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1 Introduction

The KZ equations were introduced by Knizhnik and Zamolodchikov [7] to describe the differential
equations for conformal blocks on the Riemann sphere. Different versions of the KZ equations
appear in mathematical physics, algebraic geometry and the theory of special functions, see,
for example, [3, 9]. One of the important properties of the KZ equations is their realization as
suitable Gauss–Manin connections. This construction gives a presentation of solutions of the KZ
equations by multidimensional hypergeometric integrals, see [1, 2, 13].

The fact that certain integrals of closed differential forms over cycles satisfy a linear differential
equation follows by Stokes’ theorem from a suitable cohomological relation, in which the result
of the application of the corresponding differential operator to the integrand of an integral equals
the differential of a differential form of one degree lower. Such cohomological relations for the KZ
equations associated with arbitrary Kac–Moody algebras were developed in [14].

The KZ equations possess a bispectrality property – they have a compatible system of dy-
namical equations with respect to associated dynamical parameters, see [4, 5, 9, 11, 18].

Let p be an odd prime. In [15, 23], the differential KZ equations were considered modulo ps,
and polynomial solutions modulo ps were constructed as analogs of the hypergeometric integrals.
The construction was based on the fact that all cohomological relations described in [14] are
defined over Z and can be reduced modulo ps. Studying solutions modulo of ps sheds light on
solutions of the KZ equations both over the field of complex numbers and over p-adic fields, for
example, see [16].

In this paper, we consider the joint system of the differential KZ and differential dynamical
equations, the system introduced in [5], and construct polynomial solutions modulo ps of the
joint system as analogs of the corresponding hypergeometric integrals with an exponential term.
For this purpose, one needs to represent the exponential function eλt with an integer parameter λ
by a polynomial in t modulo ps. This can be done after replacing λ with pλ.

An interesting problem is to study the p-adic limit of the constructed polynomial solutions
modulo ps as s → ∞, see examples of this limit for the differential KZ equations in [22, 23, 24].
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The joint system of the KZ and dynamical equations has many versions: differential KZ equa-
tions and differential dynamical equations, differential KZ equations and difference dynamical
equations, difference KZ equations and differential dynamical equations, difference KZ equations
and difference dynamical equations, see, for example, [4, 9, 11, 18]. The polynomial solutions
modulo ps are constructed in this paper only for the original joint system of the differential
KZ and differential dynamical equations, although there are examples of polynomial solutions
modulo ps in other cases, see [10, 12, 22] and also Appendix A.

In the remainder of the introduction we consider an example.

1.1 Solutions over C

Consider the complex master function

Φ(t, z, λ) = eλt
2g+1∏
i=1

(t− zi)
−1/2

and the tuple of integrals

I(z, λ) = (I1(z, λ), . . . , I2g+1(z, λ)) =

∫
δ
Φ(t, z, λ)

(
1

t− z1
, . . . ,

1

t− z2g+1

)
dt, (1.1)

where δ is a 1-cycle.

Theorem 1.1. The tuple I(z, λ) satisfies the joint system of KZ and dynamical equations

∂Ij
∂zi

=
1

2

Ii − Ij
zi − zj

, i ̸= j, (1.2)

∂Ii
∂zi

= λIi −
1

2

∑
j ̸=i

Ii − Ij
zi − zj

, (1.3)

∂Ii
∂λ

= ziIi +
1

2λ

n∑
j=1

Ij . (1.4)

The system of equations (1.2) and (1.3) is called the KZ equations of this example, the
system of equations (1.4) is called the dynamical equation. The solutions I(z, λ) are called the
hypergeometric solutions.

Proof. The proof uses the following identities:

1

(t− zi)(t− zj)
=

1

zi − zj

(
1

t− zi
− 1

t− zj

)
,

∂

∂t
Φ(t, z, λ) = λΦ(t, z, λ)− 1

2
Φ(t, z, λ)

2g+1∑
j=1

1

t− zj
,

∂

∂t

Φ(t, z, λ)

t− zi
= Φ(t, z, λ)

(
λ

t− zi
− 3

2

1

(t− zi)2
− 1

2

∑
j ̸=i

1

(t− zi)(t− zj)

)
.

For j ̸= i, we have

∂Ij
∂zi

=

∫
Φ(t, z, λ)

1/2

(t− zi)(t− zj)
dt =

1

2
(Ii − Ij).
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This proves the first equation. Then

∂Ii
∂zi

=

∫
Φ(t, z, λ)

3/2

(t− zi)2
dt

= −
∫

∂

∂t

Φ(t, z, λ)

t− zi
dt+

∫
Φ(t, z, λ)

(
λ

t− zi
− 1

2

∑
j ̸=i

1

(t− zi)(t− zj)

)
dt

= λIi −
1

2

∑
j ̸=i

Ii − Ij
zi − zJ

gives the second equation. We also have

∂Ii
∂λ

=

∫
Φ(t, z, λ)

t− zi + zi
t− zi

dt =

∫
Φ(t, z, λ)dt+ zi

∫
Φ(t, z, λ)

1

t− zi
dt

=
1

λ

∫
∂

∂t
Φ(t, z, λ)dt+

1

2λ

∫
Φ(t, z, λ)

2g+1∑
j=1

1

t− zj
dt+ zi

∫
Φ(t, z, λ)

1

t− zi
dt

= ziIi +
1

2λ

2g+1∑
j=1

Ij . ■

The complex vector space of (multi-valued) solutions of the joint system of KZ and dynamical
equations (1.2)–(1.4) is (2g+1)-dimensional. Every solution of the joint system has the integral
presentation (1.1) for a suitable cycle δ, see [8, Theorem 6.1] and an example in [8, Introduction].

1.2 Exponential function

We have

eλt =
∞∑

m=0

λ(m)tm, λ(m) =
λm

m!
,

(
m+ n

m

)
λ(m+n) = λ(m)λ(m),

d

dλ
λ(m) = λ(m−1).

We set λ(m) = 0 for m < 0 by convention.
Let f(t, z) =

∑∞
m=0 bm(z)tm, bm(z) ∈ Zp[z], where Zp is the ring of p-adic integers and

z = (z1, . . . , z2g+1) are parameters. Consider the decomposition

eλtf(t, z) =
∞∑
k=0

ck(z, λ)t
k,

where each ck(λ, z) is a linear function in finitely many symbols λ(m), m = 0, 1, . . . , whose
coefficients lie in Zp[z].

Lemma 1.2. Let s, ℓ be positive integers. Then the coefficient of tℓp
s−1 in the series d

dt

(
eλtf(t, z)

)
is divisible by ps, that is, all coefficients of the corresponding linear function in symbols λ(m),
m ≥ 0, are divisible by ps.

Proof. It is enough to prove the lemma for f(t) = ta. Then

d

dt
eλtta =

∞∑
m=0

(
λ · λ(m)tm+a + aλ(m)tm+a−1

)
=

∞∑
m=0

(
(m+ 1)λ(m+1)tm+a + aλ(m)tm+a−1

)
=

∞∑
k=0

(
(k − a+ 1)λ(k−a+1)tk + aλ(k−a+1)tk

)
=

∞∑
k=0

(k + 1)λ(k−a+1)tk. ■
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Lemma 1.3. If λ ∈ Zp, then pkλ(k) ∈ Zp for all k ≥ 0. If s is a positive integer and k > sp−1
p−2 ,

then pkλ(k) ∈ psZp.

Proof. The maximal power of p dividing k! equals
[
k
p

]
+
[
k
p2

]
+
[
k
p3

]
+ · · · which is not greater

than k
p+

k
p2
+ k

p3
+· · · = k

p−1 . Hence the power of p dividing
pk

k! is not less than k− k
p−1 = k p−2

p−1 > 0.

Hence pkλ(k) ∈ Zp. We have k p−2
p−1 ≥ s if k ≥ sp−1

p−2 . ■

Denote

d(s) =

[
s
p− 1

p− 2

]
+ 1, Es(t) =

d(s)∑
k=0

tk

k!
.

Corollary 1.4. If λ ∈ Zp, then epλt ∈ Zp[[t]], Es(pλt) ∈ Zp[t] and

epλt ≡ Es(pλt) (mod ps),

∂

∂t
Es(pλt) ≡ pλEs(pλt),

∂

∂λ
Es(pλt) ≡ ptEs(pλt) (mod ps),

Es(pλ(u+ v)) ≡ Es(pλu)Es(pλv) (mod ps).

1.3 Remarks on pr

Let vp(a) denote the p-adic evaluation of a.
Let r1, r2 be relatively prime positive integers. Denote r = r1/r2. Assume that r > 1/(p−1).

Then for a positive integer k, we have

vp
(
pkr/k!

)
=

(
kr −

([
k

p

]
+

[
k

p2

]
+ · · ·

))
> k

(
r − 1

p− 1

)
> 0.

Hence, if λ ∈ Zp

[
p1/r2

]
, then pkrλ(k) ∈ Zp

[
p1/r2

]
. Moreover, if s is a positive integer and

k > s p−1
r(p−1)−1 , then pkrλ(k) ∈ psZp

[
p1/r2

]
.

Denote

d(r, s) =

[
s

p− 1

r(p− 1)− 1

]
+ 1, Er,s(t) =

d(r,s)∑
k=0

tk

k!
.

If λ ∈ Zp

[
p1/r2

]
, then ep

rλt ∈ Zp

[
p1/r2

]
[[t]], Er,s(p

rλt) ∈ Zp

[
p1/r2

]
[t] and

ep
rλt ≡ Er,s(p

rλt) (mod ps),

∂

∂t
Er,s(p

rλt) ≡ prλEr,s(p
rλt),

∂

∂λ
Er,s(p

rλt) ≡ prtEr,s(p
rλt) (mod ps),

Er,s(p
rλ(u+ v)) ≡ Er,s(p

rλu)Er,s(p
rλv) (mod ps).

If r = 1/(p− 1), then

vp
(
pk/(p−1)/k!

)
=

(
k

p− 1
−
([

k

p

]
+

[
k

p2

]
+ · · ·

))
> 0

and ep
1/(p−1)t ∈ Zp

[
p1/(p−1)

]
[[t]] but vp

(
pk/(p−1)/k!

)
does not grow as k → ∞, and so we get an

infinite series rather than a polynomial.
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1.4 Reformulation of the equations

Change the variable λ 7→ pλ. Then the KZ and dynamical equations take the form

∂Ij
∂zi

=
1

2

Ii − Ij
zi − zj

, i ̸= j, (1.5)

∂Ii
∂zi

= pλIi −
1

2

∑
j ̸=i

Ii − Ij
zi − zj

, (1.6)

∂Ii
∂λ

= pziIi +
1

2λ

2g+1∑
j=1

Ij . (1.7)

For any positive integer s, we construct below some vectors of polynomials

I(z, λ) = (I1(z, λ), . . . , I2g+1(z, λ))

with coefficients in Zp which satisfy the KZ equations (1.5), (1.6) modulo ps if λ ∈ Zp and satisfy
the dynamical equations (1.7) modulo ps if λ ∈ Z×

p .

1.5 Solutions modulo ps

For a positive integer s, define

Φo
s(t, z) =

2g+1∏
i=1

(t− zi)
(ps−1)/2, Φs(t, z, λ) = Es(pλt)Φ

o
s(t, z),

Ψo
s(t, z) = Φo

s(t, z)

(
1

t− z1
, . . . ,

1

t− z2g+1

)
, Ψs(t, z, λ) = Es(pλt)Ψ

o
s(t, z).

Consider the Taylor expansions

Ψo
s(t, z) =

(2g+1)(ps−1)/2−1∑
m=0

com(z)tm, Ψs(t, z, λ) =

(2g+1)(ps−1)/2−1+d(s)∑
d=0

cd(z, λ)t
d,

where each com(z) is a vector of polynomials in z with integer coefficients, and

cd(z, λ) =
d∑

m=0

pd−mλ(d−m)com(z).

For any positive integer ℓ, denote

Iℓ(z, λ) = cℓps−1(z, λ).

All coordinates of this vector are polynomials in z, λ with coefficients in Zp.

Theorem 1.5. Let ℓ be a positive integer. If λ ∈ Zp, then Iℓ(z, λ) is a solution modulo ps of
the KZ equations (1.5), (1.6). If λ ∈ Z×

p , then Iℓ(z, λ) is a solution modulo ps of the dynamical
equations (1.7).

We call such solutions the ps-hypergeometric solutions of the joint system of the KZ and
dynamical equations.
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Proof. The proof uses the following identities:

1

(t− zi)(t− zj)
=

1

zi − zj

(
1

t− zi
− 1

t− zj

)
,

∂

∂t
Φs(t, z, λ) ≡ pλΦs(t, z, λ) +

ps − 1

2
Φs(t, z, λ)

2g+1∑
j=1

1

t− zj
(mod ps),

∂

∂t

Φs(t, z, λ)

t− zi
≡ Φs(t, z, λ)

(
pλ

t− zi
+

ps − 3

2

1

(t− zi)2
+

ps − 1

2

∑
j ̸=i

1

(t− zi)(t− zj)

)

modulo ps. For j ̸= i, we have

∂

∂zi
Φs(t, z, λ)

1

t− zj
= Φ(t, z, λ)

1− ps

2

1

(t− zi)(t− zj)

=
1− ps

2
Φs(t, z, λ)

(
1

t− zi
− 1

t− zj

)
.

Take the coefficient of tℓp
s−1 in both sides of the equation. As the result, we obtain modulo ps,

∂Iℓj
∂zi

(z, λ) ≡ 1

2

Iℓi (z, λ)− Iℓj (z, λ)

zi − zj
, i ̸= j.

We have

∂

∂zi
Φs(t, z, λ)

1

t− zi
= Φs(t, z, λ)

3− ps

2

1

(t− zi)2

≡ − ∂

∂t

Φs(t, z, λ)

t− zi
+Φs(t, z, λ)

(
pλ

t− zi
+

ps − 1

2

∑
j ̸=i

1

(t− zi)(t− zj)

)
.

Take the coefficient of tℓp
s−1 in both sides of the equation. As the result, we obtain modulo ps,

∂Iℓi
∂zi

(z, λ) ≡ pλIℓi (z, λ)−
1

2

∑
j ̸=i

Iℓi (z, λ)− Iℓj (z, λ)

zi − zJ
.

Notice that ∂
∂t

Φs(t,z,λ)
t−zi

does not contribute to this result by Lemma 1.2.

We also have modulo ps,

∂

∂λ
Φs(t, z, λ)

1

t− zi
≡ pΦs(t, z, λ)

t− zi + zi
t− zi

= pΦs(t, z, λ) + pziΦs(t, z, λ)
1

t− zi

≡ 1

λ

∂

∂t
Φs(t, z, λ) +

1

λ

1− ps

2
Φs(t, z, λ)

2g+1∑
j=1

1

t− zj
+ pziΦs(t, z, λ)

1

t− zi
.

Take the coefficient of tℓp
s−1 in both sides of the equation. As the result, we obtain modulo ps,

∂Iℓi
∂λ

(z, λ) ≡ pziI
ℓ
i (z, λ) +

1

2λ

2g+1∑
j=1

Iℓj (z, λ).

Notice that the coefficient of tp
s−1 in 1

λ
∂
∂tΦs(t, z, λ) is zero modulo ps since λ is a unit in Zp by

assumption. The theorem is proved. ■
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1.6 Properties of ps-hypergeometric solutions

Lemma 1.6. Assume that λ ∈ Z×
p and

ps + 2g − 1 > s
2p− 2

p− 2
. (1.8)

Then a ps-hypergeometric solution Iℓ(z, µ) is zero unless ℓ = 1, . . . , g.

Proof. The degree of the polynomial Ψo
s(t, z) with respect to t equals

(2g + 1)
ps − 1

2
− 1 = (g + 1)ps − 1− ps + 2g + 1

2
.

The degree of the polynomial Es(pλt) with respect to t is not greater than d(s) ≤ sp−1
p−2 + 1.

Hence the degree of Ψs(t, z, µ) is not greater than

(g + 1)ps − 1− ps + 2g + 1

2
+ s

p− 1

p− 2
+ 1 = (g + 1)ps − 1− 1

2

(
ps + 2g − 1− s

2p− 2

p− 2

)
.

If inequality (1.8) holds, then the polynomial Ψs(t, z, λ) does not have monomials of degree ℓps−1
for ℓ > g. ■

For any ps-hypergeometric solution Iℓ(z, λ), consider its λ-independent term Iℓ(z, 0) =(
Iℓ1(z, 0), . . . , I

ℓ
2g+1(z, 0)

)
. This is a vector of polynomials in z with integer coefficients. It is

a solution modulo ps of the KZ equations (1.5) and (1.6) with λ = 0. We have

2g+1∑
j=1

Iℓj (z, 0) ≡ 0 (mod ps)

since this sum is the coefficient of tℓp
s−1 in

2g+1∑
j=1

Φo
s(t, z)

t− zj
=

2

ps − 1

∂Φo
s

∂t
(t, z).

The solution Iℓ(z, λ) is a λ-deformation of the vector Iℓ(z, 0).

Theorem 1.7 ([22, Lemma 7.3]). Assume that ps > 2g + 1. Consider the λ-independent
terms I1(z, 0), . . . , Ig(z, 0) of the ps-hypergeometric solutions I1(z, λ), . . . , Ig(z, λ). Project them
to Fp[z]

2g+1. Then the projections are linearly independent over the ring Fp[z].

1.7 A generalization

Let r1, r2 be relatively prime positive integers. Denote r = r1/r2. Assume that r > 1/(p − 1).
Change the variable λ → prλ in the KZ and dynamical equations (1.2), (1.3), (1.4). Then the
equations take the form

∂Ij
∂zi

=
1

2

Ii − Ij
zi − zj

, i ̸= j, (1.9)

∂Ii
∂zi

= prλIi −
1

2

∑
j ̸=i

Ii − Ij
zi − zj

, (1.10)

∂Ii
∂λ

= prziIi +
1

2λ

2g+1∑
j=1

Ij . (1.11)
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For a positive integer s, define

Ψr,s(t, z, λ) = Er,s(p
rλt)

2g+1∏
i=1

(t− zi)
(ps−1)/2

(
1

t− z1
, . . . ,

1

t− z2g+1

)
.

Consider the Taylor expansion Ψr,s(t, z, λ) =
∑

d cd(z, λ)t
d. For any positive integer ℓ, de-

note Iℓ(z, λ) = cℓps−1(z, λ). All coordinates of this vector are polynomials in z, λ with coefficients
in Zp

[
p1/r2

]
.

Theorem 1.8. Let ℓ be a positive integer. If λ ∈ Zp

[
p1/r2

]
, then Iℓ(z, λ) is a solution modulo ps

of the KZ equations (1.9), (1.10). If λ ∈
(
Zp

[
p1/r2

])×
, then Iℓ(z, λ) is a solution modulo ps of

the dynamical equations (1.11).

The proof is the same as the proof of Theorem 1.5. Theorem 1.5 is a special case of Theo-
rem 1.8 for r = 1.

Notice that for degree reasons, Theorem 1.8 gives for every s only finitely many solu-
tions Iℓ(z, λ).

If r = 1/(p− 1) and s is a positive integer, we may define

Ψ1/(p−1),s(t, z, λ) = ep
1/(p−1)λt

2g+1∏
i=1

(t− zi)
(ps−1)/2

(
1

t− z1
, . . . ,

1

t− z2g+1

)
and then expand this vector into a power series in t: Ψ1/(p−1),s(t, z, λ) =

∑
d cd(z, λ)t

d. For any

positive integer ℓ, denote Iℓ(z, λ) = cℓps−1(z, λ). All coordinates of this vector are polynomials
in z, λ with coefficients in Zp

[
p1/(p−1)

]
.

Theorem 1.9. Let ℓ be a positive integer. If λ ∈ Zp

[
p1/(p−1)

]
, then Iℓ(z, λ) is a solution mod-

ulo ps of the KZ equations (1.9), (1.10) with r = 1/(p− 1) If λ ∈
(
Zp

[
p1/(p−1)

])×
, then Iℓ(z, λ)

is a solution modulo ps of the dynamical equations (1.11) with r = 1/(p− 1).

Notice that this theorem gives infinitely many solutions Iℓ(z, λ).

Remark 1.10. Another possibility to extend the construction of polynomial solutions is to
replace the ring Zp[p

r] by another p-adic ring, e.g., Zp[ζ], where ζ is a pm-th root of 1.

1.8 Exposition of material

In Section 2, we describe the hypergeometric solutions of the joint system of the differential KZ
and dynamical equations associated with sl2 and explain their reduction to polynomial solutions
modulo ps. In Section 2.6, we briefly comment on how the results of Section 2 are extended
to the joint system of the differential KZ and dynamical equations associated with arbitrary
simple Lie algebras. In Appendix A, we consider an example and explain how to construct the
polynomial solutions modulo ps of qKZ difference equations.

2 The sl2 differential KZ and dynamical equations

2.1 Equations

Let e, f , h be the standard basis of the complex Lie algebra sl2 with relations [e, f ] = h,
[h, e] = 2e, [h, f ] = −2f . Denote

Ω = e⊗ f + f ⊗ e+
1

2
h⊗ h ∈ sl2 ⊗ sl2,

the Casimir element.
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Given n, for any x ∈ sl2, let x
(i) ∈ U(sl2)

⊗n be the element equal to x in the i-th factor and
to 1 in other factors. Similarly, for 1 ≤ i < j ≤ n, let Ω(i,j) ∈ U(sl2)

⊗n be the element equal
to Ω in the i-th and j-th factors and to 1 in other factors.

Let z1, . . . , zn ∈ C be distinct and λ ∈ C×. For i = 1, . . . , n, introduce the Gaudin Hamilto-
nians and the dynamical Hamiltonian by the formulas

Hi(z1, . . . , zn, λ) =
λ

2
h(i) +

∑
j ̸=i

Ω(i,j)

zi − zj
∈ (U(sl2))

⊗n,

D(z1, . . . , zn, λ) =
n∑

i=1

zi
2
h(i) +

n∑
i,j=1

f (i)e(j)

λ
.

Let ⊗n
i=1Vi be a tensor product of sl2-modules and κ ∈ C×. The system of differential

equations on a ⊗n
i=1Vi-valued function I(z1, . . . , zn, λ),

∂I

∂zi
=

1

κ
Hi(z1, . . . , zn, λ)I, i = 1, . . . , n, (2.1)

∂I

∂λ
=

1

κ
D(z1, . . . , zn, λ)I, (2.2)

is called the system of KZ and dynamical equations. The system depends on the parameter κ.

2.2 sl2-modules

For a nonnegative integer i, denote by Li the (i+1)-dimensional module with a basis vi, fvi, . . . ,
f ivi and action

f · fkvi = fk+1vi for k = 0, . . . , i− 1,

h · fkvi = (i− 2k)fkvi for k = 0, . . . , i,

e · fkvi = k(i− k + 1)fk−1vi for k = 1, . . . , i,

f · f ivi = 0, e · vi = 0.

For m⃗ = (m1, . . . ,mn) ∈ Zn
≥0, denote |m⃗| = m1 + · · · + mn and L⊗m⃗ = Lm1 ⊗ · · · ⊗ Lmn .

For J = (j1, . . . , jn) ∈ Zn
≥0, with js ≤ ms for s = 1, . . . , n, the vectors

fJv := f j1vm1 ⊗ · · · ⊗ f jnvmn

form a basis of L⊗m⃗. We have

f · fJv =

n∑
s=1

fJ+1sv, h · fJv = (|m| − 2|J |)fJv,

e · fJv =

n∑
s=1

js(ms − js + 1)fJ−1sv,

where 1s = (0, . . . , 0, 1, 0, . . . , 0) with 1 staying at the s-th place.

For w ∈ Z, introduce the weight subspace L⊗m⃗[w] = {v ∈ L⊗m⃗ | h.v = wv}. We have the

weight decomposition L⊗m⃗ = ⊕|m|
k=0L

⊗m⃗[|m⃗| − 2k]. Denote

Ik = {J ∈ Zn
≥0 | |J | = k, js ≤ ms, s = 1, . . . , n}.

The vectors (fJv)J∈Ik form a basis of L⊗m⃗[|m⃗| − 2k].
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2.3 Solutions over C

Given k, n ∈ Z>0, m⃗ = (m1, . . . ,mn) ∈ Zn
>0, κ ∈ C×, denote t = (t1, . . . , tk), z = (z1, . . . , zn).

Define the master function

Φ(t, z, λ) := Φ(t1, . . . , tk, z1, . . . , zn, λ) = eλ
∑n

l=1 zl/2κ−λ
∑k

i=1 ti/κ

×
∏
i<j

(zi − zj)
mimj/2κ

∏
1≤i≤j≤k

(ti − tj)
2/κ

n∏
l=1

k∏
i=1

(ti − zl)
−ml/κ.

For any function or differential form F (t1, . . . , tk), denote

Symt[F (t1, . . . , tk)] =
∑
σ∈Sk

F (tσ1 , . . . , tσk
),

Altt[F (t1, . . . , tk)] =
∑
σ∈Sk

(−1)|σ|F (tσ1 , . . . , tσk
).

For J = (j1, . . . , jn) ∈ Ik, define the weight function

WJ(t, z) =
1

j1! . . . jn!
Symt

[
n∏

s=1

js∏
i=1

1

tj1+···+js−1+i − zs

]
.

For example,

W(1,0,...,0) =
1

t1 − z1
, W(2,0,...,0) =

1

t1 − z1

1

t2 − z1
,

W(1,1,0,...,0) =
1

t1 − z1

1

t2 − z2
+

1

t2 − z1

1

t1 − z2
.

The function

W (t, z) =
∑
J∈Ik

WJ(t, z)fJv

is the L⊗m⃗[|m⃗| − 2k]-valued vector weight function.
Consider the L⊗m⃗[|m⃗| − 2k]-valued function

I(δ)(z1, . . . , zn, λ) =

∫
δ(z,λ)

Φ(t, z, λ)W (t, z)dt1 ∧ · · · ∧ dtk, (2.3)

where δ(z, λ) in {(z, λ)}×Ck
t is a horizontal family of k-dimensional cycles of the twisted homol-

ogy defined by the multivalued function Φ(t, z, λ), see, for example, [20, 21]. The cycles δ(z, λ)
are multi-dimensional analogs of Pochhammer double loops.

Theorem 2.1 ([5, 14]). The function I(δ)(z, λ) is a solution of the KZ and dynamical equa-
tions (2.1) and (2.2).

The solutions in (2.3) are called the hypergeometric solutions.
The equations (1.2), (1.3), (1.4) in the Introduction and their solutions (1.1) are identified

with equations (2.1), (2.2) for the weight subspace L
⊗(2g+1)
1 [n − 2] and their hypergeometric

solutions (2.3) up to a gauge transformation.
In Section 2.4, we sketch the proof of Theorem 2.1 following [5, 14]. The intermediate

statement in this proof will be used later when constructing solutions modulo ps of the KZ and
dynamical equations. The proof is based on the following cohomological relations.
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2.4 Identities for differential forms

It is convenient to reformulate the definition of the hypergeometric integrals (2.3). Given
k, n ∈ Z>0 and a multi-index J = (j1, . . . , jn) with |J | ≤ k, denote

aJ = aJ,1 ∧ aJ,2 ∧ · · · ∧ aJ,|J | :=
d(t1 − z1)

t1 − z1
∧ · · · ∧ d(tj1 − z1)

tj1 − z1
∧ d(tj1+1 − z2)

tj1+1 − z2
∧ · · ·

∧
d(tj1+···+jn−1+1 − zn)

tj1+···+jn−1+1 − zn
∧ · · · ∧ d(tj1+···+jn − zn)

tj1+···+jn − zn
.

Here aJ,ℓ is the ℓ-th factor of the product in the right-hand side.
Denote

bJ = bJ,1 ∧ bJ,2 ∧ · · · ∧ bJ,|J | :=
dt1

t1 − z1
∧ · · · ∧ dtj1

tj1 − z1
∧ dtj1+1

tj1+1 − z2
∧ · · ·

∧
dtj1+···+jn−1+1

tj1+···+jn−1+1 − zn
∧ · · · ∧ dtj1+···+jn

tj1+···+jn − zn
,

cJ =

|J |∑
l=1

(−1)l+1bJ,1 ∧ bJ,2 ∧ · · · ∧ b̂J,l ∧ · · · ∧ bJ,k.

Define

αJ =
1

j1! · · · jn!
Altt1,...,tk [aJ ], βJ =

1

j1! · · · jn!
Altt1,...,tk [cJ ].

Remark 2.2. Recall that we have k variables t1, t2, . . . , tk. The differential form aJ is of
degree |J | = j1 + · · ·+ jn ≤ k and depends on the variables t1, t2, . . . , tj1+···+jn only. While, the
differential form αJ is of degree j1 + · · ·+ jn and depends on all the variables t1, t2, . . . , tk.

If |J | = k, then for any fixed z ∈ Cn, we have the identity

αJ = WJ(t, z)dt1 ∧ · · · ∧ dtk

on {z} × Ck. Define

α =
∑
|J |=k

αJfJv, β =
∑
|J |=k

βaJfJv.

Example 2.3. For k = n = 2, we have

α(2,0) =
d(t1 − z1)

t1 − z1
∧ d(t2 − z1)

t2 − z1
, β(2,0) =

dt2
t2 − z1

− dt1
t1 − z1

.

The hypergeometric integrals (2.3) can be defined in terms of the differential forms αJ :

I(δ)(z1, . . . , zn, λ) =

∫
δ(z,λ)

Φα =
∑
J∈Ik

(∫
δ(z,λ)

ΦαJ

)
fJv.

Theorem 2.4 ([5, 15]).

(i) We have the following algebraic identity for differential forms in t, z depending on param-
eter λ:

κdt,z
(
Φ(t, z, λ)α

)
=

n∑
l=1

Hi(z, λ)dzi ∧ Φ(t, z, λ)α, (2.4)

where dt,z denotes the differential with respect to variables t, z.
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(ii) For any fixed z, λ, we have the following algebraic identity for differential forms in t
depending on parameters z, λ:

κ
∂

∂λ

(
Φ(t, z, λ)α

)
= D(t, z, λ)Φ(t, z, λ)α+

1

λ
dt
(
Φ(t, z, λ)β

)
, (2.5)

where dt denotes the differential with respect to variables t.

The assumptions in part (ii) mean that all differentials dz1, . . . ,dzn appearing in α must be
put to zero to obtain identity (2.5).

Proof. Identity (2.4) follows from [15, Theorem 7.5.2′′] and [5, Theorem 3.1]. Identity (2.5)
follows from [5, Theorem 3.2]. ■

Integrating both sides of identities (2.4) and (2.5) over the cycle δ(z, λ) we conclude that the
integral

∫
δ(z,λ)Φ(t, z, λ)α satisfies the KZ and dynamical equations.

2.5 Solutions modulo ps

Given k, n ∈ Z>0, m⃗ = (m1, . . . ,mn) ∈ Zn
>0, κ ∈ Q×, let p > 2 be a prime number such that p

does not divide the numerator of κ. Change the variable λ → pλ in the KZ and dynamical
equations (2.1), (2.2). Then the equations take the form

∂I

∂zi
=

1

κ

(
p
λ

2
h(i) +

∑
j ̸=i

Ω(i,j)

zi − zj

)
I, i = 1, . . . , n, (2.6)

∂I

∂λ
=

1

κ

(
p

n∑
i=1

zi
2
h(i) +

n∑
i,j=1

f (i)e(j)

λ

)
I. (2.7)

Choose positive integers Ml for l = 1, . . . , n, Mi,j for 1 ≤ i < j ≤ n, and M0, such that

Ms ≡ −ms

κ
, Mi,j ≡

mimj

2κ
, M0 ≡ 2

κ
(mod ps).

Define the master polynomial

Φs(t, z, λ) =

n∏
l=1

Es

(
p
zlλ

2κ

) n∏
i=1

Es

(
− p

tiλ

κ

)
×

×
∏

1≤i<j≤n

(zi − zj)
Mi,j

∏
1≤i≤j≤k

(ti − tj)
M0

n∏
s=1

k∏
i=1

(ti − zs)
Ms .

Consider the L⊗m⃗[|m⃗| − 2k]-valued function

Ψs(t, z, λ) =
∑
J∈Ik

Φs(t, z, λ)WJ(t, z)fJv.

This is a polynomial in t, z, λ with coefficients in Zp. Consider the Taylor expansion

Ψs(t, z, λ) =
∑

d1,...,dk

cd1,...,dk(z, λ)t
d1
1 . . . tdkk .

For any vector ℓ = (ℓ1, . . . , ℓk) with positive integer coordinates, denote

Iℓ(z, λ) = cℓ1ps−1,...,ℓkps−1(z, λ).

All coordinates of this vector are polynomials in z, λ with coefficients in Zp.
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Theorem 2.5. Let ℓ = (ℓ1, . . . , ℓk) be a vector with positive integer coordinates. If λ ∈ Zp,
then Iℓ(z, λ) is a solution modulo ps of the KZ equations (2.6). If λ ∈ Z×

p , then Iℓ(z, λ) is
a solution modulo ps of the dynamical equations (2.7).

We call such solutions the ps-hypergeometric solutions of the joint system of the KZ and
dynamical equations.

Proof. The polynomial Ψs(t, z, λ) satisfies identities (2.4) and (2.5) modulo ps. Taking the coef-

ficient of tℓ1p
s−1

1 . . . tℓkp
s−1

k in these identities kills the differentials with respect to t by Lemma 1.2.
This proves the theorem. ■

Remark 2.6. We observed in Section 1.7 that Theorem 1.5 can be generalized to Theorem 1.8
by replacing p with pr. Theorem 2.5 is generalized in the same way. We leave this exercise to
readers.

2.6 Equations for other Lie algebras

The KZ and dynamical equations are defined for any simple Lie algebra g or more generally for
any Kac–Moody algebra, see, for example, [5, 14]. Similarly to what is done in Section 2.5, we
can construct polynomial solutions modulo ps of those KZ and dynamical equations.

The construction of the polynomial solutions modulo ps in the sl2 case is based on the
algebraic identities for differential forms (2.4), (2.5). For an arbitrary Kac–Moody algebra,
these algebraic identities were developed in [5, 14].

A Solutions modulo ps of the qKZ equations

In Sections 1 and 2, we constructed solutions modulo ps of the differential KZ and dynami-
cal equations by first ps-approximating the integrand of the hypergeometric solutions and then
taking the coefficients of the monomials tℓp

s−1 in the Taylor expansion of the approximated
integrand. In this appendix, we show that the same idea can be applied to the qKZ differ-
ence equations, but instead of considering the Taylor expansion of the approximated integrand
and then taking the coefficients of the monomials tℓp

s−1 we first take the expansion of the
ps-approximated integrand into a sum of Pochhammer polynomials [t]m and then take the co-
efficients of the Pochhammer polynomials with indices m = ℓps − 1. See this approach in [10]
for the qKZ equations with no exponential term. On the hypergeometric solutions of the qKZ
difference equations see, for example, [17, 19].

In this paper, we consider only a baby example of the qKZ equations which illustrates these
constructions.

A.1 Baby qKZ equation

Let f(t) be a meromorphic function and a ∈ C. The sum∫
(a)

f(t)d1t :=
∑
n∈Z

Rest=a+nf(t),

if defined, is called a Jackson integral. If f(t) = g(t+1)− g(t) is a discrete differential, then the
Jackson integral equals zero.

Consider the master function

Φ(t, z, λ) = eλt
Γ(t− z)2

Γ
(
t− z + 1

2

)
Γ
(
t− z − 1

2

) (A.1)
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and the Jackson integral

I(z, λ) =

∫
(z)

Φ(t, z, λ)dt.

Lemma A.1. The function I(z, λ) satisfies the difference equation

eλI(z − 1, λ) = I(z, λ). (A.2)

Equation (A.2) is our baby qKZ equation and the function I(z, λ) is its hypergeometric
solution. More general qKZ equations and their hypergeometric solutions can be found, for
example, in [3, 6, 17, 19].

Proof. We have

Φ(t+ 1, z, λ) =
eλ(t− z)2(

t− z + 1
2

) (
t− z − 1

2

)Φ(t, z, λ),
Φ(t, z − 1, λ) =

(t− z)2(
t− z + 1

2

) (
t− z − 1

2

)Φ(t, z, λ),∫
(z)

Φ(t+ 1, z, λ)d1t =

∫
(z)

Φ(t, z, λ)d1t.

These relations imply (A.2). ■

A.2 Pochhammer polynomials

Let m be a positive integer. Define the Pochhammer polynomial

(t)m =
m∏
i=1

(t− i+ 1).

We have

(t+ 1)m = (t)m
t+ 1

t−m+ 1
, (t+ 1)m − (t)m = m(t)m−1. (A.3)

A.3 Polynomial ps-approximations

Let p be an odd prime. Let r1, r2 be relatively prime positive integers. Denote r = r1/r2.
Assume that r > 1/(p− 1). Change the variable λ 7→ prλ. Then equation (A.2) takes the form:

ep
rλI(z − 1, λ) = I(z, λ). (A.4)

For any positive integer s, define the master polynomial

Φr,s(t, z, λ) = Er,s(p
rλt)(t− z − 1) ps−1

2
(t− z − 1) ps+1

2
. (A.5)

This is a polynomial in t, z, λ with coefficients in Zp

[
p1/r2

]
. Expand it into a sum of Pochhammer

polynomials in the variable t,

Φr,s(t, z, λ) =
∑
d

cd(z, λ)(t)d.

Denote Ir,s(z, λ) = cps−1(z, λ).
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Theorem A.2. The polynomial Ir,s(z, λ) is a solution modulo ps of the qKZ difference equa-
tion (A.4).

Proof. Let F (t) =
∑

d ad(t)d be a polynomial. Denote Coef(F ) = aps−1. We have

Φr,s(t+ 1, z, λ) =
Er,s(p

rλ)(t− z)2(
t− z − ps−1

2

)(
t− z − ps+1

2

)Φr,s(t, z, λ),

Φr,s(t, z − 1, λ) =
(t− z)2(

t− z − ps−1
2

)(
t− z − ps+1

2

)Φr,s(t, z, λ),

Coef(Φr,s(t, z, λ)) ≡ Coef(Φr,s(t+ 1, z, λ)) (mod ps), (A.6)

where the congruence (A.6) follows from (A.3). Hence

Er,s(p
rλ)Ir,s(z − 1, λ) ≡ Ir,s(z, λ) (mod ps),

and Ir,s(z, λ) is a solution modulo ps of the qKZ equation (A.4). ■

More general qKZ equations are given by multidimensional Jackson integrals whose inte-
grand is a product of exponential factors and ratios of gamma functions like in (A.1). To
construct polynomial solutions modulo ps of the qKZ equations, we replace the exponential
factors in the integrand by the product of the corresponding functions Er,s(t), replace the ra-
tios of gamma functions by the corresponding Pochhammer polynomial as in (A.5), expand the
result into Pochhammer polynomials and take the suitable coefficients of that expansion like in
Theorem A.2.
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