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Abstract. Isomonodromy for the fifth Painlevé equation P5 is studied in detail in the
context of certain moduli spaces for connections, monodromy, the Riemann–Hilbert mor-
phism, and Okamoto–Painlevé spaces. This involves explicit formulas for Stokes matrices
and parabolic structures. The rank 4 Lax pair for P5, introduced by Noumi–Yamada et al.,
is shown to be induced by a natural fine moduli space of connections of rank 4. As a by-
product one obtains a polynomial Hamiltonian for P5, equivalent to the one of Okamoto.
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1 Introduction and summary

Historically, the list of classical Painlevé equations y′′ = F (y′, y, z) was deduced from the prop-
erty that the only moving singularities of the solutions are poles. The connection with isomon-
odromy was quite early recognised. In the papers of Jimbo, Miwa and Ueno [11, 12, 13] this
theme is developed and moduli spaces for connections and monodromy data are constructed. In
particular, isomonodromic families of rank two matrix differential operators d

dz +A are provided
for each of P1–P6. We refer to [6, 7, 8, 9, 15, 17, 18, 19] for some theory and detailed explicit
equations. We note that this choice does not do justice to the extensive literature related to
Painlevé equations. The family of matrix differential operators for P3, P4 and for the degenerate
fifth Painlevé equation degP5 has been refined, see [1, 24, 25], to fine moduli spaces of connec-
tions on the projective line, which are identified with Okamoto–Painlevé spaces. The detailed
construction of the moduli spaces supplements and continues some sections of [22]. The moduli
spaces for the monodromy data, including Stokes data, are studied in the literature under the
name “wild character varieties”; see, e.g., [4]. For the case P5, there is a preprint [21] by E. Paul
and J.-P. Ramis, continuing [20, Section 3.2].

The present paper applies a comparable technique for P5. This supplements and improves
[22, Sections 3.2 and 4.3] involving P5. The family of matrix differential operators will be refined
to “natural” fine moduli spaces M(θ0, θ1, θ∞) of connections of rank 2 on the projective line.

1.1 Description of M(θ0, θ1, θ∞) and Rgeom(θ0, θ1, θ∞)

The objects for the moduli space M(θ0, θ1, θ∞) are connections on a rank two vector bun-
dle of degree −1, having the (generalized) eigenvalues ± θ0

2 , ± θ1
2 and tz+θ∞

2 , − tz+θ∞
2 − 1 at

z = 0, 1 and ∞. Further, a variable u with e2πiu = t is part of the data. Let θ := θ∞ + 1.

There are restrictions on the parameters θ0, θ1, θ∞ and on the objects of M(θ0, θ1, θ∞).
Moreover, there is an additional structure for θ0 ∈ Z and/or θ1 ∈ Z. We give some technical
details.
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For a given connection (∇,V) (with V of degree −1), a subobject is a saturated line bundle
L ⊂ V, invariant under ∇. Then L has local equations d

dz + ϵ0
θ0
2 ,

d
dz − ϵ1

θ1
2 and d

dz − ϵ2
tz+θ
2 − 1

2z
at the points z = 0, 1,∞ for certain ϵ0, ϵ1, ϵ2 ∈ {±1}. Then the degree of L is equal to −1/2−
ϵ2

θ
2 + ϵ1

θ1
2 − ϵ0

θ0
2 . We require that any (∇,V) has at most one subobject and that the degree of

this subobject is −1. In order to avoid the possibility of subobjects of degree < −1, we make in
the sequel the following restriction “restr” on the parameters θ0, θ1, θ:

−1/2− ϵ2
θ

2
+ ϵ1

θ1
2

− ϵ0
θ0
2

∈ Z<−1

is not possible for (ϵ0, ϵ1, ϵ2) ∈ {±1}3.
For the case θ0 ∈ Z, the objects (V,∇) are provided with an additional structure called

“parabolic structure”. This consist of a one-dimensional ∇-invariant subspace of V ⊗ C((z)).
The case θ1 ∈ Z is similar.

Comments.

(1) The reason for the choice: “degree of V is −1” is the following. In general, V ∼= O(k)e1 ⊕
O(−k − 1)e2 with k ≥ 0. If k > 0, then O(k)e1 is a subobject ruled out by the restriction
on subobjects. This implies k = 0 and the underlying sheaf of the connections can be
identified with the subsheaf V = Oe1 ⊕O(−[∞])e2 of Oe1 ⊕Oe2.

(2) The generic fibre M of a connection (V,∇), as above, is a differential module over C(z)
with invariant local lattices at z = 0, 1,∞. One can change the local lattices by shifting
the θ0, θ1, θ over elements in 2Z and obtain another connection with generic fibre M . This
defines in fact a Bäcklund transformation. By doing so, one can obtain parameters for M
satisfying “restr”.

(3) In order to make M(θ0, θ1, θ∞) explicit, one computes the objects (V,∇) which admit two
subobjects of degree −1 (see Section 5.1).

(4) Parameters {θ∗} are called exceptional, (if “restr” holds and) if the equation −1/2− ϵ2
θ
2 +

ϵ1
θ1
2 − ϵ0

θ0
2 = −1 has a solution with ϵ2 = −1, ϵ0, ϵ1 ∈ {±1} and a solution with ϵ2 = 1,

ϵ0, ϵ1 ∈ {±1}. The exceptional parameters are in fact

(θ = 0,−ϵ0θ0 + ϵ1θ1 = −1), (θ0 = ±1, θ = ±θ1), (θ1 = ±1, θ = ±θ0).

In order to define the Riemann–Hilbert morphism for exceptional parameters, one refines
the space of connection. Let M(θ0, θ1, θ∞, ϵ2 = −1) denote the locus in M(θ0, θ1, θ∞)
where the reducible objects correspond to ϵ2 = −1. Further, M(θ0, θ1, θ∞, ϵ2 = 1) is the
locus where the reducible objects correspond to ϵ2 = 1. A moduli space Rgeom(θ0, θ1, θ∞)
for the monodromy is constructed from the identity mon0 · mon1 = mon∞, where the
{mon∗} are the local topological monodromies at 0, 1, ∞, and from the monodromy
identity which expresses mon∞ as a product of the formal monodromy and two Stokes
matrices. This moduli space depends in a delicate way on the possibilities for subobjects
of the space of connections. In case of exceptional parameters, one defines two spaces
Rgeom(θ0, θ1, θ∞, ϵ2 = −1) and Rgeom(θ0, θ1, θ∞, ϵ2 = 1) which correspond to the similar
refinement for the space of connections. The above monodromy space is also provided
with parabolic structures for the cases θ0 ∈ Z and/or θ1 ∈ Z. This structure consists of
an invariant line for the local monodromy at z = 0 and/or the local monodromy at z = 1.

In [20, Section 3.2], the moduli space Rgeom(θ0, θ1, θ∞) is seen as a representation of the wild
fundamental groupoid and the monodromy identity is also present in that context.
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The main result (Theorem 6.1): If the parameters satisfy “restr” and are not exceptional,
then the extended Riemann–Hilbert morphism

RH+ : M(θ0, θ1, θ∞) → Rgeom(θ0, θ1, θ∞)× C

is an isomorphism. Moreover, for exceptional parameters the same holds after adding ϵ2 = −1
or ϵ2 = 1 to both spaces.

This implies the Painlevé property for the solutions of P5 and provides a comparison of
M(θ0, θ1, θ∞) with the Okamoto–Painlevé spaces.

Some “natural” moduli spaces of connections of rank 4, related to P5, are introduced. The
corresponding Lax pairs are identified with the Lax pairs of Noumi–Yamada for P5. All Bäcklund
transformations for P5 are explicit from these Lax pairs.

Now we discuss some more details of the paper. The construction of moduli spaces starts
in Section 2 by defining a set S(θ0, θ1, θ∞) of pairs (M,u), where M is a differential module of
dimension 2 over C(z) and u ∈ C. Further, M has regular singular points z = 0 and z = 1
with local eigenvalues ± θ0

2 and ± θ1
2 . Moreover, the point z = ∞ is an irregular singularity with

(generalized) eigenvalues ± tz+θ∞
2 and t = e2πiu.

The choice of the parameters {θ∗} and the parabolic structures (in case θ0 and/or θ1 are
in Z) determines a connection with generic fibre M . We assume again that {θ∗} satisfies “restr”.
Further, we allow for at most one proper submodule L ⊂ M . If L exists, then the degree of the
corresponding saturated line bundle L is required to be −1. In case of exceptional parameters
we refine this set into the two sets S(θ0, θ1, θ∞, ϵ2 = 1) and S(θ0, θ1, θ∞, ϵ2 = −1).

The monodromy data for objects of S(θ0, θ1, θ∞) are given by local monodromy matrices,
Stokes matrices and parabolic structure. In Section 3, the construction of the fine moduli space
Rgeom(θ0, θ1, θ∞) is explained. In the presence of reducible objects this space required a more
refined description, see Section 1.1 and page 10.

It is shown that Rgeom(θ0, θ1, θ∞) is simply connected. It is a resolution of the monodromy
space obtained in [22, Sections 3.2 and 4.3], if one assumes that the parameters satisfy “restr”
and are not exceptional; indeed, see Remark 3.3 (b).

In the exceptional case, the monodromy space is refined into spaces Rgeom(θ0, θ1, θ∞, ϵ2 = 1)
and Rgeom(θ0, θ1, θ∞, ϵ2 = −1).

As always we assume “restr”. If the parameters are not exceptional, then the natural map
S(θ0, θ1, θ∞) → Rgeom(θ0, θ1, θ∞)(C)× C is a bijection. If the parameters are exceptional, then
a similar natural bijection is valid after adding ϵ2 = 1 or ϵ2 = −1 to both sides.

In Section 4, one considers the vector bundle V = Oe1⊕O(−[∞])e2, subbundle (of degree −1)
of the free vector bundle Oe1 ⊕ Oe2 on P1. The data for every object (M,u) ∈ S(θ0, θ1, θ∞)
produce a unique connection ∇(M) : V → Ω([0] + [1] + 2[∞]) ⊗ V with prescribed data at the
singular points 0, 1, ∞. The generic fibre of ∇(M) is the differential module M (including data).
This leads to a moduli functor and a fine moduli space M(θ0, θ1, θ∞).

It is shown that the extended Riemann–Hilbert morphism RH+ is an isomorphism if θ0, θ1 ̸∈Z,
the parameters satisfy “restr” and are not exceptional. In the exceptional case, the statement
remains valid after adding ϵ2 = −1 or ϵ2 = 1 to all spaces.

The reducible locus, corresponding to the reducible M ∈ S(θ0, θ1, θ∞) is computed in Sec-
tion 5. In the presence of reducible objects the definition of M has to be refined, see Section 1.1
and page 18 for details. Isomonodromy in the sublocus of M(θ0, θ1, θ∞) corresponding to re-
ducible modules produces the Riccati solutions for P5. The parabolic structure is again studied
in Section 6 in order to prove the main result, Theorem 6.1, namely: The extended Riemann–
Hilbert morphism is an isomorphism for parameters satisfying “restr” (and adding ϵ2 = −1 or
ϵ2 = 1 for the exceptional cases).

In Section 7, a standard computation with Lax Pairs produces the usual differential equation
for P5. From the extended Riemann–Hilbert map RH+ one can read off and find the formulas for



4 M. van der Put and J. Top

some Bäcklund transformations. However, some are missing. Noumi and Yamada constructed
a Lax pair for P5 from which one can read off all Bäcklund transformations.

Our contribution in Section 8 to this is to provide a natural moduli space of connections M4

and a corresponding monodromy space R4, which produce the Lax pair of Noumi–Yamada. The
moduli space M4 is associated to the set of differential modules M of dimension 4 over C(z)
such that:

(a) Λ4M is trivial,

(b) z = 0 is regular singular,

(c) z = ∞ is irregular singular, and its generalized eigenvalues are z1/2 + tz1/4 and its conju-
gates.

A direct computation of a matrix differential operator for M4 seems rather difficult. Instead,
one gives a module M ∈ M4 the interpretation of a differential module N over C

(
z1/4

)
provided

with a symmetry σ of order 4. Explicit formulas for N and M := N ⟨σ⟩ are inspired by [23,
Section 12.5]. The resulting Lax pair is identical to the one in [26]. A calculation of the Lax pair
for N instead of M produces at once a polynomial Hamiltonian for P5 which is, up to a linear
change of coordinates, also present in Okamoto’s work.

Comparison with work of Ph. Boalch

In the remainder of this introduction, we follow a suggestion by the referee of earlier versions
of this text, by presenting details of the subtle comparison of our work with the paper [2] by
Ph. Boalch. We note that the paper [3] extends the constructions and results of [2] to connections
on algebraic curves of higher genus. We will not discuss [3].

Firstly, we describe some details of [2], relevant for the comparison. The data A denotes a set
of singular points {a1, . . . , am} ⊂ P1 together with for each point the type of the singularity.
For a local coordinate w at a singular point aj , the differential operator is supposed to have the

form d
dw + Ak

wk +
Ak−1

wk−1 + · · · with k ≥ 1 such that Ak has distinct eigenvalues for k ≥ 2 and the
eigenvalues are also distinct modulo Z in case k = 1. The “type” of the singularity aj is the
principle part of this operator.

Associated to A are moduli sets M∗(A) ⊂ M(A) and M(A). The first one is the set of
isomorphy classes of connections with data A on a trivial vector bundle of rank 2 on P1. The
second moduli set is the same but now with “trivial vector bundle” replaced by “vector bundle
of degree zero”. Finally, M(A) is a moduli set for the analytic data, i.e., monodromy, Stokes
matrices (and links) associated to A.

The set M∗(A) is identified with O1×· · ·×Om modulo the action by conjugation of G = GLn.
Here each Oj is a Gkj := GLn

(
C[ζ]/ζkj

)
-orbit in the Lie algebra of the group Gkj . Since

(co)adjoint orbits have a natural symplectic structure, the same holds for O1 × · · · × Om.
Now M∗(A), regarded as variety, is defined as the categorical quotient (O1 × · · · × Om)//G.
We note in passing that this categorical quotient need not be a geometric quotient and that
(O1 × · · · ×Om)//G can have singularities. A priori, the moduli set M(A) is not given a struc-
ture of algebraic variety.

The C∞-method of B. Malgrange et al. to deal with the Stokes phenomenon provides the
structure of an algebraic variety on M(A) and its symplectic structure. We omit details.

A main result of [2] states that the Riemann–Hilbert morphism v : M∗(A) → M(A) is a sym-
plectic, analytic isomorphism onto its image, which is a dense open subset of M(A). Moreover,
v extends to a bijection vext : M(A) → M(A). The bijection vext provides M(A) with the struc-
ture of symplectic analytic variety. The restriction of these structures to M∗(A) coincides with
the already constructed data.
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A further step is to replace the fixed data A by deformation data, say consisting of a “time
variable” t ∈ T . Then the set M(A) is closely related to our construction of R × T , where R
is “our” monodromy space: this is the transparent structure of R derived by the technique of
J. Martinet, J.-R. Ramis, B.L.J. Braaksma et al. of (multi)summation applied to Stokes theory.
We believe that it can be verified that the algebraic structures and the symplectic structures
of M(A) and R× T coincide.

Consider now the case P5 (not made explicit in [2]). Then A corresponds to singulari-
ties 0, 1, ∞ with eigenvalues ± θ0

2 , ±
θ1
2 , ±

tz+θ∞
2 with θ0, θ1 ̸∈ Z. The connections on the trivial

bundle produce a variety M∗(A) as a quotient O0 ×O1 ×O∞//G, where G = GL2.

If this is seen as categorical quotient, then the space has singularities, due to reducibility, for
special values of the θ’s. In such a case it is not a geometric quotient. After leaving out the
locus corresponding to reducible modules, there is a good geometric quotient. We assume that
this is a good interpretation of Boalch’s moduli space M∗(A).

Not every differential module M with the above data can be realized as connection on a triv-
ial bundle. However, every M can be represented by a connection on a vector bundle with
degree −1. After putting a restriction on the parameters and the reducible modules, “our”
space M(θ0, θ1, θ∞) is obtained as good geometric quotient under the group G. Moreover,
a natural symplectic structure can be deduced. We conclude that M∗(A) is a Zariski open
subset of M(θ0, θ1, θ∞). It can probably be identified with the complement of the tau-divisor;
see [25, Section 3.3.4] for details in analogous cases.

We note that for all cases P1–P6 the choice of a vector bundle of rank 2 and degree −1 leads
to a good moduli space of connections.

We observe that every M , as above, can be realized as connection on a vector bundle of
degree 0. Thus M(A) is closely related to M(θ0, θ1, θ∞).

2 The set S(θ0, θ1, θ∞) of differential modules

Fix parameters θ0, θ1, θ∞ ∈ C. Put θ = θ∞ + 1 and t = e2πiu. We consider a set S(θ0, θ1, θ∞)
of pairs (M,u) (up to isomorphism) with u ∈ C and M a differential module over C(z), defined
by the following properties:

(1) M has dimension two; detM = Λ2M is the trivial one-dimensional differential module;
M has at most singularities at z = 0, 1,∞.

(2) The point z = 0 is regular singular and C((z))⊗M can be represented by the differential
operator d

dz +
1
zA0, where A0 is a (2× 2)-matrix with entries in C[[z]] and A0 mod (z) has

eigenvalues ± θ0
2 .

(3) The point z = 1 is regular singular and C((z− 1))⊗M can be represented by the operator
d
dz +

1
z−1A1, where A1 is a (2× 2)-matrix with entries in C[[z− 1]] and A1 mod (z− 1) has

eigenvalues ± θ1
2 .

(4) The point z = ∞ is irregular singular and C
((
z−1

))
⊗M can be represented by the operator

d

dz
+

1

z
·

 tz + θ∞
2

0

0 − tz + θ∞
2

 .

Comments. The “datum” u is attached to the module M in order to distinguish the two gener-
alized local exponents ± tz+θ∞

2 at z = ∞. The aim is to construct a moduli space M(θ0, θ1, θ∞)
of connections with a natural bijection M(θ0, θ1, θ∞)(C) → S(θ0, θ1, θ∞).
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For the monodromy, we will construct a moduli space Rgeom(θ0, θ1, θ∞). The term u, and
not only t, is needed for the definition of the Riemann–Hilbert morphism RH: M(θ0, θ1, θ∞) →
Rgeom(θ0, θ1, θ∞).

(5) The following technical condition on reducible modules M : A reducible module M , satis-
fying (1)–(4), belongs to S(θ0, θ1, θ∞) if it has only one submodule L of dimension 1 and
moreover L satisfies a certain condition. Namely, L gives rise to a tuple (ϵ0, ϵ1, ϵ2) ∈ {±1}3
and an integer k = −1

2−ϵ2
θ
2+ϵ1

θ1
2 −ϵ0

θ0
2 . We require that k = −1. Moreover, we avoid the

possibility of an integer k < −1. This leads to the assumption of condition “restr” (see Sec-
tion 1.1, Corollary 2.2 and Remark 2.3 for details). Parameters {θ∗} are exceptional if both
ϵ2 = −1 and ϵ2 = 1 occurs for reducible objects with degree −1. For exceptional parame-
ters, the definition of S(θ0, θ1, θ∞) is refined by introducing the sets S(θ0, θ1, θ∞, ϵ2 = −1)
and S(θ0, θ1, θ∞, ϵ2 = 1). For the first one, we require additionally for reducible modules
that ϵ2 = −1. For the second set, we require additionally that ϵ2 = 1. For not exceptional
parameters, we keep the notation S(θ0, θ1, θ∞).

Comments. For the above submodule L, the local data at the points 0, 1, ∞ are d
dz + ϵ0

θ0
2z ,

d
dz−ϵ1

θ1
2(z−1) and

d
dz−ϵ2

tz+θ
2z − 1

2z . Furthermore, k is the degree of the line bundle L corresponding
to L and the lattices described by the local data.

Split modules M (i.e., direct sums of submodules of dimension 1), satisfying (1)–(4), may
produce a bad singularity or non-separated moduli spaces. Therefore, split modules are not
admitted in any set S(θ0, θ1, θ∞).

If one admits (for given exceptional parameters) reducible modules for both cases ϵ2 = −1
and ϵ2 = 1, then the construction of the moduli space for the connections and/or the one for
the monodromy could produce non-separated spaces. The exceptional parameters are

(θ = 0,−ϵ0θ0 + ϵ1θ1 = −1), (θ0 = ±1, θ = ±θ1), (θ1 = ±1, θ = ±θ0),

see Sections 1.1, 3 (v) (c) and 5.1 for more details.

For θ0 ∈ Z and/or θ1 ∈ Z, another refinement of the definition of S(θ0, θ1, θ∞) is needed.
This consists of the additional data of one or two lines, namely:

(6) For θ0 ∈ Z, it is a line Cv ⊂ C((z))⊗M such that D(v) = − |θ0|
2 v.

(7) For θ1 ∈ Z, it is a line Cv ⊂ C((z − 1))⊗M such that D(v) = − |θ1|
2 v. The lines are called

eigenlines and the additional data is called a parabolic structure or a level structure.

Explanation of the conditions (6) and (7). Consider a differential module M over C(z) satis-
fying (1)–(5). Write D : M → M for its differential operator with D(f ·m) = df

dz ·m+ f ·D(m).
We want to attach to M an “invariant lattice at z = 0 with data θ0”. This is a C[[z]]-lattice
Λ ⊂ C((z))⊗M such that zD(Λ) ⊂ Λ and zD induces on Λ/zΛ a linear operator with eigenval-
ues ± θ0

2 . In general Λ is unique, except possibly for θ0 ∈ Z̸=0. In the latter case, the parabolic
structure, namely the eigenline Cv, leads to a unique possibility for Λ. Without the parabolic
structure the (to be constructed) moduli space of connections would have singularities or its
set of closed points would differ from S(θ0, θ1, θ∞). The parabolic structure produces a natural
resolution of the singularities that one would have otherwise. The technical Lemma 2.1 provides
the verification of the above statements. In Section 6 there is another formulation of this lemma.

Lemma 2.1. Consider differential modules M = (M,D) over C((z)) with D(f ·m) = z df
dz ·m+

f ·D(m). Let L = C((z))e be defined by De = 1
2e. Let N be a differential module with dimN = 2,

detN is trivial and N has a D-invariant lattice Λ such that D has eigenvalues ± θ
2 for its action

on Λ/zΛ.
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(1) The D-invariant lattice Λ is unique except in the cases:

(a) θ ∈ Z̸=0 is even and N is trivial,

(b) θ ∈ Z̸=0 is odd and L⊗N is trivial.

(2) Let θ = m ∈ Z>0 and suppose that (1a) or (1b) holds. Let LA denote the set of D-invariant
lattices Λ such that D has eigenvalues ±m

2 on Λ/zΛ. Let LI denote the set of lines Cv ̸= 0
in N such that D(v) = −m

2 v. Every lattice Λ ∈ LA contains a unique Cv ∈ LI. This
defines a bijection LA → LI. Fix a basis b1, b2 of N such that D(b1) = −m

2 b1, D(b2) =
m
2 b2. The set LI identifies with the projective complex line P(Cb1 + Cz−mb2).

(3) Suppose θ ∈ Z≥0. There is a unique line Cv ̸= 0 in N with D(v) = − θ
2v, expect for

cases (1a), (1b) and the case where N is trivial and θ = 0. In the last case the set of those
lines forms the projective line P({n ∈ N |D(n) = 0}).

Proof. Suppose θ ̸= 0. The choice of a D-invariant lattice for N produces a differential operator
z d
dz + A where A has entries in C[[z]] and A ≡

(
λ 0
0 −λ

)
mod (z) and λ = − θ

2 . By conjugation
with a matrix U = 1 + U1z + U2z

2 + · · · (all Ui are (2× 2)-matrices, U0 := 1) we try to obtain
z d
dz +

(
λ 0
0 −λ

)
. This leads to U

(
z d
dz +A

)
=

(
z d
dz +

(
λ 0
0 −λ

))
U . Write A = A0 +A1z+A2z

2 + · · ·
with A0 =

(
λ 0
0 −λ

)
and all Aj are (2× 2)-matrices. Then one obtains equations

∑
n≥1

n∑
i=1

(Un−iAi)z
n =

∑
n≥1

(nUn +A0Un − UnA0)z
n

for the matrices Ui. The map Un 7→ nUn +A0Un − UnA0 sends
(
x1 x2
x3 x4

)
to

( nx1 (n+2λ)x2

(n−2λ)x3 nx4

)
.

If θ = −2λ ̸∈ Z, there is a unique solution U = 1 + U1z + U2z
2 + · · · . The given lattice has

a basis b1, b2 with D(b1) = λb1, D(b2) = −λb2.

Any D-invariant lattice Λ̃ such that D has eigenvalues ±λ on Λ̃/zΛ̃ has a basis b̃1, b̃2 with
D
(
b̃1
)
= λb̃1, D

(
b̃2
)
= −λb̃2. The matrix

(
x1 x2
x3 x4

)
relating the two bases has the property(

x1 x2
x3 x4

)(
z
d

dz
+

(
λ 0
0 −λ

))
=

(
z
d

dz
+

(
λ 0
0 −λ

))(
x1 x2
x3 x4

)
.

Using
(
x1 x2
x3 x4

)
∈ GL2(C((z)) ) one obtains x1, x4 ∈ C∗ and x2 = x3 = 0. Thus Λ̃ coincides with

the given D-invariant lattice.

Case θ = −2λ ∈ Z̸=0. We suppose for convenience that θ = m ∈ Z>0. The above system of
equations shows that the equations for the Un have unique solutions for n ̸= m. There might not
be a solution for Um. This implies that the given lattice has a basis b1, b2 such that D(b1) = λb1
and D(b2) = −λb2 + azmb1 where a ∈ C.

The subcase a ̸= 0. We may normalize to a = 1. A straightforward calculation shows that
there is no element v ∈ N − Czmb1 with D(v) = −λv. Any D-invariant lattice Λ̃ in N such
that D has eigenvalues ±λ on Λ̃/zΛ̃ has a basis b̃1, b̃2 with similar properties. Comparing the
two lattices produces (as before) an equality(

x1 x2
x3 x4

)(
z
d

dz
+

(
λ zm

0 −λ

))
=

(
z
d

dz
+

(
λ zm

0 −λ

))(
x1 x2
x3 x4

)
with

(
x1 x2
x3 x4

)
∈ GL2(C((z))). This leads to the matrix equation

z
d

dz

(
x1 x2
x3 x4

)
= −m ·

[(
x1 x2
x3 x4

)
,

(
1
2 0
0 −1

2

)]
+ zm ·

[(
x1 x2
x3 x4

)
,

(
0 1
0 0

)]
.
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The solutions of this system of equations are x1 = x4 ∈ C∗, x3 = 0 and x2 = c · zm with c ∈ C.
Hence Λ̃ coincides with the given D-invariant lattice.

The subcase a = 0. Two D-invariant lattices such that D mod (z) has the eigenvalues ±λ,
are related by a matrix

(
x1 x2
x3 x4

)
∈ GL2(C((z))) satisfying(

x1 x2
x3 x4

)(
z
d

dz
+

(
λ 0
0 −λ

))
=

(
z
d

dz
+

(
λ 0
0 −λ

))(
x1 x2
x3 x4

)
.

The solutions are
(
x1 x2
x3 x4

)
=

(
c1 c2zm

c3z−m c4

)
with c1, c2, c3, c4 ∈ C and c1c4 − c2c3 ̸= 0. The two

D-invariant lattices are equal if and only if c3 = 0. The conclusion is that there are many
D-invariant lattices such that D has, modulo (z), eigenvalues ±λ. This proves statement (1) of
the lemma.

Using the form of the matrix
(

c1 c2zm

c3z−m c4

)
, one deduces statement (2) of the lemma. Fur-

thermore, the case a = 0 corresponds to N is trivial if θ is even and N ⊗ L is trivial if θ is
odd.

The case θ = 0. Let Λ be a D-invariant lattice such that D has on Λ/zΛ only 0 as eigenvalue.
Then Λ has a basis b1, b2 such that D becomes the operator z d

dz +
(
0 a
0 0

)
with a ∈ C. The

module N is trivial if and only if a = 0. As above one verifies that there is only one D-invariant
lattice with this property.

Finally, if a = 0 then a basis b1, b2 exists with D(b1) = D(b2) = 0. Hence D(v) = 0 if and
only if v ∈ Cb1 + Cb2. ■

Corollary 2.2. Suppose that the parameters satisfy “restr” and let V denote the vector bundle
Oe1 +O(−[∞])e2.

(1) Consider non exceptional parameters {θ∗}, i.e., excluded are

(θ = 0,−ϵ0θ0 + ϵ1θ1 = −1), (θ0 = ±1, θ = ±θ1), (θ1 = ±1, θ = ±θ0).

For every module (M,u) ∈ S(θ0, θ1, θ∞) there is a unique connection ∇ : V → Ω([0]+ [1]+
2[∞])) ⊗ V with local data defined by the parameters and generic fibre M . Moreover, the
line bundle Oe1 is not invariant under ∇.

Conversely, suppose that the connection ∇ : V → Ω([0] + [1] + 2[∞])⊗V has the local data
defined by the parameters and that the line bundle Oe1 is not invariant under ∇. Then
there is a (M,u) ∈ S(θ0, θ1, θ∞) where M is the generic fibre of ∇.

(2) Consider exceptional parameters {θ∗}. For every (M,u) ∈ S(θ0, θ1, θ∞, ϵ2 = −1) there is
a unique connection ∇ : V → Ω([0] + [1] + 2[∞]) ⊗ V with the local data defined by the
parameters and with generic fibre M . Moreover, for every invariant saturated line bundle
L ⊂ V one has L ≠ Oe1 and ϵ2 = −1.

Conversely, for any connection ∇ with the above properties and generic fibre M there exists
an element (M,u) ∈ S(θ0, θ1, θ∞, ϵ2 = −1).

The above statements hold with ϵ2 = −1 replaced by ϵ2 = 1.

Proof. Proof of part (1). Write D for the differential on M . We provide M with “invariant
lattices” Λ at the points 0, 1, ∞. For z = 0 this means that Λ ⊂ C((z))⊗M is a free C[[z]]-module
of rank 2 with the properties C((z))⊗ Λ = C((z))⊗M and zD(Λ) ⊂ Λ. We require that zD has
on Λ/zΛ eigenvalues ± θ0

2 . The condition on the lattice at z = 1 is similar. The condition on
the lattice Λ at z = ∞ is that Λ has a basis such that D on this basis has the operator form
d
dz + 1

z

(
x− 1

2
0

0 −x− 1
2

)
where x = tz+θ

2 and θ = θ∞ + 1.
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The first two lattices exist and are unique if θ0, θ1 ̸∈ Z. For θ0 ∈ Z and/or θ1 ∈ Z unique
lattices are produced by Lemma 2.1. One easily verifies the existence and uniqueness for the
invariant lattice at z = ∞.

This leads to a connection ∇ : W → Ω([0] + [1] + 2[∞])⊗W with generic fiber M . Since W
has degree −1 we can identify W with the vector bundle O(k[∞])e1 +O((−1− k)[∞])e2.

For k ≥ 1, the operator D = ∇ d
dz

has on the basis e1, e2 the form d
dz + 1

z(z−1)

(
a c
0 −a

)
with

a = a0 + a1z + a2z
2 and c a polynomial of some degree ≤ 3 + 2k. One finds equations

a20 =

(
θ0
2

)2

, (a0 + a1 + a2)
2 =

(
θ1
2

)2

and by using the generators zke1, z
−1−ke2 of W at ∞ one obtains

a22 =

(
t

2

)2

, 2a1a2 + 2a22 + (1 + 2k)a2 =
tθ

2
.

Thus there are (ϵ0, ϵ1, ϵ2) ∈ {±1}3 with

a0 = ϵ0
θ0
2
, a2 = ϵ2

t

2
, a1 = −ϵ0

θ0
2

+ ϵ1
θ1
2

− ϵ2
t

2
, k = −1

2
+ ϵ2

θ

2
− ϵ1

θ1
2

+ ϵ0
θ0
2
.

This contradicts part (5) of the assumptions on S(θ0, θ1, θ∞). Thus we have k = 0 and W = V.
If the line bundle Oe1 is invariant under ∇, then the same computation provides a contradiction.

A similar computation proves the last statement of part (1).
Proof of part (2). It suffices to remark that, by definition, the reducible connections ∇ that

are admitted correspond with the reducible objects that are admitted in S(θ0, θ1, θ∞, ϵ2 = −1).
The same remark holds for ϵ2 = 1. ■

Remark 2.3. LetM be a reducible object of S(θ0, θ1, θ∞). The submodule L ofM is represented
by a line bundle L ⊂ V with local data d

dz + ϵ0
θ0
2z ,

d
dz − ϵ1

θ1
2(z−1) and

d
dz − ϵ2

tz+θ
2z − 1

2z . Therefore,

V/L is again a line bundle. By the assumption “restr”, the degree of L is 0 or −1. Since degree
zero is excluded by part (5) of the definition of S(θ0, θ1, θ∞), the degree of L is −1.

3 Definition of the monodromy space Rgeom(θ0, θ1, θ∞)

The next step is to convert the analytic data for the modules in S(θ0, θ1, θ∞) into a moduli space.
As before, we assume that “restr” holds for the parameters.

As in Section 2, additional data are added in order to have a good “geometric quotient”
without singularities. The analytic data associated to any (M,u) ∈ S(θ0, θ1, θ∞) is represented
by the five matrices defined below.

(i) The monodromy matrix
(
a1 b1
c1 d1

)
at z = 0 with eigenvalues e±πiθ0 and with s1 = eπiθ0 +

e−πiθ0 .

(ii) The monodromy matrix
(
a2 b2
c2 d2

)
at z = 1 with eigenvalues e±πiθ1 and with s2 = eπiθ1 +

e−πiθ1 .

(iii) The formal monodromy matrix
( α 0
0 1

α

)
at z = ∞ with eigenvalue s3 := α = eπiθ∞ and the

two Stokes matrices
(

1 0
f2 1

)
,
(
1 f1
0 1

)
.

(iv) The relation between these matrices reads, with a slight variation on the notation used in
[22, Section 3.2.1],(

a1 b1
c1 d1

)
·
(
a2 b2
c2 d2

)
=

(
α 0
0 1

α

)
·
(
1 0
f2 1

)
·
(
1 f1
0 1

)
.
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The module M has a formal solution space at z = ∞ with a natural basis {B1, B2} (see
below), unique up to multiplication by scalars. The five matrices above are taken with
respect to this basis and the monodromy space is, roughly speaking, the solution space
of the above system of equations, divided out by the action of Gm which is given by
conjugation with the matrices

{(
c 0
0 1

)
| c ∈ C∗}.

The split case, i.e., b1 = b2 = c1 = c2 = f1 = f2 = 0, is Gm-invariant and produces
a singularity. After leaving out the split case, the remaining problem is that the quotient
space could be non-separated.

The remedy for this, chosen here, is to construct two geometric quotients. The first one,
which we denote by Rgeom(θ0, θ1, θ∞, ϵ2 = −1), is obtained by division of the above space
under the condition (c1, c2) ̸= 0 (see this section for details).

The second one, denoted by Rgeom(θ0, θ1, θ∞, ϵ2 = 1), is the geometric quotient under the
condition (b1, b2) ̸= 0.

(v) As in part (5) of the definition of S(θ0, θ1, θ∞), we assume that the parameters satisfy
“restr”. If the parameters θ0, θ1, θ∞ allow reducible modules, then there is a solution
(ϵ0, ϵ1, ϵ2) ∈ {±1}3 of the equation −1 = −1

2 − ϵ2
θ
2 + ϵ1

θ1
2 − ϵ0

θ0
2 (see Section 1.1, Corol-

lary 2.2 and Remark 2.3). A differential module M ∈ S(θ0, θ1, θ∞) produces a solution for
the matrix equation of (iv). The cases where reducible objects are present:

(a) Suppose that ϵ2 = −1 holds for all reducible M ∈ S(θ0, θ1, θ∞). Then (c1, c2) ̸= 0
holds and the monodromy data define a canonical map

S(θ0, θ1, θ∞) → Rgeom(θ0, θ1, θ∞, ϵ2 = −1)(C).

(b) Suppose that ϵ2 = 1 holds for all reducible M ∈ S(θ0, θ1, θ∞). Then (b1, b2) ̸= 0 holds
and the monodromy data define a canonical map

S(θ0, θ1, θ∞) → Rgeom(θ0, θ1, θ∞, ϵ2 = 1)(C).

Indeed, suppose that the module M has a unique one-dimensional submodule L and that L
satisfies (v) with ϵ2 = −1. The formal module M ⊗ C((1/z)) has eigenvalues ± tz

2 and is
classified by the tuple

(
V,

{
V tz

2
, V− tz

2

}
, γ

)
. Write B1 and B2 for bases of V tz

2
and V− tz

2
.

Then {B1, B2} is a basis used for the matrices defining the spaces Rgeom(θ0, θ1, θ∞, ϵ2 =
±1). Locally at z = ∞, L has the form d

dz + tz+θ
2z − 1

2z and has (generalized) eigen-
value − tz

2 . This implies that the line CB2 ⊂ V is invariant under the monodromy data
and so b1 = b2 = f1 = 0. Since M has no other one-dimensional submodules, one finds
(c1, c2) ̸= (0, 0). This proves statement (a). Case (b) is similar.

(c) There are a few cases, called the exceptional parameters {θ∗}, such that both ϵ2 = −1
and ϵ2 = 1 occurs for reducible modules. The first case is θ = 0 and −ϵ0θ0 + ϵ1θ1 =
−1 for some ϵ0, ϵ1 ∈ {±1}. The tuples (ϵ0, ϵ1, 1) and (ϵ0, ϵ1,−1) describe the same
family of modules but with the variable t replaced by −t. There is a canonical map
S(θ0, θ1, θ∞, ϵ2 = −1) → Rgeom(θ0, θ1, θ∞, ϵ2 = −1)(C). The same holds with ϵ2 = −1
replaced by ϵ2 = 1. The other cases are (θ1 = ±1, θ = ±θ0) and (θ0 = ±1, θ = ±θ1).
Here however, the two values for ϵ2 define distinct families of differential modules.
Again, there are canonical maps

S(θ0, θ1, θ∞, ϵ2 = ±1) → Rgeom(θ0, θ1, θ∞, ϵ2 = ±1)(C).

(d) The construction of Rgeom(θ0, θ1, θ∞, ϵ2 = −1), i.e., the monodromy space under the
condition of (a), namely (c1, c2) ̸= (0, 0), will be worked out here in some detail. The
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second case where the condition is (b1, b2) ̸= (0, 0), is similar and will not be worked
out. In the sequel we will write Rgeom(θ0, θ1, θ∞) if from the context the choice of
ϵ2 ∈ {±1} is clear or has no importance. Only in the case of exceptional parameters
we will keep the above notation.

(e) The space Rgeom(θ0, θ1, θ∞) depends, apart from the choice of reducible objects, only
on the variables s1, s2, s3 = α.

(f) According to results in [22, Section 3.2.2], the space Rgeom(θ0, θ1, θ∞) (say, under the

condition (c1, c2) ̸= 0) has a nonempty reducible locus if and only if
(
s3 + s−1

3

)2 −
s1s2

(
s3 + s−1

3

)
+ s21 + s22 = 4 holds. For s3 = ±1, s1 ̸= ±2, s2 = ±s1, the reducible

locus consists of two, non-intersecting, projective lines. For the other cases with
s1, s2 ̸= ±2 the reducible locus is one projective line.

(vi) If θ0 ∈ Z or equivalently s1 = ±2, then there is the additional datum of an eigenline
Cv ̸= 0 for the monodromy matrix

(
a1 b1
c1 d1

)
.

(vii) If θ1 ∈ Z or equivalently s2 = ±2, then there is the additional datum of an eigenline
Cv ̸= 0 for the monodromy matrix

(
a2 b2
c2 d2

)
.

For the explanation of (i)–(vii), we recall from [22, Section 3.2] the following description of
the map S(θ0, θ1, θ∞) → Rgeom(θ0, θ1, θ∞). Let an object (M,u) be given, or a connection in
the (to be constructed) space M(θ0, θ1, θ∞). At z = ∞ the differential module C

((
z−1

))
⊗ M

is equivalent to the differential operator d
dz − 1

z ·
( tz+θ∞

2
0

0 − tz+θ∞
2

)
. Write y = zθ∞/2etz/2. The

solutions
{( y

0

)
,
( 0
y−1

)}
of this differential operator produce a basis {B1, B2} for the space V

of the formal solutions of M at z = ∞. In fact, as before, V tz
2
= CB1 and V−tz

2
= CB2. The

B1 and B2 are unique up to multiplication by elements of C∗. Furthermore one chooses paths
from 0 to 1 and from 1 to ∞. The latter should have a nonsingular direction at ∞.

Multisummation at this nonsingular direction lifts B1, B2 to solutions of the differential
module M on a large sector around this direction. These extend to multivalued functions on
P1 \ {0, 1,∞} and the monodromies at z = 0, 1,∞ and the Stokes matrices are well defined and
are all considered with respect to this basis B1, B2. For suitable orientations, the product of the
topological monodromies at z = 0 and z = 1 is equal to the topological monodromy at z = ∞.
Then the identity (iv) follows from the “monodromy identity” [23, Proposition 8.12]. The above
five matrices are considered modulo simultaneous conjugation by Gm =

{(
c 0
0 1

)
| c ∈ C∗}, since

the basis B1, B2 is unique up to multiplication by scalars.

Remark 3.1. For a single module M , the definition of the image of M into Rgeom(θ0, θ1, θ∞)
poses no problems since one can always choose a nonsingular direction for the multisummation.

However for a family this poses a problem since the two singular directions −β, 12 − β ∈ R/Z
vary with t

|t| = e2πiβ. The remedy is to choose a nonsingular direction, say −β + 1
4 , that moves

with t
|t| . This can be done, in a continuous way, by using u with t = e2πiu on the universal

covering of P1 \ {0, 1,∞}.

Construction of Rgeom(θ0, θ1, θ∞), separation and parabolic structure. Let Spec(R) denote the
affine variety describing the above five matrices and their relations (for fixed s1 := eπiθ0 +e−πiθ0 ,
s2 := eπiθ1+e−πiθ1 , s3 = α = eπiθ∞). We forget for the moment restrictions related to reducibility.
After elimination of f1 and f2 one finds that R = C[a1, b1, c1, d1, a2, b2, c2, d2]/(relations). The
relations are generated by

a1d1 − b1c1 = 1, a2d2 − b2c2 = 1, a1 + d1 = s1, a2 + d2 = s2, a1a2 + b1c2 = s3.

One needs a quotient of Spec(R) by the action of Gm. A categorical quotient R(θ0, θ1, θ∞) :=
Spec(R0) with R0 = RGm is computed in [22, Section 3.2]. It is an affine cubic surface with
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three lines at infinity. This is given an interpretation in [5]. The disadvantage is that it is
not a geometric quotient and, moreover, there are many singularities (depending on s1, s2
and s3). These singularities are caused by resonance, reducibility and fixed points for the action
of Gm (see the table in [22, Section 3.2.2]). Here we will define a smooth “geometric quotient”
Rgeom(θ0, θ1, θ∞) by assuming (v) (i.e., we assume (c1, c2) ̸= (0, 0)) and adding additional data
for s1 = ±2 and/or s2 = ±2 (see (vi) and (vii)).

Suppose that θ0, θ1 ̸∈ Z or equivalently s1 ̸= ±2, s2 ̸= ±2. Then we consider the open
subspace X of Spec(R), defined by condition (v), namely the case (c1, c2) ̸= (0, 0). A geometric
quotient X/Gm exists and is connected, smooth and separated as can be seen as follows.

The space X is the union of the two Zariski open affine subspaces given by c1 ̸= 0 and c2 ̸= 0.
LetX(c1 ̸= 0) ⊂ X ⊂ Spec(R) denote the affine subspace given by c1 ̸= 0 and letX(c1=1) be the
closed subset given by c1 = 1. The action of Gm on X yields an isomorphism Gm×X(c1=1) →
X(c1 ̸= 0). Therefore, we can identify X(c1 ̸= 0)/Gm with X(c1=1). The affine space X(c1=1)
is given by variables a1, b1, d1, a2, b2, c2, d2 and relations

dj = sj − aj , j = 1, 2, a1d1 − b1 = 1, a2d2 − b2c2 = 1, a1a2 + b1c2 = s3 ̸= 0.

After elimination d1, d2, b1 the coordinate ring of X(c1 = 1) is equal to C[a1, a2, b2, c2]/(a1a2 +
(−1+a1(s1−a1)c2−s3, a2(s1−a2)−b2c2−1)). A calculation shows that X(c1 = 1) is connected,
has dimension 2 and is smooth under the assumption that s2 ̸= ±2.

A similar calculation shows that X(c2 ̸= 0) ∼= X(c2 = 1) × Gm and that X(c2 = 1) has
dimension 2, is connected and smooth under the assumption that s1 ̸= ±2.

Let X/Gm denote the gluing of X(c1 ̸= 0)/Gm and X(c2 ̸= 0)/Gm. In order to verify
that X/Gm is separated we consider the morphism F : X → P1 that sends a point of X to the
equivalence class [c1 : c2] ∈ P1 of (c1, c2). Since F is Gm-equivariant and P1 has trivial Gm-
action, one obtains a morphism G : X/Gm → P1. The fibers of F are two-dimensional affine
spaces V with a Gm-action such that V/Gm is affine and V/Gm×Gm

∼= V . Then the fibers of G
are the affine one-dimensional spaces V/Gm. We apply the valuative criterion of separatedness
(see [10, Theorem II.4.3]) to X/Gm. Since P1 is separated it suffices to verify that the fibers
of G are separated. The latter holds since these fibers are affine.

For s1 ̸= ±2, s2 ̸= ±2, the space Rgeom(θ0, θ1, θ∞) is by definition the above space X/Gm.
The cases θ0 ∈ Z or θ1 ∈ Z. We explain the case θ0 = 2m ∈ 2Z in some detail. The other

cases θ0 ∈ 1 + 2Z or θ1 ∈ Z can be treated in a similar way. The space Rgeom(2m, θ1, θ∞) is
given by the tuples (modulo Gm-action)((

a1 b1
c1 d1

)
,

(
a2 b2
c2 d2

)
, [y1 : y2]

)
∈ A4 × A4 × P1

with the following relations:

a1 + d1 = 2, a1d1 − b1c1 = 1, a2 + d2 = s2, a2d2 − b2c2 = 1,

a1a2 + b1c2 = s3,

(
a1 b1
c1 d1

)(
y1
y2

)
=

(
y1
y2

)
,

and one of the elements c1, c2 ̸= 0. We consider again the geometric quotient Rgeom(2m, θ1, θ∞)
of the above space by the action of Gm. This quotient is obtained by gluing some affine open
subspaces. Each subspace is obtained by normalizing one of the c1, c2 to 1 and also one of the
elements y1, y2 is normalized to 1. For each of these four open affine subsets one can make the
coordinate ring explicit and verify that there are no singularities.

As an example we make the case c2 = 1, y2 = 1 explicit. Elimination of the variables a1, d1,
d2, b1, b2 leads to the nonsingular coordinate ring C[a2, c1, y1]/

(
a2c1y1 − c1y

2
1 + a2 − s3

)
of this

affine subset.
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As in the case s1 ̸= ±2, s2 ̸= ±2 one can show that the gluing of the four affine spaces
produces a connected, separated and smooth variety.

Proposition 3.2. Suppose that the parameters satisfy “restr”. Let s1 = eπiθ0 + e−πiθ0, s2 =
eπiθ1 + e−πiθ1, s3 = eπiθ∞.

(1) Rgeom(θ0, θ1, θ∞) is a simply connected, smooth variety of dimension 2. It is a geometric
quotient of the analytic data including the eigenlines for the cases s1 = ±2 and/or s2 = ±2.

(2) Suppose that the parameters are not exceptional. The map

S(θ0, θ1, θ∞) → Rgeom(θ0, θ1, θ∞)(C)× C,

which associates to any (M,u) the analytic data of M (including additional lines for θ0 ∈ Z
and/or θ1 ∈ Z) and u ∈ C, is a bijection.

(3) Suppose that the parameters are exceptional. Then (2) remains valid after adding the data
ϵ2 = −1 or ϵ2 = 1 to both sets.

Proof. Most of the proof of (1) is sketched above. For the proof that the complex algebraic vari-
etyRgeom(θ0, θ1, θ∞) is simply connected one considers the morphism pr: Rgeom(θ0, θ1, θ∞) → C2

which sends the data
(
a1 b1
c1 d1

)
,
(
a2 b2
c2 d2

)
and [y1 : y2] (for special s1, s2) to (a1, a2) ∈ C2.

First we consider the case s1 ̸= ±2 and s2 ̸= ±2. A computation shows that the fibre of
pr consists of 1 point if s3 − a1a2 ̸= 0. For the case s3 − a1a2 = 0, a1(s1 − a1) − 1 ̸= 0,
a2(s2 − a2) − 1 ̸= 0 the fibre is empty. For the cases s3 − a1a2 = 0, a1(s1 − a1) − 1 ̸= 0,
a2(s2 − a2) − 1 = 0 and s3 − a1a2 = 0, a1(s1 − a1) − 1 = 0, a2(s2 − a2) − 1 ̸= 0 the fibre is C.
Finally, for the case s3 − a1a2 = 0, a1(s1 − a1) − 1 = 0, a2(s2 − a2) − 1 = 0, the fibre is the
union of three complex lines L1∪L2∪L3. The only intersections are the points {p1,2} = L1∩L2

and {p2,3} = L2 ∩ L3 and p1,2 ̸= p2,3. This shows that the image of pr and that the nonempty
fibres of pr are simply connected. Thus by an argument in the spirit of Van Kampen’s theorem
it follows that Rgeom(θ0, θ1, θ∞) is simply connected. In the cases s1 = ±2 and/or s2 = ±2 the
image of pr is the same as above. Some of the nonempty fibres have acquired, in comparison
with above, projective lines over C as components. We conclude again that Rgeom(θ0, θ1, θ∞) is
simply connected.

The proof of (2) follows by combining the following observations:

(a) Given formal and analytic data determine a unique differential module over C(z), see [22,
Theorem 1.7].

(b) Rgeom(θ0, θ1, θ∞) is by construction a geometric quotient and thus Rgeom(θ0, θ1, θ∞)(C) is
equal as a set to the analytic data.

(c) S(θ0, θ1, θ∞) and Rgeom(θ0, θ1, θ∞) are provided with the same additional data for the
cases θ0 ∈ Z and/or θ1 ∈ Z.

The additional remark for the proof of (3) is that the admitted reducible cases for both sets
correspond. ■

Remark 3.3. We consider the obvious morphism

r : Rgeom(θ0, θ1, θ∞) → R(θ0, θ1, θ∞)

for the case that the first space is constructed with the condition (c1, c2) ̸= (0, 0). As before
R(θ0, θ1, θ∞) denotes the categorical quotient considered in [22, Sections 3.2 and 4.3].

(a) For general parameters, i.e., no resonance and no reducible data, the map r is an isomor-
phism.
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(b) Suppose the θ∗ satisfy “restr” and are not exceptional. Then r is a minimal resolution,
as can be seen as follows. A reducible locus in Rgeom(θ0, θ1, θ∞) produces a P1 in the
fibre of r. The same holds for the cases θ0 ∈ Z and/or θ1 ∈ Z. The assumption “not
exceptional” implies that the fibres are proper. By counting the number of P1’s in the
fibres and comparing with the table in [22, Table 3.1], we conclude that the resolution r
is minimal.

(c) In all cases the map r is birational. For some examples of exceptional parameters, the
fibres of r are not complete.

4 Construction of M(θ0, θ1, θ∞)

The next step is a subtle construction of moduli spaces of connections. First, we give a construc-
tion of this moduli space of connections without paying attention to a parabolic structure of
eigenlines. For θ0, θ1 ̸∈ Z , this is sufficient. For θ0 ∈ Z and/or θ1 ∈ Z, we will refine this con-
struction since the space M(θ0, θ1, θ∞) can otherwise have singularities and M(θ0, θ1, θ∞)(C)
may not coincide with S(θ0, θ1, θ∞).

The data for the moduli space of connections M(θ0, θ1, θ∞) are

(i) The sub-bundle V = Oe1 ⊕O(−[∞])e2 of the free bundle Oe1 ⊕Oe2.

(ii) Local connections L0, L1, L∞, written as differential operators, namely

(a) L0 =
d
dz+

1
zA0 with A0 a (2×2)-matrix with entries in C[[z]] and such that A0 mod (z)

has eigenvalues ± θ0
2 .

(b) L1 =
d
dz +

1
z−1A1 with A1 a (2× 2)-matrix with entries in C[[z − 1]] and such that A1

mod (z − 1) has eigenvalues ± θ1
2 .

(c) L∞ = d
dz +

1
z

( x−1/2 0
0 −x−1/2

)
at z = ∞ with x = tz+θ

2 , θ = θ∞+1, u ∈ C and t = e2πiu.

The moduli functor MF (from C-algebras to sets) associates to each C-algebra R the set of
equivalence classes of pairs (∇, u) consisting of an element u ∈ C and a connection

∇ : R⊗ V → ΩP1([0] + [1] + 2 · [∞])⊗ (R⊗ V)

satisfying the conditions stated below. We observe that D = ∇ d
dz

has, with respect to the basis

e1, e2, the matrix

1

z(z − 1)
·
(
a0 + a1z + a2z

2 c0 + c1z + · · ·+ c3z
3

b0 + b1z d0 + d1z + d2z
2

)
with a∗, b∗, c∗, d∗ ∈ R. The conditions are: Rb0+Rb1 = R and the action ofD on the completions
of R⊗ V at the points z = 0, 1,∞ is isomorphic to R⊗ L0, R⊗ L1, R⊗ L∞, respectively.

Two pairs (∇1, u1), (∇2, u2) are called equivalent if u1 = u2 and there is an R-linear auto-
morphism g of R⊗ V which transforms ∇1 into ∇2.

The R-linear automorphisms g of R⊗ V are given by the formulas

g(e1) = λ1e1, g(e2) = λ2e2 + (α+ βz)e1 with λ1, λ2 ∈ R∗ and α, β ∈ R.

Our aim is to show that the above functor MF is representable. The resulting fine moduli
space will be denoted by M(θ0, θ1, θ∞). Moreover, the map M(θ0, θ1, θ∞)(C) → S(θ0, θ1, θ∞),
which associates to any pair (∇, u) the pair (M,u) with M the generic fibre of ∇, will be shown
to be bijective under the assumptions θ0, θ1 ̸∈ Z.
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The above data produce an affine space M(θ0, θ1, θ∞) given by the variables t, a0, a1, a2, b0,
b1, c0, c1, c2, c3, d0, d1, d2 and the relations: d0 = −a0, d1 = −a1, d2 = −a2 derived from the
traces of L0, L1, L∞, and from the determinants of L0, L1, L∞ one obtains the relations

a20 + b0c0 =
θ20
4
, (a0 + a1 + a2)

2 + (b0 + b1)(c0 + c1 + c2 + c3) =
θ21
4
,

a22 + b1c3 =
t2

4
, 2a22 + 2a1a2 + a2 + b0c3 + b1c2 + 2b1c3 =

tθ

2
.

We note that in case θ := θ∞+1 ̸= 0, the variable t can be eliminated by one of the relations.
For θ = 0, we will need the variable t for the construction of a good moduli space M(θ0, θ1, θ∞).

From the open subspaces of M(θ0, θ1, θ∞), defined by b0 ̸= 0 or by b1 ̸= 0, one has to take
the geometric quotient by the action of the automorphism group G of the vector bundle V. Let
M1(θ0, θ1, θ∞) denote the open subset given by b1 ̸= 0. Consider the closed subsetM1(θ0, θ1, θ∞)
of M1(θ0, θ1, θ∞) defined by b1 = 1, a1 = a2 = 0. The action of G defines a morphism

G×M1(θ0, θ1, θ∞) → M1(θ0, θ1, θ∞).

This is an isomorphism and therefore we identify M1(θ0, θ1, θ∞)/G with M1(θ0, θ1, θ∞). In
a similar way, let M2(θ0, θ1, θ∞) be the open subset of M(θ0, θ1, θ∞) defined by b0 ̸= 0. There-
fore, M2(θ0, θ1, θ∞)/G can be identified with M2(θ0, θ1, θ∞) defined as the closed subset of
M(θ0, θ1, θ∞), given by b0 = 1, a0 = a1 = 0. The above construction leads to

Proposition 4.1. The space M(θ0, θ1, θ∞) obtained by gluing the spaces M1(θ0, θ1, θ∞) and
M2(θ0, θ1, θ∞) represents the functor MF .

More details for the affine space M1 = M1(θ0, θ1, θ∞). Using an automorphism of V, the
matrix of D = ∇ d

dz
with respect to basis e1, e2 can uniquely be written as

d

dz
+

1

z(z − 1)
·
(

a0 c0 + c1z + c2z
2 + c3z

3

z + b0 −a0

)
,

with equations

a20 + b0c0 =
θ20
4
, a20 + (1 + b0)(c0 + c1 + c2 + c3) =

θ21
4
,

c3 =
t2

4
, (b0 + 2)c3 + c2 =

θt

2
.

Consecutively eliminating c3 = t2

4 and then c2 = θt
2 − (b0 + 2) t

2

4 , and finally c0 =
θ21
4 − θ20

4 −
(b0 + 1)

(
c1 − (b0 + 1) t

2

4 + θt
2

)
results in the equation

a20 = − t2

4
b30 +

(
− t2

2
+

θt

2
+ c1

)
b20 +

(
−θ21

4
+

θ20
4

+
θt

2
− t2

4
+ c1

)
b0 +

θ20
4

for the affine space M1. The singular locus of this three-dimensional affine variety over C is the
following:

(a) For θ0 = 0, the line a0 = b0 = 0 and c1 =
θ21
4 − θt

2 + t2

4 . After substitution of these values in
D the singularity at z = 0 disappears because c0 = 0. On the other hand, if the module M
corresponding to a point of M1 is locally trivial at z = 0 then one concludes θ0 = 0 and
a0 = b0 = c0 = 0. The singularity at the surface M1 for θ0 = 0 can be resolved by adding
as extra data for the family an invariant line locally at z = 0. Then the singular point is
replaced by a P1 of directions for the local invariant line.
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(b) For θ1 = 0, the line a0 = 0, b0 = −1 and c1 =
θ20
4 − θt

2 . It has the same interpretation
as in (a). These singular loci coincide with the loci where the map M1(θ0, θ1, θ∞) →
Spec

(
C
[
t, t−1

])
is not smooth.

More details for M2 = M2(θ0, θ1, θ∞). This Zariski open subset of M(θ0, θ1, θ∞) has (apart
from t) the form

D =
d

dz
+

1

z(z − 1)
·
(

A2z
2 C0 + · · ·+ C3z

3

1 +B1z −A2z
2

)
,

where

C0 =
θ20
4
, A2

2 + (1 +B1)(C0 + C1 + C2 + C3) =
θ21
4
,

A2
2 +B1C3 =

t2

4
, 2A2

2 +A2 +B1C2 + 2B1C3 + C3 =
θt

2
, θ = θ∞ + 1.

Now M\M1 is the closed subset B1 = 0 of M2 and has equations

A2
2 =

t2

4
, C0 =

θ20
4
, 2A2

2 +A2 + C3 =
θt

2
, A2

2 + C0 + C1 + C2 + C3 =
θ21
4
.

This defines the disjoint union of two affine lines over Spec
(
C
[
t, t−1

])
.

Theorem 4.2. Assume that the parameters satisfy “restr” and that θ0, θ1 ̸∈ Z. If the pa-
rameters are not exceptional, then the extended Riemann–Hilbert map RH+ : M(θ0, θ1, θ∞) →
Rgeom(θ0, θ1, θ∞) × C is an analytic isomorphism. If the parameters are exceptional, then the
above remains valid after adding ϵ2 = −1 or ϵ2 = 1 to both spaces.

Proof. The morphism of the theorem is a locally defined map in terms of the variable t ∈ C∗.
By replacing t by u ∈ C with t = e2πiu, it is globally defined (see the Remark 3.1). It is well
known that the monodromy matrices and the Stokes matrices depend in an analytic way on the
data of the connection [23, Proposition 12.20]). Thus RH+ is an analytic map.

Both spaces are smooth complex algebraic varieties, since θ0, θ1 ̸∈ Z. It is known that
a bijective analytic map between smooth complex varieties is an analytic isomorphism. Thus
we have only to show that RH+ is bijective. The bijectivity follows from Proposition 3.2 and
Corollary 2.2. ■

Theorem 4.2 implies that the solutions of the fifth Painlevé equation (at least for θ0, θ1 ̸∈ Z)
are multivalued meromorphic functions in t ∈ C∗ or, equivalently, meromorphic functions of
u ∈ C (compare [24]). In other words, P5 has the Painlevé property. This was already known
from the paper [13].

It is interesting to note that M(θ0, θ1, θ∞) can be identified with the Okamoto–Painlevé
variety for the fifth Painlevé equation (at least for θ0, θ1 ̸∈ Z and in the absence of the reducible
locus). For the verification, the result of Proposition 3.2 stating that Rgeom(θ0, θ1, θ∞) is simply
connected, is needed.

5 The reducible locus in M(θ0, θ1, θ∞)

We recall that the parameters are supposed to satisfy “restr”. For reducible (∇, u), there
is a line bundle W ⊂ V = Oe1 ⊕ O(−[∞])e2, “invariant” under ∇ and such that V/W is
again a line bundle. By construction W ≠ Oe1 and by assumption “restr” one can choose e2
such that W = O(−[∞])e2. Furthermore, this e2 is unique up to multiplication by elements
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in C∗. Therefore, the set of the closed points of M(θ0, θ1, θ∞), corresponding to reducible (∇, u),
consists of the differential operators having with respect to to the basis {e1, e2} the form

d

dz
+

1

z(z − 1)
·
(
a0 + a1z + a2z

2 0
b0 + b1z −a0 − a1z − a2z

2

)
with b0 + b1z ̸= 0, considered modulo the action of Gm. The equations are

a20 =
θ20
4
, (a0 + a1 + a2)

2 =
θ21
4
, a22 =

t2

4
, 2a22 + 2a1a2 + a2 =

tθ

2
.

The group Gm acts trivially on a0, a1, a2. One has

a0 = ϵ0
θ0
2
, a1 = ϵ1

θ1
2

− ϵ0
θ0
2

− ϵ2
t

2
, a2 = ϵ2

t

2

with ϵ0, ϵ1, ϵ2 ∈ {1,−1} and −1 = −1
2 − ϵ2

θ
2 + ϵ1

θ1
2 − ϵ0

θ0
2 (see Remark 2.3). Note that there are

no conditions on (b0, b1) ̸= (0, 0).
The reducible locus consists of a number of projective lines over C

[
t, t−1

]
in M(θ0, θ1, θ∞).

In general, e.g., if 1, θ0, θ1, θ are linearly independent over Q, the reducible locus is empty.
We fix a choice of the ϵj , j = 0, 1, 2. Isomonodromy is obtained by considering b0, b1

as functions of t and completing the Lax pair (compare Section 7) with a suitable differential
operator d

dt+
(
α 0
β −α

)
. This results in a Riccati equation for the function b1

b0
. All Riccati solutions

for P5 are obtained in this way, since one can verify that we found precisely the data of [16,
Theorem 2.1 (8)]. We note that this includes cases with θ0 ∈ Z and/or θ1 ∈ Z.

5.1 Removing split differential modules from the space M(θ0, θ1, θ∞)

As before we assume that the parameters satisfy “restr”. We recall that the modules in
S(θ0, θ1, θ∞) are assumed to be non-split. For special values of the {θ∗}, the space M(θ0, θ1, θ∞),
constructed in Section 4, contains split modules. In such a case we delete the locus of the split
modules and keep the notation M(θ0, θ1, θ∞). We compute these special values {θ∗} and the
locus of the split modules.

Let M denote such a split module. Then M = L⊕L2, where L, L2 are the only submodules
of dimension 1. Both L and L2 correspond to saturated line bundles in V with degree −1. We
may choose e2 such that L2 = C(z)e2 and the corresponding line bundle is O(−[∞])e2 ⊂ V.

As above, the connection on V is represented by the differential operator

D :=
d

dz
+

1

z(z − 1)

(
a 0
b −a

)
with a = a0 + a1z + a2z

2, b = b1z + b0 ̸= 0 and as before

a0 = ϵ0
θ0
2
, a1 = ϵ1

θ1
2

− ϵ0
θ0
2

− ϵ2
t

2
, a2 = ϵ2

t

2
.

Let L ⊂ V denote the (saturated) line bundle corresponding to L. The line bundle L([∞]),
is saturated in V([∞]) = O([∞])e1 + Oe2 and has degree zero. It is generated by an element
v = αe1 + e2 with α = d1z + d0. The assumption D(v) is a multiple of v leads to the equation

d

dz
(α) +

αa

z(z − 1)
=

α2b− αa

z(z − 1)
.

This implies that α = d1z or α = d1(z−1) and, by multiplying e2 by a constant, we may assume
that d1 = 1. We continue with the first case, which translates into the equations

2a2 − b1 = 0, 1 + 2a1 − b0 = 0, −1 + 2a0 = 0.
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The last equality implies ϵ0θ0 = 1 and ϵ2θ + ϵ1θ1 = 0. Hence θ0 = ±1 and θ = ±θ1. Moreover,
b0 = 1 + 2a1 and b1 = 2a2. Thus this part of the split locus is isomorphic to Spec

(
C
[
t, t−1

])
.

The same holds for the other part of the split locus corresponding to α = (z−1) and ϵ1θ1 = 1
and ϵ2θ − ϵ0θ0 = 0. Hence θ1 = ±1 and θ = ±θ0.

A typical example is θ0 = 1, ϵ0 = 1, “generic” θ1 and θ = θ1. The two data for submodules
with degree −1 are (ϵ0, ϵ1, ϵ2) = (1, 1,−1) and (ϵ0, ϵ1, ϵ2) = (1,−1, 1). The reducible locus in the
original M(θ0, θ1, θ∞) consists of two projective lines P1

C[t,t−1] → Spec
(
C
[
t, t−1

])
. The intersec-

tion of these projective lines is one point, equal to the locus of the split modules. Removing the
split locus results in two non-intersecting affine lines over the same ring. Summarizing, the re-
ducible locus of the new M(θ0, θ1, θ∞) consists of two non-intersecting affine lines over C

[
t, t−1

]
.

We note that the special cases coincide with two of the three exceptional cases for the mon-
odromy space in part (v) on page 10, where reducibility with both ϵ2 = 1 and ϵ2 = −1 occur.

In accordance with what has been done for the monodromy space we introduce for all three ex-
ceptional cases the moduli spaces of connections M(θ0, θ1, θ∞, ϵ2=−1) and M(θ0, θ1, θ∞, ϵ2=1).
The first one is obtained by deleting the locus of the split objects and only admitting the re-
ducible objects with ϵ2 = −1. The second space is defined by replacing ϵ2 = −1 by ϵ2 = 1.

Remark 5.1. For the exceptional case (θ = 0,−ϵ0θ0+ϵ1θ1 = −1), the locus of reducible objects
with ϵ2 = −1 coincides with the one for ϵ2 = 1. The same holds for the locus of the split objects.
For these parameters, the space M(θ0, θ1, θ∞, ϵ2 = −1) is obtained by deleting only the locus of
the split modules.

6 The parabolic structure

Parabolic structure for connections and another way to formulate Lemma 2.1. As before, we
assume that the parameters satisfy “restr”. Consider a regular singular differential module
N = (N,D) over C((z)) with D(f · n) = z df

dz · n + f · D(n), dimN = 2 and detN = 1. An
element η ∈ C will be called an eigenvalue for N if there is a D-invariant lattice Λ for N and η
is an eigenvalue of D on Λ/zΛ.

Suppose that η is an eigenvalue. Then N is represented by a differential operator of the form
z d
dz +

(
a b
c d

)
with a, b, c, d ∈ C[[z]],

(
a b
c d

)
mod (z) has eigenvalue η and eigenvalue −η + m for

some integer m. One easily concludes that the set of all eigenvalues is (η + Z) ∪ (−η + Z).
A parabolic structure for (N, η) is an eigenline Ce with e ∈ N, e ̸= 0 and D(e) = ηe. If

(N, η) has a parabolic structure, then η is an eigenvalue for N . Now there are the following
possibilities.

(i) N has eigenvalue η and 2η ̸∈ Z. Then (η + Z) ∩ (−η + Z) = ∅ and (N,α) has a unique
parabolic structure for every α ∈ (η+Z)∪ (−η+Z). Indeed, the condition 2η ̸∈ Z implies
that N is a direct sum, i.e., corresponds to an operator of the form z d

dz +
( η 0
0 −η

)
.

(ii) η = 0 is eigenvalue of N . Then one can represent N by the operator z d
dz +

(
0 a
0 0

)
with

a ∈ {0, 1}.

(a) If a = 0, then kerD is a two-dimensional complex vector space and the parabolic
structures for η = 0 are the lines in kerD. Thus the level structures are parametrized
by P1 (over C).

(b) If a = 1, then kerD has dimension 1 over C. This is the only parabolic structure for
η = 0.

(iii) η = m
2 andm ∈ Z>0. It can be shown thatN is represented by an operator z d

dz+
(

−m
2

azm

0 m
2

)
with a ∈ {0, 1}, say on a basis e1, e2 forN . For (N, m2 ) there is a unique parabolic structure.
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(a) If a = 0, then the parabolic structures for −m
2 are the eigenlines C(c1e1 + c2z

−me2).
The eigenlines are parametrized by P1.

(b) If a = 1, then the only parabolic structure for −m
2 is Ce1.

Recall that S(θ0, θ1, θ∞) denotes the set of equivalence classes of differential modules with
prescribed singularities and provided with a parabolic structure.

The definition of M(θ0, θ1, θ∞) for θ0 ∈ Z and/or θ1 ∈ Z with parabolic structure. Example:
the case θ0 ∈ Z and θ1 ̸∈ Z. Consider the affine space M(θ0, θ1, θ∞) defined on page 15 by
variables a∗, b∗, c∗, d∗ and many relations. Take the subspace of P1 ×M(θ0, θ1, θ∞) consisting
of the pairs(

[y1 : y2],
d

dz
+

1

z(z − 1)
·
(
a0 + a1z + a2z

2 c0 + c1z + c2z
2 + c3z

3

b0 + b1z d0 + d1z + d2z
2

))

with
(−a0 −c0
−b0 −d0

)( y1
y2

)
≡ −|θ0|

2

( y1
y2

)
mod (z) and b0 + b1z ̸= 0. We observe that there is a unique

eigenline for − |θ0|
2 which reduces modulo (z) to the above element [y1 : y2] ∈ P1. Therefore, the

quotient of this space by the action of the automorphism group G of the vector bundle V is the
moduli space we are looking for.

The above space can be cut into four open affine subsets given by inequalities (y1 ̸= 0 or
y2 ̸= 0) and (b0 ̸= 0 or b1 ̸= 0). On each of these affine parts, taking the geometric quotient
by G is obtained by normalizing (y1 = 1 or y2 = 1) and (b0 = 1 or b1 = 1).

The above definition and construction holds in all cases with θ0 ∈ Z and/or θ1 ∈ Z. One
easily verifies that by gluing one obtains an irreducible smooth variety of dimension 3, denoted
by M(θ0, θ1, θ∞), such that the natural map M(θ0, θ1, θ∞)(C) → S(θ0, θ1, θ∞) is a bijection.

For, say, θ0 ∈ 2Z, an eigenline for the connection at z = 0 is also an eigenline for the
local monodromy at z = 0 for s1 = 2. This holds for all cases with θ0 ∈ Z and/or θ1 ∈ Z.
Thus we have, for all θ0, θ1, θ∞, an analytic morphism RH: M(θ0, θ1, θ∞) → Rgeom(θ0, θ1, θ∞).
Using Proposition 3.2, one easily verifies that the proof of Theorem 4.2 extends to a proof of
Theorem 6.1.

We note that for exceptional parameters, the two families of spaces M(θ0, θ1, θ∞, ϵ2 = ±1)
are introduced and studied in Section 5.1.

Theorem 6.1. Assume that the parameters satisfy “restr”, i.e., −1/2−ϵ2
θ
2+ϵ1

θ1
2 −ϵ0

θ0
2 ∈ Z<−1

is not possible for (ϵ0, ϵ1, ϵ2) ∈ {±1}3.

(1) If the parameters are not exceptional, then the extended Riemann–Hilbert map

RH+ : M(θ0, θ1, θ∞) → Rgeom(θ0, θ1, θ∞)× C

is an analytic isomorphism.

(2) If the parameters are exceptional, then the above holds after adding the data ϵ2 = −1 or
ϵ2 = 1 to both spaces.

7 The Lax pair and the fifth Painlevé equation

The explicit connection d
dz + A with fixed θ0, θ1, θ given on page 15 (below Proposition 4.1),

can be completed to a Lax pair by using d
dt + B, where the entries of B are polynomials in z

of degrees ≤ 2 over a field of meromorphic functions in t. The relation
[
d
dz + A, d

dt + B
]
= 0

determines A and B completely. The zero q = −b0 of the entry A[2, 1] (2nd row, 1st column)
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satisfies the fifth Painlevé equation corresponding to the parameters θ0, θ1, θ∞ + 1 (the +1
comes from the shift we made in the local data at z = ∞). This equation reads

q′′ =
1

2

(
1

q
+

1

q − 1

)
(q′)2 − q′

t
+

q(q − 1)

t
θ − q − 1

2qt2
θ20 +

q

2t2(q − 1)
θ21 −

(2q − 1)(q − 1)q

2
.

Substituting q = y
y−1 produces for y the standard Painlevé equation

P5

(
α =

θ21
2
, β = −θ20

2
, γ = −θ, δ = −1

2

)
and θ = 1 + θ∞.

The formula here seems to correct the one for P5 in [22, equation (4.3)].

8 Connections for the Lax pair of Noumi–Yamada

For certain tuples (θ0, θ1, θ∞) and (θ∗0, θ
∗
1, θ

∗
∞), there are birational maps M(θ0, θ1, θ∞) · · · −→

M(θ∗0, θ
∗
1, θ

∗
∞). These birational maps are the so-called Bäcklund transformations. Their action

on solutions can be made explicit. The Bäcklund transformations form the extended affine Weyl

group of A
(1)
3 , see [19, 14].

From Theorem 6.1, one can deduce that for instance shifts of θ0, θ1, θ∞ over integers are
Bäcklund transformations. However in our construction of M(θ0, θ1, θ∞) some Bäcklund trans-
formations are not easily visible. Noumi and Yamada [14] (and others) studied a different Lax
pair for P5 from which one can read off all Bäcklund transformations. Here we introduce a nat-
ural moduli space of connections which leads to this Lax pair.

8.1 Moduli spaces for q0 = z1/2 + tz1/4 with t ∈ C∗

Consider the set S4 of isomorphism classes of differential modules M over C(z) given by

(i) dimM = 4 and Λ4M is the trivial differential module and the only singularities are 0, ∞,

(ii) z = 0 is a regular singularity,

(iii) z = ∞ is irregular and has eigenvalues q0 and its conjugates q1, q2, q3.

We want to convert the set S4 into a family of connections (∇,V) on a vector bundle V on P1

of rank 4 with singularities at z = 0 and z = ∞, such that ∇ : V → ΩP1([0] + 2[∞]) ⊗ V, or
equivalently δ = ∇z d

dz
: V → V([∞]), has a (chosen) prescribed singularity at z = ∞.

A possible prescribed singularity at z = ∞ is obtained as follows. For the fields C
(
z1/4

)
and C

((
z−1/4

))
, we write σ for the automorphism given by σ

(
z1/4

)
= iz1/4. Let N denote

the free C[[z−1/4]] module with basis r0, r1, r2, r3 provided with a semi-linear action of σ such
that σ satisfies r0 7→ r1 7→ r2 7→ r3 7→ r0. Let N0 ⊂ N ⟨σ⟩ be the C[[z−1]]-module with free
basis s0 = r0 + r1 + r2 + r3, s1 = z1/4(r0 + ir1 − r2 − ir3), s2 = z1/2(r0 − r1 + r2 − r3),
s3 = z3/4(r0 − ir1 − r2 + ir3). We note that C

((
z−1

))
⊗N0 = C

((
z−1

))
⊗N ⟨σ⟩.

One defines δ0 : N → N ⊗ C
((
z−1/4

))
by δ0(rj) =

(
qj − 3

8

)
rj for j = 0, 1, 2, 3 and δ0(fn) =

z df
dzn + fδ0(n) for f ∈ C[[z−1/4]], n ∈ N . The induced operator N0 → N0 ⊗ C

((
z−1

))
is also

denoted by δ0. The term −3
8 is introduced in order that the operator on N0 has trace zero. We

note that (N0, δ0) is irreducible and therefore its group of automorphisms is C∗. The chosen pre-
scribed singularity at z = ∞ is the formal local connection (N0, δ0). On the basis {s0, s1, s2, s3}
of N0, this is represented by

L∞ := z
d

dz
+


−3

8 0 z t
4z

t
4 −1

8 0 z

1 t
4

1
8 0

0 1 t
4

3
8

.
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Remark 8.1. The choice (N0, δ0) and corresponding L∞ used here is not unique. A canonical
choice will be described in Remark 8.2.

We consider the moduli functor for the data: “The isomorphy classes of the connections
δ : V → V([∞]) on the free bundle V such that the induced δ : V̂∞ → V̂∞⊗C

((
z−1

))
is isomorphic

to (N0, δ0)”.
This isomorphism is unique up to C∗. The connections δ (modulo isomorphisms) can be

represented by the operators L := z d
dz + A0 + A1z (modulo equivalence) for which there exists

a U ∈ GL4

(
C[[z−1]]

)
with ULU−1 = L∞.

The above is an example for the theory developed in [23, Section 12 (especially Section 12.5)].
It is shown there that a fine moduli space exists by giving an explicit construction for the general
ramified case. For the present case, this moduli space is denoted by M4 and we will produce
explicit formulas.

Consider the map η : M4(C) → S4 associating to a connection its generic fibre (which is
a differential module over C(z) belonging to S4). From the observation that (N0, δ0) has auto-
morphism group C∗, it follows that η is injective.

For M ∈ S4, an invariant lattice Λ∞ at z = ∞ is defined as follows: Λ∞ is a free C[[z−1]]-
submodule of C

((
z−1

))
⊗M of rank 4, such that δ(Λ∞) ⊂ zΛ∞. Similarly, an invariant lattice Λ0

forM at z = 0 is by definition a free C[[z]]-submodule of C((z))⊗M of rank 4 such that δ(Λ0) ⊂ Λ0.
From the definition of S4, it follows that any M ∈ S4 has a unique invariant lattice Λ∞ ⊂

C
((
z−1

))
⊗ M at z = ∞ which is isomorphic to (N0, δ0). Further, one chooses an invariant

lattice Λ0 ⊂ C((z))⊗M . These lattices determine a connection (∇,V) with generic fibre M . If
V happens to be the free vector bundle, then M lies in the image of η.

The regular singular differential module C((z))⊗M can be represented by a matrix differential
operator z d

dz+A, such that the eigenvalues of the constant matrix A are distinct modulo integers.
IfA is diagonalizable, then C((z))⊗M contains many invariant lattices and, for a suitable choice of
the lattice, the corresponding vector bundle V is free (compare the method of [23, Section 6.5]).
This shows that the image of η contains what could be called a “Zariski open, dense subset
of S4”. However, the map η is probably not surjective.

The parameter space P+
4

∼= C3 is the space of the polynomials of the form T 4+c2T
2+c1T+c0.

The morphism M4 → P+
4 maps a connection z d

dz + A0 + zA1 ∈ M4(C) to the characteristic
polynomial of A0.

Let R4 denote the moduli space for the analytic data (i.e., the topological monodromy
and the Stokes matrices) of the set S4. The Riemann–Hilbert morphism is the obvious map
RH: M4 → R4. The map RH forgets t and the choice of a logarithm of the topological mon-
odromy at z = 0. Thus the fibres of RH have dimension 1 and so dimM4 = 1 + dimR4. The
connected components of the fibres are parametrized by t.

We note that for every integer n ≥ 3, one can define, in a similar way, a family of differential
modules Sn, given as follows: dimM = n; ΛnM is the trivial differential module; z = 0 is
regular singular and the (generalized) eigenvalues at z = ∞ are z2/n + tz1/n and its conjugates.
The corresponding moduli spaces Mn, Rn produce the Lax pairs introduced by Noumi, Yamada
et al. For n = 3 this Lax pair yields P4. This is exploited in [24]. For n = 4, the Lax pair
produces P5 and its Bäcklund transformations. We will give the details for n = 4 and refer to
a future paper for the general case.

8.1.1 R4 and the fibres of R4 → P4

The monodromy of a differential module M ∈ S4 consists of the topological monodromies mon0
and mon∞ at the points 0 and∞. Since there are no other singularities one has mon0 ·mon∞ = 1.
The monodromy at ∞ is given by the Stokes matrices and the formal monodromy γ. The
monodromy identity [23] states that mon∞ is equal to their product.
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Now we compute the Stokes data at z = ∞ and refer to [23] for more details. The (generalized)
eigenvalues at z = ∞ are:

q0 = z1/2 + tz1/4, q1 = −z1/2 + itz1/4, q2 = z1/2 − tz1/4, q3 = −z1/2 − itz1/4.

The differences q0 − q1, q0 − q3, q2 − q1, q2 − q3 have the form 2z1/2 + · · · , and q0 − q2 = 2tz1/4

and q1− q3 = 2itz1/4. There is one singular direction in [0, 1) for the terms ±2z1/2 as well as for
each of ±2tz1/4, ±2iz1/4. This leads to the monodromy identity

mon∞ =


−1

1
1

1



1

1 y
1

1




1
x1 1 x2

1
x3 x4 1

 .

The basis for the above matrices is unique up to multiplying every basis vector by the same
scalar. Therefore, R4

∼= C5.

The parameter space P4 for R4 is given by the characteristic polynomial of mon∞, which is
written as T 4+ p3T

3+ p2T
2+ p1T +1. Thus P4

∼= C3. One considers the commutative diagram

M4
RH→ R4

↓ ↓
P+
4

rh→ P4,

where rh maps the characteristic polynomial of a local differential operator z d
dz +A at z = 0 to

the characteristic polynomial of mon∞ = mon−1
0 ; explicitly,

∏4
j=1(T −λj) 7→

∏4
j=1

(
T − e2πiλj

)
.

The fibre of R4 → P4 above (p1, p2, p3) is defined by an obvious set of equations in the
variables x1, x2, x3, x4, y. After elimination of the two variables x1, x2, there remains one cubic
equation in the variables y, x3, x4 and parameters p1, p2, p3. After a linear change of y, x3, x4
the equation has the form

v1v2v3 + ∗v21 + ∗v22 + ∗v1 + ∗v2 + ∗v3 + ∗ = 0

for suitable affine expressions ∗’s in the parameters p1, p2, p3. The cubic equation for the
monodromy of P5 has the same features. Comparing with the table of cubic surfaces associated
to Painlevé equations in [22, pp. 2635–2636] and [5, 21], this is an indication that the (yet to be
determined) Lax pair produces P5.

8.1.2 A matrix differential operator for M4, Lax pairs and P5

We want to represent a “general” element M ∈ M4 by a matrix differential operator z d
dz +

A0 + zA1. It turns out that a direct computation is rather difficult. Instead, we adapt the
computation of the formal local connection (N0, δ0) and L∞, to the global case. Then M is
replaced by N := C

(
z1/4

)
⊗ M and we use “equivariant formules” on N . Let γ denote the

automorphism of C
(
z1/4

)
over C(z), defined by γ

(
z1/4

)
= iz1/4. Let σ : N → N be given by

σ(f ⊗ m) = γ(f) ⊗ m for f ∈ C
(
z1/4

)
and m ∈ M . This new differential module N has no

ramification at z1/4 = ∞ and has Katz invariant 2. Let D denote the differential operator on N .
One considers a basis e0, e1, e2, e3 of N such that σ acts by e0 7→ e1 7→ e2 7→ e3 7→ e0. We try
to construct D by a formula

D(e0) =

(
z1/2 +

t

4
z1/4 − 3/8

)
e0 +

(
a1 + b1z

1/4
)
e1 + a2e2 +

(
a3 + b3z

1/4
)
e3.



Moduli Spaces for the Fifth Painlevé Equation 23

This determines D because σ ◦D = D ◦ σ. The term −3/8 is introduced (as before) in order to
obtain a matrix for D with trace zero.

The formula for D follows from the construction of the moduli space for the ramified case
[23, Section 12.5]. The matrix of D on the basis of invariants

B0 = e0 + e1 + e2 + e3,

B1 = z1/4
(
e0 + ie1 + i2e2 + i3e3

)
,

B2 = z1/2(e0 − e1 + e2 − e3),

B3 = z3/4(e0 − ie1 − e2 + ie3)

is 
−3

8 + a1 + a2 + a3 0 z z
(
t
4 + b1 + b3

)
t
4 − ib1 + ib3 −1

8 − ia1 − a2 + ia3 0 z

1 t
4 − b1 − b3

1
8 − a1 + a2 − a3 0

0 1 t
4 + ib1 − ib3

3
8 + ia1 − a2 − ia3


and D is equal to the differential operator

z
d

dz
+


ϵ0 0 z zf0
f1 ϵ1 0 z
1 f2 ϵ2 0
0 1 f3 ϵ3


with

∑
ϵj = 0, f0 + f2 = f1 + f3 =

t
2 . The ϵ0, . . . , ϵ3 are parameters.

The operator D is completed to a Lax pair by the differential operator E with respect to
d
dt . This operator, written on the basis e0, e1, e2, e3 is σ-invariant and has the form E(e0) =

z1/4e0+
∑3

j=1 hjej for suitable functions h1, h2, h3 of t. On the basis B0, B1, B2, B3 one obtains

E :=
d

dt
+


g0 0 0 z
1 g1 0 0
0 1 g2 0
0 0 1 g3


with

∑
gj = 0. The assumption that E commutes with D produces a nonlinear system of first

order differential equations for f0, f1, f2, f3 as functions of t.

These formulas are almost identical to those derived by Noumi–Yamada. After eliminat-
ing f2, f3 a combination of the resulting differential equations for f0 and f1 leads to the stan-
dard P5 equation, see [14, 26] for details. The differential equations for f0, f1 are

2tf ′
0 = 8f2

0 f1 − 2f2
0 t− 4f0f1t+ f0t

2 − 4ϵ0f0 + 2ϵ0t+ 4ϵ1f0 − 4ϵ2f0

+ 4ϵ3f0 − 2ϵ3t− 2f0 + 2t,

2tf ′
1 = −8f0f

2
1 + 4f0f1t+ 2f2

1 t− f1t
2 + 4ϵ0f1 − 2ϵ0t− 4ϵ1f1 + 2ϵ1t

+ 4ϵ2f1 − 4ϵ3f1 + 2f1.

In fact, the equations coincide with the ones in [26] for f0, f1, f2, f3. The symmetry of these
equations with respect to the cyclic permutation f0 7→ f1 7→ f2 7→ f3 7→ f0 produces an element π
of order 4 in the group of Bäcklund transformations. This is the “missing element” needed to

obtain the extended affine Weyl group of A
(1)
3 .
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An alternative computation for the Lax pair is based on observing that isomonodromy is given
by DE(e0) = ED(e0) and that a1, a2, a3 are independent of t. A straightforward computation
then yields

4t · db1
dt

= −16ib21b3 + t2b1i + 16ib33 − 4ia1t+ 4a1t− 32a2b3,

4t · db3
dt

= −16ib31 + 16ib1b
2
3 − t2b3i + 4ia3t− 32a2b1 + 4a3t,

h1 = −b1i/2 + b1/2, t · h2 = 2b21i− 2b23i + 4a2, h3 = b3i/2 + b3/2.

These equations for b1, b3 form a Hamiltonian system

t
db1
dt

=
∂H

∂b3
, t

db3
dt

= −∂H

∂b1
,

H =
i
(
b21 − b23

)2
t

+
itb1b3
4

+
4a2

(
b21 − b23

)
t

− (1 + i)a3b1 + (1− i)a1b3.

The above Hamiltonian H is, up to a change of variables, the same as Okamoto’s polynomial
Hamiltonian for P5, see [17, p. 265].

Remark 8.2. Here we describe a more canonical choice for the invariant lattice (see page 21).
Let N be the free C[[z−1/4]]-module with basis e0, e1, e2, e3. The action of σ is given by
e0 7→ e1 7→ e2 7→ e3 7→ e0 and σ

(
z1/4

)
= iz1/4. The operator δ0 on N commutes with σ and is

determined by δ0(e0) =
(
z1/2+ t

4z
1/4+ 3

8

)
e0. Choose for the lattice Ñ0 at z = ∞ the module Nσ

of the σ-invariant elements of N . It has a basis

B0 = e0 + e1 + e2 + e3,

B̃1 = z−3/4(e0 + ie1 − e2 − ie3),

B̃2 = z−1/2(e0 − e1 + e2 − e3),

B̃3 = z−1/4(e0 − ie1 − e2 + ie3).

The global operator D, commuting with σ, is given by

D(e0) =

(
z1/2 +

t

4
z1/4 +

3

8

)
e0 +

(
a1 + b1z

1/4
)
e1 + (a2)e2 +

(
a3 + b3z

1/4
)
e3.

The matrix of D with respect to the basis B0, B̃1, B̃2, B̃3 is
3
8 + a1 + a2 + a3 0 1 b1 + b3 +

t
4

z
(
t
4 − ib1 + ib3

)
−3

8 − ia1 − a2 + ia3 0 z

z t
4 − b1 − b3 −1

8 − a1 + a2 − a3 0

0 1 t
4 + ib1 − ib3

1
8 + ia1 − a2 − ia3

 .

This can be rewritten as
ϵ0 0 1 g0
zf0 ϵ1 0 z
z g1 ϵ2 0
0 1 f1 ϵ3


with entries satisfying f0 + f1 = g0 + g1 =

t
2 and ϵ0 + · · ·+ ϵ3 = 0.

Using the Lax pair conditions, elimination of f1, g1, ϵ3 and writing f = f0, g = g0 a system
of differential equations essentially the same as the one in [26] is obtained

2tf ′ = −8f2g + 2f2t+ 4fgt− ft2 + 8ϵ0f − 2ϵ0t+ 2ϵ1t+ 8ϵ2f − 2f + 2t,

2tg′ = 8fg2 − 4fgt− 2g2t+ gt2 − 8ϵ0g + 4ϵ0t+ 2ϵ1t− 8ϵ2g + 2ϵ2t+ 2g.
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Algebraic and Geometric Aspects of Integrable Systems and Random Matrices, Contemp. Math., Vol. 593,
American Mathematical Society, Providence, RI, 2013, 163–178, arXiv:math.CA/0512243.

[17] Okamoto K., Polynomial Hamiltonians associated with Painlevé equations. I, Proc. Japan Acad. Ser. A
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