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Abstract. We are concerned with the Umemura polynomials associated with rational
solutions of the third Painlevé equation. We extend Taneda’s method, which was developed
for the Yablonskii–Vorob’ev polynomials associated with the second Painlevé equation, to
give an algebraic proof that the rational functions generated by the nonlinear recurrence
relation which determines the Umemura polynomials are indeed polynomials. Our proof is
constructive and gives information about the roots of the Umemura polynomials.
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1 Introduction

The third Painlevé equation (PIII) has the form

d2w

dz2
=

1

w

(
dw

dz

)2

− 1

z

dw

dz
+

αw2 + β

z
+ γw3 +

δ

w
, (1.1)

where ′ = d/dz and α, β, γ and δ are arbitrary parameters. We discuss the Umemura polyno-
mials associated with rational solutions of (1.1) in the generic case when γδ ̸= 0, so we set γ = 1
and δ = −1, without loss of generality (by rescaling w and z if necessary), and so consider

d2w

dz2
=

1

w

(
dw

dz

)2

− 1

z

dw

dz
+

αw2 + β

z
+ w3 − 1

w
. (1.2)

The six Painlevé equations (PI–PVI), were discovered by Painlevé, Gambier and their col-
leagues whilst studying second order ordinary differential equations of the form

d2w

dz2
= F

(
z, w,

dw

dz

)
,

where F is rational in dw/dz and w and analytic in z. The Painlevé equations can be thought of
as nonlinear analogues of the classical special functions. Indeed, Iwasaki, Kimura, Shimomura
and Yoshida [22] characterize the six Painlevé equations as “the most important nonlinear
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ordinary differential equations” and state that “many specialists believe that during the twenty-
first century the Painlevé functions will become new members of the community of special
functions”. Subsequently this has happened as the Painlevé equations are a chapter in the
NIST Digital Library of Mathematical Functions [37, Section 32].

The general solutions of the Painlevé equations are transcendental in the sense that they
cannot be expressed in terms of known elementary functions and so require the introduction of
a new transcendental function to describe their solution. However, it is well known that PII–PVI

possess rational solutions and solutions expressed in terms of the classical special functions –
Airy, Bessel, parabolic cylinder, Kummer and hypergeometric functions, respectively – for special
values of the parameters, see, e.g., [13, 17, 19] and the references therein. These hierarchies are
usually generated from “seed solutions” using the associated Bäcklund transformations and
frequently can be expressed in the form of determinants.

Vorob’ev [45] and Yablonskii [46] expressed the rational solutions of PII

d2w

dz2
= 2w3 + zw + α, (1.3)

which arise only when α ∈ Z, in terms of special polynomials, now known as the Yablonskii–
Vorob’ev polynomials, that are defined through the recurrence relation (a second-order, bilinear
differential-difference equation)

Qn+1Qn−1 = zQ2
n − 4

[
Qn

d2Qn

dz2
−
(
dQn

dz

)2 ]
(1.4)

with Q0(z) = 1 and Q1(z) = z. It is clear from the recurrence relation (1.4) that the Qn+1

are rational functions, though it is not obvious that they are polynomials since one is dividing
by Qn−1 at every iteration. In fact, it is somewhat remarkable that the Qn are polynomials.
Taneda [40], see also [18], used an algebraic method to prove that the functions Qn defined
by (1.4) are indeed polynomials.

Umemura [42, 43]1 derived special polynomials with certain rational and algebraic solutions
of PIII, PV and PVI, see also [32, 33]. Recently there have been further studies of the special
polynomials associated with rational and algebraic solutions of PIII [1, 3, 4, 11, 25, 30, 31, 36,
34, 44]; a review of rational and algebraic solutions of Painlevé equations is given in [14]. Several
of these papers are concerned with the combinatorial structure and determinant representation
of the polynomials, often related to the Hamiltonian structure and affine Weyl symmetries of
the Painlevé equations. Additionally, the coefficients of these special polynomials have some
interesting, indeed somewhat mysterious, combinatorial properties [41, 42, 43].

These special polynomials arise in several applications. For example, the Umemura poly-
nomials associated with rational solutions of PIII and PV arise as multivortex solutions of the
complex sine-Gordon equation [2, 5, 6, 38], and in MIMO wireless communication systems [10].

We emphasize that the fact that the nonlinear recurrence relation (1.4) generates polynomials
also follows from the τ -function theory associated with the theory of Painlevé equations. The τ -
functions are in general entire functions. It can be shown that for PII with α = m, the associated
τ -function is

τm(z) = Qm(z) exp

(
−z3

24

)
.

Consequently, the rational function Qm(z) has to be a polynomial. Taneda [40] and Fukutani,
Okamoto and Umemura [18] independently gave a direct algebraic proof, which is one of the

1The paper [37] was written by Umemura in 1996, for the proceedings of the conference “Theory of nonlinear
special functions:the Painlevé transcendents”, held in Montréal which was never published.
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first studies of nonlinear recurrence relations for polynomials. In particular, Taneda [40] defined
a Hirota-like operator

L(f) = f
d2f

dz2
−
(
df

dz

)2

,

and showed that if f(z) is a polynomial in z, and g = zf2− 4L(f), then f divides 2zg2− 4L(g).
Hence if f(z) = Qm−1(z), then g(z) = Qm(z)Qm−2(z) and

2zg2 − 4L(g) = Q2
mQm−3Qm−1 +Q2

m−2

[
zQ2

m − 4L(Qm)
]
,

so that Qm−1 divides zQ2
m − 4L(Qm), implying that Qm+1 is a polynomial. This is based on

the assumption that each Qm has simple zeros (implying that Qm and Qm−1 have no common
zeros), which in turn can be proved using another identity derived from PII,

dQm+1

dz
Qm−1 −Qm+1

dQm−1

dz
= (2m+ 1)Q2

m,

which is proved in [18, 40], see also [26].

In this paper, we are concerned with PIII (1.2). In this case the recurrence relation is

Sn+1Sn−1 = −z

[
Sn

d2Sn

dz2
−
(
dSn

dz

)2 ]
− Sn

dSn

dz
+ (z + µ)S2

n, (1.5)

where µ is a complex parameter; see Theorem 2.3 below. The objective is to extend Taneda’s
method to prove directly and constructively that the rational functions Sn(z;µ) defined by (1.5)
are indeed polynomials.

Note that in (1.5), there is one more term Sn
dSn
dz , and z in the main term implies that the

root z = 0 of Sn(z;µ), if exists, will accumulate. To employ Taneda’s method, we define another
Hirota-like operator

Lz(f) = f
d2f

dz2
−
(
df

dz

)2

+
f

z

df

dz
.

Also we need one more identity. We find that it is suitable to use the fourth order differential
equation satisfied by Sn(z;µ) given in [11]. This fourth order equation comes from the second-
order, second-degree equation, often called the Painlevé σ-equation, or Jimbo–Miwa–Okamoto
equation, satisfied by the Hamiltonian associated with PIII given by [23, 36](

z
d2Hn

dz2
− dHn

dz

)2

+

{
4

(
dHn

dz

)2

− z2
}(

z
dHn

dz
− 2Hn

)
+ 4z

[
µ2 −

(
n− 1

2

)2 ]dHn

dz
− 2z2

[
µ2 +

(
n− 1

2

)2 ]
= 0. (1.6)

Multiplying (1.6) by 1/z2 and differentiating with respect to z gives

z2
d3Hn

dz3
− z

d2Hn

dz2
+ 6z

(
dHn

dz

)2

+ (1− 8Hn)
dHn

dz
− 1

2
z3+2z

[
µ2 −

(
n+

1

2

)2 ]
= 0,

then letting

Hn(z;µ) = z
d

dz
lnSn(z;µ)−

1

4
z2 − µz +

1

8
,
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gives [11, p. 9519]

z2
[
Sn

d4Sn

dz4
− 4

dSn

dz

d3Sn

dz3
+ 3

(
d2Sn

dz2

)2 ]
+ 2z

(
Sn

d3Sn

dz3
− dSn

dz

d2Sn

dz2

)
−4z(z + µ)

[
Sn

d2Sn

dz2
−
(
dSn

dz

)2 ]
− 2Sn

d2Sn

dz2
+ 4µSn

dSn

dz
= 2n(n+ 1)S2

n.

This equation is also instrumental in the analysis of the case when z = 0 is a root of Sn(z;µ),
see Section 4 below.

Finally, we remark that this is not the first paper on the direct proof for Umemura poly-
nomials. In 1999, Kajiwara and Masuda [25] were able to express Sn(z;µ) in terms of some
Hankel determinant of a n× n matrix of polynomials (also known as Schur functions) that can
be obtained from an elementary generating function. However, our proof is constructive, giving
more information about the order of roots of Sn(z;µ). This information was utilized by Bothner,
Miller and Sheng [3, 4] in their study of the asymptotics of the (scaled) poles and roots of the
rational solutions in their so-called “eye-problem”.

In Section 2, we describe rational solutions of equation (1.2). In Section 3, we extend Taneda’s
algebraic proof for equation (1.4) to equation (1.5). In Section 4, we discuss Sn(0;µ) since z = 0
is the only location where Sn(z;µ) can have a multiple root, and in Section 5, we discuss our
results.

2 Rational solutions of PIII

The classification of rational solutions of equation (1.2), which is PIII with γ = 1 and δ = −1,
are given in the following theorem.

Theorem 2.1. Equation (1.2) has a rational solution if and only if α + εβ = 4n with n ∈ Z
and ε = ±1.

Proof. See Gromak, Laine and Shimomura [19, p. 174]; also [30, 31]. ■

Umemura [42, 43] derived special polynomials associated with rational solutions of PIII (1.2),
which are defined in Theorem 2.2, and states that these polynomials are the analogues of
the Yablonskii–Vorob’ev polynomials associated with rational solutions of PII [45, 46] and the
Okamoto polynomials associated with rational solutions of PIV [35].

Theorem 2.2. Suppose that Tn(z;µ) satisfies the recurrence relation

zTn+1Tn−1 = −z

[
Tn

d2Tn

dz2
−
(
dTn

dz

)2 ]
− Tn

dTn

dz
+ (z + µ)T 2

n (2.1)

with T−1(z;µ) = 1 and T0(z;µ) = 1. Then

wn(z;µ) ≡ w(z;αn, βn) =
Tn(z;µ− 1)Tn−1(z;µ)

Tn(z;µ)Tn−1(z;µ− 1)
≡ 1 +

d

dz
log

Tn−1(z;µ− 1)

znTn(z;µ)

satisfies PIII (1.2) with αn = 2n+ 2µ− 1 and βn = 2n− 2µ+ 1.

Proof. See Umemura [42, 43]; also [11, 25]. ■

We note that Tn(z;µ) are polynomials in ξ = 1/z. It is straightforward to determine a recur-
rence relation which generates functions Sn(z;µ) which are polynomials in z. These are given
in the following theorem.
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Theorem 2.3. Suppose that Sn(z;µ) satisfies the recurrence relation (1.5), i.e.,

Sn+1Sn−1 = −z

[
Sn

d2Sn

dz2
−
(
dSn

dz

)2 ]
− Sn

dSn

dz
+ (z + µ)S2

n

with S−1(z;µ) = S0(z;µ) = 1. Then

wn = w(z;αn, βn) =
Sn(z;µ− 1)Sn−1(z;µ)

Sn(z;µ)Sn−1(z;µ− 1)
≡ 1 +

d

dz
log

Sn−1(z;µ− 1)

Sn(z;µ)

satisfies PIII (1.2) with αn = 2n+ 2µ− 1 and βn = 2n− 2µ+ 1.

Proof. See Clarkson [11] and Kajiwara [24]; see also Kajiwara and Masuda [25]. ■

Remarks 2.4.

(1) The rational solutions of PIII (1.2) lie on the lines α + εβ = 4n, with ε = ±1, in the α-β
plane. For any n ∈ N ∪ {0}, if αn = 2n + 2µ − 1 and βn = 2n − 2µ + 1 with µ ∈ C,
then αn + βn = 4n.

(2) The polynomials Sn(z;µ) and Tn(z;µ), defined by (1.5) and (2.1), respectively, are related
through Sn(z;µ) = zn(n+1)/2Tn(z;µ). Further Sn(z;µ), also called Umemura polynomials
(for PIII), have the symmetry property Sn(z;µ) = Sn(−z;−µ).

(3) It is trivial to see that each Umemura polynomial Sn(z;µ) is monic, and degSn = 1
2n(n+1)

for n ∈ N.

(4) The Umemura polynomials Sn(z;µ) also arise in the description of algebraic solutions of
the special case of PV when γ ̸= 0 and δ = 0, i.e.,

d2u

dζ2
=

(
1

2u
+

1

u− 1

)(
du

dζ

)2

− 1

ζ

du

dζ
+

(u− 1)2

ζ2

(
αu+

β

u

)
+

γu

ζ
,

when

(α, β, γ) =

(
1

2
µ2,−1

2

(
n− 1

2

)2

,−1

)
, or (α, β, γ) =

(
1

2

(
n− 1

2

)2

,−1

2
µ2, 1

)
,

see [12, 14, 15], which is known to be equivalent to PIII (1.2), cf. [19, Section 34].

(5) Letting w(z) = u(ζ)/
√
ζ with ζ = 1

4z
2, in PIII (1.2) yields

d2u

dζ2
=

1

u

(
du

dζ

)2

− 1

ζ

du

dζ
+

αu2

2ζ2
+

β

2ζ
+

u3

ζ2
− 1

u
, (2.2)

which is known as PIII′ (cf. Okamoto [36]) and is frequently used to determine proper-
ties of solutions of PIII. However, PIII′ (2.2) has algebraic solutions rather than rational
solutions [7, 30, 31].

Kajiwara and Masuda [25] derived representations of rational solutions for PIII (1.2) in the
form of determinants, which are described in the following theorem.

Theorem 2.5. Let pk(z;µ) be the polynomial defined by

∞∑
j=0

pj(z;µ)λ
j = (1 + λ)µ exp(zλ)
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with pj(z;µ) = 0 for j < 0, and τn(z) for n ≥ 1, be the n× n determinant

τn(z;µ) = Wr(p1(z;µ), p3(z;µ), . . . , p2n−1(z;µ)),

where Wr(ϕ1, ϕ2, . . . , ϕn) is the Wronskian. Then

wn = w(z;αn, βn, 1,−1) = 1 +
d

dz
ln

τn−1(z;µ− 1)

τn(z;µ)

for n ≥ 1, satisfies PIII (1.2) with αn = 2n+ 2µ− 1 and βn = 2n− 2µ+ 1.

Proof. See Kajiwara and Masuda [25]. ■

Remarks 2.6.

(1) We note that pk(z;µ) = L
(µ−k)
k (−z), where L

(m)
k (ζ) is the associated Laguerre polynomial,

cf. [37, Section 18].

(2) The relationship between the polynomial Sn(z, µ) and the Wronskian τn(z;µ) is

Sn(z;µ) = cnτn(z;µ), cn =
n∏

j=1

(2j + 1)n−j .

(3) In the special case when µ = 0, then

Sn(z; 0) = zn(n+1)/2, (2.3)

which is straightforward to show by applying induction to (1.5) with µ = 0.

(4) In the special case when µ = 1, then

Sn(z; 1) = zn(n−1)/2θn(z),

where θn(z) is the Bessel polynomial, sometimes known as the reverse Bessel polynomial,
given by

θn(z) =

√
2

π
zn+1/2ezKn+1/2(z) ≡

n!

(−2)n
L(−2n−1)
n (2z)

with Kν(z) the modified Bessel function, cf. [8, 9, 20, 27], which arise in the description of
point vortex equilibria [39]. We note that Bessel functions also arise in the description of
special function solutions of PIII, see Theorem 2.9.

The recurrence relation (1.5) is nonlinear, so in general, there is no guarantee that the rational
function Sn+1(z;µ) thus derived is a polynomial (since one is dividing by Sn−1(z;µ)), as was
the case for the recurrence relation (1.4). However, the Painlevé theory guarantees that this is
the case through an analysis of the τ -function. A few of these Umemura polynomials Sn(z;µ),
with µ an arbitrary complex parameter, are given in Table 1.

It is straightforward to determine when the roots of Sn(z;µ) coalesce using discriminants of
polynomials.

Definition 2.7. Suppose that

f(z) = zm + am−1z
m−1 + · · ·+ a1z + a0,
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S1(z;µ) = z + µ,

S2(z;µ) = ξ3 − µ,

S3(z;µ) = ξ6 − 5µξ3 + 9µξ − 5µ2,

S4(z;µ) = ξ10 − 15µξ7 + 63µξ5 − 225µξ3 + 315µ2ξ2 − 175µ3ξ + 36µ2,

S5(z;µ) = ξ15 − 35µξ12 + 252µξ10 + 175µ2ξ9 − 2025µξ8 + 945µ2ξ7

− 1225µ(µ2 − 9)ξ6 − 26082µ2ξ5 + 33075µ3ξ4 − 350µ2
(
35µ2 + 36

)
ξ3

+ 11340µ3ξ2 − 225µ2
(
49µ2 − 36

)
ξ + 7µ3

(
875µ2 − 828

)
.

Table 1. The first few Umemura polynomials Sn(z;µ), with ξ = z + µ.

Dis(S2(z;µ)) = −33µ2,

Dis(S3(z;µ)) = 31255µ6
(
µ2 − 1

)2
,

Dis(S4(z;µ)) = 32752077µ14
(
µ2 − 1

)6(
µ2 − 4

)2
,

Dis(S5(z;µ)) = 366545728µ26
(
µ2 − 1

)14(
µ2 − 4

)6(
µ2 − 9

)2
,

Dis(S6(z;µ)) = −31475807631111µ44
(
µ2 − 1

)26(
µ2 − 4

)14(
µ2 − 9

)6(
µ2 − 16

)2
.

Table 2. The discriminants of the Umemura polynomials Sn(z;µ).

is a monic polynomial of degree m with roots α1, α2, . . . , αm, so

f(z) =

m∏
j=1

(z − αj).

Then the discriminant of f(z) is

Dis(f) =
∏

1≤j<k≤m

(αj − αk)
2.

Hence the polynomial f has a multiple root when Dis(f) = 0.

The discriminants of the first few Umemura polynomials Sn(z;µ) are given in Table 2.
From this we see that S2(z;µ) has multiple roots when µ = 0, S3(z;µ) has multiple roots
when µ = 0,±1, S4(z;µ) has multiple roots when µ = 0,±1,±2, S5(z;µ) has multiple roots
when µ = 0,±1,±2,±3, and S6(z;µ) has multiple roots when µ = 0,±1,±2,±3,±4. Further
the multiple roots occur at z = 0. This leads to the following theorem.

Theorem 2.8. The discriminant of the polynomial Sn(z;µ) is given by

|Dis(Sn)| =
n−1∏
j=0

(2j + 1)(2j+1)(n−j)2
n∏

k=−n

(µ− k)cn−|k| ,

where cn = 1
6n

3 + 1
4n

2 − 1
6n − 1

8 [1 − (−1)n] and Dis(Sn) < 0 if and only n = 2 mod 4. Further
the polynomial Sn(z;µ) has multiple roots at z = 0 when µ = 0,±1,±2, . . . ,±(n− 2).

Proof. See Amdeberhan [1]. ■

Theorem 2.9. Equation (1.1) has solutions expressible in terms of Bessel functions if and
only if α+ εβ = 4m− 2 with m ∈ Z and ε = ±1.

Proof. See Gromak, Laine and Shimomura [19, Section 35]; also [28, 44]. ■
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Plots of the roots of the polynomials Sn(z;µ) for various µ are given in [11]. Initially for µ
sufficiently large and negative, the 1

2n(n + 1) roots of Sn(z;µ) form an approximate triangle
with n roots on each side. Then as µ increases, the roots in turn coalesce and eventually for µ
sufficiently large and positive they form another approximate triangle, similar to the original
triangle, though with its orientation reversed. As shown in Theorem 2.10 below, as |µ| → ∞
the roots of Sn(z;µ) tend to “triangular structure” of the roots of the Yablonskii–Vorob’ev
polynomial Qn(z) which arise in the description of the rational solutions of PII (1.3).

Bothner, Miller and Sheng [3, 4] study numerically how the distributions of poles and zeros of
the rational solutions of PIII (1.3) behave as n increases and how the patterns vary with µ ∈ C
(note that they use a different notation to our notation).

It is well known that PII (1.3) arises as the coalescence limit of PIII, cf. [21]. If in PIII (1.2),
we let

w(z;α, β) = 1 + εu(ζ; a), z =
ζ

ε
+

4

ε3
, α = 2a− 8

ε3
, β = 2a+

8

ε3
,

then u(ζ; a) satisfies

d2u

dζ2
= 2u3 + ζu+ a+ ε

{(
du

dζ

)2

− u4 +
1

2
ζu2 + au

}
+O

(
ε2
)
.

Hence in the limit as ε → 0, (1.2) coalescences to PII (1.3). In the following theorem, it is
shown that the Yablonskii–Vorob’ev polynomial Qn(ζ) arises as the coalescence limit of the
polynomial Sn(z;µ) in an analogous way, see also [14, 16].

Theorem 2.10. The Yablonskii–Vorob’ev polynomial Qn(ζ) arises as the coalescence limit of
the polynomial Sn(z;µ) given by

Qn(ζ) = lim
ε→0

{
εn(n+1)/2Sn

(
ζ

ε
+

4

ε3
;− 4

ε3

)}
.

Proof. Since Sn(z;µ) satisfies the recurrence relation (1.5), then making the transformation

Rn(ζ; ε) = εn(n+1)/2Sn

(
ζ

ε
+

4

ε3
;− 4

ε3

)
, (2.4)

to (1.5) yields the recurrence relation

Rn+1Rn−1 = −4

[
Rn

d2Rn

dζ2
−
(
dRn

dζ

)2 ]
+ ζR2

n − ε2
{
ζ

[
Rn

d2Rn

dζ2
−
(
dRn

dζ

)2 ]
+Rn

dRn

dζ

}
.

Hence in the limit as ε → 0, then this coalescences to the equation

Rn+1Rn−1 = −4

[
Rn

d2Rn

dζ2
−
(
dRn

dζ

)2 ]
+ ζR2

n,

which is the recurrence relation for the Yablonskii–Vorob’ev polynomial Qn(ζ), recall (1.4). Fur-
ther, since S0(z;µ) = 1 and S1(z;µ) = z−µ we have R0(ζ) = 1 = Q0(ζ) and R1(ζ) = ζ = Q1(ζ).
Thus Qn(ζ) = Rn(ζ; 0), for all n, as required. ■

Remarks 2.11.

(1) It is not obvious that Rn(ζ; ε) is a polynomial in ε, as well as a polynomial in ζ. See
Lemma A.1 for a proof. We give the first few Rn in Table 3.
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R1(ζ; ε) = ζ,

R2(ζ; ε) = ζ3 + 4,

R3(ζ; ε) = ζ6 + 20ζ3 − 80− 36ε2ζ,

R4(ζ; ε) = ζ
(
ζ9 + 60ζ6 + 11200

)
− 252ε2ζ2

(
ζ3 − 20

)
+ 36ε4

(
25ζ3 + 16

)
,

R5(ζ; ε) = ζ15 + 140ζ12 + 2800ζ9 + 78400ζ6 − 3136000ζ3 − 6272000− 1008ε2ζ
(
ζ9 − 15ζ6

+ 2100ζ3 + 2800
)
+ 324ε4ζ2

(
25ζ6 − 1288ζ3 − 2240

)
− 252ε6

(
175ζ6 + 800ζ3

− 1472
)
+ 129600ε8ζ.

Table 3. The first few polynomials Rn(ζ; ε), defined by (2.4).

(2) Masuda [29, Section A.2] discusses the coalescence limit of Umemura polynomials to
Yablonskii–Vorob’ev polynomials through the associated Hamiltonians.

Corollary 2.12. As |µ| → ∞, the roots of Sn(z;µ) tend to “triangular structure” of the roots
of the Yablonskii–Vorob’ev polynomial Qn(z).

Using the Hamiltonian formalism for PIII, it is shown in [11] that the polynomials Sn(z;µ)
satisfy a fourth order bilinear equation and a sixth order, hexa-linear (homogeneous of degree
six) difference equation.

3 Application of Taneda’s method

In this section, we use the algebraic method due to Taneda [40] to prove that the rational
functions Sn(z;µ) satisfying (1.5) are indeed polynomials, assuming that all the zeros of Sn(z;µ)
are simple.

We define an operator Lz as follows:

Lz(f) = f
d2f

dz2
−
(
df

dz

)2

+
f

z

df

dz
.

Lemma 3.1. Let f(z) and g(z) be arbitrary polynomials. Then

(a) Lz(kf) = k2Lz(f) with k a constant;

(b) Lz(fg) = f2Lz(g) + g2Lz(f);

(c) If h = −zLz(f)+ k(z+µ)f2 with k and µ constants, then f | zLz(h)− 2k(z+µ)h2, where
the symbol | means that the right-hand side is divisible by the left-hand side.

Proof. (a) This follows directly from the definition.

(b) We observe that

Lz(fg) = fg
d2

dz2
(fg)−

[
d

dz
(fg)

]2
+

fg

z

d

dz
(fg)

= f2

[
g
d2g

dz2
−
(
dg

dz

)2

+
g

z

dg

dz

]
+ g2

[
f
d2f

dz2
−
(
df

dz

)2

+
f

z

df

dz

]
= f2Lz(g) + g2Lz(f),

so the result is valid.
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(c) Finally, by definition

h = −z

[
f
d2f

dz2
−
(
df

dz

)2

+
f

z

df

dz

]
+ k(z + µ)f2 = z

(
df

dz

)2

+ f × (a polynomial),

dh

dz
= −2f

d2f

dz2
− z

(
f
d3f

dz3
− df

dz

d2f

dz2

)
+ kf2 + 2k(z + µ)f

df

dz

= z
df

dz

d2f

dz2
+ f × (a polynomial),

d2h

dz2
= −df

dz

d2f

dz2
− 3f

d3f

dz3
− z

[
f
d4f

dz4
−
(
d2f

dz2

)2 ]
+ 4kf

df

dz
+ 2k(z + µ)

[
f
d2f

dz2
+

(
df

dz

)2]
= z

(
d2f

dz2

)2

− df

dz

d2f

dz2
+ 2k(z + µ)

(
df

dz

)2

+ f × (a polynomial).

Then we can see

Lz(h) = h
d2h

dz2
−
(
dh

dz

)2

+
h

z

dh

dz

= z

(
df

dz

)2{
z

(
d2f

dz2

)2

− df

dz

d2f

dz2
+ 2k(z + µ)

(
df

dz

)2}
−
(
z
df

dz

d2f

dz2

)2

+ z

(
df

dz

)3 d2f

dz2
+ f × (a polynomial)

= 2kz(z + µ)

(
df

dz

)4

+ f × (a polynomial).

Since zLz(h)− 2k(z + µ)h2 = f × (a polynomial), then

f | zLz(h)− 2k(z + µ)h2 (3.1)

as required. ■

Theorem 3.2. Suppose {Sn(z;µ)} is a sequence of rational functions with simple nonzero roots,
satisfying (1.5), with S−1(z;µ) = S0(z;µ) = 1. For all N ∈ N ∪ {0}, if z = 0 is not a root of
any Sn(z;µ) for 0 ≤ n ≤ N , then

(a) SN+1(z;µ) is a polynomial;

(b) SN+1(z;µ) and SN (z;µ) do not have a common root.

Proof. We first prove part (b). If SN (z;µ) and SN−1(z;µ) have the same root z0 ̸= 0, then
by (1.5), z0 is also a root of

SN
d2SN

dz2
−
(
dSN

dz

)2

,

and hence also a root of dSN
dz (z;µ). This implies z0 is (at least) a double root of SN (z;µ), which

contradicts our assumption about SN (z;µ).
Part (a) will be shown using induction. First, we have S−1(z;µ) = S0(z;µ) = 1, then

S1(z;µ) = z + µ and S2(z;µ) = (z + µ)3 − µ. Clearly, (a) hold for n = 0, 1, 2, when µ ̸= 0. We
next assume that (a) hold for n = N − 2, N − 1, N with N ≥ 2. Then we will prove that the
statements also hold for n = N + 1.

Let f be SN−1. Then n = N − 1 and h = SNSN−2 in Lemma 3.1. Then (3.1) becomes

SN−1 | zLz(SNSN−2)+2(z + µ)(SNSN−2)
2.
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Hence

z

[
Lz(SNSN−2)−

2(z + µ)

z
(SNSN−2)

2

]
= z

[
S2
N−2Lz(SN ) + S2

NLz(SN−2)
]
− 2(z + µ)(SNSN−2)

2

= S2
N−2

[
zLz(SN )− (z + µ)S2

N

]
+ S2

N

[
zLz(SN−2)− (z + µ)S2

N−2

]
= S2

N−2

[
zLz(SN )− (z + µ)S2

N

]
− S2

NSN−1SN−3.

Then by (3.1) and (b) with n = N − 1, we have

SN−1 | −zLz(SN ) + (z + µ)S2
N = −z

[
SN

d2SN

dz2
−
(
dSN

dz

)2 ]
− SN

dSN

dz
+ (z + µ)S2

N .

So, according to (1.5), SN+1 is a polynomial by induction. ■

4 Roots of Sn(z;µ)

In this section we initially discuss Sn(0;µ) since z = 0 is the only location where Sn(z;µ) can
have a multiple root.

Theorem 4.1. Let ϕn = Sn(0;µ), and

ϕ′
n :=

∂Sn

∂z
(0;µ), ϕ′′

n :=
∂2Sn

∂z2
(0;µ),

etc. Then for all n ≥ 3,

ϕn+1 =
ϕnϕn−1

ϕn−2

(
2µ2 − 2n2 + 2n− 1− ϕnϕn−3

ϕn−1ϕn−2

)
; (4.1)

ϕ′
n+1 = −ϕnϕn+2

ϕn+1
+ µϕn+1. (4.2)

Proof. Differentiating (1.5) with respect to z gives

dSn+1

dz
=

1

Sn−1

{
S2
n + 2(z + µ)Sn

dSn

dz
− 2Sn

d2Sn

dz2

+ z

(
dSn

dz

d2Sn

dz2
− Sn

d3Sn

dz3

)
− Sn+1

dSn−1

dz

}
. (4.3)

Substitute z = 0 into (1.5) and (4.3). We obtain

ϕn+1 =
ϕn

ϕn−1

(
µϕn − ϕ′

n

)
, (4.4)

ϕ′
n+1 =

ϕn

ϕn−1

(
ϕn + 2µϕ′

n − 2ϕ′′
n −

ϕ′
n−1ϕn+1

ϕn

)
. (4.5)

Now (4.4) implies that (4.2) is valid. Furthermore, in [11, p. 9519], it was shown that

z2
[
Sn

d4Sn

dz4
− 4

dSn

dz

d3Sn

dz3
+ 3

(
d2Sn

dz2

)2 ]
+ 2z

(
Sn

d3Sn

dz3
− dSn

dz

d2Sn

dz2

)
− 4z(z + µ)

[
Sn

d2Sn

dz2
−
(
dSn

dz

)2 ]
− 2Sn

d2Sn

dz2
+ 4µSn

dSn

dz
= 2n(n+ 1)S2

n. (4.6)
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This implies, as ϕn is not identically zero, that

2µϕ′
n − ϕ′′

n = n(n+ 1)ϕn. (4.7)

Hence by (4.2),

ϕ′′
n = 2µϕ′

n − n(n+ 1)ϕn =
[
2µ2 − n(n+ 1)

]
ϕn − 2µϕn−1ϕn+1

ϕn
.

Now substitute this equation and (4.2) into (4.5) to obtain, after simplification,

−ϕnϕn+2

ϕn+1
=

ϕ2
n

ϕn−1

(
2n2 + 2n+1− 2µ2

)
+

ϕn+1ϕnϕn−2

ϕ2
n−1

.

Therefore, we have

ϕn+2 =
ϕnϕn+1

ϕn−1

(
2µ2 − 2n2 − 2n−1− ϕn+1ϕn−2

ϕnϕn−1

)
,

and so (4.1) is also valid. ■

Corollary 4.2.

(a) For all n ∈ N,

ϕn(µ) = µγn
0

n−1∏
j=1

(µ2 − j2)γ
n
j ,

where for 0 ≤ j < k,

γn2j =
⌈n
2

⌉
− j = k − j if n = 2k or 2k − 1;

γn2j+1 =
⌊n
2

⌋
− j = k − j if n = 2k or 2k + 1.

(b) When n ≥ 3, ϕ′
n = ϕn−1gn(µ), where gn is a polynomial of degree n− 1.

Remark 4.3. Part (a) above means that z = 0 is a root of Sn(z;µ) if and only if µ = 0,
±1,±2, . . . ,±(n− 1), i.e., |µ| is an integer strictly less than n. In particular, the first few ϕn(µ)
are

ϕ1 = µ,

ϕ2 = µ
(
µ2 − 1

)
,

ϕ3 = µ2
(
µ2 − 1

)(
µ2 − 4

)
,

ϕ4 = µ2
(
µ2 − 1

)2(
µ2 − 4

)(
µ2 − 9

)
,

ϕ5 = µ3
(
µ2 − 1

)2(
µ2 − 4

)2(
µ2 − 9

)(
µ2 − 16

)
.

Proof. It is trivial to verify by induction hypothesis, with the help of above and (4.1) that,

ϕ2k = µk(µ2 − 1)k
k−1∏
j=1

[
µ2 − (2j)2

]k−j[
µ2 − (2j + 1)2

]k−j
;

ϕ2k+1 = µk+1(µ2 − 1)k
k∏

j=1

[
µ2 − (2j)2

]k+1−j[
µ2 − (2j + 1)2

]k−j
.
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This proves (a). Also we have

ϕ2k+1

ϕ2k
= µ

k∏
j=1

(
µ2 − (2j)2

)
,

ϕ2k

ϕ2k−1
=

k∏
j=1

(
µ2 − (2j − 1)2

)
.

Hence by (4.2),

ϕ′
2k =

(
µϕ2k

ϕ2k−1
− ϕ2k+1

ϕ2k

)
ϕ2k−1 := ϕ2k−1g2k(µ),

where g2k is a polynomial of degree 2k − 1. Similarly, by (4.2) again,

ϕ′
2k+1 =

(
µϕ2k+1

ϕ2k
− ϕ2k+2

ϕ2k+1

)
ϕ2k := ϕ2kg2k+1(µ),

where g2k+1 is a polynomial of degree 2k. Thus the proof of (b) is complete. ■

Theorem 4.4. Fix m ∈ N ∪ {0}. Then for the recurrence relation (1.5) with initial polynomials
S−1 = S0 = 1, we have

(a) all the non-zero roots of rational functions Sn(z;±m) are simple, for all n ∈ N;
(b) each Sn(z;±m) is a polynomial in z, for n = 0, 1, . . . ,m.

Proof. We shall make use of the identity (4.6) again. Suppose z0 is a nonzero root of Sn(z;µ).
Then from (4.6),

3z0

[
d2Sn

dz2
(z0)

]2
=

dSn

dz
(z0)

[
4z0

d3Sn

dz3
(z0) + 2

d2Sn

dz2
(z0)−4(z0 + µ)

dSn

dz
(z0)

]
.

Hence if z0 is a root of
dSn

dz
, then it also has to be a root of

d2Sn

dz2
. That is, if z0 is not a simple

root of Sn(z;µ), then its order k ≥ 3. Analyzing on the identity (4.6), the term

Sn
d4Sn

dz4
− 4

dSn

dz

d3Sn

dz3
+ 3

(
d2Sn

dz2

)2

,

has the zero z0 with order at least 2k − 4, while the other terms has order at least 2k − 3.
Therefore, let Sn(z;µ) = (z − z0)

kg(z), where g(z) is a polynomial and g(z0) ̸= 0. Then there
exists a polynomial h(z) such that

Sn
d4Sn

dz4
− 4

dSn

dz

d3Sn

dz3
+ 3

(
d2Sn

dz2

)2

= (z − z0)
2k−4

[
(z − z0)h(z) + 6k(k − 1)g2(z)

]
.

But the expression inside the bracket must have z0 as a root. This gives a contradiction. We
see that every nonzero z0 is at most a simple root. This proves (a). Part (b) follows directly
from Remark 4.3 and Theorem 3.2. ■

These results are illustrated in Figure 1, where plots of Sn(z;µ) with µ = 10 (blue) and
µ = −10 (red), for n = 2, 3, . . . , 10 are given. Similar figures appear in [11].

Lemma 4.5. Let µ ∈ Z \ {0}. Suppose that Sn(z;µ) = zσg(z), where g(z) =
∑k

j=0 ajz
j is

a polynomial (a0 ̸= 0). Then

(a) a1 = µa0;

(b) if σ = 1
2ℓ(ℓ+ 1) with ℓ = n− |µ|, then a2 =

1
2

(
µ2 − |µ|

2ℓ+1

)
a0.
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Figure 1. Plots of Sn(z;µ) with µ = 10 (blue) and µ = −10 (red), for n = 2, 3, . . . , 10. These illustrate

the results given in Theorem 4.4.

Proof. We use the auxilliary identity (4.6) for the proof. First

dSn

dz
= zσ

dg

dz
+ σzσ−1g,

d2Sn

dz2
= zσ

d2g

dz2
+ 2σzσ−1dg

dz
+ σ(σ − 1)zσ−2g,

d3Sn

dz3
= zσ

d3g

dz3
+ 3σzσ−1d

2g

dz2
+ 3σ(σ − 1)zσ−2dg

dz
+ σ(σ − 1)(σ − 2)zσ−3g,

d4Sn

dz4
= zσ

d4g

dz4
+ 4σzσ−1d

3g

dz3
+ 6σ(σ − 1)zσ−2d

2g

dz2
+ 4σ(σ − 1)(σ − 2)zσ−3dg

dz

+ σ(σ − 1)(σ − 2)(σ − 3)zσ−4g. (4.8)

Express (4.6) as

2n(n+ 1)S2
n + 4z2

[
Sn

d2Sn

dz2
−
(
dSn

dz

)2 ]
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= z2
[
Sn

d4Sn

dz4
− 4

dSn

dz

d3Sn

dz3
+ 3

(
d2Sn

dz2

)2 ]
+ 2z

(
Sn

d3Sn

dz3
− dSn

dz

d2Sn

dz2

)
−4µz

[
Sn

d2Sn

dz2
−
(
dSn

dz

)2 ]
− 2Sn

d2Sn

dz2
+ 4µSn

dSn

dz
. (4.9)

Then we substitute (4.8) into (4.9) and obtain, after simplification,

[2n(n+ 1)− 4σ]z2σg2 + · · ·

= −8σz2σ−1g
dg

dz
+ 8µσz2σ−1g2 − (8σ + 2)z2σg

d2g

dz2
+ 8σz2σ

(
dg

dz

)2

+ 4µz2σg
dg

dz
+ · · · .

Comparing coefficients of z2σ−1 in the resulting polynomials, we obtain

8σa0a1 − 8µσa20 = 0.

This implies part (a). Next we compare coefficients of z2σ to get

[2n(n+ 1)− 4σ]a20 = (16σ + 4)µa0a1 − (32σ + 4)a0a2.

Since a1 = µa0, we deduce that

a2 =
µ2(8σ + 2)− n(n+ 1) + 2σ

2(8σ + 1)
a0.

Now since n = ℓ+ |µ| and 2σ = ℓ(ℓ+ 1),

n(n+ 1) = µ2 + (2ℓ+ 1)|µ|+ ℓ(ℓ+ 1),

while 8σ + 1 = (2ℓ+ 1)2. Therefore, part (b) is valid. ■

Theorem 4.6. Let µ ∈ Z. Then for all n > |µ|, with n ≥ 1:

(a) for Sn(z;µ), z = 0 is a root of order 1
2(n− |µ|)(n− |µ|+ 1);

(b) Sn(z;µ) is a monic polynomial of degree 1
2n(n+ 1);

(c) all other roots of Sn(z;µ) are simple.

Remark 4.7.

(1) Thus when n is large, Sn(z;µ) has O
(
n2

)
roots, counted according to multiplicity. But

if µ ∈ Z, then most roots are located at z = 0, while there are only O(n) non-zero roots,
and all of them are simple roots. This explains the phenomenon that when µ ∈ Z, the
roots and poles of the rational solution wn are unusually fewer than the other µ’s nearby,
as observed in [3, 4].

(2) Theorem 4.6 is illustrated in Figure 2, where plots of S10(z;µ) with µ = m (blue) and
µ = −m (red), for m = 1, 2, . . . , 9. Contrast this to Figure 3, where plots of S10(z;µ)
with µ = m (blue) and µ = −m (red), for m = 10, 11, 12, 15, 20, 25. These show that for
|µ| ≥ n, the roots of Sn(z;µ) have a “triangular structure” and lie in the region Re(z) < 0
for µ > 0 and Re(z) > 0 for µ < 0. Further as µ increases, the triangular regions move
away from the imaginary axis.
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µ = ±1 µ = ±2 µ = ±3

µ = ±4 µ = ±5 µ = ±6

µ = ±7 µ = ±8 µ = ±9

Figure 2. Plots of S10(z;µ) with µ = m (blue) and µ = −m (red), for m = 1, 2, . . . , 9.

Proof. Part (c) follows from the proof of Theorem 4.4. For parts (a) and (b), the case
when µ = 0 is simple, recall (2.3). In general, fix any µ ∈ Z \ {0} and let m = |µ|. By Corol-
lary 4.2, z = 0 is a root of Sm+1(z;µ). Observe that by (4.4), (4.5) and (4.7),

dSm+1

dz
(0;µ) = ϕ′

m+1 =
ϕm [ϕm + 2µϕ′

m − 2ϕ′′
m]

ϕm−1
=

ϕ2
m

ϕm−1
(2m+ 1) ̸= 0,

because ϕ′′
m =

(
m2 − m

)
ϕm. Thus z = 0 is a simple root of Sm+1(z;µ), and we may write

Sm+1(z;µ) = zg1(z), which by Theorem 3.2 is a polynomial. Let g1(z) =
∑k

j=0 a
1
jz

j be a poly-

nomial of degree k = 1
2(m+ 1)(m+ 2)− 1, with nonzero roots.

Now we apply the induction hypothesis on n ≥ m+ 1. Let ℓ = n−m, and

Sn−1(z;µ) = zσℓ−1gℓ−1(z), Sn(z;µ) = zσℓgℓ(z),
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µ = ±10 µ = ±11 µ = ±12

µ = ±15 µ = ±20 µ = ±25

Figure 3. Plots of S10(z;µ) with µ = m (blue) and µ = −m (red), for m = 10, 11, 12, 15, 20, 25. These

show that for |µ| ≥ n, the roots of Sn(z;µ) have a “triangular structure” and lie in the region Re(z) < 0

for µ > 0 and Re(z) > 0 for µ < 0. Further as µ increases, the triangular regions move away from the

imaginary axis.

where gℓ−1(z;µ) and gℓ(z;µ) are polynomials with nonzero roots and σℓ = 1
2ℓ(ℓ + 1). Then

by (1.5),

zσℓ−1gℓ−1Sn+1(z;µ) = z2σℓ

(
µg2ℓ − gℓ

dgℓ
dz

)
+ z2σℓ+1

[(
dgℓ
dz

)2

− gℓ
d2gℓ

dz2
+ g2ℓ

]
.

Let aℓj be the coefficients of gℓ. By Lemma 4.5, aℓ1 = µaℓ0. So we may write Sn+1(z;µ) =
zσℓ+1gℓ+1, where

aℓ+1
0 aℓ−1

0 = 2µaℓ0a
ℓ
1 − 4aℓ0a

ℓ
2 +

(
aℓ0
)2

= aℓ0
(
2µaℓ1 + aℓ0 − 4aℓ2

)
=

(
aℓ0
)2(

1 +
2m

2ℓ+ 1

)
.

So aℓ+1
0 = gℓ+1(0) is nonzero, and the function gℓ+1(z), which is a rational function at its initial

appearance, does not have z = 0 as a root.
Next we show that gℓ+1(z) is a polynomial. From the proof of Theorems 4.4 and 3.2 (b), we

know that all nonzero roots of Sn(z;µ) and Sn−1(z;µ) are simple and not common. Furthermore,
we still have Sn−1 |

[
−zLz(Sn) + (z + µ)S2

n

]
, where

∆ := −zLz(Sn) + (z + µ)S2
n = z

[(
dSn

dz

)2

− Sn
d2Sn

dz2

]
− Sn

dSn

dz
+ (z + µ)S2

n.

We conclude that gℓ−1 divides ∆, which implies that gℓ+1 is indeed a polynomial. It means
Sn+1 = zσℓ+1gℓ+1(z) is indeed a polynomial. Consequently, parts (a) and (b) follow by induc-
tion. ■
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5 Conclusions

We have given a direct algebraic proof that the nonlinear recurrence relation (1.5) generates
polynomials Sn(z;µ), rather than rational functions without direct resort to the τ -function
theory of Painlevé equations. However we critically needed a higher order equation derived
from the corresponding σ-equation, which seems to be inevitable in the nonlinear scenario. We
believe that the method can be developed to apply to the fifth Painlevé equation (PV) as well,
though we shall not pursue this further here.

A About the coalescence limit

Lemma A.1. The sequence of functions

Rn(ζ, ε) := εn(n+1)/2Sn

(
ζ

ε
+

4

ε3
,− 4

ε3

)
are all polynomials in ε.

Proof. From (1.5), we write

Sn+1Sn−1 = −(z + µ)
(
SnS

′′
n − (S′

n)
2
)
− SnS

′
n + (z + µ)S2

n + µ
(
SnS

′′
n − (S′

n)
2
)

(A.1)

with S0 = S−1 = 1. It is easy to see from Theorems 3.2 and 4.6 that each Sn is a polynomial in
ζ = z + µ, as well as a polynomial in µ. Furthermore,

deg(Sn, ζ) =
1

2
n(n+ 1) = deg(Sn, µ).

Now let

Vn

(
ζ, ε−1

)
:= Sn

(
ζ

ε
+

4

ε3
,− 4

ε3

)
.

We claim that Vn is a polynomial in ε−1, and deg
(
Vn, ε

−1
)
= 1

2n(n+1), so that each Rn defined
above, as a rational function, is indeed a polynomial in ε.

Rewrite (A.1) as

Vn−1Vn+1 = − ζ

ε

{
Vn

d2Vn

dζ2
−
(
dVn

dζ

)2}
− Vn

dVn

dζ
+

ζ

ε
V 2
n

− 4

ε3

{
Vn

d2Vn

dζ2
−
(
dVn

dζ

)2}
. (A.2)

Hence V0 = V−1 = 1, and

V1 =
ζ

ε
, V2 =

ζ3 + 4

ε3
,

and so on. It is trivial to show that Vn is a polynomial in ζ, with deg(Vn, ζ) = 1
2n(n + 1).

Moreover, inductively, the right-hand side of (A.2) is a polynomial in ε−1, with degree n2+n+1,
and the leading coefficient of ε−(n2+n+1) involves ζn

2+n+1, and is so nonzero. By induction
hypothesis, deg

(
Vn−1, ε

−1
)
= 1

2n(n − 1), and Vn−1 divides the expression on the right-hand
side. Therefore, we have Vn+1 is also a polynomial in ε−1, and

deg
(
Vn+1, ε

−1
)
=

1

2
(n+ 1)(n+ 2).

We emphasize that in the above argument, the terms in Sn(z, µ) can achieve maximum power
of ε−1 only at those terms involving ζn(n+1)/2−3k, so that for each derivative with respect to ζ,
the power of ε−1 will decrease by one. Also the coefficient at the maximum power of ε−1 does
not vanish because of the expression ζn

2+n+1 in the third term above.
The proof is now complete. ■
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321–341.

[29] Masuda T., On a class of algebraic solutions to the Painlevé VI equation, its determinant formula and
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