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Abstract. The quest for a consistent theory for quantum gravity is one of the most chal-
lenging problems in theoretical high-energy physics. An often-used approach is to describe
the gravitational degrees of freedom by the metric tensor or related variables, and finding
a way to quantise this. In the canonical tensor model, the gravitational degrees of freedom
are encoded in a tensorial quantity Pabc, and this quantity is subsequently quantised. This
makes the quantisation much more straightforward mathematically, but the interpretation
of this tensor as a spacetime is less evident. In this work we take a first step towards fully
understanding the relationship to spacetime. By considering Pabc as the generator of an
algebra of functions, we first describe how we can recover the topology and the measure of
a compact Riemannian manifold. Using the tensor rank decomposition, we then generalise
this principle in order to have a well-defined notion of the topology and geometry for a large
class of tensors Pabc. We provide some examples of the emergence of a topology and measure
of both exact and perturbed Riemannian manifolds, and of a purely algebraically-defined
space called the semi-local circle.
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1 Introduction

One of the pinnacles of high-energy physics is the development of the standard model of particle
physics. This model uses the framework of quantum field theory to describe the interaction
of three of the four fundamental forces between elementary particles. One of the fundamen-
tal forces, gravity, has not yet successfully been added to this fundamental description of the
universe. Most of the calculations of the standard model rely on perturbative renormalisation
procedures, and this poses the biggest theoretical challenge in adding gravity to this picture.
This is because general relativity, the theory that has been extremely successful in describing
classical gravity [1, 15, 17, 67], is perturbatively non-renormalisable, which makes the theory
lose its predictive power at high energies [22, 63]. Experimentally it has been proven extremely
difficult to actually do measurements in the quantum regime of gravity, since quantum effects
are expected to play a role at the level of the Planck energy, a scale far ouch of reach for direct
measurements currently.

One way to handle the perturbative renormalisation issues is to treat gravity in a non-
perturbative way. The expectation of this approach is that, though the more straightforward
perturbative renormalisation approaches fails to work for gravity, treating gravity in a non-
perturbative way might solve these issues – albeit mathematically more challenging. There are
various approaches to this, all with some levels of success. For instance, one could try to reformu-
late renormalisation in a non-perturbative way and try to find a high-energy completion of the
theory this way, which is the general strategy of the asymptotic safety programme [39, 40, 66].
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Alternatively, one could consider a canonical quantisation approach as is in loop quantum grav-
ity, reformulating general relativity using Ashtekar variables [42, 64]. Another non-perturbative
way of approaching quantum gravity is done by regularising the path integral using small build-
ing blocks, which is the fundamental idea behind for instance (causal) dynamical triangula-
tion [3, 5, 29] and the usual tensor models [2, 21, 43].

Tensor models are an interesting approach introduced as a generalisation of matrix models,
which were successful in describing two-dimensional quantum gravity. The general idea is that,
order-d tensors generate d-dimensional space-times by gluing simplices together according to
contractions between tensors, however it turns out that this does not result in the emergence of
macroscopic spacetimes.1 In the dynamical triangulation approach, causal dynamical triangula-
tion seemed to fix many of these issues by introducing a notion of time by a causal requirement
on the allowed triangulations. In tensor models, however, introducing such a restriction remains
to be understood.2 This led to the introduction of the canonical tensor model [51, 53], which
aims to describe a tensor model built from first principles in the Hamiltonian framework with al-
gebraic similarities to the ADM-formalism of general relativity [52]. This comes at the expense of
a straightforward spacetime interpretation, though many connections to general relativity have
been found implying that it can be interpreted as a model for quantum gravity [9, 57, 59]. The
mathematically straightforward way of quantising the model [54], and the interesting results from
wave functions of the model [27, 28, 32, 34, 35, 36, 54, 55, 61], make it interesting to investigate.

Contrary to some of the examples above, the canonical tensor model does not describe space-
time directly as a manifold with a (pseudo)-Riemannian metric or related variables. Instead,
it uses a real N -dimensional tensor of order three as its fundamental variable, and one has to
demonstrate the connection to gravity by the interpretation of this tensor and the dynamics
of the model. Many of the difficulties when constructing a theory of quantum gravity can be
traced back to the fact that this configuration space, for instance the configuration space of
all 4-dimensional metrics modulo the diffeomorphisms, is a very difficult configuration space to
understand. The approach taken in this work is different, and the philosophy behind it partially
overlaps with non-commutative geometry [65], namely by describing a manifold through the
algebra of functions on it. There has been some similar research done in this direction in the
context of non-commutative geometry using spectral triples [7, 19, 20], though the setup differs
slightly as the goal of this work is to find an interpretation for tensor models.

It is a well-known fact in algebraic geometry that compact Hausdorff spaces, T , and the
(real) algebra of functions on them, C(T ), are dual to each other through the Gelfand–Naimark
theorem [18]. Remarkably, for a smooth manifold M it is even possible to reconstruct the full
smooth manifold structure, including charts and atlases, purely from the algebra of real smooth
functions C∞(M) [33]. This means that knowing only the multiplication rules of elements of
an abstract algebra A ∼= C∞(M) is enough to reconstruct the manifold. One important ben-
efit is that, in the case of a compact Riemannian manifold, the algebra of smooth functions
is a countably infinite-dimensional vector space, which as a configuration space is well under-
stood. This is in contrast to for instance the configuration space of metrics over a compact
Riemannian manifold, which is uncountably infinite-dimensional. There is one caveat here,
namely that this only works for the topological degrees of freedom. In order to reconstruct the
full (pseudo-)Riemannian manifold one needs more information, for instance through a spectral
triple approach [12, 13].

This work introduces a framework connecting tensors to geometry in a different way than the
original tensor models, namely by relating them to an algebra that is supposed to describe an

1As an aside, there are also the so-called coloured tensor models which is argued to have a relationship to
gravity, and furthermore studied for its connection to holography, due to the emergence of so-called melonic
graphs [8, 23, 24].

2For some attempts to include a causal structure into tensor models, see [16, 25].
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algebra of functions, revisiting some of the ideas in [44, 45, 46, 47, 48, 49, 50]. The idea is that
a tensor of order three, Pabc, describes an algebra as the structure coefficients of the algebra for
basis-elements {fa}

fa · fb =
∑
c

Pabcfc.

An algebra that represents the pointwise product of functions ought to be commutative and
associative. Guaranteeing commutativity is straightforwardly done by taking the tensor to be
symmetric under permutations of the first two indices, since in that case

fa · fb =
∑
c

Pabcfc =
∑
c

Pbacfc = fb · fa.

However, guaranteeing associativity requires more work. If one wants an algebra corresponding
to a pointwise product it is important to do this, because in a quantum theory for gravity
using the tensor Pabc as the fundamental variable, quantum perturbations might break the
associativity. If, however, one would be able to link an associative algebra to the tensor Pabc,
one would be able to link this algebra to a topological space according to methods introduced
in [33].

To this end, this paper defines the notion of the associative closure, in order to link a, either
finite- or infinite-dimensional, tensor Pabc to an associative algebra. This algebra might be
infinite-dimensional, even if one starts with a finite-dimensional tensor. For example, if one
starts with an algebra F which is N -dimensional, then the associative closure is realised by
demanding that its R-homomorphisms (i.e., the points of the space the functions are defined
on) are consistent with all maximal sets of products of the algebra, later called partial algebras,
that are associative already. Here, a maximal partial algebra means that there is no larger
partial algebra that includes this set and is still associative. In practice this means that these
maximal sets are treated as generators for the full algebra, i.e., the associative closure. For
fully symmetric tensors Pabc constructed from the algebra of square integrable functions on
a Riemannian manifold, and which contain the structure coefficients of the full product of
generating sets of this algebra, one can then reconstruct the algebra by generating tensor rank
decompositions

Pabc =
R∑
i=1

βip
i
ap

i
bp

i
c,

such that βi > 0, and R is minimal. The βi then correspond to the evaluation of the L2-measure
over a part of the topological space, and pia are points in the topological space. In the case
of a Riemannian manifold, this means that part of the geometry of the Riemannian manifold,
namely the measure, is recovered. Similarly to the spectral triple of non-commutative geometry,
it will be argued that it is possible to include (and recover) the full geometric information of the
(compact) Riemannian manifold.

This work is motivated by the canonical tensor model described above, as the original goal
was to give a potential spacetime interpretation for it. As this model is set in the canonical
(Hamiltonian) framework, the focus is on Riemannian manifolds since they are supposed to
represent spatial slices of spacetime. It should be noted that it is not sure whether this is the
most appropriate spacetime interpretation of the canonical tensor model, and this framework
might be used for other models as well. Some potential implications to the canonical tensor model
are discussed in this work, as there seem to be some interesting and encouraging consequences
to using this interpretation. This framework also explains some of the topological and geometric
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results found before in the context of the canonical tensor model by using data analytic methods
in [26].

This work is organised as follows. In Section 2, the duality between topological spaces and
the algebra of functions on them is reviewed. It is then explained how one can construct a tensor
from this algebra, and the example of the flat circle S1 is introduced. If the reader is already
aware with this duality, the section can be skipped with exception of Sections 2.1 and 2.2,
which are helpful for the general context of this work. Section 3 introduces the notion of an
associative closure, to show how this framework can deal with tensors that do not correspond
to associative algebras directly. Section 4 then further develops this formalism, to show general
ways in which an associative closure may be found. The example of the flat circle is revisited, and
it is shown how from a five-dimensional symmetric tensor one can reconstruct the full algebra
of smooth functions with a measure on it. Sections 3 and 4 are mainly meant to introduce
the mathematical foundations of this framework, and may be skipped on first read, though the
examples in Section 4 may still be useful to understand the framework better. In Section 5 is
shown how one can generate a unit, if it is not trivially present in the algebra generated by the
tensor yet. This is also where we identify a potential way to include more information about
the geometry in a tensor. Section 6 then discusses a few examples of perturbations of the flat
circle, an example of a purely algebraically-defined space called the semi-local circle, and the
sphere. After this, in Section 7 some implications to the canonical tensor model are discussed
and finally Section 8 concludes this work.

2 The duality between algebras and spaces,
and the role of tensors

In this section, we briefly review the duality between smooth manifolds M and the real algebra
of smooth functions C∞(M), and develop an understanding of the role that tensors play in
describing the algebra and the measure they induce. In the end of the section, we will describe
an example of the circle. While we will mainly focus on compact Riemannian manifolds, much
of this can be generalised to more general situations. In the following section, we introduce the
definitions required to understand how these algebras can be constructed from finite-dimensional
tensors. In Section 4, we apply these definitions and give explicit constructions to find the
topological space and a measure corresponding to a finite-dimensional tensor.

Let us start by considering a smooth manifold M. The real smooth functions on M, de-
noted as C∞(M), form an infinite-dimensional vector space, equipped with a pointwise product,
together called the algebra of smooth functions on M. In the following, we will show the du-
ality between the space M and the algebra of smooth functions on it. In particular, we will
reconstruct the set of points of the manifold and the topology. For further information on the
reconstruction of the full smooth manifold structure (including charts and atlases) from the
algebra of smooth functions we would like to refer to [33].

Consider an abstract real unital associative commutative algebra (F , ·), where F denotes
the linear space and · : F × F → F the product operation. A linear map p : F → R is called
an R-algebra homomorphism if, besides the linearity conditions, it respects the product of the
algebra, i.e., ∀f, g ∈ F , p(f · g) = p(f) · p(g), and maps the unit of F to the unit of R. The dual
space of the algebra is then defined as all R-algebra homomorphisms of F [33]:3

|F| := {p : F → R | ∀f, g ∈ F , p(f · g) = p(f) · p(g); p(1F ) = 1}. (2.1)

This dual space, henceforth called the algebraic dual space in order to differentiate it from the
linear dual space, is the candidate “set of points”, the main reason being that the evaluation

3|F| is often called the algebra of characters of F .
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Figure 1. An illustration of the construction of the topology on |F|.

maps x ∈ M, px(f) ≡ f(x) are naturally homomorphisms. An algebra is called geometric if
the algebra F actually corresponds to functions on |F| by identifying f(p) = p(f) (see [33,
Theorem, p. 24]), and pointwise defined algebras are precisely that. Note that we will often use
this identification in this work depending on the context, if we want to either view p as a point
or as a homomorphism.

The topology on |F| is now defined as the weakest topology such that the functions f ∈ F
become continuous, inheriting the continuity from R. To make this precise, we can construct
a basis for the topology on |F| by taking all open subsets V ⊂ R, and using f−1(V ) for all
f ∈ F as a basis for the topology. For an illustration of this, see Figure 1. Taking the algebra
of smooth functions C∞(M), we can thus reconstruct M = |C∞(M)|.

As mentioned before, it is possible to reconstruct the full topological manifold structure from
the algebra of smooth functions. In this work, we will not go deeper into this, as we are mainly
interested here in the reconstruction of the topology and measure from a tensor. It is worth
noting however that we are mainly interested in algebras that correspond to smooth algebras
of compact Riemannian manifolds. This has profound implications, as a compact Riemannian
manifold carries a natural measure, locally infinitesimally ddx

√
det q(x) where q denotes the

metric tensor field, d the dimension of the Riemannian manifold, and x the local coordinates.
Because of this we can define a natural inner product on the space of smooth functions, called
the L2-inner product:

⟨f |g⟩ :=
∫
M

ddx
√
det q(x)f(x)g(x). (2.2)

On a compact Riemannian manifold, we arrive at the square integrable functions L2(M) by
taking the closure of C∞(M) with respect to the inner product above. L2(M) is a countably
infinite dimensional Hilbert space, which means that we can choose an orthonormal Schauder
basis {

fa ∈ L2(M) | a ≥ 1
}
.

This will be important below. Since one can always extend the algebra to the full Hilbert space,
we are assuming that the linear space is a Hilbert space below.

One may now define a tensorial quantity using this basis and the algebra product

Pab
c := ⟨fc|fa · fb⟩ . (2.3)

Another way to view this tensor is as the structure coefficients of the algebra, as

fa · fb =:
∑
c≥1

Pab
cfc. (2.4)
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Note that using this decomposition, one can recover every possible product in the algebra.
Taking f, g ∈ F , with f =

∑
a≥1 α

afa and g =
∑

b≥1 β
bfb gives

f · g =
∑
a≥1

∑
b≥1

αaβbfa · fb =
∑

a,b,c≥1

αaβbPab
cfc.

Equation (2.4) lends itself to find the dual space (2.1), as the elements of this dual space are
a subset of the linear dual space F∗.4 To do this, consider a homomorphism p : F → R. The
linear dual space is isomorphic to F , as we are assuming a Hilbert space structure, so we can use
the dual elements of the basis {fa}, let us denote these elements by {αa} such that αa(fb) = δab ,
as a basis of F∗. Specifically we can write p as p =

∑
a≥1 paα

a. In terms of our original basis,

the components pa can now be found by evaluating p(fa) =
∑

b≥1 pb α
b(fa) = pa. Given Pab

c,
we can find the algebraic dual space of the algebra by restricting p ∈ F∗ to the hypersurface
where

papb =
∑
c≥1

Pab
cpc, (2.5)

and we now understand that these components can be understood as evaluation maps of the
basis functions fa(p) ≡ p(fa) = pa.

The idea is to build a theory around these coefficients Pab
c in the form of a tensor, where

changes in the coefficients change the algebra and thus affect the corresponding manifold.
A thing to note is that, since the algebra is commutative and the product operation on the
pointwise defined algebras discussed here is self-adjoint, the structure coefficients will be totally
symmetric: Pab

c = Pca
b = Pbc

a = Pba
c = Pcb

a = Pac
b. This means that constructing a the-

ory that guarantees the emergence of commutative algebras with an inner-product structure is
equivalent to focusing on totally symmetric tensors, as is done in the canonical tensor model for
instance.

Until now we have been careful to always write Pab
c with one upper index and two lower, but

since we have a Hilbert space structure with a totally symmetric tensor it is not really necessary
to keep this upper index most of the time, and simply write Pabc. One can view this as “lowering
the index” with a metric gab = ⟨fa|fb⟩ = δab as

Pabc = gcd Pab
d.

In this work, we will usually use the lower-index notation Pabc as this is also the notation used
in the canonical tensor model. However, in some cases we will still write Pab

c if we wish to
emphasise the relationship to the linear dual space F∗.

For the correspondence between tensors and spaces mentioned above to lead to a theory of
gravity there is some more work to be done. The main factors we will address here are as follows:

� In practice, one can never do practical calculations (e.g., on a computer) for infinite-
dimensional tensors. Instead, one expects that defining a model for finite-dimensional N ,
and either considering this to be a fundamental feature of the universe or taking some
N → ∞ limit. Either way, it will be useful to have some procedure to connect a finite-
dimensional non-associative algebra to an associative infinite-dimensional algebra. In this
work we try to resolve this by looking for an associative closure of the algebra, such that
a tensor Pab

c actually corresponds to an associative algebra in Section 3.

4Note that here we call the linear dual space the space of all (bounded) linear functionals, while the algebraic
dual space are the homomorphisms of the algebra as defined in (2.1).
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� Quantum perturbations might affect the algebra such that it is not associative anymore.
However, algebras of pointwise defined functions are inherently associative, hence there is
a need to treat these algebras if one wants to stick to this interpretation. The associative
closure mentioned above will also be able to treat these algebras.5

� A theory for gravity should actually influence the metric on the Riemannian manifold,
not just the topology. We take a first step to this in Section 4, where we reproduce the
measure on the manifold.

� Similarly, not every algebra has a well-defined unit. We will describe how to generate
a unit in an algebra in Section 5, and we will also see that this gives us an opportunity to
describe more (or all) of the geometric information of the Riemannian manifold.

2.1 Example: The flat circle

In this subsection, we introduce the example of the flat circle. The flat circle is the example
we will use to develop our understanding of the representation of tensors, after which we will
consider different algebras later on in Section 6. The flat circle is given by the 1-dimensional circle
S1 with a flat metric on it. One choice of basis for the smooth functions on the 1-dimensional
circle is given by functions of the form6 (normalised according to the L2

(
S1
)
inner product){

f1=
1√
2π

, f2=
1√
π
sin(x), f3=

1√
π
cos(x), f4=

1√
π
sin(2x), f5=

1√
π
cos(2x), . . .

}
, (2.6)

with x ∈ (0, 2π]. By evaluating the product of the basis-functions above, we can find the
structure constants by using (2.4). For example, from the product

f2 · f2 =
1

π
sin(x) · sin(x) = 1

2π
(1− cos(2x)) =

1√
2π

f1 −
1

2
√
π
f5, (2.7)

we find

P22
1 =

1√
2π

, P22
5 = − 1

2
√
π
, P22

a = 0 for a ̸= 1, 5.

Actually, we can find the entries of the tensor by considering the basic multiplication rules

sin(nx) · sin(mx) =
1

2
(cos((m− n)x)− cos((m+ n)x)),

cos(nx) · sin(mx) =
1

2
(sin((m− n)x) + sin((m+ n)x)),

cos(nx) · cos(mx) =
1

2
(cos((m− n)x) + cos((m+ n)x)). (2.8)

Translating this to the basis elements one finds the multiplication laws for a > b,

f2af2b =
1

2
√
π
(f2(a−b)+1 − f2(a+b)+1),

f2af2b+1 =
1

2
√
π
(f2(a+b) − f2(a−b)),

f2a+1f2b+1 =
1

2
√
π
(f2(a−b)+1 + f2(a+b)+1).

5Note that this could lead to two different interpretations for a model, one where the non-associative perturba-
tions actually lead to a different associative algebra, and one where the non-associativity is seen as fundamental.

6These are exactly the eigenfunctions of the Laplace–Beltrami operator on the circle, which will be discussed
in Section 5.
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Figure 2. The homomorphisms of the first three functions f1, f2, f3 of the circle. As described in the text,

we calculated 10000 homomorphisms for these functions, and plotted the list pi(fa). The homomorphisms

where calculated using Mathematica by minimising
(
papb −

∑5
c=1 Pab

cpc
)2

and only keeping the ones

that evaluated to zero (excluding the trivial zero-map), then they were ordered as described in (2.10)

(note that the first point is arbitrary, thus there is an arbitrary shift). This is supposed to represent a

topological circle, so slight deformations are merely an artifact of the random initial conditions procedure

for the minimizing function of Mathematica. The rigid circle will be found once we take the measure

into account in Section 4.

From this we can write out the full tensor Pab
c. Alternatively we can find these components by

evaluating (2.3), for instance,

P22
5 =

1

π3/2

∫ 2π

0
dx sin(x) sin(x) cos(2x) = − 1

2
√
π
.

The claim of this section is now that we can reconstruct the topology of the circle, just by knowing
the tensor Pab

c. To further convince ourselves of this, let us try to find all the homomorphisms
of the first few functions {1, sin(x), cos(x)}. By inspecting (2.8), we can see that all information
of the products of these functions is already present if we restrict the tensor Pab

c to labels up
to a, b, c ≤ 5. This restriction effectively means the tensor acts on F = C∞(S1

)∣∣
5
which is then

isomorphic to R5. We call the dimension of the real vector space that such a tensor acts on N .
In this work, if we say N -dimensional tensor of order d, we mean a tensor acting on d copies
of a N -dimensional real vector space. If not mentioned, the order of the tensor is meant to me
d = 3. In Section 3, we will properly define some of the notions described below by considering
partial algebras.

Finding the set of points of S1 can then be done by finding all solutions to (2.5). Specifically,
as we only consider the first three functions here,

p ∈ F∗ ∼= R5, a, b ∈ {1, 2, 3} : papb =

5∑
c=1

Pab
cpc. (2.9)

All p satisfying the above equation yield |F| as in (2.1). Then, in order to introduce a topology
on |F| we use the construction explained below (2.1). To illustrate this in a figure, we calculated
10000 points that satisfy (2.9), which are labeled by pi, i ∈ {1, . . . , 10000}. In order to visualise
the topology, consider the elementary definition of continuity,

lim
ϵ→0+

fa(p)− fa(p+ ϵ) → 0.

Of course, when only considering a finite number of points, this will never go to zero exactly.
However, it does make sense to visualise this by arranging the points such that the absolute
value of

fa
(
pi
)
− fa

(
pi+1

)
= pia − pi+1

a
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is as small as possible. To do this, start with a point, say p1. Then, take p2 to be the point that
minimises

∑5
a=1

∣∣p1a − p2a
∣∣2. This is then done for all points going forward, such that

5∑
a=1

∣∣pia − pi+1
a

∣∣2 (2.10)

is minimised for every i < 10000. The result of this is shown in Figure 2, note that the form
of these functions really resembles the functions

{
1√
2π
, 1√

π
sin(x), 1√

π
cos(x)

}
up to deformations

and a phase.

2.2 Tensor rank decompositions and persistent homology

This short subsection describes the appearance of some similarities to the work in [26], which
has seen the furthest development so-far of a geometric interpretation of the canonical tensor
model. These similarities were the main motivation of the present work, as the work has been
useful in further analysis [61] and this work gives a possibility to understand the appearance of
these elements to a more fundamental level.

In [26], no reference was made to algebras of functions. Instead, the set of points, |F|, of
the (topological) space corresponding to the tensor defined by the elements of the tensor rank
decomposition

Pabc =

R∑
i

piap
i
bp

i
c,

where qia ∈ RN . For smooth spaces, it was proposed that this means that there are many
such tensor rank decompositions possible. In Section 4, the appearance of the tensor rank
decomposition is explained from the space of functions over a Riemannian manifold.

After defining the set of points, the persistent homology technique was used in order to
heuristically couple topologies to these tensors [26] as follows. First, an inner product on the
set of points was introduced for pi, pj ∈ |F| as

pi · pj =
N∑
1

piap
j
a.

Subsequently, points were argued to be “close” if their inner product was large. A graph was
built, connecting elements i and j if the inner product was above a certain threshold. The graph
distance was then used as the distance function for persistent homology.

The intuitive statement that points are close if the inner product between two points is large,
makes total sense from the point of view of the present work to understand the topological
properties of the space: it is nothing but minimising (2.10). This suggests that the approach
used in [26] was indeed valid to find the topological properties of a space.

3 Defining the associative closure

In the previous section we developed an understanding for the emergence of a topology from
infinite-dimensional tensors, and in the example of the flat circle we also already got a glimpse
of the emergence of a topology from just a finite subset of such an algebra. In this section,
we will develop this further, where we will define the associative closure of a (either finite- or
infinite-dimensional) tensor Pabc. After this, in Section 4, we will describe how to construct an
associative closure for finite-dimensional tensors.
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First, let us explain why we want to look for an associative closure of a tensor Pabc. Consider
an N -dimensional tensor Pabc, and we assume this tensor generates an algebra

fa · fb =
N∑
c=1

Pabcfc.

If this tensor Pabc is defined as in Section 2, where N acts like a cutoff value, this will naturally
be a non-associative algebra.

Let us explicitly show the non-associativity in the case of the five-dimensional algebra of the
flat circle of Figure 2. One example of a non-associative product is

f2 · (f3 · f4) = f2 ·
5∑

a=1

P34afa =
1

2
√
π
f2 · f2 =

1

4π

(√
2f1 − f5

)
,

(f2 · f3) · f4 =
5∑

a=1

P23afa · f4 =
1

2
√
π
f4 · f4 =

1

2
√
2π

f1.

It can be seen that this non-associativity is due to the cutoff introduced by a finite N , as for
C∞(S1

)
sin(x)(cos(x) sin(2x)) =

1

2
sin(x)(sin(x) + sin(3x)) =

1

4
(1− cos(4x)),

(sin(x) cos(x)) sin(2x) =
1

2
sin(2x) sin(2x) =

1

4
(1− cos(4x)).

In the finite-dimensional case the sin(3x) contribution “drops out”, because of which the product
is not associative anymore.

This shows how, even if one does not intend to describe any non-associative effects, non-
associativity shows up in this description. In practice, one will not be able to do any calculations
with infinite N , so a way to connect a finite-dimensional tensor Pabc to an infinite-dimensional
associative algebra is necessary in order to know which geometric space one is talking about.

To properly define the associative closure, we first need to introduce some other notions first.

Definition 3.1. Consider an algebra, i.e., a vector space F with a bilinear product operator
P : F × F → F . A sub-vector space S ⊂ F with the restricted bilinear product operator
P : S × S → F is called a partial algebra of F . The partial algebra is unital if ∃ 1 ∈ S,
∀f ∈ S : P(1, f) = f . Similarly, the partial algebra is commutative if ∀f, g ∈ S, P(f, g) = P(g, f)
and associative if ∀f, g, h ∈ S, P(f,P(g, h)) = P(P(f, g), h).

Note that for the partial algebra, for the commutativity and associativity conditions, the
result of P(f, g) (and the others) can be lie outside of S, in F . For a finite-dimensional or
countably infinite dimensional partial algebra, the operator P may be decomposed as a ten-
sor Pabc in a similar fashion as described in Section 2.

Definition 3.2. The algebraic dual-space of a partial algebra S ⊂ F with operator P, de-
noted |S|, are all p ∈ F∗ that are homomorphisms of the partial algebra in the sense that

|S| := {p ∈ F∗ | ∀f, g ∈ S, p (P(f, g)) = p(f)p(g); p(1F ) = 1}.

Note that while the definition is similar to (2.1), the crucial differences here are that the
actual product of two vectors may lie outside of the partial algebra, and the elements p ∈ |S|
are elements of F∗, but not S∗, in general. In a sense, we are looking at sub-vector spaces with
a product that is closed not in itself, but in the whole vector space. The general idea is that
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while we want to find an associative closure, we will not want to alter the part of the algebra
that is already associative.

Let us go back to the example of the flat circle introduced in Section 2. Here we discussed
the tensor Pabc acting on a five-dimensional vector space. In the language introduced here, the
algebra discussed is given by F ∼= R5, and there is a partial algebra S = span{f1, f2, f3} ∼= R3.
This partial algebra can be verified to be unital, commutative and associative. Its algebraic dual
space, |S| ⊂ R5, is discussed in Figure 2. The original algebra C∞(S1

)
would correspond to the

associative closure we wish to define below.

In order to be able to describe more general systems than those with an obvious candidate
for a partial algebra as the flat circle, we need some more notions. They will be introduced here,
but later on in Section 6 their use will become more clear.

Definition 3.3. A system of partial algebras is a set of partial algebras {Si | i ∈ I}, where I is
some index set, such that for every pair (Si,Sj) their (algebraic) dual spaces have a nontrivial
intersection, i.e.,

|Si| ∩ |Sj | ≠ ∅.

The algebraic dual-space of a system of partial algebras {Si} is the intersection of all of the dual
spaces, i.e.,

|{Si}| :=
⋂
i

|Si|.

Definition 3.4. The range of a partial algebra S is defined as the sub-vector space K(S) of F ,
S ⊂ K(S) ⊂ F , which is reached by evaluating products of elements of S:

K(S) := {P(f, g) | f, g ∈ S}.

The range of a system of partial algebras is defined as the union of the ranges of the partial
algebras

K({Si}) :=
⋃

{i∈I}

K(Si).

Note that this is the union and not the sum of vector spaces.

Definition 3.5. A system of unital commutative associative partial algebras {Si} of F is called
maximal in the set of all unital commutative associative partial algebras of F if there is no
system of unital commutative associative partial algebras of F , say {Tj}, with a larger range,
i.e., K({Si}) ⊂ K({Tj}) ⇒ K({Si}) = K({Tj}). A system is said to be covering F if its range spans
the whole algebra, i.e., K({Si}) = F .

In the example of the flat circle, we have several unital commutative associative partial
algebras. Some examples are S0 = span{1}, S1 = span{1, sin(x)}, S2 = span{1, cos(x)},
S3 = span{1, sin(x), cos(x)}. Their ranges are K0 = span{1}, K1 = span{1, sin(x), cos(2x)},
K2 = span{1, cos(x), cos(2x)} and K3 = span{1, sin(x), cos(x), sin(2x), cos(2x)}, respectively.
An example of a non-trivial system would be the system of S1 and S2 though they are not
maximal nor covering. However, the system of only S3 is a covering system of R5.

Another equivalent covering system would be all Sα = {1, fα ≡ sin(α) sin(x)+ cos(α) cos(x)}
for α ∈ [0, 2π). Note that every partial algebra in this system is two-dimensional, but taking all of
them together will still cover all of F since fα ·fα = (sin(α) sin(x)+cos(α) cos(x))(sin(α) sin(x)+
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cos(α) cos(x)) = sin(α)2

2 (1− cos(2x))+sin(α) cos(α) sin(2x)+ cos(α)2

2 (1+cos(2x)). Therefore, the
range of Sα is

K(Sα) = span{1, sin(α) sin(x) + cos(α) cos(x), sin(2α) sin(2x) + cos(2α) cos(2x)},

yielding a range for the system of

K({Sα}) =
⋃
α

K(Sα) = F .

The reason why we are introducing all this terminology with respect to partial algebras is
twofold. Firstly, we wish to properly define a way to find potential “signs of associativity”, since
a pointwise algebra as discussed in Section 2 should be associative. These should be a good
starting point of constructing an associative closure. Secondly, we would like these signs of
associativity to actually still be present in the full associative closure. If we for instance consider
the covering partial algebra in Figure 2, we would like these functions to look the same in the
final associative closure and not look wildly different.

We now turn to the more general situation where we have a (finite-dimensional or countably
infinite-dimensional) Hilbert space F with a basis BF = {fa | a ≥ 1} and a symmetric tensor
Pabc acting on it. This tensor will certainly span an algebra by the rule (2.4), however this
algebra might not be unital nor associative. Here we will assume that this algebra spanned is
already unital, i.e., it contains a unit F ∋ 1 ≡ αafa

(
using the Einstein summation convention7

)
such that

∀fb ∈ BF , 1 · fb = αaPabcfc = fb ⇒ αaPabc = δbc.

A tensor Pabc that generates a unital algebra as above is called a unital tensor. In Section 5, we
will describe a procedure to construct such a unit in many cases, but for now we assume that
the tensor Pabc already contains it. Note that the unit in the example of the tensor representing
the flat circle is given by 1 =

√
2πf1.

We now define an associative extension of a tensor Pabc as follows

Definition 3.6. An associative extension of a tensor Pabc acting on a countable Hilbert space F
with basis BF is an algebra (A, ·), consisting of a countable Hilbert spaceA, which is an extension
of F ⊂ A, and a product operation · : A×A → A satisfying:

1. The algebra is unital, associative and commutative.

2. The product operation · reduces to Pabc on F in the sense that

∀fa, fb, fc ∈ BF ⊂ A : Pabc = ⟨fc|fa · fb⟩ .

3. Every element of the algebraic dual space p ∈ |A| projected to F∗, i.e., p|F∗ , lies in the
dual space of some maximal system of partial algebras |{Si}| ⊂ F∗. Furthermore this
projection is injective.

Let us first explain the meaning of the requirements that are present in this definition. The
first two should be clear, we want an associative algebra that is on F given by the tensor Pabc,
as is expected from pointwise defined algebras. The third condition above is introduced for
two reasons. The first reason is physical, as we do not want low-energy functions to suddenly
look differently once we are probing higher energies. Take for instance the unit function, we

7In this work, whenever repeated indices are used the Einstein-summation convention should be assumed,
unless specified otherwise.
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do not want to consider extensions of the algebra F where the unit of F does not correspond
to the pointwise unit, as an associative extension might have a wildly different-looking dual
space. Secondly, and this reason mainly refers to the injectivity requirement of the restriction,
we do not want to consider extensions that are not connected to the current algebra through
the product (for instance direct sums).

The associative extension is a first step towards the notion of the associative closure, and
actually the associative closure we will define below is an associative extension. Consider for
instance the algebra of smooth functions over a circle, from this definition it certainly is an
associative extension of the five-dimensional algebra we considered around (2.9) as will be shown
below. But the notion of associative extension does not have everything we want yet. For one,
it is generally not unique for a tensor Pabc. Secondly, in the case of a finite-dimensional tensor
that corresponds to a smooth manifold, there is an infinite-dimensional extension which we are
looking for, but there are many finite-dimensional ones too. Thus we need a way to construct
the infinite-dimensional one we are looking for (for instance the algebra of all smooth functions
over a circle), if it exists.

Let us elaborate the example of the flat circle a bit more. The algebra we are after, C∞(S1
)
,

equipped with the L2
(
S1
)
inner product is an algebraic extension. We can explicitly check this

by going through the three requirements mentioned above. The first two points are relatively
straightforward. Since the algebra is defined as a pointwise product, it is necessarily commutative
and associative. Furthermore, the unit is a smooth function and thus included in this algebra
making it a unital algebra. By the definition of the tensor in (2.3), the algebra reduces to Pabc

when restricted to F ∼= R5. However, there are many other possible extensions of Pabc. As
will be shown in Section 4, using the tensor rank decomposition it is possible to find a seven-
dimensional algebra with seven points in its algebraic dual space that is an associative extension
of the five-dimensional Pabc from the example. In fact, there are many of these associative
extensions possible, and in a heuristic manner we can see the associative closure we want as
a kind of “union” of those. It is however not useful to look at the union of the algebras
themselves or their dual spaces, since the algebraic extensions are hardly comparable since they
have different dimensions. What is comparable though are the extensions and their dual spaces
when projected to F and F∗, respectively. The restriction of an associative extension A to F
just yields A|F = F as it is an extension, thus we are left with considering the projection of the
algebraic dual space |A||F∗ .

From this, we are led to the following definition.

Definition 3.7. A potential homomorphism of a tensor Pabc acting on countable Hilbert space F
is a homomorphism of an associative extension (A, ·) projected to F∗. The space of potential
homomorphisms of F , denoted |F|(P ), is the collection of all homomorphisms of all associative
extensions projected to F∗.

The key point of this definition is to allow us to not only consider the homomorphisms of F
under Pabc, but consider all homomorphisms of some bigger algebra that could generate Pabc.
We can think of this as the actual space of points that we are considering. This thought then
finally leads us to the definition of the associative closure.

Definition 3.8. An associative closure of F is an associative extension A such that the restric-
tion of its algebraic dual space to the linear dual space of F is exactly the space of potential
homomorphisms of F , i.e., |A||F∗ = |F|(P ).

Corollary 3.9. The algebraic dual space of an algebraic closure is isomorphic to the space of
potential homomorphisms, since the projection map is both injective and surjective.

Note that while the associative closure is not necessarily unique, this is physically not really
a problem. We assume here that what we can actually measure are the functions included in F ,
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and the physical space is the space of potential homomorphisms. The associative closure is in
that sense mainly a mathematical tool to be sure that there exists a topology on the space
of potential homomorphisms. In the sections below we will explicitly construct an associative
closure for finite-dimensional tensors, but it might be interesting to find out if the existence
holds more generally. Furthermore, though this has not been investigated further, it might be
the case that the different associative closures are related by some well-defined transformation,
for instance a diffeomorphism.

As an example, let us show that the C∞(S1
)
algebra is an associative closure of the example

of the flat circle.

Proposition 3.10. C∞(S1
)
is an associative closure of the five-dimensional tensor Pabc dis-

cussed in the end of Section 2.

Proof. As has already been argued before, C∞(S1
)
is an associative extension of Pabc. What

we would like to show now is that every potential homomorphism of Pabc is an element of∣∣C∞(S1
)∣∣∣∣

F∗ .
In this case, we can use the knowledge of the partial algebra S ∼= R3 mentioned above to

our advantage. Firstly, the dual space of any covering system of partial algebra has to lie in
the dual space of S since other systems are either equivalent, like Sα mentioned above, or more
restrictive. Thus, from the definition of any associative extension A, the restriction of |A| to F∗

has to lie in |S|, i.e., |A||F∗ ⊂ |S|. In other words, every potential homomorphism must lie
in |S|. This means that, if

∣∣C∞(S1
)∣∣∣∣

F∗ = |S|, then necessarily every potential homomorphism

lies in
∣∣C∞(S1

)∣∣∣∣
F∗ and thus C∞(S1

)
is an associative closure.

To do this, let us take an element p ∈ |S|. From (2.9), this is any p ∈ R5 such that ∀a, b ≤ 3

papb =

5∑
c=1

Pabcpc.

We can convince ourselves that for p1, p2, p3 this already fixes the components as evaluation
maps of f1 ∼ 1, f2 ∼ sin(x), f3 ∼ cos(x). This is because the evaluation maps of these functions
are precisely all the homomorphisms p : C∞(S1

)
→ R, and since all the information of their

products is contained within the five-dimensional tensor Pabc, the solutions to the above equation
are nothing more but the restriction of these homomorphisms to R3, so

∣∣C∞(S1
)∣∣∣∣

R3 = |S||R3 .
We now need to fix the last two elements and show that these correspond to restrictions of the
full C∞(S1

)
homomorphisms.

However, since the C∞(S1
)
algebra is defined pointwise, this is necessarily the case. For

instance, let us take the case of f5. From (2.7),

f5 =
√
2f1 − 2

√
πf2 · f2,

and taking the same homomorphism p ∈ R5

f5(p) = p5 =
√
2p1 − 2

√
πp2p2 =

√
2f1(p)− 2

√
πf2(p)f2(p),

we get a pointwise definition of the function f5 ∼ cos(2x). A similar statement holds for
f4 ∼ sin(2x). Since every homomorphism of C∞(S1

)
necessarily respects this, we see that

actually∣∣C∞(S1
)∣∣∣∣

F∗ = |S|. ■

A final note for this section is about the general structure of these definitions. While the
algebra C∞(S1

)
is of course very nice in the sense that it exactly corresponds to a smooth

manifold, these definitions can both reconstruct these nicer spaces or less “nice” spaces. The
latter we will call fuzzy spaces, since as we will see later in Section 6, their behaviour can vary
from the usual continuous topological spaces.
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4 Constructing the associative closure using a measure

In this section, we continue to understand the associative closure. We will first describe the
appearance of a measure for a broad class of tensors, and subsequently describe a way to con-
struct the associative closure for finite-dimensional tensors using the tensor rank decomposition.
Along the way we will again refer to the example of the flat circle, where we reconstruct the full
infinite-dimensional algebra and the measure on the dual space from the five-dimensional tensor
constructed in Section 2. Note that in this section, we still assume the tensor Pabc to be unital
as explained in Section 3, but not associative.

Generally, the associative closure of Pabc acting on F may be constructed in two steps:
1) generate the space of potential homomorphisms |F|(P ), 2) construct the associative closure
by treating the potential homomorphisms as evaluation maps of functions and taking pointwise
products between them to generate new functions. The result of this will then be a new algebra
that is pointwise defined, and thus associative by construction, with an algebraic dual space
isomorphic to |F|(P ). In order to simplify the notation a bit, in this section we will assume Pabc

to be a finite-dimensional tensor. We will first introduce the notion of measure generated tensors,
after which we will show that these tensors have a natural associative closure. After this, we will
show how to actually construct the space of potential homomorphisms and find such a measure,
where we will also state a curious conjecture: every unital tensor is measure-generated. Along
the way, we will further develop the example of the flat circle mentioned in Section 2.

4.1 Measure generated tensors

In this section, we introduce the notion of measure generated tensors. This is a broad class of
tensors, that roughly speaking can be interpreted as constructed using a set of points with mea-
sure on them. The precise definition is as follows.8

Definition 4.1. A tensor Pabc acting on F is said to be measure-generated if there is an asso-
ciative closure A equipped with a measure µ on |A| such that

∀f, g ∈ A : ⟨f |g⟩ =
∫
|A|

dµ(p)f(p)g(p). (4.1)

Note that |A| comes with a natural topology as explained in Figure 1, thus we can construct
the Borel σ-algebra on this space, on which the measure is defined (see Appendix A).

Proposition 4.2. For any f, g ∈ F ,

⟨f |g⟩ =
∫
|A|

dµ(p)f(p)g(p) =

∫
|F|(P )

dµ(p)f(p)g(p),

Proof. |F|(P ) is the projection of homomorphisms p ∈ |A| to F∗ by the definition of the
associative closure, so for f ∈ F , p(f) = p∗(f), where p∗ denotes the projection of p to F∗.
Since we are only considering functions in F , and the spaces are isomorphic, we only have to
consider |F|(P ). ■

Corollary 4.3. In particular, for any two basis elements fa, fb ∈ BF ,

δab =

∫
|F|(P )

dµ(p)fa(p)fb(p).

8For some of the notions we use from measure theory, we would like to refer to Appendix A.
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Proposition 4.4. A measure-generated unital tensor is given by

Pabc =

∫
|F|(P )

dµ(p)fa(p)fb(p)fc(p). (4.2)

Proof. Take A to be an associative closure of Pabc. For an element of its algebraic dual space
p ∈ |A| we have

p(fa)p(fb) = p(fa · fb).

Furthermore, for any product of the basis function fa, fb ∈ BF ,

fa · fb = Pabcfc + g,

where Pabcfc ∈ F and g ∈ A \ F . This comes from the definition of an associative extension,
such that Pabc = ⟨fc|fa · fb⟩, so ⟨f |g⟩ = 0 for all f ∈ F . In particular, for any p ∈ |A|,

p(fa)p(fb) = p(fa · fb) = p(Pabcfc) + p(g).

Since p(f) = p∗(f) for f ∈ F , where p∗ denotes the projection of p to F∗, we find∫
|F|(P )

dµ(p)p(fa)p(fb)p(fc) =

∫
|A|

dµ(p)p(fa)p(fb)p(fc),

=

∫
|A|

dµ(p)p(Pabdfd)p(fc) +

∫
|A|

dµ(p)p(g)p(fc).

On the right-hand side, we have the inner product as defined in (4.1), so we get∫
|F|(P )

dµ(p)p(fa)p(fb)p(fc) = Pabd ⟨fd|fc⟩+ ⟨g|fc⟩ = Pabc,

where the last inner product is zero since g ̸∈ F . ■

In the example of the flat circle, it is clear that the above definition is satisfied. First, the
inner product on the smooth functions of the flat circle is given by (2.2), this means that we can
interpret the measure above as the canonical Riemannian measure. The equation (4.2) follows
from (2.3).

Let us develop some more intuition for these notions before continuing. Let us first assume
that the basis functions are given by simple functions9

fa =

R∑
i=1

pia1Ai , (4.3)

where R is the amount of disjoint regions Ai ⊂ |F|(P ), pia denotes the value of the function fa
in region Ai, and 1Ai is the region’s indicator function. Given a measure on |F|(P ) we then find∫

|F|(P )

dµ(p)fa =

R∑
i=1

piaµ(Ai) ≡
R∑
i=1

piaβi.

Here βi ≡ µ(Ai) > 0. Note that we assume that all of the basis functions have the same
decomposition in terms of the indicator functions. This means that if we evaluate a product we
get a similar decomposition

fa · fb =
R∑
i=1

piap
i
b1Ai ,

9See Appendix A.
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Figure 3. A plot of the first three basis functions of the circle, as given by (4.6). As mentioned in the

text, 1000 points are used. Note that the deformations of Figure 2 disappear due to the inclusion of the

information of the measure.

and, by using the definition above in (4.1),

⟨fa|fb⟩ =
∫
|F|(P )

dµ(p)fa(p)fb(p) =

R∑
i=1

µ(Ai)p
i
ap

i
b ≡

R∑
i=1

βip
i
ap

i
b. (4.4)

Moreover, by using (4.2) we find

Pabc =
R∑
i=1

βip
i
ap

i
bp

i
c. (4.5)

This expression may be recognised as a tensor rank decomposition of the tensor Pabc, and it
is a first sign of why the tensor rank decomposition is so useful and has been so successful
when applied to the canonical tensor model in the past. Usually the basis functions of an
algebra of functions over a space are not given by simple functions, but a finite-dimensional
part of the algebra may still be represented by them. In Section 4.3, we will see that the
tensor rank decomposition actually generates a set of pia and βi which represents the algebra in
a pointwise manner, and actually corresponds to an associative extension. We will argue that
taking all possible tensor rank decompositions (under certain restrictions) will correspond to an
associative closure.

Going back to the example of the flat circle, we took R = 1000 points of the 10000 points
calculated in Figure 2 at random. We then used Mathematica to find a solution for (4.5). In
the case of the circle, the βi can be interpreted as the length of each line-segment since line-
segments generate the measurable sets of the circle and βi = µ(Ai) is their length. This implies
that we can approximate the functions fa as simple functions

fa(x) =



p1a, 0 ≤ x < β1,

p2a, β1 ≤ x < β1 + β2,

. . .

pRa ,

R−1∑
i=1

βi ≤ x <

R∑
i=1

βi.

(4.6)

The result of this procedure may be found in Figure 3. Note that the circumference of the circle
(the range of the plots) exactly matches 2π, and the functions look exactly like the functions
we started out with in the construction of the tensor in (2.6). It should be noted that this
is merely an approximation of the functions, but in the limit they will exactly represent the
original functions {1, sin(x), cos(x)}.

While the solution in Figure 3 looks exactly like the functions we are after, it is not a definition
of the full measure yet by the βi. To reconstruct the full measure, one needs to take all possible
finite subsets of |F|(P ), and take all possible solutions to (4.4) (or equivalently (4.5)). The
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collection of all these different solutions will then correspond to the measure over different
regions. In terms of measure theory, this would allow us to then integrate any function using
Lebesgue integration since we know the measure-value of the indicator functions of any region.

Note that in practice, it usually suffices to take only one set of points and find a solution
like in Figure 3, similarly to the fact that for many purposes taking a finite Riemann sum gives
a good approximation of many integrals. In Section 4.2, we will show that the 1000 points
evaluated here can very accurately generate new basis elements, at least up to N = 11.

The notion of a measure-generated tensor is important here, and one might be worried that
this limits the scope of this section considerably. However, in Section 4.3, we will argue that
many – if not all – unital tensors actually have this property.

4.2 Construction of an associative closure

In this section, we will show how to construct an associative closure from a measure-generated
tensor. We will assume that one already constructed the space of potential homomorphisms. In
Section 4.3, we will show how one could do this.

Let us take two basis functions fa, fb ∈ BF , and consider a potential homomorphism p∈|F|(P )

and treat it as a point, i.e., evaluation map. The pointwise product of these functions can then
be decomposed as

fa(p)fb(p) = Pabcfc(p) + g(p) = ⟨fc|fa · fb⟩ fc(p) + g(p). (4.7)

Here g(p) corresponds to the difference between the pointwise product to the product induced
by Pabc. If g(p) = 0 it means that the tensor already describes a pointwise algebra for fa, fb,

10

and we try another combination of basis functions such that g(p) ̸= 0 for them. If there is no
such combination, the algebra described by Pabc is already a pointwise (associative) algebra and
we are done. From here on we assume that g(p) ̸= 0.

The general idea is now that we see g(p) as a new function that is not in our algebra yet. By
construction, this g is a map

g : |F|(P ) → R.

In a sense we “close” the algebra by adding g as a new basis element. Note that by construction
it is true that ∀fa ∈ BF∫

|F|(P )

dµ(p)fa(p)g(p) = 0.

This means that actually we can extend the inner product to g as well. Say the dimension of F
is N , then we can now add a new basis element

fN+1(p) =
g(p)

∥g∥
,

where ∥g∥ =
√
⟨g|g⟩ is the norm induced by the inner product. fN+1 together with BF forms

an orthonormal basis with the same inner product

δab = ⟨fa|fb⟩ =
∫
|F|(P )

dµ(p)fa(p)fb(p), (4.8)

where a now runs from 1 to N+1. Let us now denote this vector space by F (N+1), and introduce

a new tensor P
(N+1)
abc = ⟨fc|fa · fb⟩ for all a, b, c ≤ N + 1 with the inner product of (4.8).

10As an aside, this also implies that there is an associative commutative partial algebra spanned by fa, fb.
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Figure 4. A plot of the 10th and 11th basis functions of the flat circle generated as described by the

procedure in Section 4.2 and using the simple function inner product of (4.4) with the same 1000 points

as before in Figure 3.

Next we pick new fa, fb ∈ F (N+1) and restart this process starting with (4.7), where we

treat F (N+1) as the vector space with tensor P
(N+1)
abc . When we keep iterating, we will either

eventually reach a point where for every fa, fb the product is exactly described by Pabc, i.e.,
fa(p)fb(p) = Pabcfc(p), or we continue finding new functions. In the former, at that point
we have a proper definition of the associative closure, which will be finite-dimensional. In the
latter case, we define the associative closure as the inductive limit of this process, producing
a countably infinite-dimensional algebra.

Let us now explicitly check that the algebra constructed like this is indeed an associative
closure. For this, we first need to confirm that it is an associative extension. First note that
for every element in p∗ ∈ |F|(P ) we constructed an element in the algebraic dual space of A,
p ∈ |A|, p(fa) = fa(p

∗), since we basically constructed a new algebra where the original potential
homomorphisms become proper homomorphisms. Referring to Definition 3.6, it is clear that the
first two points are satisfied by construction. Furthermore, since the every element of the dual
space p ∈ |A| projected to F∗ must be an element of some associative extension by the definition
of potential homomorphisms, it necessarily lies in |S| for a maximal system of partial algebras
Si ⊂ F . Since every element p ∈ |A| is constructed from a p∗ ∈ |F|(P ), this is necessarily
injective. Similarly, it follows that it is an associative closure, since for every p ∈ |A| it must
hold that p∗ ≡ p|F∗ ∈ |F|(P ) by definition of the space of potential homomorphisms, and we
constructed a p ∈ |A| from every p∗ ∈ |F|(P ), we have an isomorphism and thus |A||F∗ = |F|(P ).

Let us now go back to the flat circle. As we already know that the associative closure A ∼=
C∞(S1

)
is infinite-dimensional, this procedure would never terminate. We used this construction

together with the simple function approximation introduced in Section 4.1 to calculate the inner
product in order to extend the algebra F ∼= R5 to an extension A ∼= R11. The result for
f10(x) ∼ sin(5x) and f11(x) ∼ cos(5x) (up to some phase due to the random choice of the first
point) is given in Figure 4. Note that technically the construction with a finite amount of points
is an associative extension and not a closure, but using more and more points would create
a more and more accurate representation of the functions up to very high dimensions and in the
limit the associative closure.

4.3 Generating potential homomorphisms

In this section, we show how to generate the potential homomorphisms more generally. In the
previous sections, we always assumed that we knew the potential homomorphisms of an algebra
already, and in the case of the flat circle we “got lucky” since we could simply take the partial
algebra homomorphisms as explained in (2.9) and properly defined in Definition 3.2. In this
section, we will use an important tool that has been extensively used in the context of the
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canonical tensor model [26], the tensor rank decomposition. We will end this section by again
examining the example of the flat circle.

Let us consider a tensor rank decomposition for some (not necessarily the lowest) R of the
unital tensor Pabc

11

Pabc =
R∑
i=1

ϕi
aϕ

i
bϕ

i
c. (4.9)

Since the tensor algebra is unital, we know for the unit 1 = αafa,

δbc = αaPabc =

R∑
i=1

(αaϕi
a)ϕ

i
bϕ

i
c ≡

R∑
i=1

γiϕ
i
bϕ

i
c. (4.10)

We call the tensor rank decomposition positive if γi > 0 for all i. If we now define βi = (γi)
1/3 > 0

and pia ≡ (βi)
−1/3ϕi

a, we see that (4.9) and (4.10) exactly reduce to

Pabc =

R∑
i=1

βip
i
ap

i
bp

i
c, δab =

R∑
i=1

βip
i
ap

i
b, (4.11)

in a similar fashion to (4.5) and (4.4) with βi > 0.
The similarity between (4.11) and (4.5) suggests that the tensor rank decomposition has a

relationship with the simple function approach using potential homomorphisms of Section 4.1.
The idea in the following is to treat the pia above as potential homomorphisms. If the pi ∈ F∗

indeed correspond to potential homomorphisms pi ∈ |F|(P ) ⊂ F∗ we could keep finding tensor
rank decompositions in order to generate more and more points. Furthermore, if we consider
the interpretation introduced in Section 4.1, we already get the information of the measure for
free through the βi. Then, using the procedure described in Section 4.2 we can reconstruct the
whole associative closure.

Definition 4.5. A positive tensor rank decomposition Pabc =
∑R

i=1 βip
i
ap

i
bp

i
c (note, not neces-

sarily minimal) is called a pointwise decomposition if every pia ∈ |F|(P ).

By this definition, the decomposition in (4.5) is a pointwise decomposition. Thus we imme-
diately can conclude that

Corollary 4.6. Every measure-generated tensor has a pointwise decomposition.

Naturally, this bring up several questions. Firstly, whether or not every tensor have a positive
tensor rank decomposition. There is no conclusive proof of this fact yet, but some numerical
calculations for N = 3, 4, 5 imply that it seems to be true. The calculation was done using
Mathematica and generating 1000 random unital symmetric tensors Pabc and trying to obtain
a positive tensor rank decomposition. The tensors were ensured to be unital by fixing P1ab =
Pa1b = Pab1 = δab. In all cases a good decomposition with an error

(∑R
i=1 βip

i
ap

i
bp

i
c − Pabc

)2
<

10−20 could be found. This leads to the formulation of the conjecture:

Conjecture 4.7. Every unital symmetric real tensor has a positive tensor rank decomposition.

Though the numerical evidence suggests this to be true, it still remains to be proven.
Secondly, if we have such a positive tensor rank decomposition, will it be a pointwise de-

composition? The answer to this question in general is no. Note that in the above requirement

11Note that we assume a tensor rank decomposition to be any decomposition of Pabc such that (4.9) is satisfied
as in [37]. Oftentimes it is defined instead to be the decomposition for the lowest R possible, which we call
a minimal tensor rank decomposition.
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that γi > 0 is similar to requiring that the unit of Pabc becomes a pointwise unit. It does not
necessarily mean that all other functions also suddenly have proper pointwise representations.
This seems to make it necessary to check every time if indeed all of the elements of the tensor
rank decomposition pi correspond to potential homomorphisms. However, the example of the
flat circle that is discussed below suggests that it seems to be the case for the minimal positive
tensor rank decomposition. This leads to a second conjecture:

Conjecture 4.8. For a unital tensor Pabc that admits a covering system of partial algebras,
a minimal positive tensor rank decomposition is a pointwise decomposition.

It is at the moment not known how to prove this statement, and whether it is applicable even
more generally. However, if the tensor does not admit a covering system of partial algebras, it
seems necessary to actually verify if the pi are potential homomorphisms. In practice, this is
done by checking if they are in the dual space of a maximal system of partial algebras. This
is also a spot where the algebraic approach and the pure tensor rank decomposition approach
might not always agree, which might also have to do with the tensors in the quantum- and
geometric phases of the canonical tensor model [27]. In the future, it might prove beneficial to
either restrict the tensor rank decomposition approach further, or broaden the definition of the
associative extension.

Once one finds the collection pi as described above, it is then possible to construct an as-
sociative extension, and with all possible pi a closure, of the tensor Pabc by using the method
described in Section 4.2.

Using what is written above, we can then interpret the positive tensor rank decomposition
as a simple functions representation of f ∈ F , as introduced in (4.3). As was already pointed
out in [27], if the tensor Pabc has a symmetry such that for a Lie-group transformation Gab

Gaa′Gbb′Gcc′Pa′b′c′ = Pabc,

there is a continuous degeneracy of the tensor rank decomposition, since for every pia belonging to
a tensor rank decomposition, Gaa′p

i
a′ belongs to an element of another tensor rank decomposition

Gaa′Gbb′Gcc′Pa′b′c′ =

R∑
i=1

βi
(
Gaa′p

i
a′
)(
Gbb′p

i
b′
)(
Gcc′p

i
c′
)
= Pabc.

This is the reason that we can only say that a tensor rank decomposition corresponds to an
associative extension, since not all potential homomorphisms are generally included. Once
we consider all pointwise decompositions, we will get the whole space of potential homomor-
phisms |F|(P ), which we can then use to construct the full associative closure as in Section 4.2.
In [34, 35], it was already argued that the canonical tensor model seems to prefer symmetric
states, with the current discussion this implies that we can expect the emergence of (almost)
continuous spacetimes.

Before finishing this section, we will examine the flat circle once more. The tensor described
in (2.7) has rank R = 7 which can be verified by finding solutions to 0 =

(∑R
i=1 ϕ

i
aϕ

i
bϕ

i
c−Pabc

)2
.

In the following, we denote by M the amount of tensor rank decompositions generated. We
have found M = 150 minimal tensor rank decompositions using Mathematica and treated the
points as defined in (4.11). As expected from the discussion, these points {pi} appear to be
potential homomorphisms since they satisfy

sa1s
b
2p

i
ap

i
b = sa1s

b
2Pabcp

i
c (4.12)

for every s1, s2 ∈ S3, the covering partial algebra as defined in Section 3. Moreover; we seem to
find all possible homomorphisms. After generating M minimal tensor rank decompositions, the
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Figure 5. A plot of the potential homomorphisms generated by the tensor rank decomposition of the

second basis function of the flat circle, using the representation in (4.6). As mentioned in the text, we used

from left to right 1, 5 and 150 tensor rank decompositions, leading to 7, 35 and 1050 points, respectively.

Note the agreement between the rightmost figure and Figure 3 (except for a phase difference due to the

random choice of the first point).

I-th one denoted by
∑R

i=1 β
(I)
i p

(I)
a

i
p
(I)
b

i
p
(I)
c

i
, we sum them together as

Pabc =
1

M

(
R∑
i=1

β
(1)
i p(1)a

i
p
(1)
b

i
p(1)c

i
+ · · ·+

R∑
iM=1

β
(M)
i p(M)

a

i
p
(M)
b

i
p(M)
c

i

)
,

=
1

M

M∑
I=1

R∑
i=1

β
(I)
i p(I)a

i
p
(I)
b

i
p(I)c

i
. (4.13)

Using the same simple function representation as in (4.6), we plotted the values of f2(x) using
the same ordering as discussed at (2.10). We did this for three cases: using only M = 1 tensor
rank decomposition, using M = 5 tensor rank decompositions and using M = 150 tensor rank
decompositions.

We can now view the sum in (4.13) as one big tensor rank decomposition, consisting of
M ∗ R points. For the measure-values βi we need to make sure that the sum

∑M∗R
i=1 βi =∑R

i=1 β
(I)
i ∀I≤M , as otherwise we would get a tensor rank decomposition for M ∗ Pabc. In the

above, we used the rule, for I ≤ M, and j ≤ R

β(I−1)∗R+j =
1

M
β
(I)
j . (4.14)

There is a certain ambiguity in doing so. Making a different choice for any

β(I−1)∗R+j = AIβ
(I)
j ,

such that AI > 0,
∑M

I=1AI = 1, and technically this would correspond to a different associative
closure. It is expected that such a “transformation” corresponds to performing a diffeomorphism
on the manifold, since it can be interpreted as a deformation. Here we chose simply (4.14) and
the result of this exercise may be found in Figure 5.

We end this section with a remark about the requirement of the tensor rank decomposition
to be minimal. It might not seem clear from the discussion above why this should be the case,
but the empirical evidence points towards this. Let us consider the example of the flat circle
cited above again. If we attempt to find R = 8 tensor rank decompositions, instead of the
minimal R = 7 above, we see that the resulting tensor rank decomposition does not consist
of potential homomorphisms. This is shown visually in Figure 6, but can also be verified by
verifying (4.12). For the case of R = 7, all of the elements pia in the tensor rank decomposition
exactly satisfied (4.12), but for R = 8 there always seem to be two elements pia that deviate a lot(
as in

∣∣sa1sb2piapib−sa1s
b
2Pabcp

i
c

∣∣ ∼ O(1)
)
and the other six deviate a little (where the deviation was

∼O(0.1)), explaining why there seem to be some random points in Figure 6 along with points
that look very similar to Figure 5. It should be noted that the f1 function, proportional to the
unit function, does always yield the correct result.
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Figure 6. A plot of the elements generated by a non-minimal tensor rank decomposition, showing how

they deviate from the results in Figure 5. In this image, 10 tensor rank decompositions of rank 8 are

combined into the plot, using the same procedure as before. Some points still look similar to Figure 5,

but there are clear discrepancies from what we are looking for.

5 Defining a unital algebra and introducing geometry

Up until now, we have always assumed that the tensors we used already have a unit, in the sense
that there is a 1 = αafa ∈ F such that

αaPabc = δbc. (5.1)

For a general symmetric tensor Pabc, there is no such element 1. In order to fully interpret these
tensors as representing algebras of functions over a compact Riemannian manifold, the algebra
needs to contain a unit. In this section, we introduce a way to generate a new tensor P̃abc which
does have a unit, which is possible to do with a large class of tensors Pabc as will be explained
below. The method used will have some important physical implications which are discussed
towards the end of the section, since this gives us the opportunity to describe the full geometric
information of a Riemannian manifold in the tensor Pabc by interpreting the deviation of the
unit as the eigenvalues of the Laplace–Beltrami operator.

First let us note that the unit in (5.1) was derived from the requirement that ∀f = βafa ∈ F

1 · f = αaβbPabcfc = βcfc = f.

This notion might be generalised to the requirement that the unit is its own unit

1 · 1 = αaαbPabcfc = αcfc = 1,

which implies

αaαbPabc = αc. (5.2)

This might be recognised as the eigen-problem of a tensor Pabc. For a real tensor, there is always
at least one real solution to this [38]. If there are several real solutions, one has to make a choice.
We will get back to this later in the section.

After finding an αa such that (5.2) holds, we consider the matrix

Mbc = αaPabc.

If αa would correspond to a true unit, this matrix would simply reduce to δbc as in (5.1). If this
is not the case, we can diagonalise the matrix, such that in the new basis (without Einstein-
summation)

Mab = waδab.
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We are restricting ourselves to tensors that have a solution to (5.2) such that all wa > 0. In the
new basis, we can then redefine the tensor (without using Einstein-summation)

P̃abc =
1

√
wawbwc

Pabc, (5.3)

which means we get a new tensor P̃abc that has a unit given by 1 =
∑

a α̃afa =
∑

a

√
waαafa.

This can be seen by (without using Einstein-summation)∑
a

αa
√
waP̃abc =

∑
a

αaPabc
1

√
wbwc

=
wbδbc√
wbwc

= δbc.

In order to understand under which conditions the matrix Mab is positive definite, consider
the functional

f(α) := αaαbαcPabc, (5.4)

and suppose we are interested in finding the local extrema of this functional under the condition
that |α|2 = αaαa = 1. This can be done by introducing a Lagrange-multiplier k,

g(α) := αaαbαcPabc + k
(
1− |α|2

)
.

Finding the local extrema can then be done by taking the derivative with respect to αa,

∂αcg(α) = 3αaαbPabc − 2kαc = 0.

Note that if we define α′
a = 2k

3 αa, this exactly reproduces the eigen-problem of (5.2):

α′
aα

′
bPabc = α′

c.

Thus, by the definition of the matrix Mab, the extremal value αa is an eigenvector of Mab

αaMab = αaα
′
cPabc =

2k

3
αaαcPabc =

(
2k

3

)2

αb.

It can be seen that the eigenvalues are positive for real solutions. This also implies

αaαbαcPabc =
2k

3
.

This sets the first eigenvalue to
(
2k
3

)2
, for a condition for the other eigenvalues, let us consider

a second order perturbation of (5.4) denoted by ϵδa, with δa a unit-size vector. It follows from the
restriction |α|2 = 1 that αaδa = 0. The first-order contribution is zero since we are considering
the extremal value. The second-order contribution is given by

3αaδbδcPabc =
9

2k
Mbcδbδc,

this means that the requirement that Mab is positive-definite coincides with the functional (5.4)
either having a local minimum with a positive value (k > 0), or a local maximum with a negative
value (k < 0). Here, we will choose the positive value as the canonical choice.

Let us remark on how to choose the αa if there are several solutions to the above, such that
the matrix Mab is positive definite. Since we are looking for “almost unit” functions, it makes
sense to look at the minimal solution for

N∑
a=1

(wa − 1)2.

This would then produce a candidate unit which is as close to the real unit as possible.
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A potentially worrisome fact is that we are considering only tensors that have solutions such
that wa > 0, in other words such that Mab is positive-definite. However, this might not be such
a big issue due to two main reasons. Firstly, in [34, 35] it has been shown that the canonical
tensor model wave functions tend to have peaks around symmetric configurations. This suggests
that while quantum fluctuations from a symmetric spacetime might make Pabc non-unital or non-
associative, the deviation from this symmetric tensor is not expected to be that large, and thus
the wa above will not deviate that much from the unit of the symmetric tensor. Secondly, if
a tensor Pabc does have negative eigenvalues, this might be a sign that this tensor does not
correspond to a Riemannian manifold. Instead, it is expected that the tensor might describe
a pseudo-Riemannian manifold. As our current aim is to first develop an understanding of
algebras corresponding to compact Riemannian manifolds, it is reasonable to leave these cases
for future study.

The values wa have an interesting interpretation, that might be useful for model-building.
Considering a compact Riemannian manifold (M, g), we can equip the Hilbert space as intro-
duced in Section 2 with a compact self-adjoint operator O : L2(M) → L2(M). According to
the spectral theorem [14], there exists an orthonormal basis of L2(M) consisting of eigenvectors
of O. Let us now consider the basis {fa} we introduced in Section 2, and assume that this basis
consists of eigenvectors of O. The eigenvalues λa, have the property lima→∞ λa = 0. Instead of
P̃abc = ⟨fc|fa · fb⟩, we could instead consider the tensor

Pabc := ⟨Ofc|O(fa) · O(fb)⟩ = λaλbλcP̃abc. (5.5)

Comparing this to (5.3), this gives the wa an interpretation of the eigenvalues of a compact
self-adjoint operator, according to the relationship

wa = λ2
a. (5.6)

Here we will assume the eigenvalues of such an operator to be positive, such that the values wa

can directly be interpreted without any loss of information.
In order to construct such a compact operator, let us consider a different operator called the

Laplace–Beltrami operator. This is a prominent operator that has an intrinsic connection to
the geometry of Riemannian manifolds, see Appendix B for more information on the Laplace–
Beltrami operator. This operator ∆: C∞(M) → C∞(M) is known to generate an orthonormal
basis of L2(M) as described above, though it is not compact. Its eigenvalues are negative, so
often we consider −∆ instead. The eigenvalues are denoted by −µa and given by

−∆fa = µafa, 0 = µ1 < µ2 ≤ µ3 ≤ µ4 ≤ · · · ,

with its limit lima→∞ µa = ∞. The intrinsic connection between this operator and the geometry
(encoded by the metric) of a Riemannian manifold may already be seen in its representation in
local coordinates

1√
det g

∂j
(
gij
√
det g∂if

)
,

and in fact it is possible to actually determine the metric from the information of the Laplacian
acting on the functions f ∈ C∞(M) [62]. The Laplacian has been used in studies of the geometry
in quantum gravity before, for instance in the case of causal dynamical triangulation [4, 10] and
the canonical tensor model [26].

Combining the information of the last two paragraphs, we find an interesting new interpre-
tation of the wa, and we have the opportunity to construct an operator O that not only serves
to generate an orthogonal basis but also includes important geometric information. An example
of such an operator would be

O = e∆ . (5.7)
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A similar operator has actually been used in the canonical tensor model before to generate the
tensor similarly to (5.5), with the reasoning that this would smoothen the cutoff when considering
an N -dimensional tensor instead of an infinite-dimensional one [26]. In this work we find that
the cutoff might actually not be that much of a problem, as we can reconstruct the topology and
infinite-dimensional algebra using the associative closure. However, adding this extra operator
actually adds geometric information which might in part explain the success of the approach
in [26] to extract topological and geometric data using the tensor rank decomposition.

It still has to be seen which operator would be good to use in a certain context. It may be
expected that for a certain model, for instance the canonical tensor model, one needs to specify
which operator is considered in order to make the complete link to gravity.

6 Examples: Riemannian manifolds and fuzzy spaces

In this section, we will discuss several examples of the formalism introduced in this work. The
flat circle has been developed throughout this paper as a concrete example of how a tensor
can correspond to a Riemannian manifold. We have shown that the topology, measure and
the full algebra of functions can be reconstructed from the tensor constructed in Section 2. It
is remarkable that we can reconstruct this whole structure from a five-dimensional symmetric
tensor with just 35 entries. However, it is important to show that this formalism can handle
a wide range of spaces. For this, we look at three main areas. We analyse the behaviour of
perturbations of the flat circle in Section 6.1, then we analyse an inherently fuzzy space namely
the semi-local circle in Section 6.2, and lastly we will consider the sphere in Section 6.3 to show
that the framework works just as well in higher dimensions.

In this section, for every example a benchmark will be cited. This is the maximal error
value ∆ > 0, below which a tensor rank decomposition will be accepted(

Pabc −
R∑
i=1

ϕi
aϕ

i
bϕ

i
c

)2

< ∆.

Often, this value can be taken to be extremely small
(
∆ ∼ O

(
10−30

))
, especially if the tensor has

a certain continuous symmetry such that there are many minimal tensor rank decompositions,
but in some cases where the minimal tensor rank decomposition is harder to find we have to
increase this value. As a general rule, we will always require it to be at most ∆ < 10−6.

6.1 Perturbations around the flat circle

Looking at perturbations around a given tensor is a useful first step to understanding the
behaviour of space when altering the algebra of functions. Furthermore, given the strong peaks of
the quantum wave function of the canonical tensor model around symmetric configurations [34],
it seems that we should expect small perturbations to occur around tensors representing smooth
spaces.

As we have a relatively good understanding of the flat circle by now, let us consider pertur-
bations around this tensor. The vector space F ∼= R5 is kept the same. We will denote the
original tensor, as described in Section 2, as Pabc and any perturbed tensor by P̃abc

P̃abc = Pabc +Qabc,

where Qabc is the symmetric tensor characterising the perturbation. All tensors described here
act on the same vector space F , not on extensions of it or such. Generally, P̃abc will not be
unital anymore, so we will have to generate a new unit according to the procedure in Section 5.
We will consider several different kinds of perturbations:
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� Using the potential homomorphisms found using the tensor rank decomposition in Sec-
tion 4.3, we perturb the βi measure factors.

� Using the potential homomorphisms found using the tensor rank decomposition in Sec-
tion 4.3, we perturb one of the points pi themselves.

� We add a random “high-energy” perturbation, meaning a perturbation of Qabc where
Qabc ̸= 0 if a, b, c ≥ 4.

What we will see is that in the case of perturbing the tensor rank decomposition itself, it is
reasonably well-behaved and the perturbation mainly results in a deformation of the manifold.
When altering or adding points, it depends on the size of the perturbation. Small perturbations
still remain smooth, whereas bigger perturbations or random high-energy perturbations lead to
a breaking of the smooth structure and only a finite set of points remain.

It should be noted that for perturbations it was sometimes more difficult to find an exact
minimal tensor rank decomposition. In principle, one could use a higher-rank decomposition
as well, but then one has to filter out the decompositions that do not correspond to potential
homomorphisms as explained in Section 4.3. In this work we take an approximate minimal tensor
rank decomposition, where we are satisfied with an error

(
Pabc −

∑R
i=1 βip

i
ap

i
bp

i
c

)2
< ∆ = 10−6.

Since the main goal here is to demonstrate how these perturbations affect the shape of the
functions, finding a method to find higher-rank tensor rank decompositions that correspond to
potential homomorphisms only is left for later study. Furthermore, this section is not meant as
a systematic analysis of perturbations using this framework but mainly a proof of concept to
show the potential of types of spaces that can be analysed within this framework. There are
a lot of interesting things to find out about them, but this is out of the scope of the present
paper.

Case 1: Perturbing the measure. Perturbing the measure was done as follows. First the

tensor P
(u)
abc was defined as the five-dimensional tensor in Section 2. Then, an extra damping

factor was introduced using the operator Ofa = e∆/25 fa = e−n2
a/25 fa, with na = {0, 1, 1, 4, 4},

in order to demonstrate the reconstruction of the unital tensor P
(u)
abc as described in Section 5,12

Pabc = e−n2
a/25−n2

b/25−n2
c/25 P

(u)
abc .

The unital tensor P
(u)
abc was then reconstructed using the procedure in Section 5. This means

that the solutions to

αaαbPabc = αc

were found. This was done using Mathematica and finding solutions to
∑5

c=1(αaαbPabc −
αc)

2 = 0 by using minimisation. Then, the matrix Mab was found (without Einstein-summation)

Mab =
5∑

c=1

αcPabc = waδab,

where wa are exactly given by

wa =
{
1, e−2/25, e−2/25, e−8/25, e−8/25

}
.

Note that these exactly correspond to the square of the eigenvalues, as also expected from (5.6).
From this tensor,13 we now reconstruct the unital tensor

P
(u)
abc =

1
√
wawbwc

Pabc.

12Note that the factor 25 is arbitrary, and any number could have been taken.
13Note that this tensor now includes some information about the metric. Here we will not go deeper into this,

but it would be interesting to examine what part of the metric we can reconstruct from this more closely in
a future study.
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Using the tensor rank decomposition, as described in Section 4.3, 1400 points pi with their
measure-factor βi were generated. This gives a decomposition of

P
(u)
abc =

1400∑
i=1

βip
i
ap

i
bp

i
c.

This leads to an equivalent picture as in Figure 5. In this case, we want to perturb the measure.
The perturbation tensor is defined as

Qabc = ϵ
∑
i

β′
ip

i
ap

i
bp

i
c,

where β′
i characterises which points pi will be perturbed. We also added a factor of ϵ > 0 to

alter the general size of the perturbation. This means that, for example, β′
i = 0 corresponds to

no perturbation, or for example β′
1 = 1 corresponds to a perturbation of the first point. The

measure factors βi were altered in two ways. The first approach was to change the measure
factor for only the first point, β1, such that

β′
i = δi1. (6.1)

The second approach was to alter all of the factors βi, using a Gaussian distribution

β′
i = e−(i−700)2/36 . (6.2)

The factor 36 was taken such that there would be a reasonable range, such that not just a few
points would be affected. The full new, perturbed, tensor is then given by

P̃abc = P
(u)
abc + ϵQabc =

1400∑
i=1

(βi + ϵβ′
i)p

i
ap

i
bp

i
c,

hence the claim that we are perturbing the measure.
After altering the βi’s, a new unit has to be found according to the procedure in Section 5,

since generally the new tensor P̃abc is not unital anymore. Then, the tensor rank decomposition
method of Section 4.3 was applied to find the potential homomorphisms, and they were ordered
in the same way as for the flat circle in (2.10). The tensor rank used remained unchanged at
R = 7, and 1400 points were generated this way. The results of this are displayed in Figure 7.

Three things are interesting here. Firstly, the measure is clearly disturbed which can be seen
by the deformation of the functions and the size of the circle (in both cases it became smaller),
but the general properties of the circle are still present. This is encouraging, since it means
that we can describe interesting spaces that do not exactly correspond to the algebra of a circle.
Secondly, the reason why we can find this continuous amount of potential homomorphisms, is
because the associative extension was defined in terms of any maximal partial algebra. In the
case of the flat circle, there was a partial algebra S3 that already contained all possible potential
homomorphisms, but very few potential homomorphisms in Figure 7 actually correspond to
homomorphisms of the same partial algebra. Since we allow them to come from different maximal
partial algebras we get this rich structure. It should be noted that all of these points in the
associative closure will become proper homomorphisms. Lastly, due to the defining of a new
unit, there is a sort of mixing that happens. Changing β1 only does not simply make that part
of the dual space bigger, but deforms the region around it too. Note that the perturbations here
are by no means small, so the strong deformations are to be expected.

Case 2: Perturbing a point. The perturbation of a point was done by shifting one point of
a tensor rank decomposition. This was done using the unperturbed tensor rank decomposition
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Figure 7. A plot of the functions f2(x) and f3(x) of the circle with a perturbed measure, where the

function values are defined as in (4.6). The top two images represent the case of (6.1) using ϵ = 0.4 and

∆ = 7.6 · 10−31. The bottom two images represent the case of (6.2) using ϵ = 0.5 and ∆ = 2.8 · 10−30. In

both cases, 200 tensor rank decompositions of rank 7 were used, yielding 1400 points.

Pabc =
∑7

i=1 βip
i
ap

i
bp

i
c with 7 points as discussed above. The first point p1, which should be

noted is arbitrarily picked, was taken and shifted with a vector q

p1a → p1a + ϵqa,

where again ϵ > 0 is introduced to set the size of the perturbation. This yields a new tensor
with a tensor rank decomposition

P̃abc = β1
(
p1 + ϵq

)
a

(
p1 + ϵq

)
b

(
p1 + ϵq

)
c
+

7∑
i=2

βip
i
ap

i
bp

i
c.

In terms of the perturbation tensor Qabc, this corresponds to

Qabc = ϵβ1
(
p1ap

1
bqc + p1aqbp

1
c + qap

1
bp

1
c + ϵp1aqbqc + ϵqap

1
bqc + ϵqaqbp

1
c + ϵ2qaqbqc

)
. (6.3)

A similar procedure as in the previous case was then followed, taking a random normalised
vector

q = (0, 0.714853,−0.514041,−0.247008, 0.40464), (6.4)

generated by Mathematica. Note that in order to not interfere too much with the unit, the
first component of the vector was taken to be 0. Then, the algebra was redefined as in Section 5
and tensor rank decompositions were generated just like above. The result of this can be found
in Figure 8.

Interestingly, for small values of ϵ, the functions do not change that much and the shape of
the functions is just deformed, similarly to changing the measure as described above. However,
when the perturbation becomes large, ϵ ∼ O(1), the smooth structure breaks down.

Case 3: Random high-energy perturbation. Adding a random perturbation is a very
uncontrolled way of adding a perturbation, but nonetheless it is interesting because a priori
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Figure 8. A plot of the functions f2(x) of the circle with a shifted point as described in (6.3), where the

function values are defined as in (4.6). On the left using ϵ = 0.1, ∆ = 8.1 · 10−31, in the middle ϵ = 0.25,

∆ = 5.6 ·10−30 and on the right ϵ = 0.75, ∆ = 2.3 ·10−28. In all cases, 200 tensor rank decompositions of

rank 7 were used, yielding 1400 points with the random perturbation vector of (6.4), and the displayed

functions are in the original basis in order to make direct comparison to the smooth functions on a circle

possible. Note that in the plot on the right, many of the points overlap.

Figure 9. A plot of the functions f1(x), f2(x) and f3(x) of the circle with a random high-energy

perturbation as described in (6.5), where the function values are defined as in (4.6), using the perturbation

tensor as (6.6), and generating 87 rank-8 tensor rank decompositions yielding 696 points (though many

of them overlap).

it is not known what kind of perturbations one should expect from a quantum theory. The
perturbation is now characterised by the tensor

Qabc =

{
ϵRandomReal(−1, 1) if a, b, c ≥ 4,

0 otherwise.
(6.5)

Here RandomReal denotes a function giving a random number in the range [−1, 1] according
to a uniform distribution. For ϵ, a value of ϵ = 0.01 was chosen. We can characterise this
perturbation by four elements; Q444, Q445, Q455, and Q555. In the current example, we used
specifically (randomly generated)

Q444 = −0.00616405, Q445 = 0.000446477, Q455 = −0.00686687,

Q555 = −0.00208394. (6.6)

Then, the same procedure was repeated as before. Note firstly that the tensor Qabc does not
alter the unit of the tensor, since Q1bc = 0, so finding a new unit is not necessary. Furthermore,
in this case it appears easier to find a higher rank-decomposition and required its to lie in the
dual space of the partial algebra generated by S3 = {f1, f2, f3}, since this is still a covering
partial algebra.14 Adding the perturbation will break some of the symmetric properties, so it is
expected that this tensor will not correspond to a smooth space anymore.

The result of this procedure is given in Figure 9. It can be seen that apparently, for this
perturbation, the resulting tensor has 8 potential homomorphisms. It is expected that for higher

14Note that in a future study it would be interesting to include other partial algebras into this picture too, as
they might not all be equivalent anymore due to this perturbation.
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energy perturbations (meaning perturbations for a, b, c > M for some large M) there would be
many more potential homomorphisms but still a possible breaking of the smooth structure. This
suggests that, if the quantum theory for gravity admits any random perturbations, spacetime
on a trans-Planckian level is actually discrete, though it could also be the case that symmetric
configurations with smooth emerging spaces might be preferred as suggested in the canonical
tensor model [34, 35].

A last note here to the general structure of the definitions in Section 3. The definitions of
the associative extension and associative closure attempt to make sure that as much as possible
of the partial algebras is retained. It might, in the future, turn out that it is more beneficial
to relax the requirements slightly to allow more points. At present, it is not clear what would
be a better way to define it, so in this picture these kind of perturbations likely lead to some
fundamental discreteness of space.

6.2 The semi-local circle

The semi-local circle is an example of a tensor that is expected to reproduce a fuzzy space. It
is defined using a constant 0 < α < 1 and a, b, c ≤ N for some positive integer N as

Pα
abc =


1 if a = b = c,

α if a = b = c± 1 ∥ a = b± 1 = c ∥ a± 1 = b = c,

0 otherwise,

(6.7)

where we use circular boundary conditions, i.e., N + 1 = 1 and 1 − 1 = N . It has a discrete
version of a translation symmetry, as it is symmetric under (a, b, c) → (a + 1, b + 1, c + 1). We
consider a set of local functions as having the property that (without Einstein-summation)

fa · fb = δabfa,

which would be the case for

Pabc =

{
1 if a = b = c,

0 otherwise.

Together with the cyclic property it possesses this explains the terminology “semi-local circle”.

This tensor gives an interesting example because of its discrete nature and easy way to
construct. Besides, since it is not constructed using a smooth background like the examples in
Section 6.1, it is an example of an intrinsically algebraic space.

The procedure followed to analyse this tensor is the same as before. First one generates
a unit and redefines the tensor as in Section 5, then one uses the tensor rank decomposition of
Section 4.3 to generate potential homomorphisms. This was done for N = 7. As mentioned
before, we always target a ∆ < 10−6, however in this case we also evaluated decompositions
with a lower rank, as there is some interesting behaviour going on. The results for f2(x) for
R = 7, 9, 10, 11 are shown in Figure 10.

Interestingly, though the R = 7 case is not very precise with a ∆ = 10−2, but it shows
a discretised space of 7 points, similar to what one would naively expect from the tensor described
above. However, since the decomposition does not seem to be correct, one should increase R. For
R = 9 the decomposition is still not great with ∆ = 4·10−3, but some actual fuzzy behaviour can
be observed which only increases with R = 10. Finally, with R = 11 proper decompositions can
be found with ∆ = 10−25. Interestingly we see that it starts to look more like a circle, but with
some fuzzy points included and the regions that were present in the smaller R cases dominate
with large steps in between. It seems to be a very interesting example that would be insightful
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Figure 10. A plot of the functions f2(x) of the semi-local circle with α = 0.1 as defined in (6.7), where

the function values are defined as in (4.6), generated using various ranks of tensor rank decompositions.

From top-left to bottom-right, they are R = 7, 9, 10, 11. The amount of points generated are, respec-

tively, 70, 90, 100, 99. Note that the first point is always selected at random, so there is no meaning

behind the phase-difference.

to investigate further, for instance by taking various different N and checking if all points indeed
are included in the dual space of some system of partial algebras. In the current check this has
not been performed rigorously, since one needs to find a candidate maximal system of algebras
first which is more difficult than in the case of the circle or the sphere. This would be interesting
to take a look at in a future study.

6.3 The sphere

The sphere is an example of a 2-dimensional Riemannian manifold. This example is taken to
demonstrate the ability of this framework to handle higher-dimensional manifolds as well. The
tensor representing the sphere is found using the procedure in Section 2. First, one chooses a basis
for the real smooth functions C∞(S2

)
. One such basis is given by the real spherical harmonics,

Y m
l (θ, ϕ), which are eigenfunctions of the Laplace–Beltrami operator. The ordering of eigen-

functions is determined by a ∈ {1, 2, 3, . . . } → (l,m) ∈ {(0, 0), (1,−1), (1, 0), (1, 1), (2,−2), . . . }.
The tensor Pabc is then generated by

Pabc =

∫
S2

dΩYa(Ω)Yb(Ω)Yc(Ω),

where Ω = (θ, ϕ) and dΩ = sin(θ)dθdϕ.
In this example, the smallest non-trivial tensor was used corresponding to the case where we

cut the tensor off at N = 9, such that the products for l = {0, 1} are all fully included. Deter-
mining the potential homomorphisms can be done in two ways, either by evaluating a similar
equation as in (2.9)

p ∈ R9, a, b ∈ {1, . . . , 4} : papb =

9∑
c=1

Pabcpc,
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Figure 11. Density plots of the functions f3(x, y) on the left, supposed to represent Y 1
0 , and f7(x, y)

on the right, supposed to represent Y 2
0 , using the definition of the coordinates as defined in the text.

Though the way of defining the coordinates in the text is not perfect, a clear resemblance to the spherical

harmonics may be observed. 1200 points were used to create these density plots.

or by using the tensor rank decomposition. Here, the former approach was used to construct
1200 points.

A more difficult thing is how to illustrate the topology of the space. In Section 2, the proper
mathematical way of defining the topology was described in Figure 1. Even though this definition
is unambiguous, in practice it is more difficult to visualise this in a two-dimensional case. Here
a simple way was considered, since this is only meant to be a proof of concept, but in the future
it would be good to have a more rigid approach.

One way that can be used is by defining a topological distance between the points as

d
(
pi, pj

)
=

√√√√ N∑
a=1

|pia − pja|2,

similar to the approach for the circle. Taking as a reference point p1, we can then choose two
points close to p1, let’s say pq and pr. Then we define the direction pq as the x-axis, and the
length of pq is simply d

(
p1, pq

)
. The y-axis is then found by solving

d
(
p1, pr

)
=
√
(prx)

2 + (pry)
2 and d

(
pq, pr

)
=
√
(pq − prx)

2 + (pry)
2.

Now we have defined an x- and y-axis and we can define a position of every point pi in the
(x, y)-plane by solving

d
(
pq, pi

)
=

√(
pq − pix

)2
+
(
piy
)2

and d
(
pr, pi

)
=

√(
prx − pix

)2
+
(
pry − piy

)2
.

Note that this is a very crude way of defining part of the topology, as we use a local coordinate
system and naively extrapolate this to the whole space. In Figure 11, the result of this is
shown for two of the eigenfunctions, however it should be noted that using this way of defining
coordinates, not all eigenfunctions generally look this nice as for some eigenfunctions the “front”
and “back” values of the sphere are mixed beyond a small local patch.

The points in Figure 11 were constructed using the dual space of the partial algebra, an
approach already presented in Section 2 in the example of the flat circle. No information on the
measure or geometry has been taken into account, as this is merely meant as a proof of concept
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to describe higher-dimensional spaces using this algebraic interpretation. However, it could
have also been done using the tensor rank decomposition. A sanity check was performed, using
∆ = 5 · 10−12, it is possible to find rank R = 18 tensor rank decompositions. The measure will
also be regained when doing this, showing that the volume of the sphere is indeed

∑R
i=1 βi = 4π

(up to 6 decimal places). More research has to be done here, to find a good way to visualise
these properties properly and show exactly what the measure looks like.

7 Implications for the canonical tensor model

The main goal of this work was to lay a foundation for the understanding of the emergence of
spacetime in the canonical tensor model (CTM). While it is not fully clear if this is the best
and only spacetime interpretation of the CTM, at the very least this seems like an interesting
approach to build a tensor-model that can describe (fuzzy) spaces, in a very different way than
the original tensor models [2, 21, 43]. In this section, we will highlight some of the benefits of
this interpretation for such a model, by interpreting important previous results of both the links
of the CTM to gravity and the quantum version of the model. For a brief introduction to the
CTM, we would like to refer to Appendix C.

The CTM is a tensor model where the fundamental configuration is given by a real symmetric
tensor of order three, Pabc. It is built in the canonical framework in order to introduce time
to a tensor model. This means in the present interpretation that the CTM corresponds to an
algebra of functions over a (fuzzy) space, and both the topology through Section 3 and the
geometry through Section 5 are allowed to fluctuate. Evaluating the time-evolution would then
correspond to adding new spatial slices, in a similar sense to the ADM-formalism [6].

One important immediate result from the formalism presented here, is that in order to analyse
countably infinite-dimensional function spaces it is possible to analyse the finite-dimensional
counterpart and assume the associative closure. This makes analysis of a finite-dimensional
tensor useful in the first place, as in [45] it was already pointed out that finite-dimensional tensors
could only directly correspond to completely local associative algebras. With the formalism
developed here, we have shown that we could for instance take only the 5-dimensional tensor
written in Section 2 and reconstruct the full topology and measure on the circle. Besides,
while to keep the mathematical formulation more simple we often assumed a finite-dimensional
tensor, but the formalism seems to be able to be extended to countably infinite-dimensional
tensors. This means that whether or not the final theory of quantum gravity is actually infinite-
dimensional or finite-dimensional, the formalism seems to be able to handle both cases as long
as the space is assumed to be compact.

In prior work, the authors already found that one can extract a remarkable amount of topolog-
ical and geometric information from tensors [26, 27], using tools from data analysis. Especially
the tensor rank decomposition and persistent homology turned out to be useful. In the present
work we discover why these tools actually work so well. Firstly, the tensor rank decomposition
indeed generates points of the dual space of an algebra according to Section 4.3, which is the
reason why using the tensor rank decomposition worked so well. Furthermore, if we choose
a discrete number of these points we argued in (2.10) that two points are to be considered close
in a topological sense if their inner product in RN is large. This is exactly what was used in [26]
in order to use persistent homology to extract topological data. In these papers, a damping func-
tion was introduced corresponding to (5.7). The original idea was to use this damping in order
to make the cutoff more smooth and it was found that the results for extracting the topology
and geometry became better. In the current paper we find that the inclusion of these damp-
ing functions actually corresponds to including explicit geometric information in the tensor. It
appears crucial to reconstruct the full Riemannian manifold.

In [57], one of the first explicit connections between the CTM and general relativity was made.
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Here the authors investigated the N = 1 case, and found that when rewriting the Hamiltonian
to an action, the action exactly corresponded to the minisuperspace action of the Friedmann–
Robertson–Walker (FRW) universe. This result fits the current framework very well, as here
the N = 1 case would mean that we are only considering the constant function over a space.
In other words, the N = 1 case is the case of a completely isotropic universe, and the fact that
the CTM leads to the FRW universe is an important check for the consistency of the CTM and
specifically when interpreted using the framework developed in this work.

In terms of the quantum CTM, there has been a lot of work on the finding and analysing
of wave functions [27, 28, 32, 34, 35, 36, 55, 61]. Here it was shown that the CTM seems to
prefer symmetric tensors, since there is evidence for strong peaks of these in a prominent wave
function [34, 35]. In the current context this would imply that the CTM, as already speculated,
seems to have good indications for the emergence of macroscopic spaces. For instance a smooth
manifold with a lot of symmetry seems to be preferred over a very odd-behaved fuzzy space.

There are also two main papers considering a formal continuum limit of the CTM [9, 59]. The
formalism developed in the present work is not directly applicable to these cases, since these cases
consider an emergent space Rd which is not compact and thus the smooth functions C∞(M) do
not have a Schauder basis which is countable. However, the insights from these papers might
be important in the future to extend the formalism to non-compact spaces.

8 Summary and future prospects

Finding a consistent theory of quantum gravity starts with a seemingly simple question: “How do
we describe gravity?”. In this work, we introduce a new way to describe a gravitational theory in
terms of tensors. While tensor models, such as the canonical tensor model (CTM) [51], already
existed, it is important to fully understand how one can translate their results to a spacetime
picture as we expect from a theory of quantum gravity. The benefit of the framework introduced
is that it is possible to describe all topological and geometric information of a compact Rieman-
nian manifold in an object that only has countably infinite-dimensional degrees of freedom.
Besides, it makes sense of finite-dimensional tensors too.

In this work we introduced the concept of an associative closure in order to deal with tensors
that do not generate associative algebras. This helps to make the approach more stable, as
was seen, for instance, in Section 6.1 where the flat circle was perturbed. Furthermore, this
made sure that even finite-dimensional tensors can correspond to smooth manifolds, making
finite-dimensional calculations worthwhile. As it turned out, the symmetry of a tensor in the
first two indices corresponds to generating a commutative algebra, but requiring the tensor to
be fully symmetric and supposing a Hilbert-space structure gives us the opportunity to define
a measure. It was then argued that it is possible to introduce geometric information by means
of the Laplacian or a similar operator into this formalism.

In principle, it is thus possible to have a countably infinite-dimensional symmetric order-three
tensor Pabc describing the full geometry of a compact Riemannian manifold. If one were only
interested in the topology and measure, even a finite-dimensional tensor would suffice. This
means that this would present a potential interpretation for models like the CTM, since except
for a formal continuum limit this model generally works with finite-dimensional tensors. In
Section 7, several implications for the CTM were discussed, and it was found that it seems
consistent with several results. Especially since the CTM seems to prefer symmetric tensors,
this interpretation would yield strong evidence for the emergence of macroscopic spacetimes.

There is a lot of interesting areas with research opportunities with this kind of framework.
They are discussed below in three categories: The framework itself, the connection to the CTM,
and the opportunity to build tensor models.

Firstly, the framework itself still has several places where it can be refined. For instance, in
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Section 4.3, two conjectures were phrased, which would be interesting to see if there is a way
to prove these right or wrong, and under what conditions. Furthermore, there are still several
questions in relation to Section 5. Though for an infinite-dimensional tensor we can reconstruct
the full geometry if we know the deviation of the candidate for a unit as generated by the
tensor Pabc with the actual unit, for a finite-dimensional tensor this interpretation is less clear.
One should either extend the operator to the full associative closure somehow, or only define the
metric using functions up to the dimension of the tensor N which will only give an approximate
metric (which could be interpreted as fuzziness). Another question is about the case where
the wa as in (5.3) are not strictly positive. It is expected that we can still make sense of this as
a manifold, possibly as a pseudo-Riemannian manifold. Besides, we demonstrated in this paper
how to reconstruct the topology and measure of a space, but it would be good to demonstrate
that one could explicitly reconstruct the metric. A last remark about the framework itself goes
to the example spaces that have been considered. While the analysis has been done thoroughly,
the main goal was to provide “proof of concepts”, but it would be very interesting to analyse
these examples further and understand more of the properties of these emergent (fuzzy) spaces.
It would be interesting to dive deeper into the work developed in [7, 19, 20] as well, and apply
learnings to the current work.

A second interesting research area relates to the CTM. We already discussed some of the
implications for this model in Section 7, but more has yet to be done. For instance, several
extensions [30, 31] and use cases [56, 58, 60] of the CTM have been identified in the past
and it would be interesting to revisit them and see if there is any interesting interpretation
of those. Furthermore, this paper is mainly looking at the kinematical question “what is the
interpretation of the object are we dealing with?”, but it would be very interesting to see if
we can use the dynamics of the CTM to see how the emergent spaces would behave through
time. Related to the last remark, it would be interesting to see if the exact spaces introduced
here, or exact spaces with a modified unit giving them an interesting geometric interpretation
according to Section 5, are actually included in the tensors highlighted by the CTM wave-
function [34, 35]. This would be strong evidence for the quantum-CTM to reproduce macroscopic
spaces.

A last research area to consider is the construction of other models using this framework.
While the CTM seems to be a good candidate to apply this framework to, it is not sure if
that is actually the case. It might be that this framework is best-used for a different kind of
model. From Section 5 we know that one could attempt to construct a model with any operator
that satisfies certain requirements. It would be interesting if we could derive a Hamiltonian
for instance, starting with a certain operator and seeing how these equations should be to yield
a theory similar to general relativity. And in the case of the CTM: Which operator should we use
to relate it to general relativity? Lastly, how can we describe other matter- and force-fields in
this description. While they can be described as a manifold (fibre bundles) and are thus subject
to the same kind of algebras as all other manifolds, they are expected to behave very differently.
It might even be possible to give some meaning to non-commutative cases in this context, since
from a tensor-model perspective this simply means dropping the symmetry-requirement on the
tensor.

The connection between tensors, algebras and their dual topological spaces seems to open
up a different way of interpreting gravity. The duality between geometry and algebra has
been an active field of mathematics for a while, and combined with tensor models, it seems to
provide an opportunity to describe spacetime in a way that would lead to a mathematically
more straightforward formulation of quantum gravity.
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A Measure theory

Throughout this work, some notions from measure theory are used and discussed. This section
serves to fix some of the definitions. For a comprehensive introduction to the topic, we would
like to refer to the literature, for instance [11].

The general idea behind measure theory is to define a general notion of “volume of a subset”,
and use this to define a way of integration that is more generally applicable than Riemann
integrals. The volume of a subset is basically a function which takes a subset and generates
a positive real number, called a measure. However, it is generally not possible to consistently
define a measure that works on any collection of subsets, so one first needs to define what subsets
one considers. This is done by means of a σ-algebra.

Definition A.1. Let X be an arbitrary set. A collection A of subsets is called a σ-algebra if

� X ∈ A,

� for each set A ∈ A, Ac ∈ A,

� for each infinite sequence {Ai} with Ai ∈ A, the set
⋃

iAi ∈ A,

� for each infinite sequence {Ai} with Ai ∈ A, the set
⋂

iAi ∈ A.

A σ-algebra A is basically a family of subsets of a set X on which we can consistently define
a measure. For this reason, a subset A ∈ A is called a measurable set. An important σ-algebra
that is mentioned in the text is the Borel σ-algebra of a topological space T , denoted B(T ). It
is generated by the open sets in a topological space, in the sense that one takes all open sets,
and takes infinite intersections of these to add them to the Borel σ-algebra. This means that
there is a canonical way to define a σ-algebra from a topological space.

We are now set to define a measure.

Definition A.2. A measure is a function from a σ-algebra A to the positive real numbers

µ : A → R+ ∪ {+∞},

that is countably additive

µ
(⋃

i

Ai

)
=
∑
i

µ(Ai),

for each infinite sequence {Ai} of disjoint measurable sets.

The triplet (X,A, µ) of a set, a σ-algebra and a measure is often called a measure space, and
only (X,A) is a measurable space.

One of the most important and useful achievements of measure theory is the Lebesgue-integral.
For this, let us first define the notion of a measurable function, of which several similar and
equivalent definitions exist, which are the functions we can actually define an integral for.

Definition A.3. For (X,A) a measurable space and A ∈ A, a measurable function with respect
to A f is a function

f : A → R,

such that for every real number t ∈ R, the set {x ∈ A | f(x) < t} ∈ A.
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Two important notions used for the Lebesgue integral, and used in Section 4, are indicator
functions and simple functions. An indicator function 1A : X → R is a function that has the
value 1 on the measurable set A, and 0 elsewhere, and may be seen as a generalisation of a step
function. We define the integral of an indicator function as the volume of the set A, i.e.,∫

X
1A dµ(x) := µ(A),

which makes sense since A is measurable. A simple function f : X → R consists of a finite sum
of these indicator functions for disjoints measurable sets Ai and real numbers αi

f(x) =

n∑
i=1

αi1Ai .

Note that since Ai are all measurable and disjoint, we can readily define an integral over these
simple functions∫

X
f(x) dµ(x) :=

n∑
i=1

αiµ(Ai).

Let us denote the collection of all simple functions on (X,A) as S. The Lebesgue-integral for
a positive valued function f+(x) ≥ 0 is now defined as∫

X
f+(x) dµ(x) := sup

{∫
X
g(x) dµ(x) | g ∈ S, g(x) < f+(x)∀x ∈ X

}
.

This can be seen as approximating a function f+ by simple functions. For a general measurable
function f we then split the function up into two positive functions f = f+−f−, f+ ≥ 0, f− ≥ 0.
Finally, the Lebesgue integral for any measurable function is defined as∫

X
f(x) dµ(x) :=

∫
X
f+(x) dµ(x)−

∫
X
f−(x) dµ(x).

The Lebesgue integral is a more general notion of integration than the Riemann integral, but
importantly, if the Riemann integral of a function f(x) exists, the Lebesgue integral also exists
and they are equal.

B The Laplace–Beltrami operator

This section serves as an introduction to the Laplace–Beltrami operator, which generalises the
Laplacian from Euclidean space Rn to Riemannian manifolds (M, g). More information on this
operator may be found in literature, for instance [41]. Since we are mainly interested in smooth
functions in this work, we will always consider the function spaces of smooth functions C∞(Rn)
and C∞(M), respectively.

The Laplacian on Euclidean space Rn is an operator

∆: C∞(Rn) → C∞(Rn),

and is given by

∆ := ∂2
1 + · · ·+ ∂2

n,
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and it shows up in various contexts throughout physics. If one wishes to generalise this operator
to a Riemannian manifold (M, g), one needs to define it in a coordinate-free way. This is
achieved as

∆ := div ◦ ∇.

Here ∇ denotes the gradient of a function, and div the divergence. This definition now works
for general Riemannian manifolds. Locally, it is given by

∆f =
1√
det g

∂j
(
gij
√

det g∂if
)
.

On an n-dimensional Riemannian manifold, one can define a measure by the integration form

dnx
√

det g.

Using this integration form, one can define an inner product on C∞(M),

⟨f |g⟩ :=
∫
M

dnx
√
det gf(x)g(x).

Taking the closure of C∞(M) with respect to this inner product leads to the Hilbert space of
square integrable functions L2(M). Using this inner product, the Laplace–Beltrami operator is
actually self-adjoint for compactly supported functions [62]

⟨∆f |g⟩ = ⟨f |∆g⟩ .

A final remark goes to the link to geometry [41]. Not only is the Laplace–Beltrami operator
determined by the metric, but this works the other way around too. Knowing how the Laplace–
Beltrami operator acts on functions actually fixes the metric completely.

C The canonical tensor model

This section gives a brief review of the canonical tensor model (CTM). The CTM is a tensor
model for gravity in the canonical (Hamiltonian) formalism, and it is the main motivation to
introduce the formalism of this paper. The tensors are fully symmetric tensors of rank three,
denoted by Qabc. In the case of an N -dimensional underlying vector space, this means that the
configuration space is RN , where N = 1

6N(N + 1)(N + 2) is the amount of independent entries
in the tensor.

Since the model is constructed in the canonical formalism, we construct a phase space which
is isomorphic to R2N , where the canonically conjugate pair is denoted by (Qabc, Pabc). On this
phase space, the Poisson bracket is given by

{Qabc, Pabc} =
∑
σ

δaσd
δbσeδcσf

,

and all other brackets vanish, where σ denote the permutations of {d, e, f}.
Similarly to the ADM-formalism [6], the Hamiltonian of the theory consists of two constraints.

One analogous to the spatial diffeomorphism constraint of the ADM-formalism, the generator
of SO(N) transformations,

Jab =
1

4
(QacdPbcd −QbcdPacd).
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The other constraint, analogous to the Hamiltonian constraint in the ADM-formalism, is given
by

Ha =
1

2
(PabcPbdeQcde − λQabb),

where λ is a real constant. This Hamiltonian has been shown to be unique under some physically
reasonable assumptions [52].

Just like the ADM-formalism, the constraints span an algebra given below, which reproduces
the ADM-algebra in a formal continuum limit [59]{

H
(
ξ1
)
,H
(
ξ2
)}

= J
([
ξ̃1, ξ̃2

]
+ 2λ ξ1 ∧ ξ2

)
,

{J (η),H(ξ)} = H(ηξ),{
J
(
η1
)
,J
(
η2
)}

= J
([
η1, η2

])
.

Here H(ξ) = Haξa, J (η) = Jabηab, ξ̃ab = Pabcξc,
(
ξ1 ∧ ξ2

)
ab

= ξ1aξ
2
b − ξ1b ξ

2
a and [·, ·] denotes the

matrix commutator.

In the CTM quantisation is performed by means of canonical quantisation [54]. The funda-
mental variables are now mapped to the self-adjoint operators with commutators

Qabc → Q̂abc, Pabc → P̂abc, {Qabc, Pdef} → −i
[
Q̂abc, P̂def

]
.

The constraints are now given by the operators

Ĥa =
1

2

(
P̂abcP̂bdeQ̂cde − λQ̂abb + iλH P̂abb

)
, Ĵab =

1

4

(
Q̂acdP̂bcd − Q̂bcdP̂acd

)
.

The constant λH depends on the ordering of the operators in the first term of the Hamiltonian
constraint. Requiring the Hamiltonian constraint to be self-adjoint yields

λH =
1

2
(N + 2)(N + 3).

One nice fact of this quantisation procedure is that the algebra remains of the same form as in
the classical case. Just like the usual constraints in canonical quantum gravity [64], physical
states have to satisfy

Ĥa |Ψ⟩ = 0, Ĵab |Ψ⟩ = 0.

As mentioned in the text, there are several reasons why this is an attractive model. One
of the reasons is that this model, with clear connections to gravity [9, 57, 59], actually has
known solutions to the constraint equations [32, 54], even for general dimension N . This means
that wave-functions can be found, and gives an opportunity to actually analyse them [27, 28,
34, 35, 36, 61] with interesting results like the emergence of tensors with certain symmetries.
Though so far there was not a direct spacetime interpretation, there were clear connections to
geometry [26].

Acknowledgements

The author would like to thank N. Sasakura for all the fruitful discussions, advice and encour-
agement that made this work possible. Furthermore would the author like to thank the referees
who gave valuable input to improve the work.



Tensors and Algebras: An Algebraic Spacetime Interpretation for Tensor Models 41

References

[1] Abbott B.P. et al., Observation of gravitational waves from a binary black hole merger, Phys. Rev. Lett.
116 (2016), 061102, 16 pages, arXiv:1602.03837.

[2] Ambjørn J., Durhuus B., Jónsson T., Three-dimensional simplicial quantum gravity and generalized matrix
models, Modern Phys. Lett. A 6 (1991), 1133–1146.

[3] Ambjørn J., Görlich A., Jurkiewicz J., Loll R., Nonperturbative quantum gravity, Phys. Rep. 519 (2012),
127–210, arXiv:1203.3591.

[4] Ambjørn J., Jurkiewicz J., Loll R., Spectral dimension of the universe, Phys. Rev. Lett. 95 (2005), 171301,
4 pages, arXiv:hep-th/0505113.

[5] Ambjørn J., Loll R., Non-perturbative Lorentzian quantum gravity, causality and topology change, Nuclear
Phys. B 536 (1999), 407–434, arXiv:hep-th/9805108.

[6] Arnowitt R., Deser S., Misner C.W., Dynamical structure and definition of energy in general relativity,
Phys. Rev. 116 (1959), 1322–1330.

[7] Barrett J.W., Druce P., Glaser L., Spectral estimators for finite non-commutative geometries, J. Phys. A
52 (2019), 275203, 33 pages, arXiv:1902.03590.

[8] Bonzom V., Gurau R., Riello A., Rivasseau V., Critical behavior of colored tensor models in the large N
limit, Nuclear Phys. B 853 (2011), 174–195, arXiv:1105.3122.

[9] Chen H., Sasakura N., Sato Y., Equation of motion of canonical tensor model and Hamilton–Jacobi equation
of general relativity, Phys. Rev. D 95 (2017), 066008, 23 pages, arXiv:1609.01946.

[10] Clemente G., D’Elia M., Spectrum of the Laplace–Beltrami operator and the phase structure of causal
dynamical triangulations, Phys. Rev. D 97 (2018), 124022, 21 pages, arXiv:1804.02294.
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