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Abstract. We derive an explicit formula for the connected (n,m)-point functions associ-
ated to an arbitrary diagonal tau-function τf (t+, t−) of the 2d Toda lattice hierarchy using
fermionic computations and the boson-fermion correspondence. Then for fixed t−, we com-
pute the KP-affine coordinates of τf (t+, t−). As applications, we present a unified approach
to compute various types of connected double Hurwitz numbers, including the ordinary dou-
ble Hurwitz numbers, the double Hurwitz numbers with completed r-cycles, and the mixed
double Hurwitz numbers. We also apply this method to the computation of the stationary
Gromov–Witten invariants of P1 relative to two points.
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1 Introduction

1.1 Double Hurwitz numbers

Hurwitz numbers [20] count the numbers of branched covers between Riemann surfaces with
specified ramification types. They relate the geometry of Riemann surfaces to many other
mathematical theories such as the representation theory, integrable hierarchies, and combina-
torics. In particular, Hurwitz numbers play an important role in the intersection theory on
moduli spaces of curves and Gromov–Witten theory, see, e.g., [2, 3, 8, 9, 10, 17, 32, 33, 34].

The (possibly disconnected) ordinary Hurwitz numbers count all branched covers between
not necessarily connected Riemann surfaces, and can be calculated using representation theory
and the Burnside formula, see, e.g., [8]. In mathematical physics, sometimes it is more natural
to consider connected Hurwitz numbers. For example, the famous ELSV formula [9, 10] relates
the connected single Hurwitz numbers to some Hodge integrals over the moduli spaces of stable
curves [7, 26], and implies the polynomiality of such Hurwitz numbers.

Our main objects of interest in this work are several types of connected double Hurwitz
numbers, and the relative stationary Gromov–Witten invariant of P1. The simplest example of
double Hurwitz numbers is the ordinary double Hurwitz number labeled by two partitions µ±,
which counts the branched covers which has ramification type µ+, µ− over two given points
and simple ramifications over other points. In [30], Okounkov showed that the generating series
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of all (possibly disconnected) double Hurwitz numbers is a tau-function of the 2d Toda lattice
hierarchy, and found a fermionic representation of this tau-function:

τ (2)(t+, t−;β) =
〈
0
∣∣Γ+(t+)eβK

(2)
Γ−(t−)

∣∣0〉,
where K(2) is the cut-and-join operator. In [16], Goulden–Jackson–Vakil proved the piecewise
polynomiality of the connected double Hurwitz numbers using a purely combinatorial method.
Roughly speaking, the whole affine space

(
with coordinates the parts of µ±

)
is separated into

some chambers by some walls, and the piecewise polynomiality means that these numbers are
polynomials in the parts of µ± inside each chamber. In [23], Johnson derived a formula for con-
nected double Hurwitz numbers in each chamber, and proved the strong piecewise polynomiality
for ordinary double Hurwitz numbers using this formula.

There are also double Hurwitz numbers of other types in literatures. For example, the double
Hurwitz numbers with completed r-cycles [33, 38], monotone and mixed double Hurwitz num-
bers [15]. In [38], Shadrin, Spitz, and Zvonkine derived a formula for double Hurwitz numbers
with completed r-cycles (see [38, equation (17)]) and proved the strong piecewise polynomiality
using a method similar to the method in [23]. The monotone Hurwitz numbers were introduced
by Goulden, Guay-Paquet, and Novak in [14] to formulate the Harish–Chandra–Itzykson–Zuber
matrix model, which are also attractive in many mathematical researches. And a more com-
plicated kind of Hurwitz numbers called the mixed double Hurwitz numbers were introduced
in [15] in the study of the combinatorial aspects of Cayley graphs of the symmetric groups.
The generating series of the mixed double Hurwitz numbers is also a tau-function of the 2-Toda
hierarchy [15].

1.2 Motivation

In this work, we derive an explicit formula for connected (n,m)-point functions of a diagonal
tau-function [5] of the 2d Toda lattice hierarchy, and apply it to compute the connected double
Hurwitz numbers (both in chambers and on walls) and the stationary GW invariants of P1

relative to two points.
This paper is part of a series of works [21, 41, 42, 43] in which the fermionic approach to

integrable hierarchies are applied to solve problems in Gromov–Witten type theories. These
works are inspired by Zhou [47]. In that work, Zhou derived a formula for the connected bosonic
n-point functions of a tau-function of the KP hierarchy in terms of the KP-affine coordinates on
the Sato Grassmannian. See [22, 29, 36, 37] for the basics of the boson-fermion correspondence
and Sato’s theory of integrable hierarchies, and see [1, 19, 46] for an introduction of the KP-
affine coordinates and the application to the Witten–Kontsevich tau-function [27, 44]. Inspired
by Zhou’s work on KP hierarchy, we have derived formulas to compute the connected bosonic n-
or (n,m)-point functions for other integrable hierarchies including the BKP hierarchy [6, 22] and
diagonal tau-functions of 2-BKP hierarchy, see [41] and [42] respectively. Moreover, in [21] the
authors have developed a strategy to find the quantum spectral curve of type B in the sense of
Gukov–Su lkowski [18] using BKP-affine coordinates, and computed the quantum spectral curve
for spin Hurwitz numbers [11, 13]. In [43], the same method have been applied to find the
quantum spectral curve of type B for the generalized Brézin–Gross–Witten models. Now the
present paper is devoted to the computation of the free energy of a diagonal tau-functions of
2-Toda hierarchy.

In the case of KP (resp. BKP) hierarchy, the information of a tau-function τ is encoded
entirely in its KP- (resp. BKP-) affine coordinates, and finding affine coordinates is equivalent
to expressing the tau-function as a Bogoliubov transform of the fermionic vacuum using only
fermionic creators, see [41, 47]. However, in the case of 2-Toda [40] or N -component KP hi-
erarchy [25] (for a general N ≥ 2), such Bogoliubov transforms are not unique and yet we do
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not know a canonical way to specify a set of coordinates. Nevertheless, in the case of diagonal
tau-functions of 2-Toda hierarchy, the information is encoded in a function f : Z+ 1

2 → C which
can be regarded as a substitute of affine coordinates, and we are able to express the connected
(n,m)-point functions in terms of f .

1.3 Main results

Now we state our main results of this paper. Let f : Z+ 1
2 → C be an arbitrary function defined

on the set of half-integers, and let

f̂ =
∑

s∈Z+ 1
2

f(s):ψsψ
∗
−s:

be an operator on the fermionic Fock space, then

τf (t+, t−) =
〈
0
∣∣Γ+(t+) exp

(
f̂
)
Γ−(t−)

∣∣0〉
is a diagonal tau-function of the 2d Toda lattice hierarchy. Our main theorem of the paper is
the following formula for the connected (n,m)-point functions:

Theorem 1.1. The connected (n,m)-point functions are given by∑
j1,...,jn,k1,...,km≥1

∂m+n log τf (t+, t−)

∂t+j1 · · · ∂t
+
jn
∂t−k1 · · · ∂t

−
km

∣∣∣∣
t=0

·
n∏

a=1

z−ja−1
a ·

m∏
b=1

zkb−1
n+b

= (−1)n+m−1
∑

(n+m)-cycles

n+m∏
i=1

Bσ(i),σ(i+1) −
δn,2δm,0 + δn,0δm,2

(z1 − z2)2
, (1.1)

where the summations are taken over all (n+m)-cycles σ, and we denote σ(n+m+ 1) = σ(1).
And Bi,j are given by

Bi,j =



∑
k≥0

z−k−1
i zkj if i < j ≤ n or n < i < j,∑

k≥0

e−f(k+ 1
2
)z−k−1

i zkj if i ≤ n < j,

−
∑
k≥0

z−k−1
j zki if j < i ≤ n or n < j < i,

−
∑
k≥0

ef(−k− 1
2
)z−k−1

j zki if j ≤ n < i.

Then we are able to apply this formula to the concrete computations of the connected double
Hurwitz numbers mentioned above. Using the results in [15, 30, 38], one may find that the
corresponding functions f : Z + 1

2 → C for the various double Hurwitz numbers are as follows:

(1) for the ordinary double Hurwitz numbers: f (2)(s) = s2

2 ,

(2) for the double Hurwitz numbers with completed r-cycles: f (r)(s) = sr

r! ,

(3) for the mixed double Hurwitz numbers:

fmix(s) =



s2

2
u− log

−s− 1
2∏

j=1

(1 − jt) if s < 0,

s2

2
u+ log

s− 1
2∏

j=1

(1 + jt) if s > 0.
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Moreover, the generating series of the stationary Gromov–Witten invariants of P1 relative to
two points 0,∞ ∈ P1 is also a diagonal tau-function of the 2d Toda lattice hierarchy. This was
established by Okounkov and Pandharipande [33] using the GW/Hurwitz correspondence, and
in this case the function f is

fP1(s) =
∑
i≥0

xi ·
si+1

(i+ 1)!
, ∀s ∈ Z +

1

2
.

Furthermore, we will fix t− and regard τf (t+, t−) as a tau-function of the KP hierarchy with
KP-time variables t+. Then the following result gives an example of finding relations between
different hierarchies from the fermionic point of view (see Section 5 for details):

Theorem 1.2. The KP-affine coordinates for τf (t+, t−) (with fixed t− and KP-time vari-
ables t+) are

afn,m = (−1)n · s(m|n)(t
−) · ef(−m− 1

2
)−f(n+ 1

2
), (1.2)

for every m,n ≥ 0.

Combining this result with Zhou’s original formula for KP tau-functions (see [47, Section 5])
will enable one to compute the single Hurwitz numbers.

The rest of this paper is arranged as follows. In Section 2, we recall some preliminaries of the
boson-fermion correspondence. In Section 3, we compute the disconnected fermionic and bosonic
(n,m)-point functions of a diagonal tau-function. Then in Section 4, we compute the connected
bosonic (n,m)-point functions and prove the formula (1.1) using the results in Section 3. In
Section 5, we fix t− and compute the KP-affine coordinates of τf (t+, t−). Finally, we apply (1.1)
to the connected double Hurwitz numbers and the relative stationary GW invariants of P1 in
Sections 6 and 7, respectively.

2 Preliminaries

In this section, we recall some preliminaries of the boson-fermion correspondence and the 2d
Toda lattice hierarchy. See, e.g., [22, 29, 31, 40] for more details.

2.1 Free fermions and fermionic Fock space

In this subsection, we recall the semi-infinite wedge construction of the fermionic Fock space F
and the action of free fermions. See [29] and [24, Chapter 14].

Let a = (a1, a2, . . . ) be a sequence of half-integers ai ∈ Z + 1
2 satisfying the condition

a1 < a2 < a3 < · · · . The sequence a is said to be admissible if∣∣∣∣(Z≥0 +
1

2

)
− {a1, a2, . . . }

∣∣∣∣ <∞,

∣∣∣∣{a1, a2, . . . } − (Z≥0 +
1

2

)∣∣∣∣ <∞.

For an admissible sequence a = (a1, a2, . . . ), we denote by |a⟩ the following semi-infinite wedge
product

|a⟩ = za1 ∧ za2 ∧ za3 ∧ · · · ,

and denote by F the infinite-dimensional vector space of all formal (infinite) summations of the
form ∑

a: admissible

ca|a⟩, ca ∈ C.
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The charge of the basis vector |a⟩ ∈ F is defined to be the following integer:

charge(|a⟩) =

∣∣∣∣(Z≥0 +
1

2

)
− {a1, a2, . . . }

∣∣∣∣− ∣∣∣∣{a1, a2, . . . } − (Z≥0 +
1

2

)∣∣∣∣.
This gives us a decomposition of the fermionic Fock space

F =
⊕
n∈Z

F (n),

where F (n) is spanned by all basis vectors |a⟩ of charge n. We will denote

|n⟩ = zn+
1
2 ∧ zn+

3
2 ∧ zn+

5
2 ∧ · · · ∈ F (n),

and in particular,

|0⟩ = z
1
2 ∧ z

3
2 ∧ z

5
2 ∧ · · · ∈ F (0).

The vector |0⟩ is called the fermionic vacuum vector. The subspace F (0) has a basis labeled by
all partitions of integers {µ}. Let µ = {a1, a2, . . . } be a partition where µ1 ≥ µ2 ≥ · · · ≥ µl >
µl+1 = µl+2 = · · · = 0, and denote

|µ⟩ = z
1
2
−µ1 ∧ z

3
2
−µ2 ∧ z

5
2
−µ3 ∧ · · · ∈ F (0), (2.1)

then {|µ⟩} form a basis for F (0).
Now we recall the action of free fermions ψr, ψ

∗
r (where r ∈ Z + 1

2) on F . Let ψr, ψ
∗
r be the

following operators on F :

ψr|a⟩ = zr ∧ |a⟩, ∀r ∈ Z +
1

2
, (2.2)

and

ψ∗
r |a⟩ =

{
(−1)k+1 · za1 ∧ za2 ∧ · · · ∧ ẑak ∧ · · · if ak = −r for some k,

0 otherwise.
(2.3)

Then one easily checks that the following anti-commutation relations hold:

[ψr, ψs]+ = [ψ∗
r , ψ

∗
s ]+ = 0, [ψr, ψ

∗
s ]+ = δr+s,0 · id, ∀r, s ∈ Z +

1

2
, (2.4)

where the bracket is defined by [a, b]+ = ab+ba. In other words, (2.2) and (2.3) define an action
of the Clifford algebra on F . The operators {ψr} all have charge −1, and {ψ∗

r} all have charge 1.
Moreover, one easily checks that

ψr|0⟩ = ψ∗
r |0⟩ = 0, ∀r > 0,

and every basis vector |µ⟩ ∈ F (0) (where µ is a partition) can be obtained by applying opera-
tors {ψr, ψ

∗
r}r<0 to the vacuum |0⟩ in the following way:

|µ⟩ = (−1)n1+···+nk · ψ−m1− 1
2
ψ∗
−n1− 1

2

· · ·ψ−mk− 1
2
ψ∗
−nk− 1

2

|0⟩, (2.5)

where µ = (m1, . . . ,mk | n1, . . . , nk) is the Frobenius notation (see, e.g., [28] for an introduction)
for the partition µ. The operators {ψr, ψ

∗
r}r<0 are called the fermionic creators, and {ψr, ψ

∗
r}r>0

are called the fermionic annihilators.
Furthermore, one can define an inner product (·, ·) on the Fock space F by taking {|a⟩ | a is

admissible} to be an orthonormal basis. Given two admissible sequences a and b, we denote by
⟨b|a⟩ = (|a⟩, |b⟩) the inner product of |a⟩ and |b⟩. Then ψr and ψ∗

−r are adjoint to each other
with respect to this inner product. Let A be an arbitrary operator (in terms of ψr, ψ

∗
s) on F ,

then the inner product of |a⟩ with A|b⟩ will be denoted by ⟨a|A|b⟩. We will also denote by ⟨A⟩
the vacuum expectation value of an operator A:

⟨A⟩ = ⟨0|A|0⟩.
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2.2 Cut-and-join operator

In this subsection we recall the cut-and-join operator and its eigenvalues. The cut-and-join
operator plays an important role in the study of Hurwitz numbers, see, e.g., [16, 30, 45].

Let µ = (µ1, µ2, . . . , µl) be a partition, and define

κµ =
l∑

i=1

µi(µi − 2i+ 1).

In particular, we denote κ(∅) = 0 for the empty partition. The cut-and-join operator K(2) on
the fermionic Fock space is defined to be

K(2) =
∑

s∈Z+ 1
2

s2

2
:ψsψ

∗
−s:. (2.6)

Then one has (see [30])

K(2)|µ⟩ =
κµ
2
|µ⟩, (2.7)

where |µ⟩ is the basis vector (2.1) of F (0).

2.3 Boson-fermion correspondence

In this subsection, we recall the bosonic Fock space and boson-fermion correspondence. See [29]
for details.

Let αn be the following operators on F :

αn =
∑

s∈Z+ 1
2

:ψ−sψ
∗
s+n:, n ∈ Z,

where :ψ−sψ
∗
s+n: denotes the normal-ordered product of fermions defined by

:ϕr1ϕr2 · · ·ϕrn : = (−1)σϕrσ(1)
ϕrσ(2)

· · ·ϕrσ(3)
,

where ϕk is either ψk or ψ∗
k, and σ ∈ Sn is a permutation such that rσ(1) ≤ · · · ≤ rσ(n). The

operator α0 is called the charge operator on F . These operators {αn}n∈Z satisfy the following
commutation relations:

[αm, αn] = mδm+n,0 · id, (2.8)

i.e., they generate a Heisenberg algebra. The normal-ordered products for the bosons {αn}n∈Z
are defined by

:αn1 · · ·αnk
: = αnσ(1)

· · ·αnσ(k)
,

where σ ∈ Sk such that nσ(1) ≤ · · · ≤ nσ(k). Denote

ψ(ξ) =
∑

s∈Z+ 1
2

ψsξ
−s− 1

2 , ψ∗(ξ) =
∑

s∈Z+ 1
2

ψ∗
sξ

−s− 1
2 ,

and

α(ξ) = :ψ(ξ)ψ∗(ξ): =
∑
n∈Z

αnξ
−n−1, (2.9)
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then the commutation relation (2.8) and the anti-commutation relations (2.4) are equivalent to
the following operator product expansions, respectively:

α(ξ)α(η) = :α(ξ)α(η): +
1

(ξ − η)2
,

ψ(ξ)ψ(η) = :ψ(ξ)ψ(η):,

ψ∗(ξ)ψ∗(η) = :ψ∗(ξ)ψ∗(η):,

ψ(ξ)ψ∗(η) = :ψ(ξ)ψ∗(η): +
1

ξ − η
,

Moreover, we have

⟨ψ(z)ψ∗(w)⟩ = ⟨ψ∗(z)ψ(w)⟩ =

∞∑
k=0

z−k−1wk = iz,w
1

z − w
,

where the notation iz,w means expanding on {|z| > |w|}.

The bosonic Fock space B is defined by B := Λ
[[
w,w−1

]]
, where Λ is the space of symmetric

functions in some formal variables x = (x1, x2, . . . ), and w is a formal variable. The boson-
fermion correspondence is a linear isomorphism Φ: F → B of vector spaces, given by (see,
e.g., [29, Section 5]):

Φ: |a⟩ ∈ F (m) 7→ wm ·
〈
m
∣∣e∑∞

n=1
pn
n
αn
∣∣a〉,

where pn = pn(x) ∈ Λ (n ≥ 1) is the Newton symmetric function of degree n. In particular, by
restricting to F (0) one obtains an isomorphism

F (0) → Λ, |µ⟩ 7→ sµ =
〈
0
∣∣e∑∞

n=1
pn
n
αn
∣∣µ〉,

where sµ = sµ(t) is the Schur function (see [28] for an introduction) indexed by the partition µ,
and t = (t1, t2, t3, . . . ) where tn = pn

n . Using the above isomorphism, one can represent the
bosons {αn} and fermions {ψr, ψ

∗
s} as operators on the bosonic Fock space. One has

Φ(αn|a⟩) =

n
∂

∂pn
Φ(|a⟩), n > 0,

p−n · Φ(|a⟩), n < 0,

and

Φ(ψ(ξ)|a⟩) = Ψ(ξ)Φ(|a⟩), Φ(ψ∗(ξ)|a⟩) = Ψ∗(ξ)Φ(|a⟩),

where Ψ(ξ),Ψ∗(ξ) are the vertex operators

Ψ(ξ) = exp

( ∞∑
n=1

pn
n
ξn

)
exp

(
−

∞∑
n=1

ξ−n ∂

∂pn

)
eKξα0 ,

Ψ∗(ξ) = exp

(
−

∞∑
n=1

pn
n
ξn

)
exp

( ∞∑
n=1

ξ−n ∂

∂pn

)
e−Kξ−α0 ,

and the actions of eK and ξα0 are defined by(
eKf

)
(z, T ) = z · f(z, T ),

(
ξα0f

)
(z, T ) = f(ξz, T ).
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2.4 Tau-functions of 2d Toda lattice hierarchy

Now we recall the construction of tau-functions of the 2d Toda lattice hierarchy as vacuum
expectation values. See [39, 40] and [31, Appendix].

Let t± =
(
t±1 , t

±
2 , t

±
3 , . . .

)
be two sequences of formal variables. Denote

Γ±
(
t±
)

= exp

(∑
n≥1

t±nα±n

)
.

Then one has (see, e.g., [31, Appendix]):

Γ−(t−)|0⟩ =
∑
µ

sµ(t−)|µ⟩. (2.10)

Now let A be an operator of charge 0 on F , and define

τn(t+, t−) =
〈
n
∣∣Γ+(t+)AΓ−(t−)

∣∣n〉, n ∈ Z,

then by the boson-fermion correspondence one has

〈
n
∣∣Γ+(t+)αkAΓ−(t−)

∣∣n〉 =


∂

∂t+k
τn, k > 0,

−kt+−k · τn, k < 0.

(2.11)

Moreover, since αn and α−n are adjoint to each other with respect to the inner product (·, ·)
on F , one has

〈
n
∣∣Γ+(t+)AαkΓ−(t−)

∣∣n〉 =


kt−k · τn, k > 0,
∂

∂t−−k

τn, k < 0.
(2.12)

The function τn(t+, t−) is a tau-function of the 2d Toda lattice hierarchy if[
A⊗A,

∑
s∈Z+ 1

2

ψ∗
s ⊗ ψ−s

]
= 0.

This relation is equivalent to the Hirota bilinear relation [40, formula (1.3.26)] of the 2d Toda
lattice hierarchy.

Let τn(t+, t−) be a tau-function of the 2d Toda lattice hierarchy, then for every fixed inte-
ger n and time t+, the function τn(t+, t−) is a tau-function of the KP hierarchy with KP-time
variables t−; and similarly for fixed integer n and time t−, τn(t+, t−) is a tau-function of the
KP hierarchy with KP-time variables t+.

3 Bosonic (n,m)-point functions of diagonal tau-functions

In this paper, we will focus on the so-called diagonal tau-function of the 2d Toda lattice hierarchy,
since many interesting examples of tau-functions coming from algebraic geometry are of this
form. Let

f : Z +
1

2
→ C (3.1)
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be a function defined on the set of half-integers, and denote by f̂ the following element in the

infinite-dimensional Lie algebra ĝl(∞):

f̂ =
∑

s∈Z+ 1
2

f(s):ψsψ
∗
−s: =

∑
s<0

f(s)ψsψ
∗
−s −

∑
s>0

f(s)ψ∗
−sψs. (3.2)

A diagonal tau-function is of the following form:

τf =
〈
0
∣∣Γ+(t+) exp

(
f̂
)
Γ−(t−)

∣∣0〉. (3.3)

In this section, we first compute the fermionic (2n, 2m)-point functions associated to τf ,
and then use this result and the boson-fermion correspondence to compute the (disconnected)
bosonic (n,m)-point functions.

Remark 3.1. The results for the tau-functions

τn,f =
〈
n
∣∣Γ+(t+) exp

(
f̂
)
Γ−(t−)

∣∣n〉
can be obtained by simply shifting the arguments of the function f by n.

3.1 Some basic computations

Let f̂ be the operator (3.2). In this subsection, we discuss some properties of f̂ which will be
useful in the following subsections.

First, it is clear that

exp
(
f̂
)
|0⟩ = |0⟩, ⟨0| exp(−f̂) = ⟨0|. (3.4)

Moreover, using the anti-commutation relations (2.4) we may easily check that[
f̂ , ψr

]
= f(r)ψr,

[
f̂ , ψ∗

r

]
= −f(−r)ψ∗

r , ∀r ∈ Z +
1

2
.

Then by the Baker–Campbell–Hausdorff formula, we have

e−f̂ψre
f̂ = ψr −

[
f̂ , ψr

]
+

1

2!

[
f̂ ,
[
f̂ , ψr

]]
− · · · = e−f(r)ψr,

e−f̂ψ∗
ref̂ = ψr −

[
f̂ , ψ∗

r

]
+

1

2!

[
f̂ ,
[
f̂ , ψ∗

r

]]
− · · · = ef(−r)ψ∗

r . (3.5)

We will denote

ψf (z) = e−f̂ψ(z)ef̂ =
∑
r

e−f(r)ψrz
−r− 1

2 ,

ψ∗
f (z) = e−f̂ψ∗(z)ef̂ =

∑
r

ef(−r)ψ∗
rz

−r− 1
2 . (3.6)

Denote by Af (z, w) the following series:

Af (z, w) =
∞∑
k=0

ef(k+
1
2
)z−k−1wk,

then we have

⟨ψf (z)ψ∗(w)⟩ =
∞∑
k=0

e−f(k+ 1
2
)z−k−1wk = A−f (z, w),

⟨ψ∗
f (z)ψ(w)⟩ =

∞∑
k=0

ef(−k− 1
2
)z−k−1wk = Af(−·)(z, w), (3.7)

where the notation f(−·) means the function r 7→ f(−r) for r ∈ Z + 1
2 . Moreover,

⟨ψf (z)ψ∗
f (w)⟩ = ⟨ψ∗

f (z)ψf (w)⟩ = iz,w
1

z − w
= A0(z, w). (3.8)
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3.2 Computation of fermionic (2n,2m)-point functions

In this subsection we compute the fermionic (2n, 2m)-point functions associated to τf , where τf
is the tau-function (3.3) of the 2d Toda lattice hierarchy.

The fermionic (2n, 2m)-point function associated to τf is defined to be

〈
ψ(z1)ψ

∗(w1) · · ·ψ(zn)ψ∗(wn)ef̂ψ(zn+1)ψ
∗(wn+1) · · ·ψ(zn+m)ψ∗(wn+m)

〉
. (3.9)

By (3.4), we can rewrite (3.9) as

⟨ψf (z1)ψ
∗
f (w1) · · ·ψf (zn)ψ∗

f (wn)ψ(zn+1)ψ
∗(wn+1) · · ·ψ(zn+m)ψ∗(wn+m)⟩. (3.10)

For simplicity, we denote

φi = ψf (zi), φ∗
i = ψ∗

f (wi) for 1 ≤ i ≤ n,

φj = ψ(zj), φ∗
j = ψ∗(wj) for n+ 1 ≤ j ≤ n+m.

Notice that ψf (z), ψ∗
f (w) are of the form (3.6), thus we may apply Wick’s theorem (see, e.g., [29,

Section 4.5]) to (3.10). Since ⟨φiφj⟩ = ⟨φ∗
iφ

∗
j ⟩ = 0, we rewrite (3.10) as

⟨φ1φ
∗
1 · · ·φn+mφ

∗
n+m⟩ =

∑
p

sgn(p) · C(p)1C(p)2 · · ·C(p)n+m, (3.11)

where the sequence p = (p1, . . . , pn+m) runs over permutations of (1, 2, . . . , n+m), and sgn(p) =
±1 is the sign of this permutation, and C(p)i is given by

C(p)i =

{
⟨φiφ

∗
pi⟩ if pi ≥ i,

−⟨φ∗
piφi⟩ if pi < i.

Then by plugging (3.7) and (3.8) into the above definition of C(p)i, we may easily see that the
right-hand side of (3.11) is a determinant.

Theorem 3.2. The fermionic (2n, 2m)-point function is given by

〈
ψ(z1)ψ

∗(w1) · · ·ψ(zn)ψ∗(wn)ef̂ψ(zn+1)ψ
∗(wn+1) · · ·ψ(zn+m)ψ∗(wn+m)

〉
= det(Ci,j),

where (Ci,j) is the following (n+m) × (n+m) matrix:

Ci,j =

{
⟨φiφ

∗
j ⟩, i ≤ j,

−⟨φ∗
jφi⟩, i > j,

or more precisely,

Ci,j =


A0(zi, wj) if i ≤ j ≤ n or n < i ≤ j,

A−f (zi, wj) if i ≤ n < j,

−A0(wj , zi) if j < i ≤ n or n < j < i,

−Af(−·)(wj , zi) if j ≤ n < i.
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3.3 Computation of bosonic (n,m)-point functions

In this section, we compute the following bosonic (n,m)-point function associated to the tau-
function τf :〈

α(z1) · · ·α(zn)ef̂α(zn+1) · · ·α(zn+m)
〉
, (3.12)

where α(z) is the generating series (2.9) of bosons.
First, we need to compute the normally ordered fermionic (2n, 2m)-point function using the

main result in last subsection. We have

Proposition 3.3. The normally ordered fermionic (2n, 2m)-point function〈
:ψ(z1)ψ

∗(w1)::ψ(z2)ψ
∗(w2): · · · :ψ(zn)ψ∗(wn):ef̂

:ψ(zn+1)ψ
∗(wn+1): · · · :ψ(zn+m)ψ∗(wn+m):

〉
(3.13)

equals to the determinant det
(
C̃i,j

)
, where

(
C̃i,j

)
is the (n+m) × (n+m) matrix

C̃i,j =

{
0 if i = j,

Ci,j if i ̸= j.

Proof. Recall that we have

:ψ(z)ψ∗(w): = ψ(z)ψ∗(w) − 1

z − w

and ⟨0| = ⟨0|e−f̂ , thus (3.13) equals to〈(
ψ(z1)ψ

∗(w1) −
1

z1 − w1

)
· · ·
(
ψ(zn)ψ∗(wn) − 1

zn − wn

)
ef̂

×
(
ψ(zn+1)ψ

∗(wn+1) −
1

zn+1 − wn+1

)
· · ·
(
ψ(zn+m)ψ∗(wn+m) − 1

zn+m − wn+m

)〉
=

〈(
ψf (z1)ψ

∗
f (w1) −

1

z1 − w1

)
· · ·
(
ψf (zn)ψ∗

f (wn) − 1

zn − wn

)
×
(
ψ(zn+1)ψ

∗(wn+1) −
1

zn+1 − wn+1

)
· · ·
(
ψ(zn+m)ψ∗(wn+m) − 1

zn+m − wn+m

)〉
=

∑
K1⊔L1=[n],K2⊔L2=[m]

( ∏
l∈L1

fl

)( ∏
l∈L2

f ′l

)
⟨ψK1ψ

′
K2

⟩, (3.14)

where [n] denotes the set {1, 2, . . . , n}, and

fl = − 1

zl − wl
= −A0(zl, wl), f ′l = − 1

zn+l − wn+l
= −A0(zn+l, wn+l),

and for a set of indices K = {k1, k2, . . . , ks} with k1 < k2 < · · · < ks,

ψK = ψf (zk1)ψ∗
f (wk1)ψf (zk2)ψ∗

f (wk2) · · ·ψf (zks)ψ
∗
f (wks),

ψ′
K = ψ(zn+k1)ψ∗(wn+k1)ψ(zn+k2)ψ∗(wn+k2) · · ·ψ(zn+ks)ψ

∗(wn+ks).

Now we apply Wick’s theorem to ⟨ψK1ψ
′
K2

⟩, and then compare the resulting summation with

formula (3.11). In this way we easily see that (3.14) equals to determinant det(C̃i,j), where the

(n+m) × (n+m) matrix
(
C̃i,j

)
should be

C̃i,j = Ci,j − δi,j ·
1

zi − wi
, 1 ≤ i ≤ n+m.

Then the conclusion holds because Ci,i = A0(zi, wi) = 1
zi−wi

. ■
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Now recall that α(z) = :ψ(z)ψ∗(z):. Thus by taking wi → zi for every i in the above
proposition, we obtain

Theorem 3.4. The bosonic (n,m)-point function is given by

⟨α(z1) · · ·α(zn)ef̂α(zn+1) · · ·α(zn+m)⟩ = det(Bi,j),

where (Bi,j) is the following (n+m) × (n+m) matrix:

Bi,j =



A0(zi, zj) if i < j ≤ n or n < i < j,

A−f (zi, zj) if i ≤ n < j,

−A0(zj , zi) if j < i ≤ n or n < j < i,

−Af(−·)(zj , zi) if j ≤ n < i,

0 if i = j.

(3.15)

Remark 3.5. Notice that the notation Bi,j depends on the choice of (n,m).

Remark 3.6. In particular, for (n,m) = (1, 0) or (0, 1), one easily sees that〈
α(z1)e

f̂
〉

=
〈
ef̂α(z1)

〉
= 0. (3.16)

And for (n,m) = (2, 0) or (0, 2), we have〈
α(z1)α(z2)e

f̂
〉

=
〈
ef̂α(z1)α(z2)

〉
= iz1,z2

1

(z1 − z2)2
,

where

iz1,z2
1

(z1 − z2)2
=

∞∑
n=1

nz−n−1
1 zn−1

2 .

4 Computation of connected bosonic (n,m)-point functions

In this subsection, we compute the connected bosonic (n,m)-point functions associated to the
tau-function τf of the form (3.3). We also show that the connected bosonic (n,m)-point functions
are the generating series of coefficients of the free energy log τf (t+, t−).

4.1 Connected bosonic (n,m)-point functions

In this subsection, we introduce the notion of connected bosonic (n,m)-point functions.
Let τf be the tau-function defined by (3.3). The connected bosonic (n,m)-point functions

⟨α(z1) · · ·α(zn)α(zn+1) · · ·α(zn+m)⟩cf ;n,m associated to τf are defined by the following Möbius
inversion formulas:

⟨α(z[n+m])⟩f ;m,n =
∑

I1⊔···⊔Ik=[n+m]

1

k!
⟨α(zI1)⟩cf ;n1,m1

· · · ⟨α(zIk)⟩cf ;nk,mk
,

⟨α(z[n+m])⟩cf ;m,n =
∑

I1⊔···⊔Ik=[n+m]

(−1)k−1

k
⟨α(zI1)⟩f ;n1,m1 · · · ⟨α(zIk)⟩f ;nk,mk

,

where [n + m] = {1, 2, . . . , n + m}, and I1, . . . , Ik ⊂ [n + m] are nonempty subsets. On the
right-hand side, we denote

nj =
∣∣Ij ∩ [n]

∣∣, mj =
∣∣Ij\[n]

∣∣, 1 ≤ j ≤ k. (4.1)



Diagonal Tau-Functions of 2D Toda Lattice Hierarchy 13

Here ⟨α(zIj )⟩f ;nj ,mj
denotes the disconnected bosonic (nj ,mj)-point function

⟨α(zIj )⟩f ;nj ,mj
=
〈
α(zi1) · · ·α(zinj

)ef̂α
(
zinj+1

)
· · ·α(zinj+mj

)
〉
,

where Ij = {i1, . . . , inj+mj} with i1 < · · · < inj ≤ n < inj+1 < · · · < inj+mj . In particular,
⟨α(z[n+m])⟩f ;n,m is exactly the bosonic (n,m)-point function (3.12).

Remark 4.1. The above definition of connected (n,m)-point functions via Möbius inversion
formulas is motivated by the inclusion-exclusion principle, see Rota [35]. In the case of double
Hurwitz numbers, the disconnected (n,m)-point functions count disconnected covers between
Riemann surfaces while connected (n,m)-point functions count connected covers, see Section 6
for details.

4.2 Examples for small (n,m)

In this subsection, we compute the connected bosonic (n,m)-point functions for small (n,m).
We represent the results in terms of the free energy

Ff (t+, t−) = log τf (t+, t−).

Given a pair of nonnegative integers (n,m) with (n,m) ̸= (0, 0), we denote

Gf ;n,m(z1, . . . , zn+m)

=
〈
Γ+(t+)α(z1) · · ·α(zn)ef̂α(zn+1) · · ·α(zn+m)Γ−(t−)

〉
/τf (t+, t−), (4.2)

and denote by Gc
f ;n,m its connected version (obtained by Möbius inversion)

Gc
f ;n,m(z1, . . . , zn+m) =

∑
I1⊔···⊔Ik=[n+m]

(−1)k−1

k
Gf ;n1,m1(zI1) · · ·Gf ;nk,mk

(zIk),

where we use the notation (4.1). Then the bosonic (n,m)-point functions can be obtained by
taking t+ = t− = 0:〈

α
(
z[n+m]

)〉
f ;m,n

= Gf ;n,m(z1, . . . , zn+m)|t=0,〈
α
(
z[n+m]

)〉c
f ;m,n

= Gc
f ;n,m(z1, . . . , zn+m)|t=0.

Here for simplicity, we write t = 0 instead of t+ = t− = 0. In the rest of this subsection, we
compute some examples of Gc

f ;n,m for small (n,m).

Example 4.2. For (n,m) = (1, 0), (1, 0), by (2.11) and (2.12) we have

Gf ;1,0(z) =
1

τf

∞∑
k=1

(
z−k−1 ∂

∂t+k
+ kt+k z

k−1

)
τf =

∞∑
k=1

(
∂ log τf

∂t+k
z−k−1 + kt+k z

k−1

)
,

Gf ;0,1(z) =
1

τf

∞∑
k=1

(
zk−1 ∂

∂t−k
+ kt−k z

−k−1

)
τf =

∞∑
k=1

(
∂ log τf

∂t−k
zk−1 + kt−k z

−k−1

)
.

By Möbius inversion formulas, we know

Gc
f ;1,0(z) = Gf ;1,0(z), Gc

f ;0,1(z) = Gf ;0,1(z), (4.3)
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and then by restricting to t+ = t− = 0, we get

⟨α(z)⟩cf ;1,0 =
∞∑
n=1

∂Ff (t+, t−)

∂t+n

∣∣∣∣
t=0

· z−n−1,

⟨α(z)⟩cf ;0,1 =

∞∑
n=1

∂Ff (t+, t−)

∂t−n

∣∣∣∣
t=0

· zn−1.

This is equivalent to say that the connected bosonic 1-point functions are generating series of
the coefficients of linear terms in the free energy Ff (t+, t−). Moreover, by (3.16) we already
know Gf ;1,0(z)|t=0 = Gf ;1,0(z)|t=0 = 0, thus we obtain

∂Ff (t+, t−)

∂t+n

∣∣∣∣
t=0

= 0,
∂Ff (t+, t−)

∂t−n

∣∣∣∣
t=0

= 0, ∀n ≥ 1.

Example 4.3. For (n,m) = (1, 1), we have

Gf ;1,1(z1, z2) =
1

τf

∞∑
k,l=1

(
z−k−1
1

∂

∂t+k
+ kt+k z

k−1
1

)(
zl−1
2

∂

∂t−l
+ lt−l z

−l−1
2

)
τf

=

∞∑
k,l=1

(
∂2Ff

∂t+k ∂t
−
l

z−k−1
1 zl−1

2 +
∂Ff

∂t+k

∂Ff

∂t−l
z−k−1
1 zl−1

2 + lt−l
∂Ff

∂t+k
z−k−1
1 z−l−1

2

+ kt+k
∂Ff

∂t−l
zk−1
1 zl−1

2 + klt+k t
−
l z

k−1
i z−l−1

2

)
.

And by Möbius inversion,

Gc
f ;1,1(z1, z2) = Gf ;1,1(z1, z2) −Gf ;1,0(z1)Gf ;0,1(z2) =

∞∑
k,l=1

∂2Ff

∂t+k ∂t
−
l

· z−k−1
1 zl−1

2 , (4.4)

thus by restricting to t+ = t− = 0, we get

⟨α(z1)α(z2)⟩cf ;1,1 =

∞∑
k,l=1

∂2Ff (t+, t−)

∂t+k ∂t
−
l

∣∣∣∣
t=0

· z−k−1
1 zl−1

2 .

Example 4.4. Now consider (n,m) = (2, 0). We have

Gf ;2,0(z1, z2) =
1

τf

∞∑
k,l=1

(
z−k−1
1

∂

∂t+k
+ kt+k z

k−1
1

)(
z−l−1
2

∂

∂t+l
+ lt+l z

l−1
2

)
τf

=

∞∑
k=1

kz−k−1
1 zk−1

2 +

∞∑
k,l=1

((
∂2Ff

∂t+k ∂t
+
l

+
∂Ff

∂t+k

∂Ff

∂t+l

)
z−k−1
1 z−l−1

2

+ lt+l
∂Ff

∂t+k
z−k−1
1 zl−1

2 + kt+k
∂Ff

∂t+l
zk−1
1 z−l−1

2 + klt+k t
+
l z

k−1
i zl−1

2

)
,

and

Gc
f ;2,0(z1, z2) = Gf ;2,0(z1, z2) −Gf ;1,0(z1)Gf ;1,0(z2)

= iz1,z2
1

(z1 − z2)2
+

∞∑
k,l=1

∂2Ff

∂t+k ∂t
+
l

· z−k−1
1 z−l−1

2 , (4.5)
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where

iz1,z2
1

(z1 − z2)2
=

∞∑
n=1

nz−n−1
1 zn−1

2 .

Thus, we have

⟨α(z1)α(z2)⟩cf ;2,0 = iz1,z2
1

(z1 − z2)2
+

∞∑
k,l=1

∂2Ff (t+, t−)

∂t+k ∂t
+
l

∣∣∣∣
t=0

· z−k−1
1 z−l−1

2 .

Similarly, one can also check that for (n,m) = (0, 2), we have

Gc
f ;0,2(z1, z2) = iz1,z2

1

(z1 − z2)2
+

∞∑
k,l=1

∂2Ff (t+, t−)

∂t−k ∂t
−
l

· zk−1
1 zl−1

2 , (4.6)

and thus

⟨α(z1)α(z2)⟩cf ;0,2 = iz1,z2
1

(z1 − z2)2
+

∞∑
k,l=1

∂2Ff (t+, t−)

∂t−k ∂t
−
l

∣∣∣∣
t=0

· zk−1
1 zl−1

2 .

And again by Remark 3.6, we finally see

∂2Ff (t+, t−)

∂t+k ∂t
+
l

∣∣∣∣
t=0

= 0,
∂2Ff (t+, t−)

∂t−k ∂t
−
l

∣∣∣∣
t=0

= 0, ∀k, l ≥ 1.

Example 4.5. For (n,m) = (2, 1), concrete computation tells us (here we omit the details)

Gc
f ;2,1(z1, z2, z3) =

∑
j,k,l≥1

∂3Ff (t+, t−)

∂t+j ∂t
+
k ∂t

−
l

· z−j−1
1 z−k−1

2 zl−1
3 .

Similarly, the result in the case (n,m) = (1, 2) is

Gc
f ;1,2(z1, z2, z3) =

∑
j,k,l≥1

∂3Ff (t+, t−)

∂t+j ∂t
−
k ∂t

−
l

· z−j−1
1 zk−1

2 zl−1
3 .

For (n,m) = (0, 3) and (3, 0), the results are (here we omit the details)

Gc
f ;3,0(z1, z2, z3) =

∑
j,k,l≥1

∂3Ff (t+, t−)

∂t+j ∂t
+
k ∂t

+
l

· z−j−1
1 z−k−1

2 z−l−1
3 ,

Gc
f ;0,3(z1, z2, z3) =

∑
j,k,l≥1

∂3Ff (t+, t−)

∂t−j ∂t
−
k ∂t

−
l

· zj−1
1 zk−1

2 zl−1
3 .

And for (n,m) = (2, 2), the result is (here we omit the details)

Gc
f ;2,2(z1, z2, z3, z4) =

∑
i,j,k,l≥0

∂4Ff (t+, t−)

∂t+i ∂t
+
j ∂t

−
k ∂t

−
l

· z−i−1
1 z−j−1

2 zk−1
3 zl−1

4 .
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4.3 Relation to the free energy

Now we present the general relation between the connected bosonic (n,m)-point functions〈
α
(
z[n+m]

)〉c
f ;m,n

and the free energy Ff = log τf associated to the tau-function τf . First we
show that

Proposition 4.6. For every (n,m) with n+m ≥ 3, we have

Gc
f ;n,m(z1, . . . , zn+m)

=
∑

j1,...,jn,k1,...,km≥1

∂m+nFf (t+, t−)

∂t+j1 · · · ∂t
+
jn
∂t−k1 · · · ∂t

−
km

·
n∏

a=1

z−ja−1
a ·

m∏
b=1

zkb−1
n+b . (4.7)

Proof. This proposition is actually a straightforward modification of Zhou [47, Proposition 5.1].
Here we use the same method to prove this identity.

We prove this by induction on n+m. The conclusion holds in all the cases with n+m = 3 by
the examples in last subsection. Now assume the conclusion holds for all (n,m) with n+m ≤ i
(where i ≥ 3), and consider the case with n+m = i+ 1. Denote

G̃c
f ;n,m(z1, . . . , zn+m) = Gc

f ;n,m(z1, . . . , zn+m), for n+m ≤ 2, (4.8)

(see (4.3), (4.4), (4.5), and (4.6)); and for n + m ≥ 3, denote by G̃c
f ;n,m(z1, . . . , zn+m) the

right-hand side of (4.7). By the induction hypothesis, we have

G̃c
f ;n,m(z1, . . . , zn+m) = Gc

f ;n,m(z1, . . . , zn+m), for n+m ≤ i.

Now fix a pair (n,m) with n + m = i + 1. Without loss of generality, we may assume n > 0
(otherwise m > 0 and similar arguments will work). Denote

α̃(z) =
∞∑
k=1

(
z−k−1 ∂

∂t+k
+ kt+k z

k−1

)
,

then by the definition (4.2) and the induction hypothesis, we have

Gf ;n,m(z1, . . . , zn+m)

= e−Ff α̃(z1)
(
Gf ;n,m(z2, . . . , zn+m)eFf

)
= e−Ff α̃(z1)

(
eFf

∑
I1⊔···⊔Ik=[n+m]\{1}

1

k!
G̃c

f ;n1,m1
(zIi) · · · G̃c

f ;nk,mk
(zIk)

)
= e−Ff

(
α̃(z1)e

Ff
)
·

∑
I1⊔···⊔Ik=[n+m]\{1}

1

k!
G̃c

f ;n1,m1
(zIi) · · · G̃c

f ;nk,mk
(zIk)

+ α̃(z1)+
∑

I1⊔···⊔Ik=[n+m]\{1}

1

k!
G̃c

f ;n1,m1
(zI1) · · · G̃c

f ;nk,mk
(zIk),

where

α̃(z1)+ =

∞∑
k=1

z−k−1 ∂

∂t+k
.

Notice that by (4.3) and (4.8), we have

e−Ffα(z1)e
Ff = G̃c

f ;1,0(z1),
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thus the above computation gives

Gf ;n,m(z1, . . . , zn+m)

=
∑

I1⊔···⊔Ik=[n+m]\{1}

(
G̃c

f ;1,0(z1) ·
1

k!
G̃c

f ;n1,m1
(zIi) · · · G̃c

f ;nk,mk
(zIk)

+
1

k!

k∑
l=1

G̃c
f ;n1,m1

(zI1) · · · G̃c
f ;nl+1,ml

(z1, zIl) · · · G̃
c
f ;nk,mk

(zIk)

)
.

Now comparing this with the Möbius inversion formula

Gf ;n,m(z1, . . . , zn+m) =
∑

I1⊔···⊔Ik=[n+m]

1

k!
Gc

f ;n1,m1
(zI1) · · ·Gc

f ;nk,mk
(zIk),

and using the induction hypothesis, we easily see

G̃c
f ;n,m(z1, . . . , zn+m) = Gc

f ;n,m(z1, . . . , zn+m).

Thus the conclusion holds. ■

Now by taking t+ = t− = 0 in the above proposition and the concrete examples presented in
the previous subsection, we obtain the following

Corollary 4.7. The connected bosonic (n,m)-point function is given by〈
α
(
z[n+m]

)〉c
f ;n,m

= iz1,z2
δn,2δm,0

(z1 − z2)2
+ iz1,z2

δn,0δm,2

(z1 − z2)2

+
∑

j1,...,jn,k1,...,km≥1

∂m+nFf (t+, t−)

∂t+j1 · · · ∂t
+
jn
∂t−k1 · · · ∂t

−
km

∣∣∣∣
t=0

·
n∏

a=1

z−ja−1
a ·

m∏
b=1

zkb−1
n+b .

4.4 A formula for the connected bosonic (n,m)-point function

Now we are able to present our main result of this section. First recall the following combinatorial
result (see Zhou [47, Proposition 5.2])

Proposition 4.8 ([47]). Let {φ(ξ1, . . . , ξn)}n≥1 and {φc(ξ1, . . . , ξn)}n≥1 be two sequences of
functions that related to each other by Möbius inversion:

φ(ξ1, . . . , ξn) =
∑

I1⊔···⊔Ik=[n]

1

k!
φc(ξI1) · · ·φc(ξIk),

φc(ξ1, . . . , ξn) =
∑

I1⊔···⊔Ik=[n]

(−1)k−1

k
φ(ξI1) · · ·φ(ξIk),

where I1, . . . , Ik are nonempty, and ξI = (ξi)i∈I . If
{
φ
(
ξ[n]
)}

n≥1
are of the form

φ(ξ1, . . . , ξn) = det(M(ξi, ξj))1≤i,j≤n,

for some function M(ξ, η), then
{
φc
(
ξ[n]
)}

n≥1
are given by

φc(ξ1, . . . , ξn) = (−1)n−1
∑

n-cycles

n∏
i=1

M
(
ξσ(i), ξσ(i+1)

)
,

where the summations are taken over n-cycles σ, and we denote σ(n+ 1) = σ(1).
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Combine this proposition with Theorem 3.4, then we immediately see that the connected
bosonic (n,m)-point functions associated to τf are given by

〈
α
(
z[n+m]

)〉c
f ;n,m

= (−1)n+m−1
∑

(n+m)-cycles

n+m∏
i=1

Bσ(i),σ(i+1),

where Bi,j are given by (3.15). Then by Corollary 4.7, we conclude that

Theorem 4.9. Suppose Ff (t+, t−) = log τf (t+, t−) is the free energy associated to the tau-
function τf , then

∑
j1,...,jn,k1,...,km≥1

∂m+nFf (t+, t−)

∂t+j1 · · · ∂t
+
jn
∂t−k1 · · · ∂t

−
km

∣∣∣∣
t=0

·
n∏

a=1

z−ja−1
a ·

m∏
b=1

zkb−1
n+b

= (−1)n+m−1
∑

(n+m)-cycles

n+m∏
i=1

Bσ(i),σ(i+1) − iz1,z2
δn,2δm,0 + δn,0δm,2

(z1 − z2)2
, (4.9)

where the summations are taken over (n + m)-cycles σ, and we denote σ(n + m + 1) = σ(1).
The (n+m) × (n+m) matrix (Bi,j) are given by

Bi,j =


A0(zi, zj) if i < j ≤ n or n < i < j,

A−f (zi, zj) if i ≤ n < j,

−A0(zj , zi) if j < i ≤ n or n < j < i,

−Af(−·)(zj , zi) if j ≤ n < i.

A straightforward consequence of the above formula is

Corollary 4.10. One has∑
j1,...,jn,k1,...,km≥1

∂m+nFf (t+, t−)

∂t+j1 · · · ∂t
+
jn
∂t−k1 · · · ∂t

−
km

∣∣∣∣
t=0

= 0

unless j1 + j2 + · · · + jn = k1 + k2 + · · · + km.

Proof. Recall that A0(z, w), Af (z, w), and iz,w
1

(z−w)2
are all of the form∑

k≥0

ck · z−k−1wk,

thus the conclusion is proved by comparing the total orders of non-negative powers and negative
powers in the right-hand side of (4.9). ■

Furthermore, we have

Corollary 4.11. For every n > 0 or m > 0, we have

∂nFf (t+, t−)

∂t+j1 · · · ∂t
+
jn

∣∣∣∣
t=0

= 0, ∀j1, . . . , jn ≥ 1,

∂mFf (t+, t−)

∂t−k1 · · · ∂t
−
km

∣∣∣∣
t=0

= 0, ∀k1, . . . , km ≥ 1.

Proof. This is a straightforward consequence of Corollary 4.10. ■
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In the rest of this subsection, we give some examples of the formula (4.9). We only need to
consider the cases where n > 0 and m > 0 due to the above corollary.

Example 4.12. For (n,m) = (1, 1), there is only one 2-cycle σ = (12), thus∑
j,k≥1

∂2Ff (t+, t−)

∂t+j ∂t
−
k

∣∣∣∣
t=0

· z−j−1
1 zk−1

2 = −B1,2B2,1 = A−f (z1, z2)Af(−·)(z1, z2).

Example 4.13. For (n,m) = (2, 1), there are two 3-cycles σ = (123), (132), thus∑
j,k,l≥1

∂2Ff (t+, t−)

∂t+j ∂t
+
k ∂t

−
l

∣∣∣∣
t=0

· z−j−1
1 z−k−1

2 zl−1
3 = B1,2B2,3B3,1 +B1,3B3,2B2,1

= −A0(z1, z2)A−f (z2, z3)Af(−·)(z1, z3) +A−f (z1, z3)Af(−·)(z2, z3)A0(z1, z2).

And similarly, for (n,m) = (1, 2), we have∑
j,k,l≥1

∂2Ff (t+, t−)

∂t+j ∂t
−
k ∂t

−
l

∣∣∣∣
t=0

· z−j−1
1 zk−1

2 zl−1
3

= −A−f (z1, z2)A0(z2, z3)Af(−·)(z1, z3) +A−f (z1, z3)A0(z2, z3)Af(−·)(z1, z2).

Example 4.14. For (n,m) = (3, 1), there are six 4-cycles σ = (1234), (1243), (1324), (1342),
(1423), (1432), thus we have∑

i,j,k,l≥1

∂2Ff (t+, t−)

∂t+i ∂t
+
j ∂t

+
k ∂t

−
l

∣∣∣∣
t=0

· z−i−1
1 z−j−1

2 z−k−1
3 zl−1

4

= −B1,2B2,3B3,4B4,1 −B1,2B2,4B4,3B3,1 −B1,3B3,2B2,4B4,1

−B1,3B3,4B4,2B2,1 −B1,4B4,2B2,3B3,1 −B1,4B4,3B3,2B2,1

= A0(z1, z2)A0(z2, z3)A−f (z3, z4)Af(−·)(z1, z4)

−A0(z1, z2)A−f (z2, z4)Af(−·)(z3, z4)A0(z1, z3)

−A0(z1, z3)A0(z2, z3)A−f (z2, z4)Af(−·)(z1, z4)

−A0(z1, z3)A−f (z3, z4)Af(−·)(z2, z4)A0(z1, z2)

−A−f (z1, z4)Af(−·)(z2, z4)A0(z2, z3)A0(z1, z3)

+A−f (z1, z4)Af(−·)(z3, z4)A0(z2, z3)A0(z1, z2).

Similarly, for (n,m) = (1, 3), we have∑
i,j,k,l≥1

∂2Ff (t+, t−)

∂t+i ∂t
−
j ∂t

−
k ∂t

−
l

∣∣∣∣
t=0

· z−i−1
1 zj−1

2 zk−1
3 zl−1

4

= A−f (z1, z2)A0(z2, z3)A0(z3, z4)Af(−·)(z1, z4)

−A−f (z1, z2)A0(z2, z4)A0(z3, z4)Af(−·)(z1, z3)

−A−f (z1, z3)A0(z2, z3)A0(z2, z4)Af(−·)(z1, z4)

−A−f (z1, z3)A0(z3, z4)A0(z2, z4)Af(−·)(z1, z2)

−A−f (z1, z4)A0(z2, z4)A0(z2, z3)Af(−·)(z1, z3)

+A−f (z1, z4)A0(z3, z4)A0(z2, z3)Af(−·)(z1, z2).

And for (n,m) = (2, 2), we have∑
i,j,k,l≥1

∂2Ff (t+, t−)

∂t+i ∂t
+
j ∂t

−
k ∂t

−
l

∣∣∣∣
t=0

· z−i−1
1 z−j−1

2 zk−1
3 zl−1

4
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= A0(z1, z2)A−f (z2, z3)A0(z3, z4)Af(−·)(z1, z4)

−A0(z1, z2)A−f (z2, z4)A0(z3, z4)Af(−·)(z1, z3)

−A−f (z1, z3)Af(−·)(z2, z3)A−f (z2, z4)Af(−·)(z1, z4)

−A−f (z1, z3)A0(z3, z4)Af(−·)(z2, z4)A0(z1, z2)

−A−f (z1, z4)Af(−·)(z2, z4)A−f (z2, z3)Af(−·)(z1, z3)

+A−f (z1, z4)A0(z3, z4)Af(−·)(z2, z3)A0(z1, z2). (4.10)

Remark 4.15. It is worth mentioning that here our strategy for deriving the connected (n,m)-
point functions is different from the method used by Johnson [23]. In [23, Section 3], Johnson
computed the double Hurwitz numbers (a special example of the diagonal tau-functions of the 2d
Toda lattice hierarchy, see Section 6 for more details) by commuting the (bosonic) operators,
and his formula is a summation over some commutation patterns. And as a consequence, his
formula depends on the specific choice of the chamber µ± lie in. Now in this paper, we compute
directly using the anti-commutation relations of free fermions, and our formula (1.1) does not
require specifying the partitions µ± or listing out the commutation patterns.

Remark 4.16. Another formula calculating the connected correlators of a diagonal tau-function
of the 2d Toda lattice hierarchy can be found in [4, Proposition 3.6 and Theorem 5.3]. Their
method, as they stated in their abstract, essentially dealt with the hypergeometric tau-functions
of the KP hierarchy since they treated one of the two families t+ and t− as time variables and
the other as parameters. Their formula depends on complicated actions of certain operators and
summation over graphs. It would be interesting to compare their formula with ours and also
the formula derived by Zhou in [47] dealing with tau-functions of the KP hierarchy.

5 Reduction to tau-functions of KP hierarchy

In this section, we fix t− and regard a diagonal tau-function τf (t+, t−) as a tau-function of the
KP hierarchy with time variable t+, and compute the KP-affine coordinates of this tau-function.

5.1 Tau-functions of the KP hierarchy and affine coordinates

In this subsection, we recall some preliminaries of the affine coordinates of a tau-function of
the KP hierarchy, see [1, 47].

Let τ(t) be a tau-function of the KP hierarchy satisfying the initial value condition τ(0) = 1,
where t = (t1, t2, t3, . . . ) are the KP-time variables. In Sato’s theory, such a tau-function corre-
sponds to a point in the big cell of the Sato Grassmannian, and can be specified by the affine
coordinates {an,m}n,m≥0 on the big cell, see [47, Section 3] for details.

The tau-function τ(t) can be represented in a simple fashion in terms of its affine coordinates
{an,m}n,m≥0. In the fermionic Fock space, the tau-function can be represented as a Bogoliubov
transform of the fermionic vacuum:

τ = exp

( ∑
n,m≥0

an,mψ−m− 1
2
ψ∗
−n− 1

2

)
|0⟩.

This Bogoliubov transform only involves fermionic creators, and such a representation is unique.
And in the bosonic Fock space, the tau-function is a linear summation of the Schur functions,
where the coefficients are given by the determinants of affine coordinates,

τ(t) =
∑
µ

(−1)n1+···+nk · det(ani,mj )1≤i,j≤k · sµ(t),

where (m1, . . . ,mk|n1, . . . , nk) is the Frobenius notation of the partition µ.
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In [47, Section 5], Zhou has derived a formula for connected n-point functions of a tau-function
of the KP hierarchy in terms of its KP-affine coordinates. Once we know the affine coordinates
of a tau-function τ(t), one can compute the free energy log τ(t) using Zhou’s formula.

Remark 5.1. In the case of the BKP hierarchy, one also has similar results. In the fermionic
Fock space of type B, a tau-function τ(t) of the BKP hierarchy satisfying τ(0) = 1 can be
represented as a Bogoliubov transform of the vacuum which only involves (neutral) fermionic
creators. In the bosonic Fock space, τ(t) is a linear summation of the Schur Q-functions, and the
coefficients are Pfaffians of BKP-affine coordinates. See [41] for details and a BKP generalization
of Zhou’s formula for connected n-point functions.

5.2 KP-Affine coordinates of a diagonal tau-function

It is known that a tau-function τn(t+, t−) of the 2d Toda lattice hierarchy is a tau-function of
the KP hierarchy with KP-time variables t+ (resp. t−) for fixed t−

(
resp. t+

)
and n. In this

subsection, we compute the KP-affine coordinates of a diagonal tau-function τf (t+, t−). Here
we regard t− as parameters and t+ as KP-time variables.

Now let f : Z + 1
2 → C be an arbitrary function on the set of half-integers, and let f̂ and τf

be given by (3.2) and (3.3). In what follows, we expand the vector

ef̂Γ−(t−)|0⟩ ∈ F (0)

as a linear summation of the basis vectors {|µ⟩}. First by (2.10), we know that

Γ−(t−)|0⟩ =
∑
µ

sµ(t−)|µ⟩.

From the definition (3.2) we easily see f̂ |0⟩ = 0, and then ef̂ |0⟩ = |0⟩. Now by (2.5) and the
Baker–Campbell–Hausdorff formula (3.5), we have

ef̂ |µ⟩ = (−1)
∑k

j=1 nj · ef̂ψ−m1− 1
2
ψ∗
−n1− 1

2

· · ·ψ−mk− 1
2
ψ∗
−nk− 1

2

|0⟩

= (−1)
∑k

j=1 nj ·
(
ef̂ψ−m1− 1

2
e−f̂
)(

ef̂ψ∗
−n1− 1

2

e−f̂
)
· · ·
(
ef̂ψ−mk− 1

2
e−f̂
)(

ef̂ψ∗
−nk− 1

2

e−f̂
)
|0⟩

= e
∑k

j=1 f(−mj− 1
2
)−

∑k
j=1 f(nj+

1
2
)|µ⟩,

where µ = (m1, . . . ,mk|n1, . . . , nk) is the Frobenius notation of the partition µ. And thus

ef̂Γ−(t−)|0⟩ =
∑
µ

sµ(t−)ef̂ |µ⟩

=
∑
µ

e
∑k

j=1 f(−mj− 1
2
)−

∑k
j=1 f(nj+

1
2
) · sµ(t−)|µ⟩.

Recall that if we expand a vector |U⟩ ∈ F as an (infinite) linear combination of the basis
vectors |µ⟩ of the fermionic Fock space, then the KP-affine coordinate an,m of the tau-function
⟨0|Γ+(t)|U⟩ is exactly (−1)n times the coefficient of the vectors |(m|n)⟩, for every m,n ≥ 0.
Therefore we conclude that

Theorem 5.2. The KP-affine coordinates for τf (t+, t−)
(
with fixed t− and KP-time vari-

ables t+
)
are

afn,m = (−1)n · s(m|n)(t
−) · ef(−m− 1

2
)−f(n+ 1

2
), (5.1)

for every m,n ≥ 0.

Now one is able to plugging the above affine coordinates (5.1) into Zhou’s formula [47, Sec-
tion 5] to compute the connected n-point functions of τf (t+, t−).
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5.3 Restriction to t−k = δk,1

In this subsection, we consider the special evaluation t− = (1, 0, 0, 0, . . . ) of the diagonal tau-
function τf (t+, t−). This will be useful in the computation of KP-affine coordinates of the
tau-function of single Hurwitz numbers, see Section 6.5.

Let f : Z + 1
2 → C be a function on the set of half-integers, and let f̂ be the operator given

by (3.2). Define

τ̃f (t) = ⟨0|Γ+(t) exp
(
f̂
)

exp(α−1)|0⟩,

then τ̃f (t) is a tau-function of the KP hierarchy. By Theorem 5.2, we know that the KP-affine
coordinates of τ̃f (t) is

(−1)n · s(m|n)(δk,1) · ef(−m− 1
2
)−f(n+ 1

2
),

where sµ(δk,1) means evaluating the Schur function sµ(t) at time t = (1, 0, 0, 0, . . . ).
Now we consider the evaluation sµ(δk,1). The following identity is well known in literatures

(see, e.g., [12, Section 4.1]):

sµ(δk,1) =
1

l1! · · · lk!
·
∏
i<j

(li − lj),

where for a partition µ = (µ1 ≥ µ2 ≥ · · · ≥ µl(µ) > 0) we denote

li = µi + l(µ) − i, i = 1, . . . , l(µ).

Or more explicitly,

sµ(δk,1) =
∑
µ

∏
1≤i<j≤l(µ)(µi − µj − i+ j)∏l(µ)

i=1(µi + l(µ) − i)!
.

Now take µ to be the hook partition µ = (m|n), i.e., l(µ) = n+ 1, and µ1 = m+ 1, µ2 = · · · =
µn+1 = 1. Then, we have

s(m|n)(δk,1) =

∏
1≤i<j≤n+1(µi − µj − i+ j)∏n+1

i=1 (µi + n+ 1 − i)!
=

(m+ n)! ·
∏n−1

j=1 j
n−j

m! · (m+ n+ 1) ·
∏n

j=1 j!

=
(m+ n)!

(m+ n+ 1) ·m! · n!
.

Therefore, we conclude that

Proposition 5.3. The KP-affine coordinates for the tau-function τ̃f (t) are

ãfn,m = (−1)n · (m+ n)!

(m+ n+ 1) ·m! · n!
· ef(−m− 1

2
)−f(n+ 1

2
),

for every m,n ≥ 0.

6 Application to connected double Hurwitz numbers

In this section, we use the above results to derive explicit formulas for various types of connected
double Hurwitz numbers, including the ordinary double Hurwitz numbers, the double Hurwitz
numbers with completed r-cycles, and mixed double Hurwitz numbers.
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6.1 Ordinary double Hurwitz numbers and the associated tau-function

First, we recall some facts of double Hurwitz numbers in literatures.

Let µ+ and µ− be two partitions of a positive integer d. Consider a branched cover f : Σ → P1

from a smooth Riemann surface Σ of genus g to the complex projective line, with ramification
types µ+ over 0 ∈ P1 and µ− over ∞ ∈ P1, and

(
1d−22

)
(i.e., simple ramification) over other b

fixed points. Then by the Riemann–Hurwitz formula, one has

2g − 2 + l(µ+) + l(µ−) = b, (6.1)

where l(µ) denotes the length of a partition µ. Two such covers f : Σ → P1 and f ′ : Σ′ → P1 are
said to be equivalent, if there exists a biholomorphic map ϕ : Σ → Σ′ such that f = f ′ ◦ ϕ. The
map ϕ is called an automorphism of f .

The possibly connected double Hurwitz numbers H•
g (µ+, µ−) is defined to be the following

weighted counting of the equivalence classes of such maps:

H•
g (µ+, µ−) =

∑
f

1

|Aut(f)|
,

where the Riemann surface Σ is possibly disconnected. And the connected double Hurwitz num-
bers H◦

g (µ+, µ−) is the weighted counting of the equivalence classes of maps f from a connected
Riemann surface Σ:

H◦
g (µ+, µ−) =

∑
f : connected

1

|Aut(f)|
.

Notice that when g and µ± are fixed, the number b is determined by (6.1).

In [30], Okounkov has shown that the generating series

τ (2)
(
t+, t−;β

)
=
∑
g,µ±

βbp+
µ+p

−
µ−H

•
g (µ+, µ−)

b!

of all possibly disconnected double Hurwitz numbers is a tau-function of the 2d Toda lattice
hierarchy, where p± =

(
p±1 , p

±
2 , p

±
3 , . . .

)
are two sequences of formal variables, and we denote

p±µ = p±µ1
p±µ2

· · · p±µl

for a partition µ = (µ1, µ2, . . . , µl). The time variables of this hierarchy are

t±n =
1

n
p±n , n ≥ 1.

He derived the following fermionic representation of this tau-function:

τ (2)
(
t+, t−;β

)
=
〈
0
∣∣Γ+(t+)eβK

(2)
Γ−(t−)

∣∣0〉,
where K(2) is the cut-and-join operator (2.6). If we regard p±n = pn

(
x±) to be the Newton

symmetric function of degree n in some formal variables x± =
(
x±1 , x

±
2 , . . .

)
, then the following

expansion by Schur functions follows from (2.10) and (2.7):

τ (2)
(
t+, t−;β

)
=
∑
µ

eβκµ/2sµ
(
x+
)
sµ(x−).
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6.2 Computation of ordinary connected double Hurwitz numbers

The free energy F (2) = log τ (2) associated to the tau-function τ (2) is the generating series of
connected double Hurwitz numbers:

F (2)(t+, t−;β) =
∑
g,µ±

βbp+
µ+p

−
µ−H

◦
g (µ+, µ−)

b!
=
∑

µ+,µ−

H◦(µ+, µ−;β)p+
µ+p

−
µ− ,

where we denote

H◦(µ+, µ−;β) =
∑
g

βb

b!
H◦

g (µ+, µ−),

and b is determined by (6.1). Then, we are able to apply the results derived in Section 4 to
compute H◦(µ+, µ−;β). In this case, the function (3.1) is taken to be

f (2)(s) = β · s
2

2
, ∀s ∈ Z +

1

2
,

then the operator (3.2) becomes f̂ (2) = βK(2), and

A−f (2)(z, w) =
∞∑
k=0

e−
1
2
β(k+ 1

2
)2 · z−k−1wk,

Af (2)(−·)(z, w) =
∞∑
k=0

e
1
2
β(k+ 1

2
)2 · z−k−1wk. (6.2)

Then by Theorem 4.9, we have

Theorem 6.1. Let µ+ = (µ+1 , . . . , µ
+
n ) and µ− = (µ−1 , . . . , µ

−
m) be two partitions with |µ+| =

|µ−|, then we have

H◦(µ+, µ−;β)

=
1

Zµ+Zµ−
Coeff∏n

a=1 z
−µ+

a −1
a

∏m
b=1 z

µ−
b

−1

n+b

[
(−1)n+m−1

∑
(n+m)-cycles

m∏
i=1

B
(2)
σ(i),σ(i+1)

]
, (6.3)

where Coeff means taking the coefficient, and

Zµ =
∏
j≥0

mj(µ)! · jmj(µ)

for a partition µ =
(
1m1(µ)2m2(µ) · · ·

)
. And B

(2)
i,j are given by

B
(2)
i,j =


izi,zj

1
zi−zj

if i < j ≤ n or n < i < j,

A−f (2)(zi, zj) if i ≤ n < j,

izj ,zi
1

zi−zj
if j < i ≤ n or n < j < i,

−Af (2)(−·)(zj , zi) if j ≤ n < i.

Remark 6.2. Here we do not need to consider the extra terms −iz1,z2 1
(z1−z2)2

in Theorem 4.9

for (n,m) = (2, 0) or (0, 2) due to Corollary 4.11.
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Remark 6.3. The evaluation of A−f (2)(z, w) and Af (2)(−·)(z, w) at z = w = 1 are some theta
constants:

A−f (2)(1, 1) =
1

2
ϑ(q), Af (2)(−·)(1, 1) =

1

2
ϑ
(
q−1
)
,

where q = e−
1
2
β, and ϑ(q) =

∑
n∈Z q

(n+1/2)2 is the evaluation of the theta function ϑ1,0(z, q)
at z = 0. As a result, the formula for the generating series of the connected (1, 1)-point functions
in Example 4.12 gives∑

j,k≥1

jk ·H◦((j), (k);β
)

=
1

4
ϑ(q)ϑ

(
q−1
)
.

In the rest of this subsection, we give some examples of the formula (6.3) for the ordinary
double Hurwitz numbers.

Example 6.4. The first non-trivial case is (n,m) = (1, 1). Then µ+ =
(
µ+1
)

and µ− = (µ−1 )
are both of length one, and by (6.2) we have

H◦((µ+1 ), (µ−1 );β
)

=
1

µ+1 µ
−
1

Coeff
z
−µ+1 −1

1 z
µ−1 −1

2

(
A−f (2)(z1, z2)Af (2)(−·)(z1, z2)

)
= δµ+

1 ,µ−
1
· 1(
µ+1
)2 µ+

1 −1∑
k=0

e−
1
2
βµ+

1 (µ+
1 −1−2k).

More concretely, we have

∑
b

H◦
g ((1), (1))

βb

b!
= 1,

∑
b

H◦
g ((2), (2))

βb

b!
=

e−β + eβ

4
=

1

2
+
β2

4
+
β4

48
+

β6

1440
+

β8

80640
+ · · · ,

∑
b

H◦
g ((3), (3))

βb

b!
=

e−3β + 1 + e3β

9
=

1

3
+ β2 +

3

4
β4 +

9

40
β6 + · · · .

In general, for a positive integer u, we have

∑
b

H◦
g ((u), (u))

βb

b!
=

1

u2
e−

1
2
βu(u−1)

u−1∑
k=0

(eβu)k =
e

1
2
βu2 − e−

1
2
βu2

u2
(
e

1
2
βu − e−

1
2
βu
) .

Example 6.5. For (n,m) = (2, 1), we have

H◦((µ+1 , µ+2 ), (µ−1 );β
)

=
1

Zµ+Zµ−
Coeff

z
−µ+1 −1

1 z
−µ+

2 −1

2 z
µ−1 −1

3

(
− iz1,z2
z1 − z2

·A−f (2)(z2, z3)Af (2)(−·)(z1, z3)

+A−f (2)(z1, z3)Af (2)(−·)(z2, z3) ·
iz1,z2
z1 − z2

)

=
δµ+

1 +µ+
2 ,µ−

1(
1 + δµ+

1 ,µ+
2

)
µ+1 µ

+
2 µ

−
1

−
µ−
1 −1∑

k=µ+
2

e
1
2
βµ−

1 (µ−
1 −1−2k) +

µ−
1 −1∑

k=µ+
2

e−
1
2
βµ−

1 (µ−
1 −1−2k)

 .
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For example,

∑
b

H◦
g ((1, 1), (2))

βb

b!
=

eβ − e−β

4
=
β

2
+
β3

12
+

β5

240
+

β7

10080
+

β9

725760
+ · · · ,

∑
b

H◦
g ((2, 1), (3))

βb

b!
=

e3β − e−3β

6
= β +

3

2
β3 +

27

40
β5 +

81

560
β7 + · · · ,

∑
b

H◦
g ((3, 1), (4))

βb

b!
=

e6β − e−6β

12
= β + 6β3 +

54

5
β5 +

324

35
β7 + · · · ,

∑
b

H◦
g ((2, 2), (4))

βb

b!
=

e6β + e2β − e−2β − e−6β

32
=
β

2
+

7

3
β3 +

61

15
β5 + · · · .

In general, for integers u ≥ v ≥ 1, we have

∑
b

H◦
g ((u, v), (u+ v))

βb

b!
=

−
∑u+v−1

k=v e
1
2
β(u+v)(u+v−1−2k) +

∑u+v−1
k=v e−

1
2
β(u+v)(u+v−1−2k)

(1 + δu,v)uv(u+ v) ·
(
e

1
2
β(u+v) − e−

1
2
β(u+v)

)
=

e
1
2
β(u+v)2 + e−

1
2
β(u+v)2 − e

1
2
β(v2−u2) − e

1
2
β(u2−v2)

(1 + δu,v)uv(u+ v) ·
(
e

1
2
β(u+v) − e−

1
2
β(u+v)

) .

In particular, when u = v, we have

∑
b

H◦
g ((u, u), (2u))

βb

b!
=

e2βu
2

+ e−2βu2 − 2

4u3
(
eβu − e−βu

) .
Example 6.6. Now we consider the case (n,m) = (2, 2). Denote µ+ = (u1, u2) and µ− =
(v1, v2). By plugging the expressions (6.2) of A−f (2) and Af (2)(−·) into (4.10) (see also Exam-
ple 4.14), we obtain the following (here we omit the details of computations):

∑
b

Hg((u1, u2), (v1, v2))
βb

b!

=
1

Zµ+Zµ−

sinh
(βd2

2

)
+ sinh

(βd(v2−v1)
2

)
+ sinh

(β(2v1u2−d2)
2

)
+ sinh

(β(2u1v1−d2)
2

)
sinh

(
1
2βd

) ,

where

1

Zµ+Zµ−
=

1

(1 + δu1,u2)(1 + δv1,v2)u1u2v1v1
.

In particular, when u1 = v1 and u2 = v2 (i.e., on the walls in the sense of [16, 23]) we have

∑
b

Hg((u1, u2), (u1, u2))
βb

b!

=
1

(1 + δu1,u2)2u21u
2
2

sinh
(βd2

2

)
+ sinh

(βd(u2−u1)
2

)
+ sinh

(
− β(u2

1+u2
2)

2

)
+ sinh

(β(2u2
1−d2)
2

)
sinh

(
1
2βd

) .

6.3 Connected double Hurwitz numbers with completed r-cycles

In this subsection, we consider connected double Hurwitz numbers where the simple ramification
type

(
2, 1d−2

)
is replaced by the completed r-cycle. For an introduction to double Hurwitz
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numbers with completed r-cycles and the relation to the Gromov–Witten theory of CP1, see
Okounkov-Pandharipande [33]. See also Shadrin–Spitz–Zvonkine [38].

The generating series of possibly disconnected double Hurwitz numbers with completed r-
cycles is the following tau-function

(
see [38, equations (31) and (33)], and notice here our notation

H
(r)•
g (µ+, µ−) differs from the notation h

(r)
g,µ+,µ− in [38] by an additional factor l(µ+)! · l(µ−)!

)
:

τ (r)(t+, t−;β) =
∑

g,µ+,µ−

βbp+
µ+p

−
µ−H

(r)•
g (µ+, µ−)

b!
=
〈
0
∣∣Γ+(t+)eβK

(r)
Γ−(t−)

∣∣0〉,
where the number b is determined by

b =
(
2g − 2 + l(µ+) + l(µ−)

)
/r,

and K(r) is the following operator on the fermionic Fock space:

K(r) =
∑

s∈Z+ 1
2

sr

r!
:ψsψ

∗
−s:. (6.4)

In this case, the function (3.1) is taken to be

f (r)(s) = β · s
r

r!
, ∀s ∈ Z +

1

2
,

then the operator (3.2) in this case is f̂ (r) = βK(r). Similar to (6.3), we have

Theorem 6.7. For two partitions µ+ = (µ+1 , . . . , µ
+
n ), µ− = (µ−1 , . . . , µ

−
m) with |µ+| = |µ−|, the

connected double Hurwitz numbers with completed r-cycles are∑
b

βb

b!
H(r)◦

g (µ+, µ−)

=
1

Zµ+Zµ−
Coeff∏n

a=1 z
−µ+

a −1
a

∏m
b=1 z

µ−
b

−1

n+b

[
(−1)n+m−1

∑
(n+m)-cycles

m∏
i=1

B
(r)
σ(i),σ(i+1)

]
,

where

B
(r)
i,j =



izi,zj
1

zi − zj
if i < j ≤ n or n < i < j,

∞∑
k=0

e−β(k+ 1
2
)r/r! · z−k−1

i zkj if i ≤ n < j,

izj ,zi
1

zi − zj
if j < i ≤ n or n < j < i,

−
∞∑
k=0

eβ(−k− 1
2
)r/r! · z−k−1

j zki if j ≤ n < i.

6.4 Connected mixed double Hurwitz numbers

In this subsection, we apply our formula to the mixed double Hurwitz numbers.
The mixed double Hurwitz numbers are introduced by Goulden, Guay-Paquet, and No-

vak [15]. These numbers interpolate combinatorially between the ordinary double Hurwitz num-
bers and the monotone double Hurwitz numbers [14], and are related to combinatorial aspects of
Cayley graph of the symmetric groups Sn. Moreover, those authors showed that the generating
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series of these (disconnected) mixed double Hurwitz numbers is a diagonal tau-function solution
to the 2d Toda hierarchy. See [15] for details of the constructions and notations.

Let µ± be two partitions of an integer d, and let k, l ≥ 0 be two integers. Denote by
W •k,l(µ+, µ−) the possibly disconnected mixed double Hurwitz number indexed by k, l and µ±,
and let

W •(t, u; t+, t−) = 1 +
∞∑
d=1

1

d!

∞∑
k,l=0

tkul

l!

∑
|µ±|=d

W •k,l(µ+, µ−)p+
µ+p

−
µ− ,

where p±n = n · t±n . If one regards pn as the Newton symmetric function of degree n, then one
has the following Schur function expansion (see [15, Section 2]):

W •(t, u; t+, t−) =
∑
λ

Y (λ)s+λ s
−
λ ,

where the summation is taken over all partitions (or equivalently, all Young diagrams) λ, and

Y (λ) =
∏
2∈λ

ec(2)u

1 − c(2)t
.

Here 2 ∈ λ is a box in the Young diagram, and c(2) is the content of this box, i.e., if 2 is in
the i-th row and j-th column, then c(2) = j − i.

Remark 6.8. When k = 0, the mixed double Hurwitz numbers are reduced to the ordinary
double Hurwitz numbers. And when l = 0, the mixed double Hurwitz numbers are reduced to
the monotone double Hurwitz numbers introduced in [14]. See [15] for details.

Lemma 6.9. Let fmix : Z + 1
2 → C be the following function:

fmix(s) =



s2

2
u− log

−s− 1
2∏

j=1

(1 − jt) if s < 0,

s2

2
u+ log

s− 1
2∏

j=1

(1 + jt) if s > 0,

then we have

W •(t, u; t+, t−) =
〈
0
∣∣Γ+(t+) exp

(
f̂mix

)
Γ−(t−)

∣∣0〉.
Proof. Since Γ−(t−)|0⟩ =

∑
µ sµ|µ⟩ (see (2.10)), we only need to prove

exp
(
f̂mix

)
|µ⟩ = Y (µ)|µ⟩ (6.5)

for every partition µ, where |µ⟩ is the vector (2.1).

Assume µ = (m1, . . . ,mk|n1, . . . , nk), then by e−f̂mix |0⟩ = |0⟩ and (3.5),

exp
(
f̂mix

)
|µ⟩ = (−1)

∑k
i=1 ni ·

(
ef̂

mix
ψ−m1− 1

2
e−f̂mix)(

ef̂
mix
ψ∗
−n1− 1

2

e−f̂mix)
· · · (ef̂mix

ψ−mk− 1
2
e−f̂mix

)
(
ef̂

mix
ψ∗
−nk− 1

2

e−f̂mix)|0⟩
= e

∑k
i=1 f

mix(−mi− 1
2
)−

∑k
j=1 f

mix(nj+
1
2
)|µ⟩.

Notice that

Y (µ) =

k∏
l=1

(
ml∏
i=1

eiu

1 − it

)(
nl∏
j=1

e−ju

1 + jt

)
,

and now one easily checks that (6.5) holds. ■
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Then by Theorem 4.9, we have

Theorem 6.10. For two partitions µ+ = (µ+1 , . . . , µ
+
n ), µ− = (µ−1 , . . . , µ

−
m) with |µ+|= |µ−|=d,

the connected mixed double Hurwitz numbers are given by:

1

d!

∞∑
k,l=0

tkul

l!

∑
|µ±|=d

W ◦k,l(µ+, µ−)

=
1

Zµ+Zµ−
Coeff∏n

a=1 z
−µ+

a −1
a

∏m
b=1 z

µ−
b

−1

n+b

[
(−1)n+m−1

∑
(n+m)-cycles

m∏
i=1

Bmix
σ(i),σ(i+1)

]
,

where

Bmix
i,j =



izi,zj
1

zi − zj
if i < j ≤ n or n < i < j,

∞∑
k=0

(
e−

k(k+1)
2

u ·
k∏

j=1

1

1 + jt

)
z−k−1
i zkj , if i ≤ n < j,

izj ,zi
1

zi − zj
, if j < i ≤ n or n < j < i,

−
∞∑
k=0

(
e

k(k+1)
2

u ·
k∏

j=1

1

1 − jt

)
· z−k−1

j zki , if j ≤ n < i.

Example 6.11. For (n,m) = (1, 1), one has

1

d!

∞∑
k,l=0

tkul

l!
W ◦k,l((d), (d)) =

1

d2

d−1∑
a=0

e
u
2
d(d−1−2a)∏d−1−a

i=1 (1 − it) ·
∏a

j=1(1 + jt)
.

For example,

∞∑
k,l=0

tkul

l!
W ◦k,l((1), (1)) = 1,

∞∑
k,l=0

tkul

l!
W ◦k,l((2), (2)) =

1

2

(
eu

1 − t
+

e−u

1 + t

)
,

∞∑
k,l=0

tkul

l!
W ◦k,l((3), (3)) =

2

3

(
e3u

(1 − t)(1 − 2t)
+

1

(1 − t)(1 + t)
+

e−3u

(1 + t)(1 + 2t)

)
.

Example 6.12. For (n,m) = (2, 1), one has

1

(a+ b)!

∞∑
k,l=0

tkul

l!
W ◦k,l((a, b), (a+ b)) =

1

(1 + δa,b)ab(a+ b)

×
a−1∑
c=0

(
e−

u
2
(a+b)(a−b−1−2c)∏b+c

i=1(1 − it)
∏a−1−c

j=1 (1 + jt)
− e

u
2
(a+b)(a−b−1−2c)∏a−1−c

i=1 (1 − it)
∏b+c

j=1(1 + jt)

)
.

6.5 Reduction to single Hurwitz numbers

Recall that the single Hurwitz numbers can be obtained by taking µ− = (1, 1, . . . , 1) in double
Hurwitz numbers labeled by two partitions µ+ and µ−. Thus by evaluating the time variables t−

at t− = (1, 0, 0, 0, . . . ) in the above generating series τ (2)(t±;β), τ (r)(t±;β), and W •(t, u; t±) of
disconnected double Hurwitz numbers, one obtains the generating series of the disconnected sin-
gle Hurwitz numbers. We denote them by τ̃ (2)(t+;β), τ̃ (r)(t+;β) and W̃ •(t, u; t+), respectively.
Now by Proposition 5.3, we have
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Theorem 6.13. The KP-affine coordinates for τ̃ (r)(t+;β) are

ã(r)n,m =
(−1)n · (m+ n)!

(m+ n+ 1) ·m! · n!
· exp

[
β

r

((
−m− 1

2

)r

−
(
n+

1

2

)r)]
, m, n ≥ 0,

for every r ≥ 2, and the KP-affine coordinates for W̃ •(t, u; t+) are

ãW̃n,m = (−1)n · (m+ n)!

(m+ n+ 1) ·m! · n!

× exp

[
u

2
(m+ n+ 1)(m− n) − log

(
m∏
j=1

(1 − jt)
n∏

j=1

(1 + jt)

)]
, m, n ≥ 0.

Then one can apply Zhou’s formula [47, Section 5] to compute the generating series of the
connected single Hurwitz numbers.

7 Stationary Gromov–Witten invariants of P1 relative to 0,∞
In [33], Okounkov and Pandharipande have studied the Gromov–Witten theory of P1 using
the Gromov–Witten/Hurwitz correspondence. Now in this section, we discuss how to apply
the main result in Section 4 to compute the stationary GW invariants of P1 relative to two
points 0,∞ ∈ P1.

Let (x1, x2, . . . ) be a family of formal variables. Denote

τP1(x, t+, t−) = exp

( ∑
|µ+|=|µ−|

〈
µ+, exp

( ∞∑
i=1

xiτi(w)

)
, µ−

〉P1

· t+
µ+t

−
µ−

)

the exponential generating functions of the Gromov–Witten invariants, where tµ = tµ1tµ2 · · · tµl

for a partition µ = (µ1, µ2, . . . , µl), and w ∈ H∗(P1,C) is the Poincaré dual of [pt], and〈
µ+,

n∏
i=1

τki(w), µ−

〉P1

=

∫
Mg,n(P1,µ+,µ−)

n∏
i=1

ψki
i ev∗

i (w)

is the stationary Gromov–Witten invariants of P1 relative to two points 0,∞ ∈ P1. Using the
GW/H correspondence, Okounkov and Pandharipande proved that (see [33, Proposition 4.1])

τP1(x, t+, t−) = e
∑

i≥0
(1−2−i−1)ζ(−i−1)

i+1
xi ·
〈
0
∣∣Γ+(t+)e

∑
i≥0 xiK

(i+1)

Γ−(t−)
∣∣0〉,

where ζ is the Riemann zeta-function and K(i+1) are the operators (6.4).

Remark 7.1. The additional factor e
∑

i≥0
(1−2−i−1)ζ(−i−1)

i+1
xi appears from the definition of shifted

symmetric power sum. It becomes a constant summand after taking logarithm, thus makes no
contribution to the connected (n,m)-point functions.

Now in this case, the corresponding function (3.1) should be

fP1(s) =
∑
i≥0

xi ·
si+1

(i+ 1)!
, ∀s ∈ Z +

1

2
,

then we are able to compute the stationary GW invariants of P1 relative to 0,∞ using Theo-
rem 4.9. The result is
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Theorem 7.2. Let

µ+ = (µ+1 , . . . , µ
+
n ) =

(
1m1(µ+)2m2(µ+) · · ·

)
,

µ− = (µ−1 , . . . , µ
−
m) =

(
1m1(µ−)2m2(µ−) · · ·

)
,

be two partitions of integers with |µ+| = |µ−|, then the stationary GW invariants of P1 relative
to 0,∞ ∈ P1 are given by〈

µ+, exp

( ∞∑
i=1

xiτi(w)

)
, µ−

〉P1

=
1∏

i≥1
mi(µ+)! ·

∏
j≥1

mj(µ−)!

× Coeff∏n
a=1 z

−µ+a −1
a

∏m
b=1 z

µ−
b

−1

n+b

[
(−1)n+m−1

∑
(n+m)-cycles

m∏
i=1

BP1

σ(i),σ(i+1)

]
,

where BP1

i,j are given by

BP1

i,j =



izi,zj
1

zi − zj
if i < j ≤ n or n < i < j,

∞∑
k=0

exp

(
−
∑
l≥0

xl
(k + 1

2)l+1

(l + 1)!

)
z−k−1
i zkj if i ≤ n < j,

izj ,zi
1

zi − zj
if j < i ≤ n or n < j < i,

−
∞∑
k=0

exp

(∑
l≥0

xl
(−k − 1

2)l+1

(l + 1)!

)
z−k−1
j zki if j ≤ n < i.

Example 7.3. The connected (1, 1)-point correlators are given by〈
(u), exp

( ∞∑
i=1

xiτi(w)

)
, (u)

〉P1

=
u−1∑
a=0

exp

(∑
k≥0

xk
(k + 1)!

((
a+

1

2
− u

)k+1

−
(
a+

1

2

)k+1))

=

u−1∑
a=0

exp

(
fP1

(
a+

1

2
− u

)
− fP1

(
a+

1

2

))
,

and the connected (2, 1)-point correlators are given by〈
(u, v), exp

( ∞∑
i=1

xiτi(w)

)
, (u+ v)

〉P1

=
1

1 + δu,v

u−1∑
a=0

[
− exp

(∑
k≥0

xk
(k + 1)!

((
a+

1

2
− u

)k+1

−
(
a+

1

2
+ v

)k+1))

+ exp

(∑
k≥0

xk
(k + 1)!

((
−a− 1

2
− v

)k+1

−
(
u− 1

2
− a

)k+1))]

=
1

1 + δu,v

u−1∑
a=0

(
− exp

(
fP1

(
a+

1

2
− u

)
− fP1

(
a+

1

2
+ v

))
+ exp

(
fP1

(
−a− 1

2
− v

)
− fP1

(
u− 1

2
− a

)))
.
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Remark 7.4. For a fixed r, if one takes xr−1 = β and xi = 0 for all i ̸= r, then the function fP1

is reduced to f (r) in the case of double Hurwitz numbers with completed r-cycles. These are
indeed simple cases of GW/H correspondence.
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