C , eCrL, s2) mod ⟨s1|Cr, s2|Cr⟩,

where we view this as equality of cosets in Hom(OS , L|C). The A∞-identities imply that

m3(s1|C , eC , s2|C)r = m3(s1|C , eC , s2|Cr)± s1|Cm3(eC , s2|C , r),

where s2|Cr = rLs2, and

m3(s1|C , eC , rLs2) = m3(s1|C , eCrL, s2)± s1|Cm3(eC , rL, s2)±m3(s1|C , eC , rL)s2.

Combining these two identities, we deduce our claim.

Thus, it is enough to calculate the Massey product MP(s1|C , eCrL, s2). Using the exact
sequences (3.3) and (3.4), we can represent OC (resp. LC) by the twisted complex [KS [1] → OS ]
(resp. [LKS [1] → L]).

In terms of these resolutions, the elements of Ext1(L,OC) get represented by Ext2(L,KS) ⊂
hom•(L, [KS [1] → OS ]), while the element of Hom(OC , L|C) corresponding to s ∈ H0(S,L) ≃
H0(C,L|C) is given by the natural map of twisted complexes induced by the multiplication by s.
The elements of Hom(OS , L|C) are identified with Hom(OS , L) ≃ hom0(OS , [LKS [1] → L]).
Thus, the m3 product we are interested is given by the following triple product in the category



8 V. Nordstrom and A. Polishchuk

of twisted complexes over S:

OS

L

KS [1] OS

LKS [1] L,

s2

e

F

s1 s1

F

where we view e as a morphism of degree 1 from L to KS [1]. Now the formula for m3 on twisted
complexes (see [4, Section 7.6]) gives

m4(F, s1, e, s2)−m4(s1, F, e, s2)

(here the insertions of F correspond to insertions of the differentials in the twisted complexes).
(ii) It is clear that ΠF gives a linear map from H0

(
S, ω−1

S

)
to the space of bivectors on PV .

By (i), for generic F we get a Poisson bracket. Hence, this is true for all F . ■

3.4 The case leading to 10 compatible brackets on P5

We can apply Proposition 3.1 to the case S = P2 and L = O(2). Note that the assump-
tions are satisfied in this case since LKS = O(−1) has vanishing cohomology. Thus, for
each F ∈ H0

(
P2,O(3)

)
giving a smooth cubic, we get a formula for the FO-bracket ΠF on

PH0
(
P2,O(2)

)∗
= P5. Hence, we get a family of 10 (the dimension of H0

(
P2,O(3)

)
compatible

brackets on P5 (we also know this from [3, Proposition 4.7]). The fact that these 10 brackets
are linearly independent follows from the compatibility of this construction with the GL3-action
and is explained in [3, Proposition 4.7].

Now we will derive formulas for the brackets { , }F on the algebra of polynomials in 6 variables
which induce the above Poisson brackets on PV ≃ P5, where

V = H0
(
P2,O(2)

)∗
.

They depend linearly on F , so we will just give formulas for { , }xc⃗ , where xc⃗ runs through all
10 monomials of degree 3 in (x0, x1, x2).

Let us set

∆(n) :=

{{
(a0, a1, a2) ∈ Z3 | a0 + a1 + a2 = n, ai ≥ 0 for i = 0, 1, 2

}
if n ≥ 0,{

(α0, α1, α2) ∈ Z3 | α0 + α1 + α2 = n, αi < 0 for i = 0, 1, 2
}

if n < 0.

Note that {xe⃗ | e⃗ ∈ ∆(n)} forms a basis forH0
(
P2,O(n)

)
when n ≥ 0, while

{
xe⃗{0,1,2} | e⃗ ∈ ∆(n)

}
is a basis for H2

(
P2,O(n)

)
when n < 0. In particular, we use

{
xa⃗ | a⃗ ∈ ∆(2)

}
as a basis in

V ∗ = H0
(
P2,O(2)

)
. Our brackets should associate to a pair of elements of this basis a quadratic

form in the same variables.

Theorem 3.2. One has for a⃗, b⃗ ∈ ∆(2), c⃗ ∈ ∆(3),{
xa⃗, xb⃗

}
xc⃗ :=

∑
a⃗ ′ ,⃗b ′∈∆(2)

[∑
σ

− sgn(σ)ρ̃
(
σa⃗, σb⃗, σc⃗, a⃗ ′, b⃗ ′)]xa⃗ ′

xb⃗
′
, (3.5)
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where the second sum is over the symmetric group on the letters {a, b, c} and

ρ̃
(
a⃗, b⃗, c⃗, a⃗ ′, b⃗ ′) :=


1 if a′0 ≤ a0 − 1, a′1 > a1 − 1, a′1 ≤ a1 + b1 − 1,

a2 + b2 < a′2 + 1, c2 + a2 + b2 ≥ a′2 + 1,

a′0 + b′0 = a0 + b0 + c0 − 1, a′1 + b′1 = a1 + b1 + c1 − 1,

0 else.

Proof. By Serre duality, we can identify V = H0
(
P2,O(2)

)∗
with H2

(
P2,O(−5)

)
. By Propo-

sition 3.1, the bracket {xa⃗, xb⃗}xc⃗ is the quadratic form on V ≃ H2
(
P2,O(−5)

)
given by

Q(e) :=
〈
e,m4

(
xc⃗, xa⃗, e, xb⃗

)
−m4

(
xa⃗, xc⃗, e, xb⃗

)〉
.

We can write

e =
∑

α⃗∈∆(−5)

cα⃗x
α⃗
{0,1,2} ∈ H2

(
P2,O(−5)

)
.

Using the formulas for m4 from the end of Section 2.2, we get

Q(e) =
∑

α⃗,β⃗∈∆(−5)

[∑
σ

− sgn(σ)ρ
(
α⃗;σa⃗, σb⃗, σc⃗

)]
δ
(
α⃗, β⃗, a⃗, b⃗, c⃗

)
cα⃗cβ⃗,

where the second sum runs over the symmetric group on the letters {a, b, c} and

δ(α⃗, β⃗, a⃗, b⃗, c⃗) =

{
1 if α⃗+ β⃗ + a⃗+ b⃗+ c⃗ = (−1,−1,−1),

0 else.

We have to show that the element in S2
(
H0

(
P2,O(2)

))
given by the right-hand side of (3.5)

defines the same quadratic form Q on H2
(
P2,O(−5)

)
. To see this, we apply it to the element

e =
∑

α⃗∈∆(−5) cα⃗x
α⃗
{0,1,2} ∈ H2

(
P2,O(−5)

)
. For α⃗ ∈ ∆(−5), we set α⃗∗ := (−1,−1,−1) − α⃗ and

then we compute( ∑
a⃗ ′ ,⃗b ′∈∆(2)

[∑
σ

− sgn(σ)ρ̃
(
σa⃗, σb⃗, σc⃗, a⃗ ′, b⃗ ′)]xa⃗ ′

xb⃗
′
)
(e)

=
∑

α⃗,β⃗∈∆(−5)

∑
a⃗ ′ ,⃗b ′∈∆(2)

[∑
σ

− sgn(σ)ρ̃
(
σa⃗, σb⃗, σc⃗, a⃗ ′, b⃗ ′)]⟨xa⃗ ′

, xα⃗{0,1,2}⟩⟨x
b⃗ ′
, xβ⃗{0,1,2}⟩cα⃗cβ⃗

=
∑

α⃗,β⃗∈∆(−5)

[∑
σ

− sgn(σ)ρ̃
(
σa⃗, σb⃗, σc⃗, α⃗∗, β⃗∗)]cα⃗cβ⃗.

Now it only remains to note that for any permutation σ, one has

ρ̃
(
σa⃗, σb⃗, σc⃗, α⃗∗, β⃗∗) = ρ

(
α⃗;σa⃗, σb⃗, σc⃗

)
δ
(
α⃗, β⃗, a⃗, b⃗, c⃗

)
,

for ρ̃ given in the formulation of the theorem. ■

Remarks 3.3.

1. Note that when we take c⃗ = (0, 0, 3) only two permutations σ, namely, σ = 1 and σ = (a b),
can give non-zero terms in the formula of Theorem 3.2. When c⃗ = (1, 2, 0) all permutations
except σ = 1 and σ = (a b) may give non-zero terms. When c⃗ = (1, 1, 1) all permutations
can give non-zero terms.

2. It is not true that formulas (3.5) define compatible Poisson brackets on the algebra of
polynomials in 6 variables: this is true only for the induced brackets on P5 (in other
words, the relevant identities hold only for the ratios of coordinates xi/xj).



10 V. Nordstrom and A. Polishchuk

Acknowledgements

We thank the anonymous referee for useful remarks. A.P. is partially supported by the NSF
grant DMS-2001224, and within the framework of the HSE University Basic Research Program
and by the Russian Academic Excellence Project ‘5-100’.

References

[1] Bondal A., Non-commutative deformations and Poisson brackets on projective spaces, Preprint MPI 93–67,
Max Planck Institute for Mathematics, 1993.

[2] Feigin B.L., Odesskii A.V., Vector bundles on an elliptic curve and Sklyanin algebras, in Topics in Quantum
Groups and Finite-Type Invariants, Amer. Math. Soc. Transl. Ser. 2, Vol. 185, American Mathematical
Society, Providence, RI, 1998, 65–84, arXiv:q-alg/9509021.

[3] Hua Z., Polishchuk A., Elliptic bihamiltonian structures from relative shifted Poisson structures,
arXiv:2007.12351.

[4] Keller B., Introduction to A-infinity algebras and modules, Homology Homotopy Appl. 3 (2001), 1–35,
arXiv:math.RA/9910179.

[5] Kontsevich M., Soibelman Y., Homological mirror symmetry and torus fibrations, in Symplectic
Geometry and Mirror Symmetry (Seoul, 2000), World Scientific, River Edge, NJ, 2001, 203–263,
arXiv:math.SG/0011041.

[6] Odesskii A., Wolf T., Compatible quadratic Poisson brackets related to a family of elliptic curves, J. Geom.
Phys. 63 (2013), 107–117, arXiv:1204.1299.

[7] Polishchuk A., Algebraic geometry of Poisson brackets, J. Math. Sci. (N.Y.) 84 (1997), 1413–1444.

[8] Polishchuk A., Poisson structures and birational morphisms associated with bundles on elliptic curves, Int.
Math. Res. Not. 1998 (1998), 683–703, arXiv:alg-geom/9712022.

https://doi.org/10.1090/trans2/185/04
https://doi.org/10.1090/trans2/185/04
https://arxiv.org/abs/arXiv:q-alg/9509021
https://arxiv.org/abs/2007.12351
https://doi.org/10.4310/hha.2001.v3.n1.a1
https://arxiv.org/abs/math.RA/9910179
https://doi.org/10.1142/9789812799821_0007
https://arxiv.org/abs/math.SG/0011041
https://doi.org/10.1016/j.geomphys.2012.10.004
https://doi.org/10.1016/j.geomphys.2012.10.004
https://arxiv.org/abs/1204.1299
https://doi.org/10.1007/BF02399197
https://doi.org/10.1155/S1073792898000415
https://doi.org/10.1155/S1073792898000415
https://arxiv.org/abs/alg-geom/9712022

	1 Introduction
	2 Homological perturbation for P^n
	2.1 Formula for the homotopy
	2.2 Calculation of m_4 for P^2

	3 Feigin–Odesskii brackets
	3.1 Bivectors on projective spaces
	3.2 Recollections from [3]
	3.3 Feigin–Odesskii bracket for an anticanonical divisor
	3.4 The case leading to 10 compatible brackets on P^5

	References

