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Abstract. We construct a separable Frobenius monoidal functor from Z
(
Vect

ω|H
H

)
to

Z
(
VectωG

)
for any subgroup H of G which preserves braiding and ribbon structure. As an

application, we classify rigid Frobenius algebras in Z
(
VectωG

)
, recovering the classification of

étale algebras in these categories by Davydov–Simmons [J. Algebra 471 (2017), 149–175,
arXiv:1603.04650] and generalizing their classification to algebraically closed fields of arbitrary
characteristic. Categories of local modules over such algebras are modular tensor categories by
results of Kirillov–Ostrik [Adv. Math. 171 (2002), 183–227, arXiv:math.QA/0101219] in the
semisimple case and Laugwitz–Walton [Comm. Math. Phys., to appear, arXiv:2202.08644]
in the general case.
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1 Introduction

1.1 Motivation

Algebraic structures play an important role in the study of conformal field theory (CFT) and
topological field theory (TFT). A key structure in these applications are modular categories,
i.e., non-degenerate ribbon categories [25, 42]. In rational CFT, modular fusion categories
appear as categories of representations over a vertex operator algebra (VOA) [22] while modular
fusion categories are utilized to construct 3d TFTs of surgery type [39, 44], and appear in the
classification of 3d TFTs [2].

Generalizations of part of the theory and applications of modular fusion categories to low-
dimensional topology have been obtained for non-semisimple (i.e., not necessarily semisimple)
modular categories. These constructions include equivalent characterizations of modularity con-
ditions [42], mapping class group actions and modular functors [19, 29, 41], and partially defined
non-semisimple TFTs [10, 25]. In general, it is still open whether the non-semisimple braided
categories of representations of a logarithmic conformal field theories are modular [24, 30]. A first
example of modular categories obtained from groups are the Dijkgraaf–Witten (DW) categories
Z
(
VectωG

)
associated to a finite group G and a 3-cocycle ω on G [11]. These categories are only

semisimple if the characteristic of k does not divide |G| and are equivalent to representations of
certain lattice VOAs.
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In this paper, we focus on the study of (Frobenius) algebras in modular categories. On the one
hand, modules over such algebras describe boundary conditions of the associated rational CFT
associated to a certain VOA [17, 18]. On the other hand, given a VOA, its possible extensions are
in a one-to-one correspondence with commutative algebras in its category of representations [23].
This result extends to vertex operator superalgebras [6]. These results give us motivation for
classifying algebra objects in Z

(
VectωG

)
. Many categories of representations of a VOA are pointed

fusion categories, like the case of, e.g., lattice VOAs coming from an even, integral lattice (here,
G = Λ∗/Λ is the discriminant form of the lattice, note that this G is abelian) [13, 30]. In this
sense, an important family of vertex operator algebras are the holomorphic ones, those whose
category of representations is simply Vect. Given a certain group G, one can take the so-called
orbifold of a holomorphic VOA, see, e.g., [14, 33]. Its category of representations will be then
equivalent to Z

(
VectωG

)
[32].

Given a commutative algebra A in a braided tensor category C one defines a braided tensor
category ReplocC (A) of local modules [26, 28, 37, 40]. Such categories of local modules have been
of particular interest in the mathematical physics literature, see, e.g., [17, 18]. For instance,
categories of local modules relate the representations of a VOA to those of its extensions [6, 23, 26].
Given a rigid Frobenius algebra (i.e., a connected commutative special Frobenius algebra) in C, it
was shown that the rigid monoidal category ReplocC (A) of local modules is again modular (see [26]
in the semisimple case, and [28] in the general case). Such rigid Frobenius algebras were classified
for the semisimplification of Uq(sl2)-modules [26], for the Drinfeld center of modules over a finite
group [7, 28], and for DW categories Z

(
VectωkG

)
in char k = 0 [9].

In the present paper, we construct Frobenius monoidal functors. Given two monoidal cate-
gories C and D, a Frobenius monoidal functor F : C → D comes with a choice of natural
transformations

µV,W : F (V )⊗ F (W ) → F (V ⊗W ), νV,W : F (V ⊗W ) → F (V )⊗ F (W ),

which make F a lax and oplax monoidal functor and satisfy compatibility conditions which
are analogue to those of a product and coproduct of a Frobenius algebra. While any monoidal
functor is, in particular, Frobenius monoidal, for general Frobenius monoidal functors, like
those considered in this paper, F (V )⊗ F (W ) and F (V ⊗W ) are not isomorphic. However, any
Frobenius monoidal functor sends Frobenius algebras in C to Frobenius algebras in D. Frobenius
monoidal functors have recently appeared in different contexts in the quantum algebra literature,
see, e.g., [16, 34, 47]. Here, we construct Frobenius monoidal functors to categories of the
form Z

(
VectωG

)
. These functors are separable, so that F (V ⊗W ) is naturally a direct summand

of F (V )⊗ F (W ), and compatible with braidings whence they preserve connected commutative
Frobenius algebras. We apply these functors to classify rigid Frobenius algebras in Z

(
VectωG

)
for

a field of arbitrary characteristic.

Algebra objects in VectωG were classified up to equivalence of the associated VectωG-module
categories and representatives are given by twisted group algebras A(N,κ) associated to a normal
subgroup N and a 2-cocycle κ such that dκ = ω|N [35, 36], see also [34] for explicit Frobenius
algebra structures on these algebras. In this paper we find conditions for the existence of lifts of
these twisted group algebras to rigid Frobenius algebras in Z

(
VectωG

)
in terms of homological

algebra data building on results of [9]. To these central lifts of the twisted group algebra A(N,κ)
one can then associate tensor categories of representations whose centers are given by local
modules.

1.2 Statements of results

Let k be an algebraically closed field of arbitrary characteristic. We fix a finite group G, with
a subgroup H, and a 3-cocycle ω on G and prove the following result.
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Theorem (see Propositions 3.9 and 3.10). There is a separable Frobenius monoidal functor

I : Z
(
Vect

ω|H
H

)
→ Z

(
VectωG

)
. This tensor functor I is compatible with braidings and preserves

ribbon twists.

Using the Frobenius monoidal functors I, we classify rigid Frobenius algebras in Z
(
VectωG

)
generalizing results by Davydov–Simmons [9] to the non-semisimple case. In fact, all rigid
Frobenius algebras in Z

(
VectωG

)
are of the form A = I(B) for some subgroup H of G, and

B = B(N,κ, ε) a rigid Frobenius algebra in Z
(
Vect

ω|H
H

)
with dimkB1 = 1. Such algebras B

are parametrized by certain elements ε⊕ κ of the second cohomology group H̃2
Tot(H,N,k×) of

a truncated total complex
(
F̃ •
Tot(H,N,k×), dTot

)
which computes the group cohomology of the

semi-direct product H ⋉N , described in Appendix A.3 and [9, Appendix A].
The following result recovers, and extends to arbitrary characteristic, the classification of

connected étale algebras in Z
(
VectωG

)
in [9, Theorem 3.15].

Theorem (see Theorem 3.29). Every connected étale algebra in Z
(
VectωG

)
is isomorphic to one

of the form A(H,N, κ, ϵ) for some choice of data H, N , γ, ϵ, where

� H is a subgroup of G, with N a normal subgroup of H,

� κ : N ×N → k× is a function satisfying d(κ) = ω|N ,

� ϵ : H ×N → k× is a function such that dTot(ε⊕ κ) = τ ⊕ γ ⊕ ω,

� the compatibility ϵ(n,m) = κ(nmn−1,n)
κ(n,m) holds for all n,m ∈ N .

Every such connected étale algebra has trivial twist and is a rigid Frobenius algebra if and only
if |N | · |G : H| ≠ 0 ∈ k×.

We provide explicit formulas for the Frobenius algebras A(H,N, κ, ϵ) in Lemma 3.28.
An interpretation of Section 1.2 is that the algebras B(N,κ, ϵ) are lifts of the twisted group

algebras A(N,κ) in Vect
ω|H
H to the center Z

(
VectωH

)
. These twisted group algebras were used

to classify indecomposable module categories over VectωH [35, 36] and are separable Frobenius
algebras [34]. Our results show that lifts of these algebras to the center along the forgetful functor
are parametrized by functions ϵ : H ×N → k× satisfying the conditions from Section 1.2.

The category of local modules ReplocZ(VectωG)(A) over a rigid Frobenius algebra A as in Sec-

tion 1.2 is a modular category by [28, Theorem 4.12] and [26, Theorem 4.5] in the semisimple
case. In fact, [9, Theorem 3.16] shows that such modular categories are equivalent as ribbon
categories to Z

(
VectωH/N

)
for a 3-cocycle ω on H/N such that its pullback to H via the quotient

homomorphism is equivalent to ω|H .
In Section 3.6, we classify all rigid Frobenius algebras in Z

(
VectωG

)
for an odd dihedral group

G = D2m+1, up to isomorphism of algebras in Z
(
VectωG

)
rather than up to equivalence of their

categories of local modules.
The paper is structured as follows. In Section 2, we recall the necessary background on

(non-semisimple) modular categories, algebraic structures in ribbon categories, and local modules,
concluding with a brief review of DW categories. Section 3 contains the results of the paper,
starting with a discussion on DW categories associated to quotient groups, followed by the
construction of the Frobenius monoidal functors, and the classification of rigid Frobenius algebras
in DW categories. In Appendix A, we include basic definitions from group cohomology and
several cocycle identities used throughout the text.

2 Background

2.1 Modular tensor categories

Throughout this paper, we fix k to be an algebraically closed field of arbitrary characteristic.
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In this section, we collect some basic definitions, see, e.g., [15] for details. A monoidal
category C consists of a tuple (C,⊗,1, α, λ, ρ) where C is a category, ⊗ : C × C → C is a bifunctor,
1 ∈ Ob(C), αX,Y,Z : (X⊗Y )⊗Z → X⊗(Y ⊗Z) is a natural isomorphism for eachX,Y, Z ∈ Ob(C),
and λX : 1⊗X → X and ρX : X⊗1→ X are natural isomorphisms for all X ∈ Ob(C), satisfying
coherence axioms (pentagon and triangle). A functor F : C → D between two monoidal categories
is a monoidal functor if there exist natural isomorphisms

µF : F (X)⊗D F (Y ) → F
(
X ⊗C Y

)
, 1D → F

(
1C),

satisfying certain coherence conditions, see [15, Definition 2.4.1].
A monoidal category is called rigid if it comes equipped with left and right dual objects. That

means, for every X ∈ Ob(C) there exists respectively an object X∗ ∈ Ob(C) with evaluation and
coevaluation maps evX : X∗ ⊗X → 1 and coevX : 1→ X ⊗X∗, as well as an object ∗X ∈ Ob(C)
with evaluation and coevaluation maps ẽvX : X ⊗ ∗X → 1 and c̃oevX : 1 → ∗X ⊗X satisfying
in both cases the usual conditions. If a rigid monoidal category comes equipped with isomor-
phisms jX : X → X∗∗ natural in X ∈ Ob(C) and satisfying that jX⊗Y = jX ⊗ jY , then it is
called pivotal. The quantum dimension of an object X in a pivotal category is the composition
qdimj(X) := evX∗(jX ⊗ IdX∗)coevX ∈ EndC(1).

A k-linear abelian category C is locally finite if, for any two objects V,W ∈ Ob(C), HomC(V,W )
is a finite-dimensional k-vector space and every object has a finite filtration by simple objects.
Further, we say C is finite if C is equivalent to a category of finite-dimensional modules over
a finite-dimensional k-algebra. A tensor category is a locally finite, rigid, monoidal category
such the tensor product is k-linear in each slot and the monoidal unit is a simple object of the
category.

A monoidal category C is called braided if it comes equipped with natural isomorphisms
cX,Y : X ⊗ Y → Y ⊗X for all X,Y ∈ Ob(C), called the braiding, that are compatible with the
monoidal structure of the category. This means, the braiding satisfies the so-called hexagon
identities for any three objects X,Y, Z ∈ Ob(C):

X ⊗ (Y ⊗ Z)
cX,Y ⊗Z // (Y ⊗ Z)X

αY,Z,X

((
(X ⊗ Y )⊗ Z

αX,Y,Z

66

cX,Y ⊗IdZ ((

Y ⊗ (Z ⊗X),

(Y ⊗X)⊗ Z
αY,X,Z // Y ⊗ (X ⊗ Z)

IdY ⊗cX,Z

66

(X ⊗ Y )⊗ Z
cX⊗Y,Z // Z ⊗ (X ⊗ Y )

α−1
Z,X,Y

((
X ⊗ (Y ⊗ Z)

α−1
X,Y,Z

66

IdX⊗cY,Z ((

(Z ⊗X)⊗ Y.

X ⊗ (Z ⊗ Y )
α−1
X,Z,Y // (X ⊗ Z)⊗ Y

cX,Z⊗IdY

66

An example of a braided category is that of the Drinfeld center (or monoidal center, or
simply center) of a monoidal category C. Its objects are pairs

(
X, cX

)
where X ∈ Ob(C) and

cXV : X ⊗ V → V ⊗ X (for any V ∈ Ob(C)) is a natural isomorphism called the half-braiding
satisfying that

cXV⊗W =
(
IdV ⊗ cXW

)(
cXV ⊗ IdW

)
.

The braiding of this category is given by c(X,cX),(Y,cY ) := cXY .
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A ribbon category is a braided tensor category C together with a ribbon twist, i.e., a natural
isomorphism θX : X → X which satisfies

θX⊗Y = (θX ⊗ θY )cY,XcX,Y , θ1 = Id1, (θX)∗ = θX∗ . (2.1)

A tensor functor F : C → D between ribbon categories C, D with ribbon twists θC , θD is a ribbon
tensor functor if it commutes with the ribbon structures in the sense that F

(
θCV
)
= θDF (V ). If F

is part of an equivalence of categories, then C and D are equivalent as ribbon categories.

In order to define modular tensor categories, we require the notion of non-degeneracy of
a braided category. We say that an object X centralizes another object Y of C if

cY,XcX,Y = IdX⊗Y .

A braided finite tensor category C is non-degenerate if the only objects X that centralize all
objects of C are of the form X = 1⊕n [15, Section 8.20]. Equivalently, C is non-degenerate if and
only if it is factorizable, i.e., there is an equivalence of braided monoidal categories Z(C) ≃ Crev⊠C,
where Crev is C as a tensor category, but with reversed braiding given by the inverse braiding [42].
If C is a fusion category (i.e., a semisimple finite tensor category) then the above notion of
non-degeneracy is equivalent to the commonly used condition that the S-matrix is non-singular.
A key definition for this paper is the concept of modular category that allows for using general
finite tensor categories which are not necessarily non-semisimple.

Definition 2.1 ([25, 42]). A braided finite tensor category is modular if it is a non-degenerate
ribbon category.

2.2 Frobenius algebras in tensor categories

In this section, let C = (C,⊗,1, α, λ, ρ) be a pivotal finite tensor category.

Definition 2.2.

(a) An algebra in C is a triple (A,m, u), with A ∈ Ob(C), and m : A⊗A→ A (multiplication),
u : 1→ A (unit) being morphisms in C, satisfying unitality and associativity constraints:

m(m⊗ IdA) = m(IdA ⊗m)αA,A,A, m(u⊗ IdA) = λA, m(IdA ⊗ u) = ρA.

(b) A coalgebra in C is a triple (C,∆, ε), where C ∈ Ob(C), and ∆: C → C⊗C (comultiplication)
and ε : C → 1 (counit) are morphisms in C, satisfying counitality and coassociativity
constraints:

αC,C,C(∆⊗ IdC)∆ = (IdC ⊗∆)∆, (ε⊗ IdC)∆ = λ−1
C , (IdC ⊗ ε)∆ = ρ−1

C .

(c) A Frobenius algebra in C is a tuple (A,m, u,∆, ε), where (A,m, u) is an algebra and (A,∆, ε)
is a coalgebra so that

(m⊗ IdA)α
−1
A,A,A(IdA ⊗∆) = ∆m = (IdA ⊗m)αA,A,A(∆⊗ IdA).

Remark 2.3. Alternatively, a Frobenius algebra in C is a tuple (A,m, u, p, q), where (A,m, u)
is an algebra, p : A ⊗ A → 1 and q : 1 → A ⊗ A are morphisms in C satisfying an invariance
condition,

p(IdA ⊗m)αA,A,A = p(m⊗ IdA),
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and the ‘snake’ equations. To convert from (A,m, u, p, q) to (A,m, u,∆, ε) in the previous
definition, take

∆ := (m⊗ IdA)α
−1
A,A,A(IdA ⊗ q)ρ−1

A and ε := p(u⊗ IdA)ρ
−1
A .

On the other hand, to convert from (A,m, u,∆, ε) to (A,m, u, p, q), take p := εAmA and
q := ∆AuA, cf. [20].

Definition 2.4.

(a) An algebra A in C is indecomposable if it is not isomorphic to a direct sum of non-trivial
algebras in C.

(b) An algebra A in C is connected (or haploid) if dimkHomC(1, A) = 1.

(c) An algebra A in C is separable if there exists a morphism ∆′ : A → A ⊗ A in C so that
m∆′ = IdA as maps in C with

(IdA ⊗m)αA,A,A(∆
′ ⊗ IdA) = ∆′m = (m⊗ IdA)α

−1
A,A,A(IdA ⊗∆′).

(d) A Frobenius algebra (A,m, u,∆, ε) in C is special if m∆ = βAIdA and εu = β1 Id1 for
nonzero βA, β1 ∈ k

×.

(e) If C is braided with braiding c, we call an algebra A in C commutative if mcA,A = m.

(f) A separable commutative algebra in C is also called an étale algebra.

Recall that a ribbon category C is, in particular, pivotal with pivotal structure j discussed,
for example, in [28, Section 2.5].

Proposition 2.5 ([28, Proposition 3.12]). The following statements are equivalent for a connected
commutative algebra A in a ribbon category C with twist θ:

(a) A is separable with dimjA ̸= 0 and θA = IdA;

(b) A is a special Frobenius algebra;

(c) A admits a morphism ε : A → 1 such εu = Id1, εm is non-degenerate, dimj(A) ̸= 0,
and θA = IdA.

If A satisfies the equivalent conditions from Proposition 2.5, then we say that A is a rigid
Frobenius algebra. If C is semisimple, the conditions in (c) on a connected commutative algebra
in C recover the definition of a rigid C-algebra used in [26] to show that the category of local
modules are semisimple. We recall a version of this result which holds even if C is not semisimple
in Theorem 2.14.

2.3 Frobenius monoidal functors

In this section, we recall the definition of a Frobenius monoidal functor and include basic results
about such functors preserving algebraic structures in tensor categories. Let C and D be two
monoidal categories.

Definition 2.6. A lax monoidal functor from C to D consists of

� a functor F : C → D,

� a natural transformation µV,W : F (V )⊗ F (W ) −→ F (V ⊗W ), and

� a morphism η : 1 −→ F (1),
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for any V,W ∈ Ob(C), subject to the compatibility conditions:

(F (U)⊗ F (V ))⊗ F (W )
αF (U),F (V ),F (W )//

µU,V ⊗IdF (W )

��

F (U)⊗ (F (V )⊗ F (W ))

IdF (U)⊗µV,W

��
F (U ⊗ V )⊗ F (W )

µU⊗V,W

��

F (U)⊗ F (V ⊗W )

µU,V ⊗W

��
F ((U ⊗ V )⊗W )

F (αU,V,W )
// F (U ⊗ (V ⊗W )),

1⊗ F (U)
η⊗IdF (U) //

λF (U)

��

F (1)⊗ F (U)

µ1,U

��
F (U) F (1⊗ U),

F (λU )oo

F (U)⊗ 1
IdF (U)⊗η

//

ρF (U)

��

F (U)

µU,1

��
F (U) F (U ⊗ 1).

F (ρU )oo

(2.2)

We will denote the lax monoidal structure as (µ, η).

Definition 2.7. An oplax monoidal functor from C to D consists of

� a functor F : C → D,

� a natural transformation νV,W : F (V ⊗W ) −→ F (V )⊗ F (W ) and

� a morphism ϵ : F (1) −→ 1,

for any V,W ∈ Ob(C), subject to compatibility conditions analogous to those of lax monoidal (2.2),
but with their arrows reversed. We will denote the oplax monoidal structure as (ν, ϵ).

Definition 2.8. A Frobenius monoidal functor F : C → D between two monoidal categories
C, D is a bilax monoidal functor, i.e., comes with a lax monoidal structure (µ, η), and an oplax
monoidal structure (ν, ϵ), where

µV,W : F (V )⊗ F (W ) −→ F (V ⊗W ), νV,W : F (V ⊗W ) −→ F (V )⊗ F (W ),

η : 1 −→ F (1), ϵ : F (1) −→ 1,

for any objects V , W of C, satisfying the additional compatibility conditions

F (V )⊗ F (W ⊗ U)
IdF (V )⊗νW,U//

µV,W⊗U

��

F (V )⊗ (F (W )⊗ F (U))

α−1
F (V ),F (W ),F (U)
��

F (V ⊗ (W ⊗ U))

F (α−1
V,W,U )

��

(F (V )⊗ F (W ))⊗ F (U)

µV,W⊗IdF (U)

��
F ((V ⊗W )⊗ U)

νV ⊗W,U // F (V ⊗W )⊗ F (U),

(2.3)

F (V ⊗W )⊗ F (U)
νV,W⊗IdF (U)//

µV ⊗W,U

��

(F (V )⊗ F (W ))⊗ F (U)

αF (V ),F (W ),F (U)

��
F ((V ⊗W )⊗ U)

F (αV,W,U )

��

F (V )⊗ (F (W )⊗ F (U))

IdF (V )⊗µW,U

��
F (V ⊗ (W ⊗ U))

νV,W⊗U // F (V )⊗ F (W ⊗ U).

(2.4)
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We say that a Frobenius monoidal functor is separable if for any objects V , W of C,

µV,W ◦ νV,W = IdF (V⊗W ).

For details on these definitions see, e.g., [1, Section 3.5].

We are also interested in compatibility conditions of Frobenius monoidal functors with braidings.
Denote a braided monoidal category by (C, c). Given two braided monoidal categories (C, c)
and (D, d), a braided lax monoidal functor is a lax monoidal functor F : C → D which in addition
satisfies

F (X)⊗ F (Y )

µX,Y

��

dF (X),F (Y ) // F (Y )⊗ F (X)

µY,X

��
F (X ⊗ Y )

F (cX,Y )
// F (Y ⊗X)

for any X,Y ∈ Ob(C). The notion of braided oplax monoidal functor is analogous to this one.
We note that (braided lax/oplax) Frobenius monoidal functors preserve algebraic structures in
the respective categories.

Proposition 2.9. Let F : C → D be a Frobenius monoidal functor.

(a) If A is a (co)algebra in C, then F (A) is a (co)algebra in D. In fact, F restricts to a functor
F : Alg(C) → Alg(D), and a functor F : CoAlg(C) → CoAlg(D).

(b) If A is a Frobenius algebra in C, then F (A) is a Frobenius algebra in D. In fact, F restricts
to a functor F : FrobAlg(C) → FrobAlg(D).

(c) If F is, in addition, separable and ϵ◦η ̸= 0 and A a special Frobenius algebra in C, then F (A)
is a special Frobenius algebra in D.

Definition 2.10. Take A := (A,mA, uA), an algebra in C. A right A-module in C is a pair
(M,ρM ), where M ∈ C, and ρM := ρAM : M ⊗A→M is a morphism in C so that

ρM (ρM ⊗ IdA) = ρM (IdM ⊗mA)αM,A,A and rM = ρM (IdM ⊗ uA).

A morphism of right A-modules in C is a morphism f : M → N in C so that fρM = ρN (f ⊗ IdA).
Right A-modules in C and their morphisms form a category, which we denote by CA. The
categories AC of left A-modules (M,λM := λAM : A⊗M →M) and ACA of A-bimodules in C are
defined likewise.

It follows that given a Frobenius monoidal functor F , or, any lax monoidal functor, and an
algebra A in C, F induces a functor F : AC → F (A)D. Similar statements hold for left modules,
and right/left comodules where an oplax monoidal functor is needed.

2.4 Local modules

In the following, we recall local modules over commutative algebras in a braided category C
[26, 28, 37, 40].

Definition 2.11. Let RepC(A) denote the category whose objects are pairs (V, arV ) ∈ CA, and
morphisms are morphisms in CA. We define alV as

alV := arV cA,V : A⊗ V
∼→ V ⊗A −→ V.
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With this,
(
V, alV

)
is a left module in C. As A is commutative, the actions arV , a

l
V commute,(

V, alV , a
r
V

)
becomes an A-bimodule in C, and RepC(A) is viewed as a full subcategory of

A-Bimod(C) this way.
The category RepC(A) is monoidal as follows. Given two objects V , W in RepC(A), their

tensor product V ⊗A W is defined to be the coequalizer

V ⊗A⊗W

arV ⊗IdW
--

IdV ⊗alW

11 V ⊗W // V ⊗A W, (2.5)

which is an object in RepC(A) with the right A-module structure given by arV⊗AW = IdV ⊗ arW .
The unit object is the A-bimodule A in C. This way, RepC(A) is a monoidal subcategory of
A-Bimod(C).

Definition 2.12 ([37, Definition 2.1]). A right A-module (V, arV ) in C is called local if

arV = arV cA,V cV,A.

The category of such local modules is denoted by ReplocC (A).

The category ReplocC (A) is a monoidal subcategory of RepC(A), and ReplocC (A) is braided. The
braiding on ReplocC (A) is obtained from the braiding c in C which descends to the relative tensor
products of two local modules. The algebra A is trivializing if ReplocC (A) ≃ Vect.

The definition of the monoidal category RepC(A) extends to the case when D is a not necessarily
braided monoidal category and (A, c) is a commutative algebra in the Drinfeld center Z(D) with
half-braiding c = {cX | X ⊗ V

∼→ V ⊗X}X∈D, see [40, Section 4].

Definition 2.13. Let (A, c) be a commutative algebra in Z(D). Define RepD(A, c) to be the
category of right modules over A in D and monoidal structure given as in (2.5) with the left
A-action defined by alV := arV cV for

(
V, arV

)
a right A-module in D.

We will subsequently denote RepD(A, c) by RepD(A) when there is no confusion about which
half-braiding is used. We recall that by [40, Corollary 4.5], the center Z(RepD(A)) is equivalent to
ReplocZ(D)(A) as a braided monoidal category. A special case of this result of interest occurs when C
is already a braided monoidal category and we consider A+ = (A, cA,−) ∈ ComAlg(Z(C)). Then
Schauenburg’s result gives an equivalence of braided monoidal categories between Z(RepC(A

+))
and ReplocZ(C)(A

+).

Categories of local modules are a source of modular tensor categories, both in the semisimple
case [26, Theorem 4.5] and the non-semisimple case [28, Theorem 4.12]. For this, recall that
a rigid Frobenius algebra in a ribbon category C is a connected commutative algebra satisfying
the equivalent conditions of Proposition 2.5.

Theorem 2.14. If C is a modular tensor category and A is a rigid Frobenius algebra in C, then
the category ReplocC (A) of local modules over A in C is also modular.

Let D be a finite tensor category and (A, c) a rigid Frobenius algebra in Z(D). The following
lemma involves the left adjoint U to the forgetful functor RepD(A) → D and follows as in [28,
Lemma 4.5].

Lemma 2.15. The functor U : D → RepD(A) which sends X to X ⊗ A with right A-module
structure given by multiplication in A is a faithful dominant tensor functor.
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Powerful invariants of finite tensor categories are the Frobenius–Perron dimension FPdim(D)
and FPdimD(X) for objects X in D [15, Section 4.5]. The above Lemma 2.15 implies that

FPdim
(
RepD(A)

)
=

FPdim(D)

FPdimD(A)
. (2.6)

This follows from [15, Lemma 6.2.4] as in [28, Lemma 4.5]. Hence, as FPdim(Z(D)) equals
FPdim(D)2 by [15, Theorem 7.16.6],

FPdim
(
ReplocZ(D)(A)

)
=

FPdim(D)2

FPdimD(A)2
,

see also [8, Corollary 4.1]. If the category D possesses a quasi-tensor functor F to Vect, then
FPdimD(X) = dimkF (X) for any object X in D [15, Proposition 4.5.7].

2.5 Dijkgraaf–Witten categories

In this section, we give an explicit description of the Dijkgraaf–Witten (DW) categories Z
(
VectωG

)
associated to a group G and a 3-cocycle ω of [11] via the structure of twisted Yetter–Drinfeld
modules following [31, Proposition 3.2].

Let G be a finite group with a 3-cocycle ω ∈ C3(G,k×), see equation (A.1). Associated to this
data, we define the category VectωG of G-graded k-vector spaces with associativity isomorphism
given by

α((vg ⊗ wh)⊗ uk) = ω−1(g, h, k)vg ⊗ (wh ⊗ uk),

where vg, wh, uk are G-homogeneous elements of degrees g, h, k, respectively. We observe that
if ϕ : G → G′ is an isomorphism of groups such that ω and ϕ∗(ω′) define the same element in
H3(G,k×), then VectωG and Vectω

′
G′ (and hence their centers) are equivalent as monoidal categories

(respectively, braided monoidal categories) [15, Section 2.6].

Lemma 2.16. If ω, ω′ ∈ C3(G,k×) are equivalent, then any choice of µ ∈ Hom
(
G2,k×

)
such

that d(µ)ω′ = ω defines an equivalence of monoidal categories

Tµ : VectωG → Vectω
′

G ,

which is the identity as a functor with monoidal structure given by

µTkg ,kh = µ(g, h)Idkgh : Tµ(kg)⊗ Tµ(kh) → Tµ(kgh),

where kg denotes the 1-dimensional vector space concentrated at degree g.

Next, define the category of Yetter–Drinfeld (YD) modules over kG twisted with respect to ω.
Such a twisted YD module has a G-grading (or, equivalently, a kG-coaction)

V =
⊕
d∈G

Vd,

a morphism

aV : kG⊗ V → V, g ⊗ v 7→ g · v,

which satisfies the twisted kG-module condition that acting twice on the module is given by

h · (k · vd) = τ(h, k)(d)hk · vd,
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where τ(h, k)(d) is defined in terms of the 3-cocycle ω as follows:

τ(h, k)(d) :=
ω(h, k, d)ω

(
hkd(hk)−1, h, k

)
ω
(
h, kdk−1, k

) (2.7)

and vd denotes a homogeneous element of V of degree d. The action and G-grading satisfy the
YD compatibility condition that action with h ∈ G on the d-th component vd ∈ Vd will bring the
component to the conjugated degree by h, namely h · vd ∈ Vhdh−1 . Morphisms of twisted YD
modules are maps of G-graded k-vector spaces ϕ that commute with the twisted actions in the
sense that g · ϕ(v) = ϕ(g · v).

We note that the map τ can be derived from [46, Section 1.3.3] or [31, Proposition 3.2] where
right twisted modules are used. It can be interpreted as a 2-cocycle on an appropriately defined
groupoid [46].

There is a tensor product of twisted YD modules, which can be defined as the usual tensor
product of graded vector spaces: given two such V and W , the d-th graded component of V ⊗W ,
for d ∈ G, is given by

(V ⊗W )d =
⊕
d=ab

Va ⊗Wb.

The module action will be given by

h · (vd ⊗ vf ) = γ(h)(d, f)(h · vd ⊗ h · vf ),

with d, f ∈ G and where

γ(h)(d, f) :=
ω(h, d, f)ω

(
hdh−1, hfh−1, h

)
ω
(
hdh−1, h, f

) . (2.8)

We check that the tensor product of twisted YD modules is well defined.

Lemma 2.17. The tensor product of two twisted YD modules is itself a twisted YD module.

Proof. We need to check that

h · (k · (vd ⊗ vf )) = τ(h, k)(df)hk · (vd ⊗ vf ).

This condition is equivalent to the equality

γ(k)(d, f)γ(h)
(
kdk−1, kfk−1

)
τ(h, k)(d)τ(h, k)(f) = τ(h, k)(df)γ(hk)(d, f),

which is proven in Appendix A, Lemma A.3. ■

Lemma 2.18. The tensor product gives twisted YD modules the structure of a monoidal category.

Proof. The tensor product should be compatible with the monoidal structure morphisms
(associator and unitors) of the category of twisted YD modules that we are working on. Since
in this category the unitors are the identity this is clear, but for the case of the associator
(following the opposite convention of [15]), given by: αkg ,kg′ ,kg′′ = ω−1(g, g′, g′′)Idkg⊗kg′⊗kg′′ , we
need to check that: α(h · ([kg ⊗ kg′ ]⊗ kg′′)) = h · (α([kg ⊗ kg′ ]⊗ kg′′)). Substituting the pertinent
definitions, this equality amounts to:

ω−1
(
hgh−1, hg′h−1, hg′′h−1

)
γ(h)(gg′, g′′)γ(h)(g, g′) = γ(h)(g, g′g′′)γ(h)(g′, g′′)ω−1(g, g′, g′′),

which is proven in Appendix A, Lemma A.2. ■
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Lemma 2.19. For two twisted YD modules V , W , there is a braiding given by

cV,W : V ⊗W →W ⊗ V,

vg ⊗ wh 7→ g · wh ⊗ vg.

Proof. First, cV,W is a morphism of twisted G-modules by the identity

γ(k)(g, h)τ
(
kgk−1, k

)
(h) = γ(k)

(
ghg−1, g

)
τ(k, g)(h), (2.9)

which holds by repeated use of the 3-cocycle in Appendix A.1 with entries

– g1 = kghg−1k−1, g2 = k, g3 = gk−1, g4 = k,

– g1 = k, g2 = ghg−1, g3 = gk−1, g4 = k,

– g1 = k, g2 = gk−1, g3 = khk−1, g4 = k,

– g1 = k, g2 = gk−1, g3 = k, g4 = h.

The fact that c−1
V,W is also a morphism of twisted G-modules corresponds to the identity

γ(k)(g, h)τ
(
kh−1k, k

)
(g) = γ(k)

(
h, h−1gh

)
τ
(
k, h−1

)
(g). (2.10)

The braiding axioms are equivalent to the equalities;

ω
(
g, hkh−1, h

)
= ω(g, h, k)ω

(
ghkh−1g−1, g, h

)
τ(g, h)(k)−1,

ω−1
(
ghg−1, g, k

)
= ω−1(g, h, k)ω−1

(
ghg−1, gkg−1, g

)
γ(g)(h, k)

both of which hold by (2.7) and (2.8) respectively. ■

The following proposition can be found, working with right twisted actions, in [31, Section 3].

Proposition 2.20. There is an equivalence of braided monoidal categories between Z
(
VectωG

)
and the category of twisted YD modules over G with respect to ω, with reverse braiding.

Proof. We only sketch the proof here. To an object (V, c) in Z
(
VectωG

)
, one associates the

morphism aV : kG⊗ V → V defined by aV = (IdV ⊗ ε)c−1
kG, where kG =

⊕
g∈G kg is the direct

sum of all simple G-graded modules and ε(g) = 1 for all g ∈ G. It follows from the tensor product
compatibility of c−1, that aV is a twisted G-action. Since c−1 is a morphism in VectωG, the YD
compatibility between coaction and twisted action follows. Conversely, a twisted G-action aV
on V can be extend to an inverse half-braiding on an object X in VectωG by setting

c−1
X (xd ⊗ v) := aV (d, v)⊗ xd

for all xd ∈ Xd, v ∈ V . One verifies that these assignments extend to an equivalence of braided
tensor categories. ■

We require Z
(
VectωG

)
to have a ribbon structure (which thus induces a pivotal structure).

A ribbon structure can be obtained from [43, Theorem 5.4]. For this, we choose, in the notation
of [27, Section 3.2], the object V = 1, which is a square root of the distinguished invertible
object D = 1 of VectωG, together with the identity V ⊗ V ∗∗ = D = 1, and σV,X : X → X∗∗ the
monoidal natural isomorphism identifying an object with its double dual. This way, VectωG is
spherical and, hence, Z

(
VectωG

)
is a ribbon category. This gives the following result.

Proposition 2.21. For a twisted YD module V , define

θV : V → V, θV (vd) = d · vd,

for vd ∈ Vd. Then θV defines a ribbon twist which makes Z
(
VectωG

)
a ribbon category.
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Proof. We have to check that θ satisfies (2.1). One checks that the first condition listed there
is equivalent to the cocycle identity

γ(df)(d, f) = τ
(
dfd−1, d

)
(d)τ(d, f)(f).

Using the definitions in equations (2.7) and (2.8), this identity is equivalent to the cocycle condition
of ω, cf. (A.1) with g1 = dfdf−1d−1, g2 = dfd−1, g3 = d, g4 = f . The condition θ1 = Id1 is clear,
while (θV )

∗ = θV ∗ follows from the fact that if {vi} is a homogeneous basis for V with dual
basis {fi}, then {fi} is a homogeneous basis and vi ∈ Vg if and only if fi ∈ Vg−1 . ■

3 Results

Throughout the section, we assume that k is an algebraically closed field of arbitrary characteristic.

3.1 Dijkgraaf–Witten categories of quotient groups via local modules

In this section, we derive a general result on categories of local modules for algebras given
by R(1), which is a commutative algebra (R(1), c) in Z(C) for R the right adjoint of a tensor
functor, using results of [5, 15]. We specify this general result to DW categories of quotient
groups.

Proposition 3.1. Let C, D be tensor categories with a k-linear, exact, monoidal functor
L : C → D that has a right adjoint R : D → C which is faithful and exact. Then there is a tensor
equivalence D ≃ RepC(R(1), c) and a braided tensor equivalence between Z(D) and ReplocZ(C)(R(1)).

Proof. Set A := R(1). This is a commutative algebra in Z(C). By [5, Proposition 6.1], there
is a tensor equivalence D → RepC(A) for the monoidal category from Definition 2.13. By [40,
Corollary 4.5], we have that Z(RepC(A)) is tensor equivalent to ReplocZ(C)(A). Combining these
two results yields the second claimed equivalence. ■

We would like to be able to apply this result to the categories C = Vectω
′

G and D = VectωH .
By [15, Section 2.6], any monoidal functor L : Vectω

′
G → VectωH corresponds to a group homomor-

phism l : G→ H such that ω′, l∗ω are equal in H3(G,k×), with respect to some µ : G×G→ k×,
i.e., ω′ = (dµ)l∗ω. Thus, on the simple objects of VectωG, the functor L is given by kg 7→ kl(g).

If we combine this characterization with the adjunction condition, we get that a functor
R : VectωH → Vectω

′
G is right adjoint to L if it satisfies, on the simple objects, that

HomVectωG
(kg, R(kh)) ∼= HomVectωH

(L(kg),kh) ∼= HomVectωH
(kl(g),kh).

The functor defined, for a an object V =
⊕

h∈H Vh, by

R(V ) =
⊕
g∈G

R(V )g, where R(V )g := Vl(g) ∀g ∈ G,

and, for a morphism f :
⊕

h Vh →
⊕

hWh in VectωH , by

R(f)(vg) = f(vg) ∈Wl(g) = R(W )g, for vg ∈ Vl(g) = R(V )g, g ∈ G,

satisfies the above condition of being a right adjoint to L.
Assume that V is a twisted YD module. Now, R(V ) has the structure of a twisted YD

module with action induced by the module action in Z
(
VectωH

)
, defined on Vg = Vl(g), g ∈ G, by

k · vl(g) := l(k) · vl(g) for vl(g) ∈ Vg and k ∈ G, where on the right hand side vk ∈ Vl(k) is regarded
as a vector in R(V ).
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Lemma 3.2. The functor R : VectωH → Vectω
′

G is always exact and faithful if and only if l : G→ H
is surjective.

In particular, we can apply the functor R to obtain an algebra

A := R(1) =
⊕

x∈ker(l)

kx

in Vectl
∗ω
G . As a k-vector space, A can be given a k-basis {ex | x ∈ ker(l)} with

� multiplication given by exey = µ(x, y)exy,

� unit 1A = e1.

By [5, Proposition 6.1], A is a commutative algebra in Z
(
VectωG

)
. Proposition 3.1 now implies

the following result.

Corollary 3.3. Given a surjective group homomorphism l : G→H and a 3-cocycle ω ∈ C3(H,k×).
Then there is an equivalence of braided tensor categories Z(VectωH) ≃ ReplocZ(Vectl

∗ω
G )

(A).

Example 3.4. Let G be a group, H be the trivial group {1}, with the cocycles ω, ω′ being
trivial. Using the trivial group homomorphism and Corollary 3.3, we get that

Vectk = Z(Vectk) ≃ ReplocZ(VectG)(A),

where A = kG. Thus the group algebra kG ∈ Z(VectG) is trivializing.

Example 3.5. Let us take G to be an abelian group, with H a subgroup. Then H is iso-
morphic to some quotient of G, H ∼= G/N . We can thus take l : G → H ∼= G/N to be the
quotient map, resulting in A := R(1) being defined as an algebra in Z(VectωG), with Ag = k
when g ∈ N , and the zero vector space otherwise, i.e., A is the group algebra kN . Thus
Z(VectωG/N ) ≃ ReplocZ(Vectω

′
G )

(kN).

For a general subgroup H of G, we cannot directly apply Corollary 3.3 as there may not be
a group homomorphism from G to H.

3.2 The induction functor

Let G be a group with a 3-cocycle ω ∈ C3(G,k×). For a subgroup H of G, we denote by ω|H
the restriction of ω to H3. We denote the category of H-graded vector spaces twisted by ω|H
simply by VectωH .

In this section, we define a functor

I : Z(VectωH) → Z
(
VectωG

)
and show that this functor is Frobenius monoidal. In objects, this functor is defined for
any V ∈ Z(VectωH) as V 7→ I(V ) := kG⊗ V , with relations:

gh⊗ vd = τ(g, h)(d)−1g ⊗ h · vd for g ∈ G, h, d ∈ H. (3.1)

The kG-coaction is given by

δ(g ⊗ vd) := gdg−1 ⊗ g ⊗ vd.

Lemma 3.6. I(V ) has the structure of a YD module with action: g▷(k ⊗ vd) := τ(g, k)(d)gk⊗vd.
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Proof. First, we check that the coaction is compatible with the comultiplication, namely that
(∆⊗ Id)δ = (Id⊗ δ)δ. Here,

(∆⊗ Id)δ(g ⊗ vd) = (∆⊗ Id)(gdg−1 ⊗ g ⊗ vd) = gdg−1 ⊗ gdg−1 ⊗ g ⊗ vd,

(Id⊗ δ)δ(g ⊗ vd) = gdg−1 ⊗ (g ⊗ vd) = gdg−1 ⊗ gdg−1 ⊗ g ⊗ vd.

Both sides agree.
Next, the YD condition requires that for any g, k ∈ G, d ∈ H, the composition

g ⊗ (k ⊗ vd) 7→ (g ⊗ g)⊗ (k ⊗ vd) 7→ τ(g, k)(d)g ⊗ (gk ⊗ vd)

7→ τ(g, k)(d)g ⊗ gkdk−1g−1 ⊗ (gk ⊗ vd)

7→ τ(g, k)(d)gkdk−1 ⊗ (gk ⊗ vd)

needs to be equal to

g ⊗ (k ⊗ vd) 7→ (g ⊗ g)⊗ kdk−1 ⊗ (k ⊗ vd) 7→ τ(g, k)(d)gkdk−1 ⊗ (gk ⊗ vd),

which match.
For the defined map to be a twisted action, we require that, for any g, h, k ∈ G, d ∈ H:

g ▷ (h ▷ (k ⊗ vd)) = τ(g, h)
(
kdk−1

)
gh ▷ (k ⊗ vd).

By expanding both sides using the proposed action, this is equivalent to requiring that

τ(h, k)(d)τ(g, hk)(d)ghk ⊗ vd = τ(g, h)(kdk−1)τ(gh, k)(d)ghk ⊗ vd.

This equality holds by Lemma A.1. ■

We claim that the functor I defined above is op-lax monoidal with natural transformation

νV,W : I(V ⊗ V ) → I(V )⊗ I(W ),

g ⊗ (vd ⊗ wf ) 7→ γ(g)(d, f)(g ⊗ vd)⊗ (g ⊗ wf ),

with γ as defined in (2.8), for any d, f ∈ H, and V,W ∈ Ob(Z(VectωH)). The counit is given by

I(1) → 1, g ⊗ 1 7→ 1.

Lemma 3.7. The natural transformation ν equips the functor I with an op-lax monoidal
structure.

Proof. Let k ∈ G and V,W ∈ Ob
(
Z
(
VectωH

))
. For νV,W to be a morphism of YD modules, we

require that

νV,W (k ▷ (g ⊗ (vd ⊗ wf ))) = k ▷ (νV,W (g ⊗ (vd ⊗ wf ))).

We compute that

νV,W (k ▷ (g ⊗ (vd ⊗ wf ))) = γ(kg)(d, f)τ(k, g)(df)(kg ⊗ vd)⊗ (kg ⊗ wf ),

k ▷ (νV,W (g ⊗ (vd ⊗ wf ))) = γ(g)(d, f)k ▷ ((g ⊗ vd)⊗ (g ⊗ wf ))

= γ(k)
(
gdg−1, gfg−1

)
γ(g)(d, f)(k ▷ (g ⊗ vd)⊗ k ▷ (g ⊗ wf ))

= τ(k, g)(d)τ(k, g)(f)γ(k)
(
gdg−1, gfg−1

)
γ(g)(d, f)(kg ⊗ vd)⊗ (kg ⊗ wf ).

The two expressions are equal by Lemma A.3, so νV,W is indeed a morphism of twisted YD
modules.
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To check the conditions of an op-lax monoidal functor, we need to verify that, for any objects
V,W,U ∈ Ob

(
Z
(
VectωH

))
, the following morphisms

I((V ⊗W )⊗ U) → I(V )⊗ (I(W )⊗ I(U))

are equal

(IdI(V ) ⊗ νW,U )νV,W⊗UI(αV,W,U ) = αI(V ),I(W ),I(U)(νV,W ⊗ IdI(U))νV⊗W,U .

Evaluating on a vector (g ⊗ ((vd ⊗ wf )⊗ uh)) in I((V ⊗W )⊗ U), we compute

(IdI(V ) ⊗ νW,U )νV,W⊗UI(αV,W,U )(g ⊗ ((vd ⊗ wf )⊗ uh))

= γ(g)(f, h)γ(g)(d, fh)ω−1(d, f, h)((g ⊗ vd)⊗ ((g ⊗ wf )⊗ (g ⊗ uh))),

αI(V ),I(W ),I(U)(νV,W ⊗ IdI(U))νV⊗W,U (g ⊗ ((vd ⊗ wf )⊗ uh))

= ω−1
(
gdg−1, gfg−1, ghg−1

)
γ(g)(d, f)γ(g)(df, h)((g ⊗ vd)⊗ ((g ⊗ wf )⊗ (g ⊗ uh))).

These two expressions are equal by Appendix A.2.

The unitality condition is easily verified, using γ(g)(d, 1) = γ(g)(1, d) = 1. ■

The functor I is also lax monoidal with the structural natural transformation

µV,W : I(V )⊗ I(W ) → I(V ⊗W ).

This map µV,W sends a vector (g ⊗ vd)⊗ (k ⊗ wf ) to zero unless g−1k ∈ H. If gH = kH we can
use equation (3.1) to replace (g ⊗ vd) ⊗ (k ⊗ wf ) by a vector of the form (g ⊗ vd) ⊗ (g ⊗ w′),
with w′ having degree g−1kfk−1g. Hence, it suffices to describe the image of µV,W on vectors
of the form (g ⊗ vd)⊗ (g ⊗ wf ), with g ∈ G and vd, wf homogeneous vectors of degrees d in V
and f in W , respectively,

µV,W ((g ⊗ vd)⊗ (g ⊗ wf )) = γ(g)(d, f)−1g ⊗ (vd ⊗ wf ).

In addition, we define the unit of this lax monoidal structure by

u : 1 → I(1), 1 7→
∑
i

gi, (3.2)

where {gi}i∈I is a set of representatives for the left cosets of H in G, i.e., G =
∐
i
giH.

Lemma 3.8. The natural transformation µ equips the functor I with a lax monoidal structure.

Proof. First, we check that µV,W is a well-defined morphism of twisted YD modules over G.
For k, g ∈ G and V,W ∈ Ob

(
Z
(
VectωH

))
, we require that

µV,W (k ▷ ((g ⊗ vd)⊗ (g ⊗ wf ))) = k ▷ (νV,W ((g ⊗ vd)⊗ (g ⊗ wf ))).

We compute that

k ▷ (νV,W ((g ⊗ vd)⊗ (g ⊗ wf ))) = τ(k, g)(df)γ(g)(d, f)−1kg ⊗ (vd ⊗ wf ),

µV,W (k ▷ ((g ⊗ vd)⊗ (g ⊗ wf )))

= γ(kg)(d, f)−1τ(k, g)(d)τ(k, g)(f)γ(k)
(
gdg−1, gfg−1

)
kg ⊗ (vd ⊗ wf ).

These two expressions are equal by Lemma A.3, so µV,W is a morphism of twisted YD modules.
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Now we have to check the defining diagrams of a lax monoidal structure. Firstly, consider
three objects V , W , U in Z

(
VectωH

)
. We need to check that the following morphisms

(I(V )⊗ I(W ))⊗ I(W ) → I(V ⊗ (W ⊗ U))

are equal

µV,W⊗U (IdI(V ) ⊗ µW,U )αI(V ),I(W ),I(U) = I(αV,W,U )µV⊗W,U (µV,W ⊗ IdI(W )).

It suffices to check this for vectors of the form ((g ⊗ vd)⊗ (g ⊗ wf ))⊗ (g ⊗ uh). We compute

µV,W⊗U (IdI(V ) ⊗ µW,U )αI(V ),I(W ),I(U)(((g ⊗ vd)⊗ (g ⊗ wf ))⊗ (g ⊗ uh))

= γ−1(g)(d, fh)γ−1(g)(f, h)ω−1
(
gdg−1, gfg−1, ghg−1

)
g ⊗ (vd ⊗ (wf ⊗ uh)),

I(αV,W,U )µV⊗W,U (µV,W ⊗ IdI(W ))(((g ⊗ vd)⊗ (g ⊗ wf ))⊗ (g ⊗ uh))

= γ−1(g)(d, f)γ−1(g)(df, h)ω−1(d, f, h)g ⊗ (vd ⊗ (wf ⊗ uh)).

The two expressions are equal by Lemma A.2.

The unitality conditions for I are easily verified, using γ(g)(d, 1) = γ(g)(1, d) = 1. ■

Proposition 3.9. The functor I : Z
(
VectωH

)
→ Z

(
VectωG

)
is a separable Frobenius monoidal

functor.

Proof. The claim that I is a Frobenius monoidal functor follows from checking the diagrams in
Definition 2.8. This can be tested on vectors of the form gi⊗ vd ∈ I(V ), where {gi} is a set of left
coset representatives. Commutativity of both diagrams amounts to the condition in Lemma A.2.
Finally, I is a separable Frobenius monoidal functor as, clearly, µV,W νV,W = IdI(V⊗W ). ■

Proposition 3.10. The functor I is both a braided lax monoidal and braided oplax monoidal
functor and preserves the ribbon structure.

Proof. We start by checking that the lax monoidal structure given by µ is compatible with the
braiding. First, we need to check that we can restrict to vectors of the form (g ⊗ vd)⊗ (g ⊗ wf ).

Consider the composition I(cV,W )µV,W . By our earlier discussion, this is zero on all vectors
not of the proposed form. For µW,V cI(V ),I(W ) on a generic vector in I(V )⊗ I(W ), we get that

µW,V cI(V ),I(W )((g ⊗ vd)⊗ (k ⊗ wf )) = µW,V

((
gdg−1 ▷ (k ⊗ wf )

)
⊗ (g ⊗ vd)

)
= τ

(
gdg−1, k

)
(f)µW,V

((
gdg−1k ⊗ wf

))
⊗ (g ⊗ vd).

Now this term is non-zero only when kgd−1 ∈ H, which is equivalent to requiring g−1k ∈ H.
Hence we can restrict to vector to be of the proposed form and compute

µW,V cI(V ),I(W )((g ⊗ vd)⊗ (g ⊗ wf ))

= µW,V

((
gdg−1 ▷ (g ⊗ wf )

)
⊗ (g ⊗ vd)

)
= τ

(
gdg−1, g

)
(f)µW,V ((gd⊗ wf )⊗ (g ⊗ vd))

= τ
(
gdg−1, g

)
(f)τ(g, d)(f)−1µW,V ((g ⊗ d · wf )⊗ (g ⊗ vd))

= τ
(
gdg−1, g

)
(f)τ(g, d)(f)−1γ(g)

(
dfd−1, d

)−1
g ⊗ (d · wf ⊗ vd),

I(cV,W )µV,W ((g ⊗ vd)⊗ (g ⊗ wf ))

= γ(g)(d, f)−1I(cV,W )(g ⊗ (vd ⊗ wf )) = γ(g)(d, f)−1g ⊗ (d · wf ⊗ vd).

The two expressions are equal using (2.7) and (2.8).
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The braided oplax monoidal condition follows similarly. We compute that

νW,V I(cV,W )(g ⊗ (vd ⊗ wf )) = νW,V (g ⊗ (d ▷ wf ⊗ vd))

= γ(g)(dfd−1, d)((g ⊗ d ▷ wf )⊗ (g ⊗ vd)),

cI(V ),I(W )νV,W (g ⊗ (vd ⊗ wf )) = γ(g)(d, f)cI(V ),I(W )((g ⊗ vd)⊗ (g ⊗ wf ))

= γ(g)(d, f)((gdg−1 ▷ (g ⊗ wf ))⊗ (g ⊗ vd))

= τ(gdg−1, g)(f)γ(g)(d, f)((gd⊗ wf ))⊗ (g ⊗ vd))

= τ(g, d)(f)−1τ(gdg−1, g)(f)γ(g)(d, f)

· ((g ⊗ d ▷ wf )⊗ (g ⊗ vd)).

Again, these expressions are equal by equations (2.7) and (2.8).
Further, I(θV ) = θI(V ) with the ribbon structure defined in Remark 3.30. Indeed, we compute

that

θI(V )(g ⊗ vd) = gdg−1 ▷ (g ⊗ vd) = τ(gdg−1, g)(d)gd⊗ vd

= τ(gdg−1, g)(d)τ(g, d)(d)−1g ⊗ d · vd = g ⊗ d · vd = I(θV )(g ⊗ vd),

where the second-to-last equality uses equation (2.9) with k = g, g = d, h = d. ■

Corollary 3.11. If A is an algebra (respectively, coalgebra or Frobenius algebra) in Z(VectωH),
then I(A) is an algebra (respectively, coalgebra or Frobenius algebra) in Z(VectωG). Moreover, if A
is commutative (respectively, cocommutative) in Z(VectωH), then I(A) is commutative (respectively,
cocommutative) in Z(VectωG).

Example 3.12. The tensor unit 1 is a commutative and cocommutative Frobenius algebra
in Z(VectωH). Hence, I(1) := AH inherits these properties. Explicitly, AH is spanned as a k-vector
space by {δgH | g ∈ G} subject to the relations that δgH = δkH if and only if g−1k ∈ H. Further,
AH is a twisted YD module via

k · δgH = δkgH , δ(δgH) = 1⊗ δgH .

The multiplication and unit are given by

δgHδkH =

{
δgH if g−1k ∈ H,

0 otherwise,
1AH

=
∑
i

δgiH ,

for {gi} a set of H-coset representatives. The comultiplication and counit

∆AH
(δgH) = δgH ⊗ δgH , εAH

(δgH) = 1

make AH a commutative and cocommutative Frobenius algebra in Z(VectωG). We note that,
since AH has trivial G-grading, the braiding is simply given by a⊗ b 7→ b⊗ a, for all a, b ∈ AH .

Consider the category RepVectωG(AH) from Definition 2.13. We fix a set of coset representa-
tives {gi} of H in G such that g1 = 1 and denote the corresponding basis of AH by {δgi}. We
can now define a functor

T : VectωH → RepVectωG(AH), T (V ) = AH ⊗ V, T (f) = IdAH
⊗ f,

where AH ⊗ V is a kG-comodule via the coaction

δ(δgi ⊗ v) = gi|v|g−1
i ⊗ (δgi ⊗ v),
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and a right AH -module via

(δi ⊗ v) · δj = δi,j(δi ⊗ v).

Next, consider the canonical isomorphisms µTV,W appearing in

(AH ⊗ V )⊗ (AH ⊗W ) → (AH ⊗ V )⊗AH
(AH ⊗W )

µT
V,W−−−→ AH ⊗ (V ⊗W ),

which is given by

µTV,W ((δgi ⊗ v)⊗ (δgi ⊗ w)) = γ(gi)(|v|, |w|)−1δi,jδgi ⊗ (v ⊗ w).

Lemma 3.13. The functor T is monoidal.

Proof. First, we check that µTV,W is obtained as factorization over the relative tensor product⊗AH

as stated and becomes an isomorphism. Further, the coherence diagram making T a monoidal
functor follows from Lemma A.2. ■

We will see in Proposition 3.16 below that this functor gives an equivalence of tensor categories
when |G : H| ≠ 0.

3.3 Local modules over coset algebras

In this section, we prove that the functor I from Section 3.2 induces an equivalence of braided
monoidal categories between Z(VectωH) and ReplocZ(VectωG)(AH), where AH = I(1) ∼= k(G/H) is
the algebra of functions on left cosets of H in G.

Lemma 3.14. For any object V in Z
(
VectωH

)
, I(V ) is a right local module over the algebra AH

from Example 3.12. The right action is given by

arI(V ) : I(V )⊗AH → I(V ), (g ⊗ v) · δkH =

{
g ⊗ v if k−1g ∈ H,

0 otherwise.

Proof. The fact that I(V ) is a right AH = I(1)-module follows from Proposition 2.9 (c) and
Lemma 3.8.

We check that I(V ) is a local module. By applying the braiding twice, we obtain

cAH ,I(V )cI(V ),AH
((g ⊗ vd)⊗ δkH) = cAH ,I(V )(δgdg−1kH ⊗ (g ⊗ vd)) = (g ⊗ vd)⊗ δgdg−1kH .

Applying the right action gives us

(g ⊗ vd)⊗ δgdg−1kH =

{
g ⊗ vd if k−1gd−1 ∈ H,

0 otherwise.

As d ∈ H, this is exactly the result of applying the right action only. ■

The following result is independent of the choice of ribbon structure for Z
(
VectωG

)
and we

may use the ribbon structure from Proposition 2.21.

Lemma 3.15. Assume |G : H| ∈ k×. Then the algebra AH from Example 3.12 is a rigid
Frobenius algebra in Z

(
VectωG

)
.
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Proof. The trivial algebra 1 is a commutative Frobenius algebra in Z
(
VectωH

)
. Hence, AH=R(1)

is a commutative Frobenius algebra in Z
(
VectωG

)
by Corollary 3.11. The comultiplication and

counit are given by

∆AH
(δgH) = δgH ⊗ δgH , εAH

(δgH) = 1.

We first check that AH is a connected algebra. Indeed, as AH is concentrated in G-degree 1, it is
a G-module and HomZ(VectωG)(1, AH) ⊆ (AH)G. The latter space of G-invariant elements in AH

is one-dimensional since AH is given by functions on a transitive G-set. Now, we compute that

mAH
∆AH

(δgH) = δgHδgH = δgH , εAH
(1AH

) = |G : H|.

Since, by assumption, |G : H| ∈ k×, AH is a rigid Frobenius algebra of dimension dimj(AH) =
|G : H|, cf. Proposition 2.5. ■

Proposition 3.16. Assume |G : H| ∈ k×. The functor T from Lemma 3.13 induces an
equivalence of tensor categories from VectωH to RepVectωG(AH).

Proof. We first check that T is fully faithful. For this, we note that every object X in
RepVectωG(AH) has a direct sum decomposition X = ⊕iX

i, where Xi is the image of the action of
the idempotent δgi ∈ AH . Any morphism of AH -modules preserves this direct sum decomposition.
Thus, for given objects V , W in VectωH , a morphism f : T (V ) → T (W ) and any v ∈ V ,

f(gi ⊗ v) = gi ⊗ g(v),

for a unique vector g(v) ∈ W . The mapping g : V → W preserves the H-grading since con-
jugation by gi is bijective. Thus, f = T (g) and T is full. Further, T is faithful as the tensor
product (−)⊗k AH is faithful.

Now, VectωG is a finite tensor category and, as AH is a rigid Frobenius algebra by Lemma 3.15
provided that |G : H| ̸= 0, RepVectωG(AH) is a finite tensor category by [28, Corollary 4.21]. We
conclude that T : VectωH → RepVectωG(AH) is a fully faithful tensor functor. Now, equation (2.6)
specifies to

FPdim
(
RepVectωG(AH)

)
=

FPdim
(
VectωG

)
FPdim(AH)

=
|G|

dimk(AH)
=

|G|
|G|
|H|

= |H| = FPdim
(
VectωH

)
.

Thus, [15, Proposition 6.3.3] implies that T gives an equivalence. ■

Next, we will extend the equivalence of VectωH and RepVectωG(AH) to Drinfeld centers and local
modules using the functor I from Section 3.2.

Lemma 3.17. The functor I induces a monoidal functor from Z
(
VectωH

)
to ReplocZ(VectωG)(AH),

the category of local modules over AH . This functor is a ribbon functor if |G : H| ∈ k×.

Proof. By Lemma 3.14, it is clear that I induces a functor I : Z
(
VectωH

)
→ ReplocZ(VectωG)(AH).

The tensor product of X,Y ∈ ReplocZ(VectωG)(AH) is the relative tensor product X ⊗AH
Y defined

in equation (2.5), with the left action given by alW := arW cAH ,W . In I(U)⊗AH
I(V ), this gives

us that (g ⊗ ud)⊗ (l ⊗ ve) = 0 if and only if gH ̸= lH, for non-zero ud, ve.
This suggests that

I(U)⊗AH
I(V ) = I(U)⊗ I(V )/S with S = spank{(g ⊗ ud)⊗ (l ⊗ vf ) | l−1g /∈ H}.

In order to be compatible with the twisted YD module and local module structure, we need S
to be a subobject in ReplocZ(VectωG)(AH). To see this, we first note that S is G-graded as

δ((g ⊗ ud)⊗ (l ⊗ vf )) = gdg−1lf l−1 ⊗
(
(g ⊗ ud)⊗ (l ⊗ vf )

)
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gives a G-homogeneous spanning set. Secondly, S is closed under the twisted G-action. This
follows as

k ▷ ((g ⊗ ud)⊗ (l ⊗ vf )) = γ(k)
(
gdg−1, lf l−1

)
τ(k, g)(d)τ(k, l)(f)(kg ⊗ ud)⊗ (kl ⊗ vf )∈S

because (kl)−1(kg) /∈ H if and only if l−1g /∈ H. Finally, S is closed under the right action of AH

since

((g ⊗ ud)⊗ (l ⊗ vf )) · δkh =

{
(g ⊗ ud)⊗ (l ⊗ vf ) if kH = lH,

0 else,

is clearly in S. Hence S is a subobject.

As a consequence of this quotient, the op-lax monoidal structure from Lemma 3.7 extends to

ν̄U,V : I(U ⊗ V ) −→ I(U)⊗AH
I(V ),

g ⊗ (ud ⊗ uf ) 7→ γ(g)(d, f)(g ⊗ ud)⊗ (g ⊗ vf ),

also giving an op-lax monoidal structure.

The natural transformation ν is in fact an isomorphism. To observe this, we define the
morphism

ΛU,V : I(U)⊗ I(V ) −→ I(U ⊗ V ),

(g ⊗ ud)⊗ (l ⊗ vf ) 7→

{
λ(g, d, l, f)g ⊗

(
ud ⊗ g−1l · vf

)
if gH = lH,

0 else,

where

λ(g, d, l, f) =
1

τ
(
g, g−1l

)
(f)γ(g)

(
d, g−1lf l−1g

) .
For this morphism to be a morphism of YD modules, it needs the equality

λ(g, d, l, f)τ(k, g)
(
dg−1lf l−1g

)
= γ(k)

(
gdg−1, lf l−1

)
τ(k, g)(d)τ(k, l)(f)λ(kg, d, kl, f)

to hold, which follows straightforwardly from Lemmas A.1 and A.3. As the kernel of this
morphism ΛU,V contains S, it induces a quotient morphism Λ̄U,V : I(U)⊗AH

I(V ) → I(U ⊗ V )
in ReplocVectωG

(AH).

The morphism Λ̄U,V is inverse to νU,V . Indeed, we compute that

ν̄U,V Λ̄U,V ((g ⊗ ud)⊗ (l ⊗ vf )) = λ(g, d, l, f)ν̄U,V
(
g ⊗ (ud ⊗ g−1l · vf )

)
= γ(g)

(
d, g−1lf l−1g

)
λ(g, d, l, f)

(
(g ⊗ ud)⊗

(
g ⊗ g−1l · vf

))
= τ

(
g, g−1l

)
(f)γ(g)

(
d, g−1lf l−1g

)
λ(g, d, l, f)

· ((g ⊗ ud)⊗ (l ⊗ vf ))

= ((g ⊗ ud)⊗ (l ⊗ vf )),

Λ̄U,V ν̄U,V (g ⊗ (ud ⊗ vf )) = γ(g)(d, f)Λ̄U,V ((g ⊗ ud)⊗ (g ⊗ vf ))

= λ(g, d, g, f)γ(g)(d, f)g ⊗ (ud ⊗ vf )

= g ⊗ (ud ⊗ vf ).

Hence ν̄ is a natural isomorphism and thus I is a monoidal functor.
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To see that I is a braided monoidal functor, consider the diagram

I(U)⊗ I(V ) //

cI(U),I(V )

��

I(U)⊗AH
I(V )

ν̄U,V //

c′U,V

��

I(U ⊗ V )

I(cU,V )

��
I(V )⊗ I(U) // I(V )⊗AH

I(U)
ν̄V,U // I(V ⊗ U).

The left-most square commutes by definition of the braiding in ReplocZ(VectωG)(AH), and the perime-
ter commutes by naturality. Hence the right-most square commutes, which is exactly the condition
for the functor I to be compatible with the braiding.

Now assume |G : H| ∈ k×. Then as, by Lemma 3.15, AH is a rigid Frobenius algebra,
ReplocZ(VectωG)(AH) is a ribbon category by [26, 28]. To check compatibility with the twist, recall

that I is a ribbon functor to Z
(
VectωG

)
, see Proposition 3.10. Further recall the explicit form

of the ribbon twist θ̂V on categories of local modules over A = AH from [28, Proposition 4.23],

θ̂V = arV (θV ⊗ IdA)(a
r
V ⊗ IdA)(IdV ⊗ q),

where d = dimj(A) and q : 1 → A⊗A is an inverse to the pairing p = εAm. In the case of A = AH ,

p(δgH ⊗ δkH) =

{
1 if g−1k ∈ H,

0 else,
q =

∑
i

δgiH ⊗ δgiH .

Thus, we can evaluate the twist I(V ), to obtain

θ̂V (gj ⊗ vd) =
∑
i

θI(V )

(∑
i

(gj ⊗ vd) · δgiH
)
· δgiH

= (gj ⊗ d · vd) · δgjH = gj ⊗ d · vd = I(θV )(gj ⊗ vd),

where we use the right AH -action on I(V ) from Lemma 3.14, the twist from Remark 3.30, and
Proposition 3.10 in the final step. This proves that I is a ribbon functor to the category of local
modules over AH as claimed. ■

The following result was proved in [9, Theorem 3.7]. We give a proof using the functor I
defined above.

Theorem 3.18. The functor I defines an equivalence of monoidal categories between Z
(
VectωH

)
and ReplocZ(VectωG)(AH).

Proof. We first show that I is faithful. On morphisms, I is given by the map

HomZ(VectωH)(V,W ) → HomReplocZ(Vectω
G

)
(AH)(kG⊗ V,kG⊗W ), p 7→ I(p) = IdAH

⊗ p.

As this map is injective, seen, for example, by restricting to the subspace 1⊗ V of I(V ), we see
that I is faithful.

To prove that I is full, suppose q : kG⊗AH
V → kG⊗AH

W is a morphism in ReplocVectωG
(AH).

Then, for all g, k ∈ G, v ∈ V , we have

q(g ⊗ v) · δkH = q((g ⊗ v) · δkH) =

{
q(g ⊗ v) if k−1g ∈ H,

0 otherwise.

We choose a set of coset representatives {gi} for H in G such that g1 = 1. Using the above and
equation (3.1), we see that the q(gi ⊗ v) is contained in the subspace gi ⊗W of I(W ). Hence,
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there exists a vector wi ∈ W such that q(gi ⊗ v) = gi ⊗ wi. However, q commutes with the
twisted left G-action, which implies that

gi ⊗ wi = q(gi ⊗ v) = q(gi · (1⊗ v)) = gi · q(1⊗ v) = gi · (1⊗ w1) = gi ⊗ w1.

Thus, wi = w1 for all i. Hence, we obtain a k-linear map q′ : V →W , v 7→ w1. This map satisfies
I(q′) = q, i.e.,

q(g ⊗ v) = g ⊗ q′(v) ∈ I(W ) ∀g ∈ G, v ∈ V.

By restricting to g ∈ H, it follows that q′ : V →W is a morphism of twisted YD modules over H.
This proves that I is full.

It remains to show that I is essentially surjective. For this, take a local module L ∈
ReplocZ(VectωG)(AH). The actions of the idempotent elements δgH of AH define a family of idempotent
endomorphisms

eg : L→ L, l 7→ l · δgH , eg ∈ EndZ(VectωG)(L).

Setting Li = Im(egi) gives a direct sum decomposition L =
⊕
i
Li. Here, we use that

1AH
=
∑
i

δgiH .

We now observe that l ∈ Li if and only if gjg
−1
i · l ∈ Lj . In particular, l ∈ L1 if and only

if gil ∈ Li. Further, L1 is a submodule of L under the left twisted H-action. The assumption
that L is a local module implies that if ld ∈ L1 has degree |l| = d, then l = l · δdH . We can
write d = gih, with h ∈ H, and find that l ∈ Li. However, as the subspaces Li intersect trivially
it follows that d ∈ H. Thus, L1 correspond to an object in Z

(
VectωH

)
.

Using the twisted right G-action on L, we define a map

π : kG⊗ L1 −→ L, g ⊗ l 7→ g · l.

The map π is surjective. Indeed, L1 is given by all elements of the form l · δH , with l ∈ L. Now,

gi

( (
g−1
i l
)

γ(gi)(gi, |l|)
· δH

)
=
τ(gi)

(
gi|l|g−1

i , 1
)

γ(gi)(gi, |l|)
(
gi
(
g−1
i l
))

· (giδH)

=
γ(gi)(gi, |l|)
γ(gi)(gi, |l|)

l · δgiH = l · δgiH .

Thus, l · δgiH is in the image of π and hence, for any l ∈ L, l =
∑

i l · δgiH ∈ Im(π). It follows that

π(gh⊗ vd) = (gh)l = τ(g, h)(d)−1g(hl) = τ(g, h)(d)−1g ⊗ hvd.

Thus, by equation (3.1), π descents to a quotient map π : I
(
L1
)
→ L which is still surjective. The

right twisted action by g ∈ G gives an isomorphism of vector spaces and hence dim(Li) = dim
(
L1
)

for all i. This shows that

dimL = |G : H|dimkL
1 = dimkI

(
L1
)
.

Thus, π is injective and hence gives an isomorphism I
(
L1
) ∼= L. ■

Corollary 3.19. If |G : H| ∈ k×, then the equivalence from Theorem 3.18 is an equivalence of
ribbon categories.
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Proof. This statement is now a direct consequence of Theorem 3.18 and Lemma 3.17. ■

Example 3.20. Let H = {1} be the trivial subgroup of G. Then it follows that

ReplocZ(VectωG)(A{1}) ≃ Vectk,

i.e., A{1} is a trivializing algebra in Z
(
VectωG

)
provided that |G| ∈ k×. In fact, for any subgroup H

of G with |G : H| ∈ k×, we obtain Z
(
VectωH

)
as local modules over an algebra in Z

(
VectωG

)
. This

provides a correspondence between ribbon categories, cf. [17, Section 1.4].

3.4 The classification of rigid Frobenius algebras

In this section, we apply the Frobenius monoidal functors from Section 3.2 in order to recover
the classification of rigid Frobenius algebras in Z(kG-Mod) ≃ Z(VectG) from [9, Theorem 3.15],
and generalize this result to algebraically closed fields of arbitrary characteristic. For the case of
a trivial 3-cocycle ω = 1, this recovers [7, Theorem 3.5.1], for char k = 0, and [28, Theorem 6.14]
for general algebraically closed fields. In fact, as in [9], we obtain a classification of all connected
étale algebras in Z

(
VectωG

)
which turn out to have trivial twist and are, hence, rigid Frobenius

algebras if their quantum dimension is non-zero.

Notation 3.21 (input data H, N , ω, κ, ϵ). Let H be a finite group with a 3-cocycle ω ∈
H3(H,k×), N ◁H a normal subgroup. Further, let κ : N ×N → k× satisfy

ω(n,m, k) = κ(n,m)κ(m, k)−1κ(nm, k)κ(n,mk)−1, κ(n, 1) = κ(1, n) = 1, (3.3)

for all n,m, k ∈ N . In addition, let

ϵ : H ×N → k×, (h, n) 7→ ϵh(n)

be a map satisfying, for all h, k ∈ H and n,m ∈ N , that

τ(h, k)(n) =
ϵh
(
knk−1

)
ϵk(n)

ϵhk(n)
, (3.4)

γ(h)(n,m) =
ϵh(nm)

ϵh(n)ϵh(m)
·
κ
(
hnh−1, hmh−1

)
κ(n,m)

, (3.5)

κ
(
nmn−1, n

)
= ϵn(m)κ(n,m). (3.6)

In particular, the normalized condition on κ, along with (3.5) and (3.6), respectively, imply that

ϵh(1) = 1, and ϵ1(n) = 1.

Remark 3.22. The maps ϵ(h, n) := ϵh(n) and κ define a normalized element ϵ ⊕ κ in the
truncated total complex F̃ 2(H,N,k×), where H acts on N by conjugation, see Appendix A.3.
Equations (3.3)–(3.5) are equivalent to

d2Tot(ϵ⊕ κ) = τ ⊕ γ ⊕ ω,

where τ(h1, h2, n) = τ(h1, h2)(n), γ(h, n1, n2) = γ(h)(n1, n2). In particular, the restriction of ω
to a 3-cocycle on N is trivial in H3(N, k×).

Now assume given a finite group G with a 3-cocycle ω ∈ H3(G,k×). The isomorphism classes
of rigid Frobenius algebras in Z

(
VectωG

)
will be parametrized by the data in Notation 3.21 for H

a subgroup of G and the restriction of ω to H. We will denote such algebras by A = A(H,N, κ, ϵ)
in Theorem 3.29 below. These algebras A will be equal to I(B) for a rigid Frobenius algebra
B = B(N,κ, ϵ) in Z

(
VectωH

)
using the Frobenius monoidal functor I from Propositions 3.9

and 3.10.
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Proposition 3.23 (algebras B(N,κ, ϵ)). Assume given a tuple (H,N, ω, κ, ε) as in Notation 3.21.
Consider the k-vector space B(N,κ, ϵ) with k-basis {en | n ∈ N}, and define

(i) h · en = ϵh(n)ehnh−1, for h ∈ H;

(ii) δ(en) = n⊗ en, that is, en is homogeneous of degree n ∈ H;

(iii) multiplication mB given by enem = κ(n,m)−1enm for all n,m ∈ N ;

(iv) unit 1B = e1.

Then B(N,κ, ϵ) is a connected, commutative algebra in Z
(
VectωH

)
described as a twisted YD

module.

The following is an analogue of [9, Proposition 3.11], [7, Proposition 3.4.2].

Proposition 3.24. Recall the data from Notation 3.21. Let B be an étale algebra in Z
(
VectωH

)
such that B1 = k and dimj(B) ̸= 0. Then B is isomorphic as an algebra in Z

(
VectωH

)
to B(N,κ, ϵ)

for N = Supp(B) = {h ∈ H | Bh ̸= 0}.

Proof. As B is étale, it is commutative and separable by definition. Separability implies that
the restriction of the multiplication defines a non-degenerate pairing Bh ⊗Bh−1 → B1 = k, e.g.,
by Proposition 2.5. This implies that any non-zero element b ∈ Bh is a unit in B. Thus, ab ≠ 0
in Bhk provided that a ∈ Bh, b ∈ Bk are non-zero. This shows that N = Supp(B) is a subgroup
of H. Further, N is a normal subgroup of H by the twisted YD condition. One argues as in [7,
Lemma 3.4.1] that dimkBh ≤ 1 for any h ∈ H.

Now, we can choose a k-basis {en}n∈N for B. Then, as dimkBh ≤ 1, the multiplication in B
is determined by scalars κ(n,m) ∈ k× satisfying

enem = κ(n,m)−1enm ∀n,m ∈ N.

Further, the left kH-action is determined by scalars ϵh(n) ∈ k× which satisfy

h · en = ϵh(n)ehnh−1 ∀h ∈ H, n ∈ N.

Together with the given 3-cocycle ω this gives us a tuple (H,N, ω, κ, ε) as in Notation 3.21, where
it follows from B being an algebra in Z

(
VectωH

)
that the conditions in equations (3.3)–(3.6) hold.

In particular,

� equation (3.3) corresponds to mB being associative and unital,

� equation (3.4) corresponds to B being a YD module,

� equation (3.5) corresponds to mB being a morphism of YD modules,

� equation (3.6) corresponds to mB being commutative in Z
(
VectωH

)
.

This completes the proof. ■

Proposition 3.25. Assume that |N | ∈ k×. The algebras B = B(N,κ, ϵ) defined in Proposi-
tion 3.23 are rigid Frobenius algebras in Z

(
VectωH

)
with coalgebra structure given by

∆B(en) =
∑
m∈N

κ
(
m,m−1n

)
em ⊗ em−1n, εB(en) = δn,1, for all n ∈ N.

Proof. Consider the algebra B = B(N,κ, ϵ). One readily verifies that the conditions in
Notation 3.21 are sufficient to ensure that B(N,κ, ε) is a commutative algebra in Z

(
VectωH

)
(cf.

the bullet points in the proof of Proposition 3.23).
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It remains to check that such an algebra B in, in fact, a rigid Frobenius algebra. This is
argued as in [28, Proposition 6.12 (2)]. First, B is connected since

Hom
Z
(
VectωH

)(1, B) ⊆ HomkH-Comod(1, B) ⊆ B1,

with the containing space being 1-dimensional.
Next, we define εB and check that it is indeed a morphism of twisted H-YD modules. Further,

one checks, using the map

q =
∑
n∈N

κ
(
n−1, n

)
ω
(
n−1, n, n−1

)en ⊗ en−1

that the pairing p := εBmB : B ⊗B → 1 is non-degenerate. Then, the coproduct

∆B(en) =
∑
m∈N

κ
(
m−1,m

)
κ
(
m−1, n

) ω−1
(
m,m−1, n

)
ω
(
m−1,m,m−1

) em ⊗ em−1n
(3.3)
=

∑
m∈N

κ
(
m,m−1n

)
em ⊗ em−1n

is obtained from the multiplication and the pairing ε following Remark 2.3. This way, ∆B, εB
make B a coalgebra in Z

(
VectωH

)
.

In fact, the algebra and coalgebra structures satisfy the Frobenius conditions from Def-
inition 2.2 (3). Verifying that B is a special Frobenius algebra amounts to the computa-
tions that mB∆B(en) = |N |IdB, and εB(1B) = 1. Hence, B is a rigid Frobenius algebra
since |N | ≠ 0. ■

Remark 3.26. By forgetting the twisted YD module structure, we can view B(N,κ, ϵ) as
a special Frobenius algebra in VectωG. The images under the forgetful functor are twisted group
algebras A(N,ψ) [35, 36]. These twisted group algebras were used to classify indecomposable
module categories over VectωG by Ostrik and Natale, cf. [15, Example 9.7.2]. An explicit Frobenius
algebra structure for A(N,ψ) was given in [34, Proposition 5.7]. Under the identifications n = g,
m = gh and κ = ψ−1, the multiplication, unit and counit of B(N,κ, ϵ) match those of A(N,ψ)
up to normalisation. The coproduct formula for B(N,κ, ϵ) becomes

∆B(eg) =
∑
h∈N

κ
(
gh, h−1

)
egh ⊗ eh−1 .

Compared to that of A(N,ψ), the coproduct is the same, up to normalisation by 1/|N |. The
above results hence show that ϵ : H ×N → k× parametrize lifts of the algebras A(N,κ) to rigid
Frobenius algebras B(N,κ, ϵ) in the center. Such a lift can only exist if ϵ, κ satisfy the conditions
of Notation 3.21.

We will now give an explicit description of the commutative Frobenius algebras A = I(B)
in Z

(
VectωG

)
for B = B(N,κ, ϵ) as above. Note that Corollary 3.11 ensures that A is a commu-

tative Frobenius algebra, but we will see that it is, in fact, also a rigid Frobenius algebra.

Definition 3.27 (A(H,N, κ, ϵ)). Let G be a group with ω ∈ C3(G,k×), a subgroup H of G,
and a tuple (N,κ, ε) as in Notation 3.21. We define A = A(H,N, κ, ϵ) to be the commutative
Frobenius algebra I(B) for B = B(N,κ, ε) from Proposition 3.25.

Further, we fix a coset decomposition G =
⊔

i∈I giH.

Lemma 3.28. Explicitly, we can describe the structure of A = A(H,N, κ, ϵ) as a Frobenius
algebra in Z

(
VectωG

)
as follows.

(a) A is the quotient k-vector space spanned by {ag,n | g ∈ G,n ∈ N}, subject to the relations

agh,n = τ(g, h)(n)−1ϵh(n)ag,hnh−1 , ∀h ∈ H. (3.7)
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(b) The twisted YD module structure is given by

(i) left kG-coaction given by δ(ag,n) = gng−1 ⊗ ag,n;

(ii) twisted G-action given by k · ag,n = τ(k, g)(n)akg,n for k ∈ G.

(c) The Frobenius algebras structure is given by the

(iii) multiplication mA given by

ag,nag,m = γ(g)(n,m)−1κ(n,m)−1ag,nm,

for g ∈ G and n,m ∈ N , and ag,nak,m = 0 if kH ̸= gH;

(iv) unit uA given by 1A =
∑
i∈I

agi,1;

(v) coproduct ∆A given by

∆A(ag,n) =
∑
m∈N

γ(g)
(
m,m−1n

)
κ
(
m,m−1n

)
ag,m ⊗ ag,m−1n,

for all g ∈ G and n ∈ N ;

(vi) counit εA given by εA(ag,n) = δn,1.

Proof. We set ag,n := g ⊗ en ∈ A = I(B). The relations on A in (3.7) are then derived from
equation (3.1) using the twisted H-action from Proposition 3.23 (i). This proves (a). To obtain
the formulas in (b) we apply the twisted YD module structure on A = I(B) from Lemma 3.6.

To find the Frobenius algebra structure on A displayed in (c) we use Corollary 3.11. Thus,
computing multiplication and unit involves the lax monoidal structure of I, see Lemma 3.8. It
suffices to evaluate the product on elements ag,nag,m as a product ag,nak,n = 0 if kH ̸= gH.
If kH = gH, we can find n′ such that ak,n = ag,n′ as argued before Lemma 3.8. We compute

ag,nag,m = γ(g)(n,m)−1(g ⊗ en · em) = γ(g)(n,m)−1κ(n,m)−1ag,nm.

The unit is given by k → A, 1 7→ 1A =
∑

i gi ⊗ 1 =
∑

i agi,1, using equation (3.2). Finally, the
coproduct and unit are computed using the oplax monoidal structure on I(A) from Lemma 3.7,
i.e., ∆A = νB,BI(∆B). This gives the claimed formulas. ■

We obtain the following theorem generalizing [9, Theorem 3.15] to arbitrary characteristic.

Theorem 3.29. Let G be a finite group with ω ∈ C3(G,k×), a subgroup H of G and a tuple
(N,κ, ε) as in Notation 3.21.

(a) If |N | · |G : H| ∈ k×, then the algebra A = A(H,N, κ, ϵ) from Definition 3.27 is a rigid
Frobenius algebra in Z

(
VectωG

)
of dimension dimj(A) = |N ||G : H|.

(b) Every connected étale algebra in Z
(
VectωG

)
is of the form A(H,N, κ, ϵ) for some choice of

data H, N , γ, ϵ and has trivial twist θA.

(c) Every rigid Frobenius algebra in Z
(
VectωG

)
is isomorphic to one of the form A(H,N, κ, ϵ)

for some choice of data H, N , γ, ϵ as above, with |N | · |G : H| ∈ k×.

Proof. To prove part (a), observe that A = A(H,N, κ, ϵ) is a commutative Frobenius algebra in
Z
(
VectωG

)
by Corollary 3.11 and Proposition 3.25. It remains to check that A is connected and

special. First, A is connected since HomZ(VectωG)(1, A) = (A1)
G, the space of G-invariant elements

in the kG-module A1. This space is 1-dimensional as A1 = k(G/H) and G acts by left translation.
Next, to see that A is special we compute mA∆A(ag,n) = |N |ag,n as in Proposition 3.25. Further,
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εA(1A) = |G : H|Id1, and by assumption, both scalars |N | and |G : H| are non-zero. Thus, A is
a rigid Frobenius algebra of the claimed quantum dimension.

To prove part (b), assume A is a connected étale algebra in Z
(
VectωG

)
. Following the strategy

from [7, Corollary 3.3.5], we consider the subalgebra A1. We note that A1 is a subobject of A in
Z
(
VectωG

)
. The twisted kG-action on A restricts to an (untwisted) kG-module structure on A1.

Thus, A1 corresponds to an algebra in the symmetric monoidal category of kG-modules. As the
braiding of A restricted to A1 ⊗A1 is symmetric, A1 is, in fact, a commutative algebra over k.
Now, A is separable by Proposition 2.5 and this implies that A1 is also separable. Indeed, A1

is also a connected commutative algebra in Z
(
VectωG

)
and as such it is separable if and only if

the pairing ε♯m is non-degenerate, cf. [7, Section 2.2] and [28, Section 3.3]. But non-degeneracy
of this pairing on A implies non-degeneracy of the restriction to A1. Hence, A1 is a connected
étale algebra in kG-Mod given that its G-grading is trivial. Viewing A as a k-algebra, it follows
that A1

∼= kn for some n since A is algebraically closed. The primitive central idempotents
of A1 are a G-set by restricting the kG-action on A1. Thus, using indecomposability of A,
A1

∼= k(G/H) is of the form AH from Example 3.12 for some subgroup H ≤ G. This argument
appears in [26, Theorem 2.2] in the semisimple case.

The multiplication of A restricts to a right action of A1 on A, which makes A a local module
over A1 using commutativity of A in Z

(
VectωG

)
. Thus, by the equivalence in Theorem 3.18,

A ∼= I(B) for a connected étale algebra B in Z
(
VectωH

)
. Now, dimkB1 = 1 as

dimkA1 ≥ (dimkB1)(dimkAH) = (dimkB1)(dimkA1).

Thus, B is isomorphic, as an algebra in Z
(
VectωH

)
to an algebra of the form B(N,κ, ϵ) by

Proposition 3.24.

To prove part (c), assume that A is any rigid Frobenius algebra in Z
(
VectωG

)
, then A is

connected étale by Proposition 2.5. Thus, as in part (b), A ∼= A(H,N, κ, ε) for some choice of
data as in Notation 3.21. We compute that

mA∆A(ag,n) =
∑
m∈N

ag,n = |N |ag,n, εA1A = |G : N |.

Hence,

dimj(B) = ẽvBcoevB = εB∆BmB(1B) = |N | · |G : N |

computes the quantum dimension of B in Z
(
VectωH

)
, cf. [28, equation (3.7)], independently of

choice of a pivotal structure for Z
(
VectωH

)
. Now, A is rigid Frobenius if |N | · |G : N | ≠ 0. ■

Remark 3.30. Note that the classification results of this section do not depend on the choice
of a particular ribbon structure on Z

(
VectωG

)
and different choices of ribbon structures may

be used in Theorem 3.29. By default, we use the ribbon structure on Z(VectωG) detailed in
Proposition 2.21.

Corollary 3.31. Let A := A(H,N, κ, ϵ) be an algebra in Z
(
VectωG

)
as defined in Definition 3.27

and assume |N | · |G : H| ∈ k×. Then the category ReplocZ(VectωG)(A) is a modular category.

Proof. By Theorem 3.29, A is a rigid Frobenius algebra. Hence, by [28, Theorem 4.12],
ReplocZ(VectωG)(A) is a modular category. Given a ribbon structure on Z

(
VectωG

)
, cf. Remark 3.30,

ReplocZ(VectωG)(A) is a ribbon category by [26, 1.17. Theorem] or [28, Proposition 4.18]. ■

Note that if char k does not divide |G|, then Z
(
VectωG

)
is semisimple (see, e.g., [38, Corol-

lary 13.2.3]). Hence, in this case ReplocZ(VectωG)(A) is a modular fusion category.
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Lemma 3.32. Assume given a datum (H,N, κ, ϵ) as in Notation 3.21.

(a) The algebra AH is isomorphic to the subalgebra of A = A(H,N, κ, ϵ) generated by the
elements g ⊗ 1 as an algebra in Z

(
VectωG

)
.

(b) The subalgebra generated by the elements 1 ⊗ en is isomorphic to B = B(N,κ, ϵ) as an
algebra in Z

(
VectωH

)
.

Proposition 3.33. Assume |N | · |G : H| ∈ k×. The induced functor

I : Reploc
Z
(
VectωH

)(B) → ReplocZ(VectωG)(A), V 7→ I(V )

defines an equivalence of ribbon categories.

Proof. Using Proposition 3.10 and Corollary 3.11, I defines a functor

Rep
Z
(
VectωH

)(B) → RepZ(VectωG)(A).

The right A = I(B)-action is defined using the lax monoidal structure of I. As I is a braided lax
monoidal functor, it preserves local modules.

Note that, as I is fully faithful, we know

I : Hom
Z
(
VectωH

)(V, V ′) → HomReplocZ(Vectω
G

)
(AH)(I(V ), I(V ′))

is fully faithful. Thus, we need to show that a morphism I(α) : I(V ) → I(V ′) is a morphism of
A-modules if and only if α : V → V ′ is a morphism of B-modules. Indeed, if I(α) is a morphism
of A-modules,

I(α)((1⊗ v) · (1⊗ en)) = 1⊗ α(v · en) = 1⊗ α(v) · en.

Thus, α is a morphism of B-modules. The converse implication is clear.
Now, by Lemma 3.32, we see that local A-module W is also a local AH -module. Thus, by

Theorem 3.18, W ∼= I(V ) as an object in ReplocZ(VectωG)(AH) for some object V in Z
(
VectωH

)
. By

construction, V =W 1, which is the image of the idempotent element 1⊗ 1 ∈ A. This idempotent
is central and hence defines an A-submodule which is also local. In particular, V is a local
B-module in Z

(
VectωH

)
. We need to show that I(V ) ∼=W as A-modules.

By 3.32, the AH -module structure of both W and I(V ) are induced from the respective
A-module actions, ρW : W ⊗ A → W , ρI(V ) : I(V ) ⊗ A → I(V ). Thus we have the following
commutative diagram

I(V )⊗AH
� � //

π

��

I(V )⊗A
ρI(V ) //

π

��

I(V )

π

��
W ⊗AH

� � //W ⊗A
ρw //W.

The perimeter commutes as I(V ) ∼=W as AH -modules, and the left square clearly commutes. As
the action is induced by the embedding of the subalgebra AH into A, the right square commutes.
Thus I(V ) ∼=W as A-modules and the functor is essentially surjective.

The induced functor I is a monoidal functor, with the monoidal structure being inherited
directly. The functor I is compatible with braidings as braidings of local modules are induced
from the braidings of the underlying categories. Finally, as the functor I is compatible with
the ribbon twist, so is the induced functor on local modules, whose ribbon category structure is
induced from that of the underlying category, see the proof of Proposition 3.10. ■
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The above proposition shows that, up to equivalence of braided monoidal categories, it suffices
to consider the algebra objects B(N,κ, ϵ) in Z

(
VectωH

)
, i.e., it suffices to consider the case G = H.

The next proposition addresses when such algebras are isomorphic.

Proposition 3.34. Fix H and ω ∈ H3(H,k×) and let (N,κ, ϵ) and (N ′, κ′, ϵ′) be tuples satisfying
the conditions of Notation 3.21. Then B = B(N,κ, ϵ) and B′ = B(N ′, κ′, ϵ′) are isomorphic as
algebras in Z

(
VectωH

)
if and only if ϵ′ϵ−1 ⊕ κ′κ−1 is zero in H̃2

Tot(H,N,k×).

Proof. Assume that ϕ : H → H ′ is an isomorphism of algebras in Z
(
VectωH

)
. Thus, dimA =

dimA′ and hence |N | = |N ′|. Then ϕ is a morphism of twisted YD modules over H and,
in particular, an isomorphism of G-graded vector spaces. This implies that N = N ′ and
ϕ(en) = σ(n)en for some scalars σ(n) ∈ k×. Now, as ϕ is a morphism of algebras,

ϕ(enem) = ϕ
(
κ(n,m)−1enm

)
= κ(n,m)−1σ(nm)enm = σ(n)σ(m)κ′(n,m)−1enm.

Thus, ϕ is a morphism of algebras if and only if

κ′(n,m)

κ(n,m)
=
σ(n)σ(m)

σ(nm)
,

κ′κ−1 = ∂0,1(σ) as claimed.
Further, ϕ is a morphism of twisted YD modules. Thus,

ϕ(h · en) = ϵh(n)σ
(
hnh−1

)
ehnh−1 = ϵ′h(n)σ(n)ehnh−1 = h · ϕ(en).

Thus, ϕ is a morphism of twisted YD modules if and only if

ϵ′h(n)

ϵh(n)
=
σ
(
hnh−1

)
σ(n)

.

This condition gives that ϵ−1ϵ′ = d0,1(σ). Combining, we see that

(
ϵ′ ⊕ κ′

)
· (ϵ⊕ κ)−1 =

ϵ′

ϵ
⊕ κ′

κ

equals d1Tot(σ) and hence is zero in H̃2
Tot(H,N,k×) as claimed. ■

Remark 3.35. For N ◁H, consider the short exact sequence of groups

1 → N
ι−→ H

π−→ H/N → 1.

This induces, via pullback maps, an exact sequence of cochain complexes of abelian groups

0 → F •(H/N,k×) π∗
−→ F •(H,k×) ι∗−→ F •(N, k×) → 0,

implying that H•(H/N,k×) = kerH•(ι∗). Thus, any n-cocycle on f : Hn → k× such that
f |N = 0 in Hn(N, k×) is equal to a n-cocycle π∗ω, where ω is a normalized n-cocycle on the
quotient group H/N up to coboundary. Thus, if (H,N, ω, κ, ϵ) is a tuple as in Notation 3.21,
then by Lemma 2.16 we can assume, without loss of generality, that ω = π∗ω. Then τ , γ are
also trivial when restricted to inputs from N . This follows since

π∗ω(h1, h2, h3) = ω(π(h1), π(h2), π(h3)) = 1

as soon as one of the π(hi) = 1 ∈ H/N , i.e., as soon as one of the hi ∈ N . However, the definition
of γ, τ as elements of F̃ 2(H,N,k×) involves at least one input from N . Thus, without loss
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of generality, isomorphism classes of rigid Frobenius algebras B(N,κ, ϵ) are parametrized by
elements ϵ⊕ κ ∈ H̃2

Tot(H,N,k×).
As a special case, by Corollary 3.3 we have that A = R(1) is an algebra in Z(VectωG) such

that RepZ(VectωG)(A) ≃ Z(VectωH/N ). We observe that A = B(N, 1, 1), where κ and ϵ are trivial

(i.e., constant functions with value 1 ∈ k×). As all conditions in Notation 3.21 are trivial for this
data, A is a rigid Frobenius algebra in Z(VectωG), cf. Lemma 3.15.

Davydov–Simmons prove the following result on local modules over the Frobenius algebras
studied in this section.

Theorem 3.36 ([9, Theorem 3.16]). Let A be a rigid Frobenius algebra as in Theorem 3.29 and
π : H → H/N the quotient homomorphism. Then there exists a 3-cocycle ω ∈ C3(H/N,k×) such
that π∗ω = ω|H and an equivalence of ribbon categories between Z(VectωH/N ) and ReplocZ(VectωG)(A).

Proof (sketch). Using Proposition 3.33 and Remark 3.35, it suffices to show that the braided
monoidal category ReplocZ(Vectπ

∗ω
H )

(B) is equivalent to Z(VectωH/N ) for B = B(N,κ, ϵ) an algebra as

in Proposition 3.23. Article [9] produces a braided monoidal functor from the latter category to
a category of YD-compatible H/N -modules and comodules involving further cocycle data from
F̃ •(H/N,H/N,k×). It is then shown in [9, Proposition A.1] that any such deformed monoidal
category, when braided, is equivalent to Z(VectωH/N ). The proof does not rely on the assumption
char k = 0. ■

As by [40], Z(RepVectωG(A))
∼= ReplocZ(VectωG)(A) one can ask if the equivalences of Theorem 3.36

stems from an equivalence of the monoidal categories VectωH/N and RepVectπ∗ω
G

(A), see Defini-

tion 2.13. To the knowledge of the authors, this remains an open question in general, but see
Proposition 3.38 below for the case of trivial cocycle data ϵ⊕ κ, and Section 3.6 for the case of
odd dihedral groups.

3.5 Special cases

The following corollary expresses two extreme cases of Corollary 3.31, when N is as large or as
small as possible. For this, we recall the Frobenius–Perron dimension FPdim(C) of a finite tensor
category C [15, Section 4.5] and objects within it, see Section 2.4. It is well known that

FPdim(VectG) = FPdim
(
VectωG

)
= |G| and FPdim(Z

(
VectωG

)
) = FPdim

(
VectωG

)2
= |G|2.

It follows from [28, Corollary 4.21] that

FPdim
(
ReplocZ(VectωG)(A)

)
=

|G|2

FPdimZ(VectωG)(A)2
=

|H|2

|N |2
,

using that Z
(
VectωG

)
is non-degenerate [15, Proposition 8.6.3]. Here, in order to compute

FPdimZ(VectωG)(A), we use the forgetful quasi -tensor functor Z
(
VectωG

)
→ Vect. In fact,

FPdimZ(VectωG)(A) = dimk(A) =
|G||N |
|H|

,

using [15, Proposition 4.5.7] in the first equality and the basis agi,n of A in the second equality.
Moreover,

FPdim
(
RepZ(VectωG)(A)

)
=

|G|2

dimk(A)
=

|G||H|
|N |

.

Note that this shows that the categories RepZ(VectωH)(B(N,κ, ϵ)) and RepZ(VectωG)(A(H,N, κ, ϵ))
are inequivalent if G ̸= H.
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Corollary 3.37. Let A := A(H,N, κ, ϵ) be an algebra in Z
(
VectωG

)
as defined in Definition 3.27.

(a) Then A is trivializing, i.e., ReplocZ(VectωG)(A) ≃ Vect, if and only if N = H.

(b) If N = {1}, then ReplocZ(VectωG)(A) and Z
(
VectωH

)
are equivalent ribbon categories.

Proof. With the above computations of FP dimensions, this follows as in [28, Corollary 6.18],
where part (b) uses the equivalence in Theorem 3.18. ■

Next, we consider the special case when κ and ϵ are both trivial.

Proposition 3.38. Let N ◁ H ≤ G be subgroups with |N | · |G : H| ∈ k× and ω ∈ C3(G,k×)
such that ω|H = π∗ω for a 3-cocycle ω of H/N . Then the equivalence of tensor categories T
from Proposition 3.16 induces an equivalence of tensor categories between RepVectωG(A(H,N, 1, 1))

and VectωH/N .

Proof. Denote B = B(N, 1, 1) and A = A(H,N, 1, 1). Then T (B) ∼= A as algebras in VectωG via
the algebra morphism that sends δgi ⊗ en to agi,n. Moreover, both T (B) and A have the same
G-grading. Thus, T induces an equivalence of categories

T : RepVectωH (B) → RepVectωG(A).

Explicitly, a right B-module V in VectωH is mapped to the right A-module, defined on the
G-graded vector space T (V ) = AH ⊗ V with right A-action given by

arT (V )((δgi ⊗ v)⊗ (δgj ⊗ n)) = T (arB)µ
T
V,B((δgi ⊗ v)⊗ (δgj ⊗ n))

=
δi,j

γ(gi)(|v|, n)
(δgi ⊗ (v · n)).

We will equip this functor with a monoidal structure induced from µTV,W in Lemma 3.13. This

way, µTV,W is a morphism of right A-modules. Here, we regard T (B) ∼= A as a commutative

algebra in Z
(
VectωG

)
with the twisted YD module structure defined in Lemma 3.28. Explicitly,

we compute the half-braiding cA of A with T (W ), cf. Proposition 2.20, as

cAT (W )((δgi ⊗ n)⊗ (δgj ⊗ w) = (δgj ⊗ w)⊗
(
gj |w|−1g−1

j · (δgi ⊗ n)
)

= τ
(
gj |w|−1g−1

j , gi
)
(n)τ(gk, h)(n)

−1

·
(
(δgj ⊗ w)⊗

(
δgk ⊗ hnh−1

))
,

where gk satisfies gj |w|−1g−1
j gi = gkh ∈ gkH, i.e., h = g−1

k gj |w|−1g−1
j gi ∈ H. Thus, we find that

the left T (B)-action is given by

alT (W )((δgi ⊗ n)⊗ (δgj ⊗ w)) = arT (W )c
A
T (W )((δgi ⊗ n)⊗ (δgj ⊗ w))

= T (arB)µ
T
B,W c

A
T (W )((δgi ⊗ n)⊗ (δgj ⊗ w))

=
τ
(
gj |w|−1g−1

j , gi
)
(n)

τ(gk, h)(n)
T (arB)µ

T
N,W

·
(
(δgj ⊗ w)⊗

(
δgk ⊗ hnh−1

))
= δj,k

τ
(
gj |w|−1g−1

j , gi
)
(n)

τ(gk, h)(n)−1γ(gj)
(
|w|, hnh−1

)
·
(
δgj ⊗

(
w · hnh−1

))
= δi,j

τ
(
gi|w|−1g−1

i , gi
)
(n)

τ
(
gi, |w|−1

)
(n)γ(gi)

(
|w|, |w|−1n|w|

)
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·
(
δgi ⊗

(
w · |w|−1n|w|

))
=

δi,j
γ(gi)(n, |w|)

(
δgi ⊗

(
w · |w|−1n|w|

))
.

Here, we used that if k = j then h = |w|−1g−1
j gi ∈ H which implies that gi = gj in the second

equality. The last equality follows from equation (2.10).

Now, we check that µTV,W descents to a morphism

T (V )⊗A T (W ) → T (V ⊗B W ).

This follows by comparing

µTV,WαT (V ),T (B),T (N)(IdT (V ) ⊗ alT (W ))(((δgi ⊗ v)⊗ (δgj ⊗ n))⊗ (δgk ⊗ w))

=
δj,kω

(
gi|v|g−1

i , gjng
−1
j , gk|w|g−1

k

)−1

γ(gj)(n, |w|)
µTV,W

(
(δgi ⊗ v)⊗B

(
δgj ⊗

(
w · |w|−1n|w|

)))
=
δi,jδj,kω

(
gi|v|g−1

i , ging
−1
i , gi|w|g−1

i

)−1

γ(gi)(n, |w|)γ(gi)(|v|, n|w|)
(δgi ⊗

(
v ⊗B

(
w · |w|−1n|w|

))
Lemma A.2

=
δi,jδj,kω(|v|, n, |w|)−1

γ(gi)(|v|, n)γ(gi)(|v|n, |w|)
(δgi ⊗

(
v ⊗B 0

(
w · |w|−1n|w|

))
=

δi,jδj,k
γ(gi)(|v|, n)γ(gi)(|v|n, |w|)

(δgi ⊗ (v · n⊗B w))

= µTV,W (arT (V ) ⊗ IdT (W ))(((δgi ⊗ v)⊗ (δgj ⊗ n))⊗ (δgk ⊗ w)),

where the second-last equality uses the compatibility condition of the relative tensor prod-
uct V ⊗B W . Now, the induced morphism µTV,W : T (V ) ⊗A T (W ) → T (V ⊗B W ) is directly

checked to be an isomorphism. Coherence of µT with associators follows as in Proposition 3.16.
Thus, we have shown that T gives an equivalence of tensor categories between RepVectωH (B)
and RepVectωH (A).

Finally, B = R(1) for the right adjoint functor R used in Corollary 3.3. Thus, VectωH/N is
equivalent to RepVectωH (B) by [5, Proposition 6.1]. Composing these two tensor equivalences
proves the claim. ■

3.6 Examples for odd dihedral groups

In this section, we provide a full list of isomorphism classes of rigid Frobenius algebras (or,
connected étale algebras) in Z

(
VectωG

)
in the case when G is an odd dihedral group and ω any 3-

cocycle valued in k = U(1) ⊆ C. Moreover, we determine the tensor categories of representations
of these algebras.

Let G = D2m+1, the dihedral group of odd degree 2m+ 1 with presentation〈
s, r | s2 = r2m+1 = e, sr = r−1s

〉
.

Notation 3.39. Consider g ∈ G = D2m+1. We will write g in terms of the group generators,
namely g = sg0rg1 , where g0 ∈ {0, 1} and g1 ∈ {−m,−m+ 1, . . . ,m− 1,m}.

We are going to use classify the rigid Frobenius algebras in Z
(
VectωG

)
. By Theorem 3.29,

these rigid Frobenius algebras are of the form A(H,N, κ, ϵ) as defined in Definition 3.27.
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First, we determine the 3-cocycle ω : G×G×G→ U(1). By [12, equation 3.2.8], there are
4m+ 2 independent 3-cocycles classes in H3(G,U(1)), parametrized by p ∈ {0, 1, . . . , 4m+ 1}.
The explicit formula for the 3-cocycle ωp is, for a, b, c ∈ G, given by

ωp(a, b, c) := exp
(

2πip
(2m+1)2

(
(−1)b0+c0a1((−1)c0b1 + c1 − [(−1)c0b1 + c1])

+ (2m+1)2

2 a0b0c0
))
. (3.8)

Here, the rectangular bracket reduces the quantity modulo 2m+ 1 in the range {−m, . . . ,m}.
We thus observe that (−1)c0b1 + c1 − [(−1)c0b1 + c1] = l(2m+ 1) for l ∈ {−1, 0, 1}. This allows
us to simplify the above formula to

ωp(a, b, c) := exp
(

2πip
(2m+1)

(
(−1)b0+c0a1(l +

(2m+1)
2 a0b0c0

))
.

By Remark 3.22, we need to find values for p such that ωp is trivial when restricted to a normal
subgroup N ◁H ⊆ G. We now discuss the possible choices of H, N .

The subgroups of the odd degree dihedral group D2m+1 are split into two types; either
a dihedral subgroup of odd degree D(2m+1)/d, or a cyclic group of the form Z(2m+1)/d

∼= ⟨rd⟩.
Here, d is a divisor of 2m+ 1. The normal subgroups of D2m+1 are exactly the group itself, or
the subgroups of cyclic form. Thus, we get three cases:

� H = Z(2m+1)/d, N = Z(2m+1)/(df),

� H = D(2m+1)/d, N = Z(2m+1)/(df),

� H = N = D(2m+1)/d,

where f is a divisor of (2m+ 1)/d. For ease of notation, we shall set

x := (2m+ 1)/d and y := (2m+ 1)/(df).

We shall now determine for which values of p, the cocycle ωp will become trivial when restricted
to N in each case.

Lemma 3.40. In the cases such that N = Z(2m+1)/(df), ωp|N is trivial when

p ≡ 0 mod (2m+ 1)/(df).

Proof. When we restrict to N , we can have that g0 = 0, g1 = dfg2 for all g ∈ N , where
g2 ∈ {−(y − 1)/2,−(y + 1)/2, . . . , (y − 3)/2, (y − 1)/2}. Thus ωp becomes

ωp|Zy(a, b, c) = exp
(
2πi pldfa2

(2m+1)

)
.

We require this restriction to be trivial for all values of a2, l. This occurs only when p ≡ 0
mod y. There are 2df -choices of p in the applicable range. ■

Lemma 3.41. In the case such that N = D(2m+1)/d, ωp|N is trivial when p ≡ 0 mod (2m+1)/d.

Proof. When considering g ∈ N , we observe that g1 = dg2, where g2 ∈ {−(x − 1)/2,−(x +
1)/2, . . . , (x− 3)/2, (x− 1)/2}}. Thus we get that

ωp|Dx(a, b, c) = exp
(

2πipd
(2m+1)

(
(−1)b0+c0a2(l +

(2m+1)
2d a0b0c0

))
.

It can now be seen that this 3-cocycle is trivial everywhere on H only when p ≡ 0 mod x. Thus
there are 2d-choices for p. ■
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From these lemmas, we are now in a position to classify all rigid Frobenius algebras in
Z(Vect

ωp

D2m+1
), where p ≡ 0 mod y for some divisors d|(2m+ 1) and f |x, by finding all possible

data for κ, ϵ.

Lemma 3.42. In all cases, κ is a trivial 2-cocycle in H2(N,U(1)).

Proof. By equation (3.3), κ is a 2-cocycle on N . In the case that N = Zy, [12, equation 2.3.14]
gives us that H2(Zy, U(1)) ∼= {0}, so κ is trivial up to coboundary.

In the case that N = Dx, we shall use the dual universal coefficient theorem [45, Theorem 3.6.5]
to calculate the relevant cohomology group,

H2(Dx, U(1)) ∼= Hom(H2(Dx,Z), U(1))⊕ Ext1Z(H1(Dx,Z), U(1)).

By [45, Example 6.8.5], the involved homology groups are H2(Dx,Z) ∼= {0}, H1(Dx,Z) ∼= Z2.
We get that

H2(Dx, U(1)) ∼= Ext1Z(Z2, U(1)) ∼= {0},

where the last isomorphism follows from [45, Corollary 3.3.11]. Thus κ is again trivial up to
coboundary. ■

To begin determining ϵ, we note that when N = Zy we can use equation (3.8) to calculate
that, for h, g ∈ H and a, b ∈ N ,

ωp(a, h, g) = 1 = ωp(h, a, b), ωp(h, g, a) = ωp

(
h, gag−1, g

)
,

and thus τ(h, g)(n) = 1 = γ(h)(n,m). We also get this result when H = N = Dx, as ωp is trivial
everywhere by construction.

Thus, the conditions ϵ must satisfy from Notation 3.21 is now

ϵh
(
gng−1

)
ϵg(n) = ϵhg(n) (3.9)

ϵh(n)ϵh(m) = ϵh(nm) (3.10)

ϵn(m) = 1, (3.11)

as well as ϵh(1) = 1.
Equation (3.10) states that, for any h ∈ H, ϵh is a 1-cocycle valued in C1(N,U(1)), where N

acts trivially on U(1). There are no non-trivial 1-coboundaries in this construction and
so C1(N,U(1)) = H1(N,U(1)).

We shall now determine the value of ϵ in all three cases.

Lemma 3.43. When H = N = D(2m+1)/d, ϵ is the trivial function ϵ : H ×N → U(1).

Proof. Follows immediately from equation (3.11) as H = N . ■

Lemma 3.44. When H = Z(2m+1)/d, N = Z(2m+1)/(df), ϵ is a 1-cocycle in H1(H,N) ∼= N .

Proof. As H is abelian, equation (3.9) becomes

ϵh(n)ϵg(n) = ϵhg(n) (3.12)

and thus ϵ is a 1-cocycle in H1
(
H,H1(N,U(1))

)
, where H acts trivially.

By [12, equation 2.3.13], H1(Zy, U(1)) ∼= Zy, and so ϵ ∈ H1(H,N). We then use [45,
Theorem 3.6.5, Corollary 3.3.11, Example 6.2.3] to calculate that

H1(Zx,Zy) ∼= Hom(Zx,Zy) ∼= Zy,

where the last isomorphism follows as y divides x. ■
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Lemma 3.45. When H = D(2m+1)/d, N = Z(2m+1)/(df), ϵ is a trivial 1-cocycle in H1(H,N).

Proof. We first note that we can construct a Z2-grading on H by forming the quotient group
H/Z2m+1

∼= Z2. When h ∈ H is in the 0-graded component (i.e, in Z2m+1), it is clear that
equation (3.9) becomes equation (3.12).

When h ∈ H is in the 1-graded component, equation (3.9) becomes

ϵh(n
−1)ϵg(n) = ϵhg(n).

By setting g = 1, we observe that ϵh(n) = ϵh(n
−1). Thus, equation (3.9) becomes equation (3.12)

once more. Thus, ϵ ∈ H1
(
H,H1(N,U(1))

)
, where H acts trivially, and as in the previous lemma,

H1(Zy, U(1)) ∼= Zy. We then use [45, Theorem 3.6.5, Corollary 3.3.11, Example 6.8.5] to calculate
that

H1(Dx,Zy) ∼= Hom(Z2,Zy) ∼= {0},

with the last isomorphism following as y is odd and so N = Zy contains no non-identity elements
of order 2. Thus ϵ is trivial in H1(H,Zy). ■

We have thus found all rigid Frobenius algebras in Z
(
Vect

ωp

D2m+1

)
, up to isomorphism of

algebras, proving the following proposition.

Proposition 3.46. Let G = D2m+1, the dihedral group of odd degree 2m+ 1, and let d, f be
a pair of not necessarily proper divisors of 2m+ 1 and (2m+ 1)/d, respectively.

(a) Then, whenever p ≡ 0 mod (2m+1)/(df), there exist rigid Frobenius algebras Z
(
Vect

ωp

D2m+1

)
of the form

A
(
D(2m+1)/d,Z(2m+1)/(df), 1, 1

)
and A

(
Z(2m+1)/d,Z(2m+1)/(df), ϵ, 1

)
,

where ϵ is a 1-cocycle in H1
(
Z(2m+1)/d,Z(2m+1)/(df)

) ∼= Z(2m+1)/(df).

(b) Additionally, there is a trivializing rigid Frobenius algebra of the form

A
(
D(2m+1)/d, D(2m+1)/d, 1, 1

)
in Z

(
Vect

ωp

D(2m+1)

)
whenever p ≡ 0 mod (2m+ 1)/d.

This completely classifies all rigid Frobenius algebras in categories of the form Z
(
Vect

ωp

G

)
, up to

an isomorphism of algebras in Z
(
Vect

ωp

G

)
.

These algebras have the structure of a C-vector space with C-basis {ag,n | g ∈ G,n ∈ N}
subject to the relations

agh,n = ϵh(n)ag,hnh−1 ∀h ∈ H

and with the following YD module and algebra structures in their respective categories Z
(
Vect

ωp

H

)
:

(i) G-action: k · ag,n = akg,n for k ∈ G;

(ii) G-coaction: δ(ag,n) = gng−1 ⊗ ag,n;

(iii) multiplication: ag,nag,m = ag,nm for g ∈ G and n,m ∈ N , and ag,nak,n = 0 if kH ̸= gH;

(iv) unit: 1A =
∑

i∈I agi,1;

(v) coproduct: ∆A(ag,n) =
∑

m∈N ag,m ⊗ ag,m−1n for all g ∈ G and n ∈ N ;

(vi) counit: εA(ag,n) = δn,1.
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We note that all of these algebras are images of group algebras kN under the functor I, with the
subgroup H governing the resulting algebra multiplication in Z

(
Vect

ωp

G

)
.

Furthermore, for all of the cases where ϵ is trivial, we can utilise Proposition 3.38 to determine
their categories of representations when viewed as objects in Vect

ωp

G , up to tensor equivalence.
Explicitly,

� for A = A(D(2m+1)/d,Z(2m+1)/(df), 1, 1), RepVectωp
G
(A) ∼= VectωDf

;

� for A = A(Z(2m+1)/d,Z(2m+1)/(df), ϵ, 1), RepVectωp
G
(A) ∼= VectωZf

;

� for A = A(D(2m+1)/d, D(2m+1)/d, 1, 1), RepVectωp
G
(A) ∼= Vectω{0} = VectC.

Even if ϵ is non-trivial in the second case, since κ is trivial, the categories RepVectωp
G
(A) do not

depend on ϵ, only their associativity isomorphisms does, which, in any case, corresponds to
a 3-cocycle on Zf . By Remark 3.35, we obtain all possible 3-cocycles of Df and Zf as ω, up to
coboundary.

Note that by [40], the corresponding categories of local modules in Z
(
VectωG

)
are equivalent to

the Drinfeld centers Z
(
VectωDf

)
, respectively, Z

(
VectωZf

)
in the first two cases (see Theorem 3.36),

and we recover the fact that the case H = N = D(2m+1)/d gives a trivializing algebra in the third
case.

A Group cohomology

A.1 Definitions

Here, we collect basic definitions from group cohomology used in the text, see, e.g., [3, Section 3.4],
[4, Chapter III].1 Let G be a group, the bar resolution is the complex

· · ·ZGn ⊗Z ZG ∂n−→ ZGn−1 ⊗Z ZG ∂n−1−−−→ · · ·ZG1 ⊗Z ZG ∂1−→ ZG,

where ZGn ⊗Z ZG is a right ZG-module via right multiplication. As an ZG-module, ZGn ⊗Z ZG
is freely generated by n-tuples (g1, . . . , gn). The differential is the ZG-module homomorphism
determined by

∂n(g1, . . . , gn) = (−1)n(g2, . . . , gn) +
n−1∑
i=1

(−1)n−i(g1, . . . , gigi+1, . . . , gn) + (g1, . . . , gn−1)gn.

Given a right ZG-module A, we obtain the cochain complex F •(G,A) on abelian groups of
functions Fn(G,A) = Fun(Gn, A) with differentials

M
d0−→ F 1(G,A)

d1−→ F 2(G,A) · · ·Fn−1(G,A)
dn−1

−−−→ Fn(G,A) · · · ,

where dn is obtained by composing with ∂n+1 under the identification

HomZG(ZGn ⊗Z ZG,A) ∼= Fun(Gn, A) = Fn(G,A),

where the latter is simply the Z-module of maps Gn → A. Explicitly, the differential d = dn is
given on a map ω : Gn → A by

dω(g0, . . . , gn) = (−1)n+1ω(g1, . . . , gn)

+

n−1∑
i=0

(−1)n−iω(g0, . . . , gigi+1, . . . , gn) + ω(g0, . . . , gn−1) · gn,

1These references typically use left module conventions.
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where · denotes the action of G on A. In practice, we often use the G-module A = k× (or U(1)),
with trivial G-action. In this case, we use multiplicative notation. We denote Cn(G,A) := ker(dn)
for the space of n-cocycles and the n-th cohomology group is

Hn(G,A) := Cn(G,A)/ Imdn−1.

For example, a 3-cocycle with values in k× satisfies equation (A.1).

A.2 3-cocycle identities

Let ω : G3 → k× be a 3-cocycle in group cohomology (computed using the bar resolution). The
3-cocycle condition on ω is

ω(g1g2, g3, g4)ω(g1, g2, g3g4) = ω(g1, g2, g3)ω(g1, g2g3, g4)ω(g2, g3, g4). (A.1)

We assume that ω is normalized, i.e., ω(g, h, k) = 1 as soon as one of the entries is the identity
of G. In what follows we provide proofs for several identities we have used along the way involving
cocycles, τ (as defined in equation (2.7)) and γ (as defined in equation (2.8)).

Lemma A.1. The map τ(h, k)(d) satisfies

τ(h, k)(d)τ(g, hk)(d) = τ(gh, k)(d)τ(g, h)
(
kdk−1

)
, ∀g, h, k, d ∈ G.

Proof. This equation follows from repeatedly applying the 3-cocycle in equation (A.1) with the
following entries:

– g1 = g, g2 = h, g3 = k, g4 = d,

– g1 = g, g2 = h, g3 = kdk−1, g4 = k,

– g1 = g, g2 = hkdk−1h−1, g3 = h, g4 = k,

– g1 = ghkdk−1h−1g−1, g2 = g, g3 = h, g4 = k. ■

Lemma A.2. The map γ(h)(g, g′) is related to the 3-cocycle ω(g, g′, g′′) via the following identity:

γ(h)(gg′, g′′)γ(h)(g, g′)

ω
(
hgh−1, hg′h−1, hg′′h−1

) =
γ(h)(g, g′g′′)γ(h)(g′, g′′)

ω(g, g′, g′′)
.

Proof. This equation follows from applying the 3-cocycle in equation (A.1) several times with
the following entries:

– g1 = h, g2 = g, g3 = g′, g4 = g′′,

– g1 = hgh−1, g2 = hg′h−1, g3 = hg′′h−1, g4 = h,

– g1 = hgh−1, g2 = h, g3 = g′, g4 = g′′, and

– g1 = hgh−1, g2 = hg′h−1, g3 = h, g4 = g′′. ■

Lemma A.3. The maps τ(h, k)(d) and γ(k)(d, g) are related via the following identity:

γ(k)(d, g)γ(h)
(
kdk−1, kgk−1

)
τ(h, k)(d)τ(h, k)(g) = τ(h, k)(dg)γ(hk)(d, g).

Proof. Proving this equality amounts to apply the 3-cocycle in equation (A.1) with the following
set of entries:

– g1 = h, g2 = k, g3 = d, g4 = g,

– g1 = h, g2 = kdk−1, g3 = kgk−1, g4 = k,

– g1 = hkd(hk)−1, g2 = hkg(hk)−1, g3 = h, g4 = k,

– g1 = h, g2 = kdk−1, g3 = k, g4 = g,

– g1 = hkd(kh)−1, g2 = h, g3 = k, g4 = g, and

– g1 = hkd(hk)−1, g2 = h, g3 = kgk−1, g4 = k. ■
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A.3 Cohomology of crossed products of groups

Let H, G be groups together with a left action of H on G by group automorphisms, i.e.,
H 7→ Aut(G), h 7→

(
g 7→ hg

)
. Then we can form the crossed product G⋊H, which is G×H as

a set with multiplication given by

(g1, h1) · (g2, h2) =
(
g1

h1g2, h1h2
)
.

Let A be a right ZG-module. Then Fn(G,A) = Fun(Gn, A) becomes a right H-module with
action

(f · h)(g1, . . . , gn) = f
(
hg1, . . . ,

hgn
)
.

Following [9, Appendix A], define a double complex

Fn,m(H,G,A) = Fun(Hn,Fun(Gm, A)) = Fn(H,Fm(G,A)).

The two differentials are denoted by

dn,m : Fn,m(H,G,A) → Fn+1,m(H,G,A), ∂n,m : Fn,m(H,G,A) → Fn,m+1(H,G,A),

where

(∂n,m(f))(h1, . . . , hn) = dn(f(h1, . . . , hn)).

The differentials commute, i.e., dn,m+1∂n,m = ∂n+1,mdn,m making F •,•(H,G,A) a double complex.
Hence, one can consider the associated truncated double complex

F̃n
Tot(H,G,A) =

n−1⊕
i=0

Fn−i,i(H,G,A),

dnTot(f) := dn−i,i(f) + (−1)i∂n−i,i(f) for f ∈ Fn−i,i(H,G,A) with i < n.

We will typically denote an element f ∈ F̃ i,n−i(H,G,A) ⊆ Fn
Tot(H,G,A) by a function f : H i ×

Gn−i → A.
Letting G⋊H act on A via the surjective homomorphism G⋊H → G, the untrucated total

complex

Fn
Tot(H,G,A) =

n⊕
i=0

Fn−i,i(H,G,A)

is quasi-isomorphic to the complex F •(G⋊H,A) computing group cohomology, see [21].
Several cocycles considered in this paper have interpretations as elements of the truncated

total complex F̃ •
Tot with A = k×.

Example A.4. We now let a subgroup G act on itself via conjugation, while G acts on k×
trivially, using multiplicative notation. Consider a triple

T (ω) = τ ⊕ γ ⊕ ω ∈ F 2,1 ⊕ F 1,2 ⊕ F 0,3 = F̃ 3
Tot(G,G,k×),

with γ(h1, g1, g2) = γ(h1)(g1, g2) and τ(h1, h2, g1) = τ(h1, h2)(g1) defined in equations (2.7)
and (2.8). Then T (ω) is a 3-cocycle in the totalized complex C3

Tot(G,G,k×) if and only if the
following conditions hold

d2,1(τ) = 1 ⇐⇒ Lemma A.1,

∂2,1(τ)d1,2(γ) = 1 ⇐⇒ Lemma A.3,

∂1,2(γ)−1d0,3(ω) = 1 ⇐⇒ Lemma A.2,

∂0,3(ω) = 1 ⇐⇒ equation (A.1).
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Example A.5. Let N ◁ H be a normal subgroup and let H act on N by conjugation. We
consider 2-boundaries in the complex F̃ •

Tot(H,N,k×). These can be parametrized by pairs

ϵ⊕ κ ∈ F 1,1 ⊕ F 0,2 = F 2
Tot(H,N,k×).

The total differential has three components, namely

d2Tot(ϵ⊕ κ) = d1,1(ϵ)⊕ d0,2(κ)

∂1,1(ϵ)
⊕ ∂0,2(κ).

Explicit formulas for the components are derived from

d1,1ϵ(h1, h2, n1) =
ϵ
(
h1, h2n1h

−1
2

)
ϵ(h2, n1)

ϵ(h1h2, n1)
,

∂1,1ϵ(h1, n1, n2) =
ϵ(h1, n1)ϵ(h1, n2)

ϵ(h1, n1n2)
, d0,2κ(h1, n1, n2) =

κ
(
h1n1h

−1
1 , h1n2h

−1
1

)
κ(n1, n2)

,

∂0,2κ(n1, n2, n3) =
κ(n1, n1)κ(n1n2, n3)

κ(n1, n2n3)κ(n2, n3)
.
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[8] Davydov A., Müger M., Nikshych D., Ostrik V., The Witt group of non-degenerate braided fusion categories,
J. Reine Angew. Math. 677 (2013), 135–177, arXiv:1009.2117.

[9] Davydov A., Simmons D., On Lagrangian algebras in group-theoretical braided fusion categories, J. Algebra
471 (2017), 149–175, arXiv:1603.04650.

[10] De Renzi M., Gainutdinov A.M., Geer N., Patureau-Mirand B., Runkel I., 3-Dimensional TQFTs from
non-semisimple modular categories, Selecta Math. (N.S.) 28 (2022), 42, 60 pages, arXiv:1912.02063.

[11] Dijkgraaf R., Pasquier V., Roche P., Quasi Hopf algebras, group cohomology and orbifold models, Nuclear
Phys. B Proc. Suppl. 18 (1991), 60–72.

[12] Dijkgraaf R., Pasquier V., Roche P., Topological interactions in broken gauge theories, arXiv:hep-th/9511195.

[13] Dong C., Lepowsky J., Generalized vertex algebras and relative vertex operators, Progr. Math., Vol. 112,
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[17] Fröhlich J., Fuchs J., Runkel I., Schweigert C., Correspondences of ribbon categories, Adv. Math. 199 (2006),
192–329, arXiv:math.CT/0309465.

[18] Fuchs J., Runkel I., Schweigert C., TFT construction of RCFT correlators. I: partition functions, Nuclear
Phys. B 646 (2002), 353–497, arXiv:hep-th/0204148.

[19] Fuchs J., Schaumann G., Schweigert C., A modular functor from state sums for finite tensor categories and
their bimodules, Theory Appl. Categ. 38 (2022), 436–594, arXiv:1911.06214.

[20] Fuchs J., Stigner C., On Frobenius algebras in rigid monoidal categories, Arab. J. Sci. Eng. Sect. C Theme
Issues 33 (2008), 175–191, arXiv:0901.4886.

[21] Hochschild G., Serre J.-P., Cohomology of group extensions, Trans. Amer. Math. Soc. 74 (1953), 110–134.

[22] Huang Y.-Z., Rigidity and modularity of vertex tensor categories, Commun. Contemp. Math. 10 (2008),
871–911, arXiv:math.QA/0502533.

[23] Huang Y.Z., Kirillov Jr. A., Lepowsky J., Braided tensor categories and extens-ions of vertex operator
algebras, Comm. Math. Phys. 337 (2015), 1143–1159, arXiv:1406.3420.

[24] Huang Y.-Z., Lepowsky J., Zhang L., Logarithmic tensor category theory, VIII: Braided tensor category
structure on categories of generalized modules for a conformal vertex algebra, in Conformal Field Theories
and Tensor Categories, Math. Lect. Peking Univ., Springer, Heidelberg, 2014, 169–248, arXiv:1110.1931.

[25] Kerler T., Lyubashenko V.V., Non-semisimple topological quantum field theories for 3-manifolds with corners,
Lecture Notes in Math., Vol. 1765, Springer, Berlin, 2001.

[26] Kirillov Jr. A., Ostrik V., On a q-Analogue of the McKay correspondence and the ADE classification of sl2
conformal field theories, Adv. Math. 171 (2002), 183–227, arXiv:math.QA/0101219.

[27] Laugwitz R., Walton C., Constructing non-semisimple modular categories with relative monoidal centers,
Int. Math. Res. Not. 2022 (2022), 15826–15868, arXiv:2010.11872.

[28] Laugwitz R., Walton C., Constructing non-semisimple modular categories with local modules, Comm. Math.
Phys., to appear, arXiv:2202.08644.

[29] Lentner S., Mierach S.N., Schweigert C., Sommerhaeuser Y., Hochschild cohomology, modular tensor
categories, and mapping class groups I, SpringerBriefs Math. Phys., Vol. 44, Springer, Berlin, 2023.

[30] Lentner S.D., Quantum groups and Nichols algebras acting on conformal field theories, Adv. Math. 378
(2021), 107517, 71 pages, arXiv:1702.06431.

[31] Majid S., Quantum double for quasi-Hopf algebras, Lett. Math. Phys. 45 (1998), 1–9, arXiv:q-alg/9701002.

[32] McRae R., Twisted modules and G-equivariantization in logarithmic conformal field theory, Comm. Math.
Phys. 383 (2021), 1939–2019, arXiv:1910.13226.
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